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There is a growing consensus that solutions to complex science and engineering problems require novel meth-
odologies that are able to integrate traditional physics-based modeling approaches with state-of-the-art ma-
chine learning (ML) techniques. This article provides a structured overview of such techniques. Application-
centric objective areas for which these approaches have been applied are summarized, and then classes
of methodologies used to construct physics-guided ML models and hybrid physics-ML frameworks are de-
scribed. We then provide a taxonomy of these existing techniques, which uncovers knowledge gaps and
potential crossovers of methods between disciplines that can serve as ideas for future research.
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1 INTRODUCTION

Machine learning (ML) models, which have already found tremendous success in commercial
applications, are beginning to play an important role in advancing scientific discovery in envir-
onmental and engineering domains traditionally dominated by mechanistic (e.g., first principle)
models [30, 124, 128, 141, 142, 157, 232, 283]. The use of ML models is particularly promising in
scientific problems involving processes that are not completely understood, or where it is compu-
tationally infeasible to run mechanistic models at desired resolutions in space and time. However,
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the application of even the state-of-the-art black-box ML models has often met with limited suc-
cess in scientific domains due to their large data requirements, inability to produce physically con-
sistent results, and their lack of generalizability to out-of-sample scenarios [47, 166, 190]. Given
that neither an ML-only nor a scientific knowledge-only approach can be considered sufficient for
complex scientific and engineering applications, the research community is beginning to explore
the continuum between mechanistic and ML models, where both scientific knowledge and ML
are integrated in a synergistic manner [139, 141, 143]. This paradigm is fundamentally different
from mainstream practices in the ML community for making use of domain-specific knowledge
in feature engineering or post-processing, as it is focused on approaches that integrate scientific
knowledge directly into the ML framework.

Even though the idea of integrating scientific principles and ML models has picked up mo-
mentum just in the last few years, there is already a vast amount of work on this topic. For instance,
in all Web of Science databases (www.webofknowledge.com), a search for “physics-informed ML”
alone shows the growth of publications from 2 in 2017, 8 in 2018, 27 in 2019, to 63 in 2020. Also,
many workshops and symposiums have formed to focus on this field (e.g., [1–6, 21]). This work
is being pursued in diverse disciplines (e.g., earth systems [232], climate science [87, 153, 207],
turbulence modeling [37, 199, 295], computational physics [261], cyber-physical systems [223],
material discovery [49, 222, 243], quantum chemistry [240, 245], biological sciences [8, 215, 306],
and hydrology [275, 297]), and it is being performed in the context of diverse objectives specific to
these applications. Early results in isolated and relatively simple scenarios are promising, and the
expectations are rising for this paradigm to accelerate scientific discovery and help address some
of the biggest challenges that are facing humanity in terms of climate [87], health [280], and food
security [129].

The goal of this survey is to bring these exciting developments to the ML community, to make
them aware of the progress that has been made, and the gaps and opportunities that exist for ad-
vancing research in this promising direction. We hope that this survey will also be valuable for
scientists who are interested in exploring the use of ML to enhance modeling in their respect-
ive disciplines. Please note that work on this topic has been referred to by other names, such as
“physics-guided ML,” “physics-informed ML,” or “physics-aware AI” although it covers many sci-
entific disciplines. In this survey, we also use the terms “physics-guided” or “physics,” which should
be more generally interpreted as “scientific knowledge-guided” or “scientific knowledge”.

The focus of this survey is on approaches that integrate scientific knowledge with ML for envir-
onmental and engineering systems where scientific knowledge is available as mechanistic models,
theories, and laws (e.g., conservation of mass). This distinguishes our survey from other works
that focus on more general knowledge integration into machine learning [7, 277] and works cov-
ering physics integration into ML in specific domains (e.g., cyber-physical systems [223], chemistry
[205], medical imaging [175], fluid mechanics [46], climate and weather [146]). This survey cre-
ates a novel taxonomy that covers a wide array of physics-ML methodologies, application-centric
objectives, and general computational objectives.

We organize the article as follows. Section 2 describes different application-centric objectives
that are being pursued through combinations of scientific knowledge and ML. Section 3 discusses
novel ML loss functions, model initializations, architectures, and hybrid models that researchers
are developing to achieve these objectives, as well as comparisons between them. Section 4 dis-
cusses the areas of current work as well as the possibilities for cross-fertilization between methods
and application-centric objectives. Then, Section 5 contains concluding remarks. Table 3 categor-
izes the work surveyed in this article by application-centric objective and methods for integrating
scientific knowledge in ML according to the proposed taxonomy.
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Fig. 1. A generic scientific problem in engineering, where �xt are the dynamic inputs in time, �s is the set of

static characteristics or parameters of the system, and F () is the model producing target variable �yt . �xt and

�yt can also have spatial dimensions.

2 APPLICATION-CENTRIC OBJECTIVES OF PHYSICS-ML INTEGRATION

This section provides a brief overview of a set of application-centric objectives where couplings
of ML and scientific modeling paradigms are being pursued for applications in environmental and
engineering systems. In many of these applications, scientific knowledge is represented using a
mechanistic model (also referred to as physical, process-based, or first principles models). This
is shown in Figure 1 as part of an abstract representation of a generic scientific problem. For
example, a model for lake temperature would have drivers �xt , such as the amount of sunlight,
air temperature, and wind speed, with static parameters �s , such as lake depth and water clarity,
which the model F (�xt ,�s ) would use to predict the water temperature �yt at various depths in the
lake. Such physical models typically have a notion of state (which is not depicted in Figure 1
for simplicity), and complex physical models can have multiple components that model various
aspects of the system, e.g., components to model clouds or ocean in a global climate model. The
application-centric objectives described in this section describe different ways in which physics-
ML integration can be used to address the imperfections of the mechanistic model F (), build a more
resource-efficient F (), or discover new knowledge such as F (). Below we describe how different
application-centric objectives fit into each of these scenarios.

First, situations can arise in which a mechanistic model is inadequate to model a poorly under-
stood process and a data-driven model could be leveraged to make better use of observations and
possibly also process-based knowledge. Section 2.1 covers approaches like this, where physics-ML
is being pursued to improve the effectiveness and predictive accuracy of F (�xt ,�s ) with observations
and scientific knowledge.

Often it is also desirable to improve the resource efficiency where physical models are too slow
or at too coarse of a resolution. Section 2.2 on downscaling considers how physics-ML can produce
high-resolution output variables faster than a physical model in situations spanning meteorology,
climatology, and others. Similarly, if subprocesses of a larger mechanistic model are computation-
ally intractable or inaccurate, an ML model can be used for faster or more accurate subprocess
representation, as is covered in Section 2.3 on parameterization. More generally, the concept of
reducing the computational complexity of complex mechanistic or numerical models in the form
of an ML-based or ML-assisted reduced-order model is described in Section 2.4. Another object-
ive seeking to improve resource efficiency with physics-ML is the solving of partial differen-

tial equations (PDEs) where the solution is represented with a data-driven model. This allows
dynamical systems applications to bypass the often extreme computational complexity of using
finite element methods to solve complex systems of PDEs. As we can see, in many of these cases
ML can be used as a more efficient surrogate model (also referred to as emulators) for an existing
mechanistic or numerical approach.
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Table 1. Application-centric Objectives of Using Physics-ML Methods in Terms of the Generic Scientific

Problem Shown in Figure 1 and the Needs to Pursue Each Objective

Objective Name Objective Description Needs

2.1 Improving Over
Physical Model

Improved version of F that better
matches observations

Observations (synthetic samples
can be used but not required)

2.2 Downscaling An approximate version of F
that provides high resolution output Yt

given coarse resolution input Xt

Synthetic samples at high resolution
(can also make use of observations at high
resolutions but this can be hard to obtain)

2.3 Parameterization Replace a component of F when F consists
of interconnected component models

Synthetic samples (e.g., subprocess)

2.4 Reduced-
Order Models

Simpler version of F that is
more computationally efficient

and possibly less accurate

Governing equations (e.g., high-fidelity,
complex models)

2.5 Forward Solving
PDEs

Computationally efficient single
pass solution of PDE

Governing equations (e.g., high-fidelity,
complex models)

2.6 Inverse Modeling Discover static characteristics S given
�xt and �yt

Observations (synthetic samples
can be used but not required)

2.7 Discovering
Governing Equations

Find governing equations that underlie F Observations

2.8 Data Generation Generate realistic synthetic samples
without using F

Synthetic data (or observations)

2.9 Uncertainty
Quantification

Estimate uncertainty on �yt given input �xt Observations or synthetic samples

Other objectives seek to discover new knowledge in the form of unobserved causal quantities
or the symbolic representation of a process given only data. Compared to previous objectives
where the goal is to produce accurate or efficient output variables, inverse modeling described in
Section 2.6 flips the path shown in Figure 1 and instead seeks to find some causal static physical
parameters within �s given sufficient outputs. Also, Section 2.7 covers the discovery of governing
equations from data, where ML has been used to go beyond traditional approaches and discover
new explicit symbolic representations of phenomena.

Data generation objectives (Section 2.8) try to realistically reproduce the distribution of �xt , �yt , or
(�xt , �yt ). Such synthetically generated data can be useful in the often data-limited situations present
in engineering and environmental systems. Uncertainty quantification (UQ) (Section 2.9) tries
to learn the distribution of �yt in terms of the uncertainty of the other components of the model
like the inputs, static parameters, and model state. UQ is necessary for accurate forecasting, which
can also affect many of the other objectives.

Table 1 summarizes these objectives and their needs in terms of real-world observations, syn-
thetic samples (e.g., output from a mechanistic model), or knowledge of the governing equations
of the system.

2.1 Improving Over State-of-the-art Physical Models

First-principle models are used extensively in a wide range of engineering and environmental
applications. Even though these models are based on known physical laws, in most cases, they are
necessarily approximations of reality due to incomplete knowledge of certain processes, which
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introduces bias. In addition, they often contain a large number of parameters whose values must
be estimated with the help of limited observed data, degrading their performance further, especially
due to heterogeneity in the underlying processes in both space and time. The limitations of physics-
based models cut across discipline boundaries and are well known in the scientific community (e.g.,
see Gupta et al. [116] in the context of hydrology).

ML models have been shown to outperform physics-based models in many disciplines (e.g., ma-
terials science [148, 238, 285], applied physics [22, 127], aquatic sciences [132, 286], atmospheric
science [206], biomedical science [264], computational biology [9]). A major reason for this suc-
cess is that ML models (e.g., neural networks), given enough data, can find structure and patterns
in problems where complexity prohibits the explicit programming of a system’s exact physical
nature. Given this ability to automatically extract complex relationships from data, ML models
appear promising for scientific problems with physical processes that are not fully understood
but have data of adequate quality and quantity is available. However, the black-box application of
ML has met with limited success in scientific domains due to a number of reasons [141]: (i) while
state-of-the-art ML models are capable of capturing complex spatiotemporal relationships, they re-
quire far too much-labeled data for training, which is rarely available in real application settings,
(ii) ML models often produce scientifically inconsistent results; and (iii) ML models can only cap-
ture relationships in the available training data, and thus cannot generalize to out-of-sample scen-
arios (i.e., those not represented in the training data).

The key objective here is to combine elements of physics-based modeling with state-of-the-art
ML models to leverage their complementary strengths. Such integrated physics-ML models are
expected to better capture the dynamics of scientific systems and advance the understanding of
underlying physical processes. An early attempt for combining ML with physics-based modeling
in lake temperature dynamics [231]) has already demonstrated its potential for providing better
prediction accuracy with a much smaller number of samples as well as generalizability in out-of-
sample scenarios.

2.2 Downscaling

Complex mechanistic models are capable of capturing physical reality more precisely than sim-
pler models, as they often involve more diverse components that account for a greater number of
processes at finer spatial or temporal resolution. However, given the computation cost and mod-
eling complexity, many models are run at a resolution that is coarser than what is required to
precisely capture underlying physical processes. For example, cloud-resolving models (CRM)
need to run at the sub-kilometer horizontal resolution to be able to effectively represent boundary-
layer eddies and low clouds, which are crucial for the modeling of Earth’s energy balance and
the cloud–radiation feedback [230]. However, it is not feasible to run global climate models at
such fine resolutions even with the most powerful computers expected to be available in the near
future.

Downscaling techniques have been widely used as a solution to capture physical variables that
need to be modeled at a finer resolution. In general, the downscaling techniques can be divided
into two categories: statistical downscaling and dynamical downscaling. Statistical downscaling
refers to the use of empirical models to predict finer-resolution variables from coarser-resolution
variables. Such a mapping across different resolutions can involve complex non-linear relation-
ships that cannot be precisely modeled by traditional empirical models. Recently, artificial neural
networks have shown a lot of promise for this problem, given their ability to model non-linear re-
lationships [249, 273]. In contrast, dynamical downscaling makes use of high-resolution regional
simulations to dynamically simulate relevant physical processes at regional or local scales of in-
terest. Due to the substantial time cost of running such complex models, there is an increasing
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interest in using ML models as surrogate models (a model approximating simulation-driven input-
output data) to predict target variables at a higher resolution [103, 254].

Although the state-of-the-art ML methods can be used in both statistical and dynamical down-
scaling, it remains a challenge to ensure that the learned ML component is consistent with estab-
lished physical laws and can improve the overall simulation performance.

2.3 Parameterization

Complex physics-based models (e.g., for simulating phenomena in climate, weather, turbulence
modeling, hydrology) often use an approach known as parameterization to account for missing
physics. In parameterization (note that this term has a different meaning when used in mathem-
atics and geometry), specific complex dynamical processes are replaced by simplified physical
approximations that are represented as static parameters. A common way to estimate the value
of these parameters is to use a grid search over the space of combinations of parameter values
that lead to the best match with observations. This procedure is referred to as parameter calibra-
tion. The failure to correctly parameterize can make the model less robust, and errors that result
from imperfect parameterization can also feed into other components of the entire physics-based
model and deteriorate the modeling of important physical processes. Another way, that is being
considered increasingly, is to replace processes that are too complex to be physically represented
in the model by a simplified dynamic or statistical/ML process. This makes it possible to learn
new parameterizations directly from observations and/or high-resolution model simulation using
ML methods. Already, ML-based parameterizations have shown success in geology [52, 109], at-
mospheric science [40, 103], and hydrology [29]. A major benefit of ML-based parameterizations
is the reduction of computation time compared to traditional physics-based simulations. In chem-
istry, Hansen et al. [120] find that parameterizations of atomic energy using ML take seconds com-
pared to multiple days for more standard quantum-calculation calculations, and Behler et al. [27]
find that neural networks can vastly improve the efficiency of finding potential energy surfaces of
molecules.

Most of the existing work uses standard black-box ML models for parameterization, but there is
an increasing interest in integrating physics in the ML models [32], as it has the potential to make
them more robust and generalizable to unseen scenarios as well as reduce the number of training
samples needed for training.

2.4 Reduced-Order Models

Reduced-Order Models (ROMs) are computationally inexpensive representations of more com-
plex models. Usually, constructing ROMs involves dimensionality reduction that attempts to cap-
ture the most important dynamical characteristics of often large, high-fidelity simulations and
models of physical systems (e.g., in fluid dynamics [164]). This can also be viewed as a controlled
loss of accuracy. A common way to do this is to project the governing equations of a system onto
a linear subspace of the original state space using a method such as principal components analysis
or dynamic mode decomposition [221]. However, limiting the dynamics to a lower-dimensional
subspace inherently limits the accuracy of any ROM.

ML is beginning to assist in constructing ROMs for increased accuracy and reduced computa-
tional cost in several ways. One approach is to build an ML-based surrogate model for full-order
models [56, 147], where the ML model can be considered a ROM. Other ways include building an
ML-based surrogate model of an already built ROM by another dimensionality reduction method
[295] or building an ML model to mimic the dimensionality reduction mapping from a full-order
model to a reduced-order model [199]. ML and ROMs can also be combined by using the ML model
to learn the residual between a ROM and observational data [278]. ML models have the potential

ACM Computing Surveys, Vol. 55, No. 4, Article 66. Publication date: November 2022.



Physics-Guided Machine Learning Survey 66:7

to greatly augment the capabilities of ROMs because of their typically quick forward execution
speed and ability to leverage data to model high dimensional phenomena.

One area of the recent focus of ML-based ROMs is in approximating the dominant modes of
the Koopman (or composition) operator, as a method of dimensionality reduction. The Koop-
man operator is an infinite-dimension linear operator that encodes the temporal evolution of
the system state through nonlinear dynamics [42]. This allows linear analysis methods to be
applied to nonlinear systems and enables the inference of properties of dynamical systems that
are too complex to express using traditional analysis techniques. Applications span many dis-
ciplines, including fluid dynamics [250], oceanography [107], molecular dynamics [289], and
many others. Though dynamic mode decomposition [197] is the most common technique for
approximating the Koopman operator, many recent approaches have been made to approxim-
ate Koopman operator embeddings with deep learning models that outperform existing methods
[170, 185, 191, 200, 209, 210, 260, 284, 307]. Adding physics-based knowledge to the learning of
the Koopman operator has the potential to augment generalizability and interpretability, which
current ML methods in this area tend to lack [210].

Traditional methods for ROMs often lack robustness with respect to parameter changes within
the systems they are representing [11], or are not cost-effective enough when trying to predict com-
plex dynamical systems (e.g., multiscale in space and time). Thus, incorporating principles from
physics-based models could potentially reduce the search space to enable more robust training of
ROMs, and also allow the model to be trained with less data in many scenarios.

2.5 Forward Solving Partial Differential Equations

In many physical systems, governing equations are known, but direct numerical solutions of PDEs
using common methods, such as the Finite Elements Method or the Finite Difference Method [93],
are prohibitively expensive. In such cases, traditional methods are not ideal or sometimes even
possible. A common technique is to use an ML model as a surrogate for the solution to reduce com-
putation time [75, 159]. In particular, NN solvers can reduce the high computational demands of
traditional numerical methods into a single forward-pass of a NN. Notably, solutions obtained via
NNs are also naturally differentiable and have a closed analytic form that can be transferred to any
subsequent calculations, a feature not found in more traditional solving methods [159]. Especially
with the recent advancement of computational power, neural network models have shown success
in approximating solutions across different kinds of physics-based PDEs [15, 149, 233], including
the difficult quantum many-body problem [51] and many-electron Schrodinger equation [119].
As a step further, deep neural networks models have shown success in approximating solutions
across high dimensional physics-based PDEs previously considered unsuitable for approximation
by ML [118, 252]. However, slow convergence in training, limited applicability to many complex
systems, and reduced accuracy due to unawareness of physical laws can prove problematic. More
recently, Li et al. [171] have defined a neural Fourier operator which allows a neural network to
learn and solve an entire family of PDEs by learning the mapping from any functional parametric
dependence to the solution in Fourier space.

2.6 Inverse Modeling

The forward modeling of a physical system uses the physical parameters of the system (e.g., mass,
temperature, charge, physical dimensions or structure) to predict the next state of the system
or its effects (outputs). In contrast, inverse modeling uses the (possibly noisy) output of a sys-
tem to infer the intrinsic physical parameters or inputs. Inverse problems often stand out as im-
portant in physics-based modeling communities because they can potentially shed light on valu-
able information that cannot be observed directly. One example is the use of x-ray images from
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a CT scan to create a 3D image reflecting the structure of part of a person’s body [183]. This
can be viewed as a computer vision problem, where, given many training datasets of x-ray scans
of the body at different capture angles, a model can be trained to inversely reconstruct textures
and 3D shapes of different organs or other areas of interest. Allowing for better reconstruction
while reducing scan time could potentially increase patient satisfaction and reduce overall med-
ical costs. Though there are many inverse modeling scenarios, in this work, we focus on intrinsic
physical parameters found in a mechanistic modeling scenario for engineering and environmental
systems.

Often, the solution of an inverse problem can be computationally expensive due to the poten-
tially millions of forwarding model evaluations needed for estimator evaluation or characteriza-
tion of posterior distributions of physical parameters [96]. ML-based surrogate models (in addition
to other methods such as reduced-order models) are becoming a realistic choice since they can
model high-dimensional phenomena with lots of data and execute much faster than most physical
simulations.

Inverse problems are traditionally solved using regularized regression techniques. Data-driven
methods have seen success in inverse problems in remote sensing of surface properties [69], hy-
drology [106], photonics [218], and medical imaging [183], among many others. Recently, novel
algorithms using deep learning and neural networks have been applied to inverse problems. While
still in their infancy, these techniques exhibit strong performance for applications such as compu-
terized tomography [57, 193, 263], seismic processing [272], or various sparse data problems.

There is also increasing interest in the inverse design of materials using ML, where desired target
properties of materials are used as input to the model to identify atomic or microscale structures
that exhibit such properties [156, 172, 222, 243]. Physics-based constraints and stopping conditions
based on material properties can be used to guide the optimization process [172, 262]. These con-
straints and similar physics-guided techniques have the potential to alleviate noted challenges in
inverse modeling, particularly in scenarios with a small sample size and a paucity of ground-truth
labels [142]. The integration of prior physical knowledge is common in current approaches to the
inverse problem, and its integration into ML-based inverse models has the potential to improve
data efficiency and increase its ability to solve ill-posed inverse problems.

2.7 Discovering Governing Equations

When the governing equations of a dynamical system are known explicitly, they allow for more
robust forecasting, control, and the opportunity for analysis of system stability and bifurcations
through increased interpretability [235]. Furthermore, if a mathematical model accurately de-
scribes the processes governing the observed data, it therefore, can generalize to data outside of
the training domain. However, in many disciplines (e.g., neuroscience, cell biology, ecology, epi-
demiology) dynamical systems have no formal analytic descriptions. Often in these cases, data is
abundant, but the underlying governing equations remain elusive. In this section, we discuss equa-
tion discovery systems that do not assume the structure of the desired equation (as in Section 2.5),
but rather explore a large space of possibly nonlinear mathematical terms.

Advances in ML for the discovery of these governing equations have become an active research
area with rich potential to integrate principles from applied mathematics and physics with mod-
ern ML methods. Early works on the data-driven discovery of physical laws relied on heuristics
and expert guidance and were focused on rediscovering known, non-differential, laws in different
scientific disciplines from artificial data [105, 162, 163, 168]. This was later expanded to include
real-world data and differential equations in ecological applications [83]. Recently, the general and
robust data-driven discovery of potentially unknown governing equations has been pioneered by
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[38, 244], where they apply symbolic regression to differences between computed derivatives and
analytic derivatives to determine underlying dynamical systems. More recently, works have used
sparse regression built on a dictionary of functions and partial derivatives to construct governing
equations [43, 220, 234]. Lagergren et al. [160] expand on this by using ANNs to construct the dic-
tionary of functions. These sparse identification techniques are based on the principle of Occam’s
Razor, where the goal is that only a few equation terms be used to describe any given nonlinear
system.

2.8 Data Generation

Data generation approaches are useful for creating virtual simulations of scientific data under
specific conditions. For example, these techniques can be used to generate potential chemical com-
pounds with desired characteristics (e.g., serving as catalysts or having a specific crystal struc-
ture). Traditional physics-based approaches for generating data often rely on running physical
simulations or conducting physical experiments, which tend to be very time-consuming. Also,
these approaches are restricted by what can be produced by physics-based models. Hence, there is
an increasing interest in generative ML approaches that learn data distributions in unsupervised
settings and thus have the potential to generate novel data beyond what could be produced by
traditional approaches.

Generative ML models have found tremendous success in areas such as speech recognition and
generation [208], image generation [73], and natural language processing [114]. These models
have been at the forefront of unsupervised learning in recent years, mostly due to their efficiency
in understanding unlabeled data. The idea behind generative models is to capture the inner prob-
abilistic distribution in order to generate similar data. With the recent advances in deep learning,
new generative models, such as the generative adversarial network (GAN) and variational

autoencoder (VAE), have been developed. These models have shown much better performance
in learning non-linear relationships to extract representative latent embeddings from observation
data. Hence the data generated from the latent embeddings are more similar to true data distri-
bution. In particular, the adversarial component of GAN consists of a two-part framework with
a generative network and discriminative network, where the generative network’s objective is to
generate fake data to fool the discriminative network, while the discriminative network attempts
to determine true data from fake data.

In the scientific domain, GANs can generate data like the data generated by the physics-based
models. Using GANs often incurs certain benefits, including reduced computation time and a better
reproduction of complex phenomenon, given the ability of GANs to represent nonlinear relation-
ships. For example, Farimani et al. [91] have shown that Conditional Generative Adversarial

Networks (cGAN) can be trained to simulate heat conduction and fluid flow purely based on ob-
servations without using knowledge of the underlying governing equations. Such approaches that
use generative models have been shown to significantly accelerate the process of generating new
data samples.

However, a well-known issue of GANs is that they incur dramatically high sample complexity.
Therefore, a growing area of research is to engineer GANs that can leverage prior knowledge of
physics in terms of physical laws and invariance properties. For example, GAN-based models for
simulating turbulent flows can be further improved by incorporating physical constraints, e.g., con-
servation laws [308] and energy spectrum [291], in the loss function. Cang et al. [49] also imposed
a physics-based morphology constraint on a VAE-based generative model used for simulating ar-
tificial material samples. The physics-based constraint forces the generated artificial samples to
have the same morphology distribution as the authentic ones and thus greatly reduces the large
material design space.
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2.9 Uncertainty Quantification

UQ is of great importance in many areas of computational science (e.g., climate modeling [74], fluid
flow [65], systems engineering [217], among many others). At its core, UQ requires an accurate
characterization of the entire distribution p (y |x ), where y is the response and x is the covariate of
interest, rather than just making a point predictiony = f (x ). This makes it possible to characterize
all quantiles and skews in the distribution, which allows for analysis such as examining how close
predictions are to being unacceptable, or sensitivity analysis of input features.

Applying UQ tasks to physics-based models using traditional methods such as Monte Carlo

(MC) is usually infeasible due to the very large number of forward model evaluations needed to
obtain convergent statistics. In the physics-based modeling community, a common technique is
to perform model reduction (described in Section 2.4) or create an ML surrogate model, in order to
increase model evaluation speed since ML models often execute much faster [99, 189, 269]. With a
similar goal, the ML community has often employed Gaussian Processes as the main technique for
quantifying uncertainty in simulating physical processes [34, 229], but neither Gaussian Processes
nor reduced models scale well to higher dimensions or larger datasets (Gaussian Processes scale
as O (N 3) with N data points).

Consequently, there is an effort to fit deep learning models, which have exhibited countless
successes across disciplines, as a surrogate for numerical simulations in order to achieve faster
model evaluations for UQ that have greater scalability than Gaussian Processes [269]. However,
since artificial neural networks do not have UQ naturally built into them, variations have been
developed. One such modification uses a probabilistic drop-out strategy in which neurons are
periodically “turned off” as a type of Bayesian approximation to estimate uncertainty [98]. There
are also Bayesian variants of neural networks that consist of distributions of weights and biases
[186, 314, 319], but these suffer from high computation times and high dependence on reliable
priors. Another method uses an ensemble of neural networks to create a distribution from which
uncertainty is quantified [161].

The integration of physics knowledge into ML for UQ has the potential to allow for a better
characterization of uncertainty. For example, ML surrogate models run the risk of producing phys-
ically inconsistent predictions, and incorporating elements of physics could help with this issue.
Also, note that the reduced data needs of ML due to constraints for adherence to known physical
laws could alleviate some of the high computational cost of Bayesian neural networks for UQ.

3 PHYSICS-ML METHODS

Given the diversity of forms in which scientific knowledge is represented in different disciplines
and applications, researchers have developed a large variety of methods for integrating physical
principles into ML models. This section categorizes them into the following four classes; (i) physics-
guided loss function, (ii) physics-guided initialization, (iii) physics-guided design of architecture,
and (iv) hybrid modeling.

Choosing between different classes of methods for a given problem can depend on many factors
including the availability and performance of existing mechanistic models, and also the general
computational objectives that need to be addressed. The general computational objectives of
physics-ML methods described throughout this section, as opposed to traditional ML methods, can
be placed into three categories. First, prediction performance defined as better matching between
predicted and observed values can be improved in a variety of ways including improved general-
izability to out-of-sample scenarios, improved general accuracy, or forcing solutions to be physic-
ally consistent (e.g., obeying known physics-based governing equations). Second, sample efficiency

can be improved by reducing the number of observations required for adequate performance or
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reducing the overall search space. The third general computational objective is interpretability,
where often traditional ML models are a “black-box” and the incorporation of scientific knowledge
can shine a light on physical meanings, interpretations, and processes within the ML framework.
Even though computational objectives can be categorized within these categories, there is also
overlap between them. For example, forcing models to be physically consistent can effectively re-
duce the solution search space. Improved sample efficiency can also lead to improved prediction
performance by getting more value out of each observation. We end this section with a summary
and detailed discussion comparing different kinds of methods, their requirements, and the general
computational objectives achieved.

3.1 Physics-Guided Loss Function

Scientific problems often exhibit a high degree of complexity due to relationships between many
physical variables varying across space and time at different scales. Standard ML models can fail to
capture such relationships directly from data, especially when provided with limited observation
data. This is one reason for their failure to generalize to scenarios not encountered in training
data. Researchers are beginning to incorporate physical knowledge into loss functions to help ML
models capture generalizable dynamic patterns consistent with established physical laws.

One of the most common techniques to make ML models consistent with physical laws is to
incorporate physical constraints into the loss function of ML models as follows [141],

Loss = LossTRN (Ytrue,Ypred) + λR (W ) + γLossPHY (Ypred), (1)

where the training loss LossTRN measures a supervised error (e.g., RMSE or cross-entropy) between
true labels Ytrue and predicted labels Ypred, and λ is a hyper-parameter to control the weight of
model complexity loss R (W ). The first two terms are the standard loss of ML models. The addition
of physics-based loss LossPHY aims at ensuring consistency with physical laws and it is weighted by
a hyper-parameterγ , whereγ is determined alongside other ML hyperparameters using validation
data or a nested cross-validation setup. A comprehensive guide to implementing physics-based loss
functions can be found in Ebert-Uphoff et al. [84].

Steering ML predictions towards physically consistent outputs have numerous benefits. First,
this provides the possibility to ensure the consistency with physical laws and therefore reduce the
solution search space of ML models. Second, the regularization by physical constraints allows the
model to learn even with unlabeled data, as the computation of physics-based loss LossPHY does
not require observation data. Third, ML models which follow desired physical properties are more
likely to be generalizable to out-of-sample scenarios relative to basic ML models [133, 231]. It is
important to note, however, that the physics-guided loss function does not “guarantee” either phys-
ical consistency or generalizability as it is fundamentally a weak constraint. Loss function terms
corresponding to physical constraints are applicable across many different types of ML frame-
works. In addition, this method is extensively used across all application-centric objectives listed
in Section 2. In the following paragraphs, we demonstrate the use of physics-based loss functions
for different objectives described in Section 2.

Replacing or improving over physical models. The incorporation of physics-based loss has shown
great success in improving the prediction ability of ML models. In the context of lake temperature
modeling, Karpatne et al. [140] includes a physics-based penalty that ensures that predictions
of denser water are at lower depths than predictions of less dense water, a known monotonic
relationship.

Jia et al. [130] and Read et al. [231] further extended this work to capture even more complex
and general physical relationships that happen on a temporal scale. Specifically, they use a
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Fig. 2. The PGRNN model demonstrated in Jia et al. [132] is an example of a physics-guided loss function

allowing physical knowledge to be incorporated into the ML model. They include the standard RNN flow

(black arrows) and the energy flow (blue arrows) in the recurrent process. Here UT represents the thermal

energy of the lake at time T , and both the energy output and temperature output yT are used in calculat-

ing the loss function value. This enables the PGRNN to predict lake temperature without violating energy

constraints. A detailed description of the loss function equation (Equation 1) can be found in Section 3.1.

physics-based penalty for energy conservation in the loss function to ensure the lake thermal
energy gain across time is consistent with the net thermodynamic fluxes in and out of the lake. A
diagram of this model is shown in Figure 2. Note that the recurrent structure contains additional
nodes (shown in blue) to represent physical variables (lake energy, etc) that are computed using
purely physics-based equations. These are needed to incorporate energy conservation in the loss
function. A similar structure can be used to model other physical laws such as mass conservation,
and so on. Qualitative mathematical properties of dynamical systems modeling have also shown
promise in informing loss functions to improve the prediction beyond that of the physics model.
Erichson et al. [86] penalize autoencoders based on physically meaningful stability measures in
dynamical systems to improve prediction of fluid flow and sea surface temperature. They showed
an improved mapping of past states to future states for both modeling scenarios in addition to
improving generalizability to new data.

Solving PDEs. Another strand of work that involves loss function alterations is solving PDEs for
dynamical systems modeling, in which adherence to the governing equations is enforced in the
loss function. In Raissi et al. [228], this concept is developed and shown to create data-efficient spa-
tiotemporal function approximators to both solve and find parameters of basic PDEs like Burgers
Equation or Schrodinger Equation. Going beyond a simple feed-forward network, Zhu et al. [318]
propose an encoder-decoder model for predicting transient PDEs with governing PDE constraints.
Geneva et al. [102] extended this approach to deep auto-regressive dense encoder-decoders with
a Bayesian framework using stochastic weight averaging to quantify uncertainty.

Discovering Governing Equations. Physics-based loss function terms have also been used in the
discovery of governing equations. Loiseau et al. [178] used constrained least squares [110] to in-
corporate energy-preserving nonlinearities or to enforce symmetries in the identified equations
for the equation learning process described in Section 2.7. Though these loss functions are mostly
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seen in common variants of NNs, they are also be seen in architectures such as echo state networks.
Doan et al. [76] found that integrating the physics-based loss from the governing equations in a
Lorenz system, a commonly studied system in dynamical systems, strongly improves the echo
state network’s time-accurate prediction of the system and also reduces convergence time.

Inverse modeling. For applications in vortex-induced vibrations, Raissi et al. [224] pose the in-
verse modeling problem of predicting the lift and drag forces of a system given sparse data about its
velocity field. Kahana et al. [136] uses a loss function term pertaining to the physical consistency
of the time evolution of waves for the inverse problem of identifying the location of an underwater
obstacle from acoustic measurements. In both cases, the addition of physics-based loss terms made
results more accurate and more robust to out-of-sample scenarios.

Parameterization. While ML has been used for parameterization, adding physics-based loss
terms can further benefit this process by ensuring physically consistent outputs. Zhang et al. [310]
parameterize atomic energy for molecular dynamics using a NN with a loss function that takes into
account atomic force, atomic energy, and terms relating to kinetic and potential energy. Further-
more, in climate modeling, Beucler et al. show that enforcing energy conservation laws improves
prediction when emulating cloud processes [31, 32].

Downscaling. Super-resolution and downscaling frameworks have also begun to incorporate
physics-based constraints. Jiang et al. [134] use PDE-based constraints for super-resolution prob-
lems in computational fluid dynamics where they are able to more efficiently recover physical
quantities of interest. Bode et al. [37] use similar constraint ideas in building generative adversarial
networks for super-resolution in turbulence modeling in combustion scenarios, where they find
improved generalization capability and extrapolation due to the constraints.

Uncertainty quantification. In Yang et al. [303] and Yang et al. [304], the physics-based loss is
implemented in a deep probabilistic generative model for uncertainty quantification based on ad-
herence to the structure imposed by PDEs. To accomplish this, they construct probabilistic repres-
entations of the system states and use an adversarial inference procedure to train using a physics-
based loss function that enforces adherence to the governing laws. This is expanded in Zhu et al.
[318], where a physics-informed encoder-decoder network is defined in conjunction with a condi-
tional flow-based generative model for similar purposes. A similar loss function modification is per-
formed in other works [102, 144, 299], but for the purpose of solving high dimensional stochastic
PDEs with uncertainty propagation. In these cases, physics-guided constraints provide effective
regularization for training deep generative models to serve as surrogates of physical systems where
the cost of acquiring data is high and the data sets are small [304].

Another direction for encoding physics knowledge into ML UQ applications is to create a
physics-guided Bayesian NN. This is explored by Yang et al. [300], where they use a Bayesian
NN, which naturally encodes uncertainty, as a surrogate for a PDE solution. Additionally, they
add a PDE constraint for the governing laws of the system to serve as a prior for the Bayesian net,
allowing for more accurate predictions in situations with significant noise due to the physics-based
regularization.

Generative models. In recent years, GANs have been used to efficiently generate solutions to
PDEs and there is interest in using physics knowledge to improve them. Yang et al. [301] showed
GANs with loss functions based on PDEs can be used to solve stochastic elliptic PDEs in up to 30
dimensions. In a similar vein, Wu et al. [292] showed that physics-based loss functions in GANs
can lower the amount of data and training time needed to converge on solutions of turbulence
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PDEs, while Shah et al. [248] saw similar results in the generation of microstructures satisfying
certain physical properties in computational materials science.

3.2 Physics-Guided Initialization

Since many ML models require an initial choice of model parameters before training, researchers
have explored different ways to physically inform a model starting state. For example, in NNs,
weights are often initialized according to a random distribution prior to training. Poor initialization
can cause models to anchor in local minima, which is especially true for deep neural networks.
However, if physical or other contextual knowledge is used to help inform the initialization of
the weights, model training can be accelerated and may require fewer training samples [132]. One
way to inform the initialization to assist in model training and escaping local minima is to use an
ML technique known as transfer learning. In transfer learning, a model is pre-trained on a related
task prior to being fine-tuned with limited training data to fit the desired task. The pre-trained
model serves as an informed initial state that ideally is closer to the desired parameters for the
desired task than random initialization. One way to achieve this is to use the physics-based model’s
simulated data to pre-train the ML model. This is similar to the common application of pre-training
in computer vision, where CNNs are often pre-trained with very large image datasets before being
fine-tuned on images from the task at hand [259].

Jia et al. use this strategy in the context of modeling lake temperature dynamics [130, 132].
They pre-train their Physics-Guided Recurrent Neural Network (PGRNN) models for lake
temperature modeling on simulated data generated from a physics-based model and fine-tune the
NN with little observed data. They showed that pre-training, even using data from a physical
model with an incorrect set of parameters, can still significantly reduce the training data needed
for a quality model. In addition, Read et al. [231] demonstrated that models using both physics-
guided initialization and a physics-guided loss function are able to generalize better to unseen
scenarios than traditional physics-based models. In this case, physics-guided initialization allows
the model to have a physically-consistent starting state prior to seeing any observations.

Another application can be seen in robotics, where images from robotics simulations have been
shown to be sufficient without any real-world data for the task of object localization [267], while
reducing data requirements by a factor of 50 for object grasping [39]. Then, in autonomous vehicle
training, Shah et al. [247] showed that pre-training the driving algorithm in a simulator built
on a video game physics engine can drastically lessen data needs. More generally, we see that
simulation-based pre-training of applications allows for significantly less expensive data collec-
tion than is possible with physical robots.

Physics-guided model initialization has also been employed in chemical process modeling
[180, 181, 298]. Yan et al. [298] use Gaussian process regression for process modeling that has
been transferred and adapted from a similar task. To adapt the transferred model, they used scale-
bias correcting functions optimized through maximum likelihood estimation of parameters. Fur-
thermore, Gaussian process models come equipped with uncertainty quantification which is also
informed through initialization. A similar transfer and adapt approach is seen in Lu et al. [180],
but for an ensemble of NNs transferred from related tasks. In both studies, the similarity metrics
used to find similar systems are defined by considering various common process characteristics
and behaviors.

Physics-guided initialization can also be done using a self-supervised learning method, which
has been widely used in computer vision and natural language processing. In the self-supervised
setting, deep neural networks learn discriminative representations using pseudo labels created
from pre-defined pretext tasks. These pretext tasks are designed to extract complex patterns related
to our target prediction task. For example, the pretext task can be defined to predict intermediate
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physical variables that play an important role in underlying processes. This approach can make use
of a physics-based model to simulate these intermediate physical variables, which can then be used
to pre-train ML models by adding supervision on hidden layers. As an illustration of this approach,
Jia et al. [133] have shown promising results for modeling temperature and flow in river networks
by using upstream water variables simulated by a physics-based PRMS-SNTemp model [265] to
pre-train hidden variables in a graph neural network.

3.3 Physics-Guided Design of Architecture

Although the physics-based loss and initialization in the previous sections help constrain the
search space of ML models during training, the ML architecture is often still a black-box. In par-
ticular, they do not encode physical consistency or other desired physical properties into the ML
architecture. A recent research direction has been to construct new ML architectures that can make
use of the specific characteristics of the problem being solved. Furthermore, incorporating physics-
based guidance into architecture design has the added bonus of making the previously black-box
algorithm more interpretable, a desirable but typically missing feature of ML models used in phys-
ical modeling. In the following paragraphs, we discuss several contexts in which physics-guided
ML architectures have been used. Much of the work in this section is focused largely on neural
network architectures. The modular and flexible nature of NNs in particular makes them prime
candidates for architecture modification. For example, domain knowledge can be used to specify
node connections that capture physics-based dependencies among variables. We also include sub-
sections on multi-task learning and structures of Gaussian processes to show how task interrela-
tionships or informed prior distributions can inform ML models.

Intermediate Physical Variables. One way to embed physical principles into NN design is to
ascribe physical meaning to certain neurons in the NN. It is also possible to declare physically
relevant variables explicitly. In lake temperature modeling, Daw et al. [68] incorporate a physical
intermediate variable as part of a monotonicity-preserving structure in the LSTM architecture.
This model produces physically consistent predictions in addition to appending a dropout layer to
quantify uncertainty. Muralidlar et al. [204] used a similar approach to insert physics-constrained
variables as the intermediate variables in the convolutional neural network (CNN) architec-
ture which achieved significant improvement over state-of-the-art physics-based models on the
problem of predicting drag force on particle suspensions in moving fluids.

An additional benefit of adding physically relevant intermediate variables in an ML architecture
is that they can help extract physically meaningful hidden representations that can be interpreted
by domain scientists. This is particularly valuable, as standard deep learning models are limited in
their interpretability since they can only extract abstract hidden variables using highly complex
connected structures. This is further exacerbated given the randomness involved in the optimiza-
tion process.

Another related approach is to fix one or more weights within the NN to physically meaningful
values or parameters and make them non-modifiable during training. A recent approach is seen
in geophysics where researchers use NNs for the waveform inversion modeling to find subsurface
parameters from seismic wave data. In Sun et al. [256], they assign most of the parameters within
a network to mimic seismic wave propagation during forwarding propagation of the NN, with
weights corresponding to values in known governing equations. They show this leads to more
robust training in addition to a more interpretable NN with meaningful intermediate variables.

Encoding invariances and symmetries. In physics, there is a deep connection between symmetries
and invariant quantities of a system and its dynamics. For example, Noether’s Law, a common
paradigm in physics, demonstrates a mapping between conserved quantities of a system and the
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system’s symmetries (e.g., translational symmetry can be shown to correspond to the conservation
of momentum within a system). Therefore, if an ML model is created that is translation-invariant,
the conservation of momentum becomes more likely and the model’s prediction becomes more
robust and generalizable.

State-of-the-art deep learning architectures already encode certain types of invariance. For ex-
ample, RNNs encode temporal invariance and CNNs can implicitly encode spatial translation, rota-
tion, and scale invariance. In the same way, scientific modeling tasks may require other invariances
based on physical laws. In turbulence modeling and fluid dynamics, Ling et al. [173] define a tensor

basis neural network to embed rotational invariance into a NN for improved prediction accuracy.
This solves a key problem in ML models for turbulence modeling because, without rotational in-
variance, the model evaluated on identical flows with axes defined in other directions could yield
different predictions. This work alters the NN architecture by adding a higher-order multiplicat-
ive layer that ensures the predictions lie on a rotationally invariant tensor basis. In a molecular
dynamics application, Anderson et al. [12] show that a rotationally covariant NN architecture can
learn the behavior and properties of complex many-body physical systems.

In a general setting, Wang et al. [281] show how spatiotemporal models can be made more
generalizable by incorporating symmetries into deep NNs. More specifically, they demonstrated
the encoding of translational symmetries, rotational symmetries, scale invariances, and uniform
motion into NNs using customized convolutional layers in CNNs that enforce desired invariance
properties. They also provided theoretical guarantees of invariance properties across the different
designs and showed additional to significant increases in generalization performance.

Incorporating symmetries, by informing the structure of the solution space, also has the poten-
tial to reduce the search space of an ML algorithm. This is important in the application of discov-
ering governing equations, where the space of mathematical terms and operators is exponentially
large. Though in its infancy, physics-informed architectures for discovering governing equations
are beginning to be investigated by researchers. In Section 2.7, symbolic regression is mentioned
as an approach that has shown success. However, given the massive search space of mathematical
operators, analytic functions, constants, and state variables, the problem can quickly become NP-
hard. Udrescu et al. [270] design a recursive multidimensional version of symbolic regression that
uses a NN in conjunction with techniques from physics to narrow the search space. Their idea is to
use NNs to discover hidden signs of “simplicity”, such as symmetry or separability in the training
data, which enables breaking the massive search space into smaller ones with fewer variables to
be determined.

In the context of molecular dynamics applications, a number of researchers [28, 310] have used
a NN per individual atom to calculate each atom’s contribution to the total energy. Then, to ensure
the energy invariance with respect to the possibility of interchanging two atoms, the structure of
each NN and the values of each network’s weight parameters are constrained to be identical for
atoms of the same element. More recently, novel deep learning architectures have been proposed
for fundamental invariances in chemistry. Schutt et al. [245] proposes continuous-filter convolu-
tional (cfconv) layers for CNNs to allow for modeling objects with arbitrary positions such as atoms
in molecules, in contrast to objects described by Cartesian-gridded data such as images. Further-
more, their architecture uses atom-wise layers that incorporate inter-atomic distances that enabled
the model to respect quantum-chemical constraints such as rotationally invariant energy predic-
tions as well as energy-conserving force predictions. As we can see, because molecular dynamics
often ascribes importance to different important geometric properties of molecules (e.g., rotation),
network architectures dealing with invariances can be effective for improving the performance
and robustness of ML models.
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Architecture modifications incorporating symmetry are also seen extensively in dynamic sys-
tems research involving differential equations. In a pioneering work by Ruthotto et al. [236], three
variations of CNNs are proposed to improve classifiers for images. Each variation uses mathemat-
ical theories to guide the design of the CNN based on the fundamental properties of PDEs. Multiple
types of modifications are made, including adding symmetry layers to guarantee the stability ex-
pressed by the PDEs and layers that convert inputs to kinematic eigenvalues that satisfy certain
physical properties. They define a parabolic CNN inspired by anisotropic filtering, a hyperbolic
CNN based on Hamiltonian systems, and a second-order hyperbolic CNN. Hyperbolic CNNs were
found to preserve the energy in the system as intended, which set them apart from parabolic CNNs
that smooth the output data, reducing the energy. Furthermore, though solving PDEs with neural
networks has traditionally focused on learning on Euclidean spaces, recently Li et al. [171] pro-
posed a new architecture that includes “Fourier neural operators” to generalize this to functional
spaces. They showed it achieves greater accuracy compared to previous ML-based solvers and
also can solve entire families of PDEs instead of just one. There is a vast amount of other work us-
ing physics-guided architecture towards solving PDEs and other PDE-related applications as well
which are not included in this survey (e.g., see ICLR workshop on deep learning for differential
equations ([5]))

A recent direction also relating to conserved or invariant quantities is the incorporation of the
Hamiltonian operator into NNs [64, 112, 268, 317]. The Hamiltonian operator in physics is the
primary tool for modeling the time evolution of systems with conserved quantities, but until re-
cently the formalism had not been integrated with NNs. Greydanus et al. [112] designed a NN
architecture that naturally learns and respects energy conservation and other invariance laws in
simple mass-spring or pendulum systems. They accomplish this through predicting the Hamilto-
nian of the system and re-integrating instead of predicting the state of physical systems them-
selves. This is taken a step further in Toth et al. [268], where they show that not only can NNs
learn the Hamiltonian, but also the abstract phase space (assumed to be known in Greydanus
et al. [112]) to more effectively model expressive densities in similar physical systems and also
extend more generally to other problems in physics. Recently, the Hamiltonian-parameterized
NNs above have also been expanded into NN architectures that perform additional differen-
tial equation-based integration steps based on the derivatives approximated by the Hamiltonian
network [61].

Encoding other domain-specific physical knowledge. Various other domain-specific physical in-
formation can be encoded into architecture that does not exactly correspond to known invariances
but provides meaningful structure to the optimization process depending on the task at hand. This
can take place in many ways, including using domain-informed convolutions for CNNs, additional
domain-informed discriminators in GANs, or structures informed by the physical characteristics of
the problem. For example, Sadoughi et al. [239] prepend a CNN with a Fast Fourier Transform layer
and a physics-guided convolution layer based on known physical information pertaining to fault
detection of rolling element bearings. A similar approach is used in Sturmfels et al. [255], but the
added beginning layer instead serves to segment different areas of the brain for domain guidance
in neuroimaging tasks. In the context of generative models, Xie et al. [296] introduce tempoGAN,
which augments a general adversarial network with an additional discriminator network along
with additional loss function terms that preserve temporal coherence in the generation of physics-
based simulations of fluid flow. This type of approach, though found mostly in NN models, has
been extended to non-NN models in Baseman et al. [24], where they introduce a physics-guided
Markov Random Field that encodes spatial and physical properties of computer memory devices
into the corresponding probabilistic dependencies.
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Fan et al. [89] define new architectures to solve the inverse problem of electrical impedance
tomography, where the goal is to determine the electrical conductivity distribution of an unknown
medium from electrical measurements along its boundary. They define new NN layers based on
a linear approximation of both the forward and inverse maps relying on the nonstandard form of
the wavelet decomposition [33].

Architecture modifications are also seen in dynamical systems research encoding principles
from differential equations. Chen et al. [58] develop a continuous depth NN based on the Residual
Network [122] for solving ordinary differential equations. They change the traditionally discret-
ized neuron layer depths into continuous equivalents such that hidden states can be parameterized
by differential equations in continuous time. This allows for increased computational efficiency
due to the simplification of the backpropagation step of training and also creates a more scalable
normalizing flow, an architectural component for solving PDEs. This is done by parameterizing the
derivative of the hidden states of the NN as opposed to the states themselves. Then, in a similar ap-
plication, Chang et al. [53] uses principles from the stability properties of differential equations in
dynamical systems modeling to guide the design of the gating mechanism and activation functions
in an RNN.

Currently, human experts have manually developed the majority of domain knowledge-encoded
employed architectures, which can be a time-intensive and error-prone process. Because of this,
there is increasing interest in automated neural architecture search methods [20, 85, 126]. A young
but promising direction in ML architecture design is to embed prior physical knowledge into neural
architecture searches. Ba et al. [18] add physically meaningful input nodes and physical operations
between nodes to the neural architecture search space to enable the search algorithm to discover
more ideal physics-guided ML architectures.

Auxiliary Task in Multi-Task Learning. Domain knowledge can be incorporated into ML architec-
ture as auxiliary tasks in a multi-task learning framework. Multi-task learning allows for multiple
learning tasks to be solved at the same time, ideally while exploiting commonalities and differences
across tasks. This can result in improved learning efficiency and predictions for one or more of the
tasks. Therefore, another way to implement physics-based learning constraints is to use an auxili-
ary task in a multi-task learning framework. Here, an example of an auxiliary task in a multi-task
framework might be related to ensuring physically consistent solutions in addition to accurate
predictions. The promise of such an approach was demonstrated for a computer vision task by
integrating auxiliary information (e.g., pose estimation) for facial landmark detection [315]. In
this paradigm, a task-constrained loss function can be formulated to allow errors of related tasks
to be back-propagated jointly to improve model generalization. Early work in a computational
chemistry application showed that a NN could be trained to predict energy by constructing a loss
function that had penalties for both inaccuracy and inaccurate energy derivatives with respect to
time as determined by the surrounding energy force field [219]. In particle physics, De Oliveira et al.
[72] uses an additional task for the discriminator network in a GAN to satisfy certain properties
of particle interaction for the production of jet images of particle energy.

Physics-guided Gaussian process regression. Gaussian process regression (GPR) [287] is a non-
parametric, Bayesian approach to regression that is increasingly being used in ML applications.
GPR has several benefits, including working well on small amounts of data and enabling uncer-
tainty measurements on predictions. In GPR, first, a Gaussian process prior must be assumed in
the form of a mean function and a matrix-valued kernel or covariance function. One way to incor-
porate physical knowledge in GPR is to encode differential equations into the kernel [258]. This is
a key feature in Latent Force Models which attempt to use equations in the physical model of the
system to inform the learning from data [10, 182]. Alvarez et al. [10] draw inspiration from similar
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Fig. 3. An illustration of the concept of residual modeling where an ML model fML is trained to model the

error made by the physics-based model fPHY . Final predictions are then the sum of the predictions made by

fPHY and the residual modeled by fML . Processes shown in red and blue are training and testing respectively.

Figure adapted from [94].

applications in bioinformatics [101, 165], which showed an increase in predictive ability in com-
putational biology, motion capture, and geostatistics datasets. More recently, Glielmo et al. [108]
propose a vectorial GPR that encodes physical knowledge in the matrix-valued kernel function.
They show rotation and reflection symmetry of the interatomic force between atoms can be en-
coded in the Gaussian process with specific invariance-preserving covariant kernels. Furthermore,
Raissi et al. [225] show that the covariance function can explicitly encode the underlying physical
laws expressed by differential equations in order to solve PDEs and learn with smaller datasets.

3.4 Hybrid Physics-ML Models

Contrary to previous sections where the focus has been on augmenting ML models specifically,
numerous approaches combine physics-based models with ML models where both are operating
simultaneously. We call these Hybrid Physics-ML models. In the context of Figure 1, hybrid models
can be viewed as replacing mechanistic model F () with a new model in which F () and an ML model
are working together, or a subcomponent of F () is replaced with ML. Hence, such methods are also
referred to as ML-enhanced physical models by some researchers [100].

3.4.1 Residual Modeling. The oldest and most common approach for directly addressing the
imperfection of physics-based models in the scientific community is residual modeling, where an
ML model (usually linear regression) learns to predict the errors, or residuals, made by a physics-
based model [94, 266]. A visualization is shown in Figure 3. The key concept is to learn the biases
of the physical model (relative to observations) and use them to correct the physical model’s pre-
dictions. However, one key limitation in residual modeling is its inability to enforce physics-based
constraints (like in Section 3.1) because such approaches model the errors instead of the physical
quantities in scientific problems.

Recently, a key area in which residual modeling has been applied is in ROMs of dynamical
systems (described in Section 2.4). After reducing model complexity to create a ROM, an ML model
can be used to model the residual due to the truncation. ROM methods were created in response to
the problem of many detailed simulations being too expensive to be used in various engineering
tasks including design optimization and real-time decision support. In San et al. [241, 242], a simple
NN used to model the error due to the model reduction is shown to sharply reduce high error
regions when applied to known differential equations. Also, in Wan et al. [278], an RNN is used to
model the residual between a ROM for the prediction of extreme weather events and the available
data projected to a reduced-order space.
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Fig. 4. Diagram of a hybrid physics-ML model which accepts the output of a physical model as input to an

ML model (Figure adapted from Karpatne et al. [140]). In the diagram, the physics-based model converts the

input drivers D to simulated outputs YPHY . Then, the hybrid physics-ML model fH P D jointly uses the input

drivers D and the simulated outputs YPHY to make the final prediction Ypr ed .

As another example, in Kani et al. [138] a physics-driven “deep residual recurrent neural

network (DR-RNN)” is proposed to find the residual minimizer of numerically discretized PDEs.
Their architecture involves a stacked RNN embedded with the dynamical structure of the PDEs
such that each layer of the RNN solves a layer of the residual equations. They showed that
DR-RNN sharply reduces both computational cost and time discretization error of the reduced-
order modeling framework. Finally in Blakseth et al. [36], a feed-forward neural network is used
to generate a corrective source term that augments the discretized governing equation of a physics-
based model for improved prediction performance. This is a more advanced residual model since
the ML model is modifying the governing equation itself instead of just the output.

3.4.2 Output of Physical Model as Input to ML Model. In recent years many other hybrid
physics-ML models have been created that extend beyond residual modeling. Another straight-
forward method to combine physics-based and ML models is to feed the output of a physics-based
model as input to an ML model. Karpatne et al. [140] showed that using the output of a physics-
based model as one feature in an ML model along with inputs used to drive the physics-based
model for lake temperature modeling can improve predictions. The visualization of this method
is shown in Figure 4. As we discuss below, there are multiple other ways of constructing a hybrid
model, including replacing part of a larger physical model, or weighting predictions from different
modeling paradigms depending on context.

3.4.3 Replacing Part of a Physical Model with ML. In one variant of hybrid physics-ML models,
ML models are used to replace one or more components of a physics-based model or to predict an
intermediate quantity that is poorly modeled using physics. For example, to improve predictions
of the discrepancy of Reynolds-Averaged Navier–Stokes (RANS) solvers in fluid dynamics,
Parish et al. [212] propose a NN to estimate variables in the turbulence closure model to account
for missing physics. They show this correction to traditional turbulence models results in convin-
cing improvements in predictions. In Hamilton et al. [117], a subset of the mechanistic model’s
equations are replaced with data-driven nonparametric methods to improve prediction beyond
the baseline process model. In Zhang et al. [312], a physics-based architecture for power system
state estimation embeds a deep learning model in place of traditional predicting and optimization
techniques. To do this, they substitute NN layers into an unrolled version of an existing solu-
tion framework which drastically reduced the overall computational cost due to the fast forward
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evaluation property of NNs, but kept information on the underlying physical models of power
grids and of physical constraints.

ML models for parameterization (see Section 2.3) can also be viewed as a type of hybrid mod-
eling. The vast majority of these efforts use black-box ML models [52, 109, 207, 230], but some of
these parameterization models can use more sophisticated physics-guided versions of ML as we
mentioned in Section 3.1.

3.4.4 Combining Predictions from Both Physical Model and ML Model. In another class of hy-
brid frameworks, the overall prediction is a combination of predictions from a physical model and
an ML model, where the weights depend on prediction circumstance. For example, long-range in-
teractions (e.g., gravity) can often be more easily modeled by classical physics equations than more
stochastic short-range interactions (quantum mechanics) that are better modeled using data-driven
alternatives. Hybrid frameworks like this have been used to adaptively combine ML predictions
for short-range processes and physics model predictions for long-range processes for applications
in chemical reactivity [305] and seismic activity prediction [211]. Estimator quality at a given time
and location can also be used to determine whether a prediction comes from the physical model
or the ML model, which was shown in Chen et al. [60] for air pollution estimation and in Vlachas
et al. [276] for dynamical system forecasting more generally. In the context of solving PDEs, Malek
et al. [188] showcase a hybrid NN and traditional optimization technique to find the closed analyt-
ical form of the solution of a PDE. In this hybrid solver, there exist two terms, a term described by
the NN and a term described by traditional optimization techniques.

3.4.5 ML Informing or Augmenting Physics-model for Inverse Modeling. Moreover, in inverse
modeling, there is a growing use of hybrid models that first use physics-based models to perform
the direct inversion, then use deep learning models to further refine the inverse model’s predic-
tions. Multiple works have shown an effective application for this in computed tomography

(CT) reconstructions [45, 135]. Another common technique in inverse modeling of images (e.g.,
medical imaging, particle physics imaging), is the use of CNN’s as deep image priors [271]. To sim-
ultaneously exploit data and prior knowledge, Senouf et al. [246] embed a CNN that serves as the
image prior for a physics-based forward model for MRIs.

3.5 Requirements and Benefits from Different Physics-ML Methodologies

Methodologies for integrating scientific knowledge in ML described in this section encompass the
vast majority of work on this topic. Table 2 summarizes these by listing the requirements needed
for different types of methods and the corresponding possible benefits. As we can see, depending
on the context of the problem or available resources, different methods can be optimal. Hybrid
methods like residual modeling are the simplest case, as they require no process-based knowledge
beyond an operational mechanistic model to be used during run time. Physics-guided loss func-
tions require additional domain expertise to determine what terms to add to the loss function, and
ML cross-validation techniques are also recommended to weight the different loss function terms.
Many of the foundational works on physics-guided loss functions also include open source code
that could be adapted to new applications (e.g., Raissi et al. [226], Read et al. [231], Wang et al.
[282]). For physics-guided initialization, domain expertise can be used to determine the most rel-
evant synthetic data for the application, but the ML can remain process-agnostic. Physics-guided
architecture is often the most complex approach, where both domain and ML expertise is needed,
for example, to customize neural networks by establishing physically meaningful connections and
nodes. Note that there can also be multiple Physics-ML method options for a given computational
benefit. For example, incorporating physical consistency into ML models can be done through
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Table 2. Summary of Requirements and Possible Benefits from Different Physics-ML Methodologies

Physics-ML Method Requirements Possible Benefits

Loss Function Known physical relationship
(e.g., physical laws, PDEs)

Physical consistency,
Improved generalization,

Reduced observations required,
Improved accuracy

Initialization Synthetic data from mechanistic model
available during training

Reduced observations required
Improved accuracy

Architecture

Intermediate physical variables/processes,
or hard constraints (e.g., symmetries),

or task interrelationships,
or informed prior distributions

Interpretability,
Physical consistency,

Improved generalization,
Reduced solution search space,

Improved accuracy

Hybrid Operational mechanistic model
available during run time

Improved accuracy

The left column corresponds to the four types of methods described earlier in Section 3.

weak constraints as in a loss function, hard constraints through new architectures, or indirectly
through physically consistent training data from a mechanistic model simulation.

Note that for a given application-centric objective, only some of these methods may be applic-
able. For example, hybrid methods will not be suitable for solving PDEs since the goal of reduced
computational complexity cannot be reached if the existing solver is still needed to produce the
output (yt in Figure 1). Also in the case of discovering governing equations, there often is not
a known physical model to compare to for either creating a residual model or hybrid approach.
Data generation applications also do not make sense for residual modeling since the purpose is to
simulate a data distribution rather than improve on a physical model.

Many of the physics-ML methods can also be combined. For example, a physics-guided loss func-
tion, physics-guided architecture, and physics-guided initialization could all be applied to an ML
model. We saw in Section 3.1 that Jia et al. [130] and Read et al. [231] in particular combined physics-
guided loss functions with physics-guided initialization. Also, Karpatne et al. [140] combined a
physics-guided loss function with a hybrid physics-ML framework. More recently, Jia et al. [133]
combine physics-guided initialization and physics-guided architecture.

An overall goal of physics-ML methods presented in this section is to address resource efficiency
issues (i.e., the ability to solve problems with less computational resources in the context of ob-
jectives defined in Section 2) while maintaining high predictive performance, sample efficiency,
and interpretability relative to traditional ML approaches. For example, physics-ML methods for
solving PDEs (Section 2.5) are likely to be more computationally efficient than direct numerical
approaches and more physically consistent than traditional ML approaches. As another example,
for the objective of downscaling (Section 2.2), physics-ML methods can be expected to provide
high-resolution yt but at a much smaller computational cost than possible via traditional mechan-
istic models and provide much better quality output while using fewer training samples relative to
traditional ML approaches. Another major utility of physics-ML methods is to reduce the overall
solution search space, which has a direct impact on sample efficiency (i.e., reduced number of ob-
servations required) and the amount of computation time taken for model training. For example,
physics-ML methods for discovering governing equations can be expected to work with much
fewer observations and take less computation time relative to traditional ML methods.
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4 AREAS OF CURRENT WORK AND POSSIBILITIES FOR CROSS-FERTILIZATION

Table 3 provides a systematic organization and taxonomy of the application-centric objectives and
methods of existing physics-based ML applications. This table provides a convenient organization
for articles discussed in this survey and other articles that could not be discussed because of space
limitations. Importantly, analysis of works within our taxonomy uncovers knowledge gaps and
potential crossovers of methods between disciplines that can serve as ideas for future research.

Indeed, there is a myriad of opportunities for taking ideas across applications, objectives, and
methods, as well as bringing them back to the traditional ML discipline. For example, the physics-
guided NN approaches developed for aquatic sciences [121, 132] can be used in any application
where an imperfect mechanistic model is available. Raissi et al. [224] take physics-guided loss
function methods to solve PDEs and extend them to inverse modeling problems in fluid dynamics.
Furthermore, Daw et al. [68] develop a monotonicity-preserving architecture for lake temperature
based on previous work done using loss function terms and a hybrid physics-ML architecture [140].
As another example, Jia et al. [133] use physics to inform the propagation of knowledge in a graph
neural network. Future research in this direction may shed light on the interpretability of hidden
variables in graph neural network models and also on how to build dynamic graph structures based
on physics.

From Table 3, it is easy to see that several boxes are rather sparse or entirely empty, many
of which represent opportunities for future work. For example, ML models for parameterization
are increasingly being used in domains such as climate science and weather forecasting [153],
all of which can benefit from the integration of physical principles. Furthermore, principles from
super-resolution frameworks, originally developed in the context of computer vision applications,
are beginning to be applied to downscaling to create higher resolution climate predictions [273].
However, most of these do not incorporate physics (e.g., through additional loss function terms
or an informed design of architecture). The fact that nearly all of the other methods (columns)
except for hybrid modeling are applicable to this task shows that there is tremendous scope for
new exploration, where research pursued in these columns in the context of other objectives can
be applied for this objective. We also see a lot of opportunities for new research on physics-guided
initialization, where, for example, an ML algorithm could be pre-trained for inverse modeling.

Not all promising research directions are covered in Table 3 and the previous discussion. For
instance, one promising direction is to forecast future events using ML and continuously update
model states by incorporating ideas from data assimilation [137]. An instance of this is pursued by
Dua et al. [80] to build an ML model that predicts the parameters of a physical model using past
time series data as an input. Another instance of this approach is seen in epidemiology, where
Magri et al. [187] used a NN for data assimilation to predict a parameter vector that captures
the time evolution of a COVID-19 epidemiological model. Such approaches can benefit from the
ideas in Section 3 (e.g., physics-based loss, intermediate physics variables). Another direction is to
combine scientific knowledge and machine learning to better inform human decisions on envir-
onmental or engineering systems. For example, by using anticipated water temperature, one may
build new reinforcement learning algorithms to dynamically decide when and how much water
to release from reservoirs to a river network [131]. Similarly, such techniques for decision-making
can be used for automated control in the power plant.

5 CONCLUDING REMARKS

Given the current deluge of sensor data and advances in ML methods, we envision that the merging
of principles from ML and physics will play an invaluable role in the future of scientific model-
ing to address the pressing environmental and physical modeling problems facing society. The
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Table 3. Table of Literature Classified by Objective and Method

Physics-Guided
Loss Function

(3.1)

Physics-Guided
Initialization

(3.2)

Physics-Guided
Architecture

(3.3)
Hybrid Model (3.4)

Residual (3.4.1) Other (3.4.2-3.4.5)

Improve or
replace physical

model (2.1)

[266] [10] [219] [158]
[140] [182] [203] [76]
[86] [130] [174] [204]
[231] [313] [121] [125]

[187] [92] [306]

[180] [298] [184]
[267] [39] [247]

[133] [130]
[231] [298]

[173] [66] [24]
[255] [12] [17]

[203] [204] [213]
[239] [125]

[281] [214] [176]
[249] [310] [309]
[311] [245] [78]

[266] [297] [279]
[241] [278] [293]

[174] [19]

[109] [113] [240]
[117] [140] [253]

[60] [78] [179] [211]
[305] [312] [276]
[302] [111] [187]

[55] [36]

Parameterization (2.2) [310] [32] [31] [306] [28] [32] [312]

Downscaling (2.3) [37] [134] [201] [274]

Reduced Order
Models (2.4)

[209] [16] [167] [138] [86] [210] [138] [241] [242]
[278] [115] [210]

[67]

Solve
PDEs (2.5)

[226] [251] [301] [303]
[70] [196] [228] [248]
[318] [82] [102] [144]

[292] [216] [195]
[23] [90] [320] [154]

[58] [236] [53] [70]
[192] [252] [26] [61]
[149] [88] [299] [216]

[195] [225] [145]
[198] [171] [44]

[188]

Inverse
modeling

(2.6)

[224] [136] [35] [89] [256]
[150]

[123] [212] [117] [135] [257]
[48] [45] [79] [246]

Discover Governing
Equations (2.7)

[227] [178] [270] [177] [62]
[169]

Data Generation
(2.8)

[72] [49] [37] [316]
[151] [292] [308]

[59] [296] [248]

Uncertainty
Quantification (2.9)

[290] [303] [288]
[304] [318] [102]

[298] [184] [68] [300] [288]
[274]

[77]

application-centric objectives defined in Section 2 span the primary communities and disciplines
that have both contributed to and benefit from physics-ML integration in a significant way. We
believe these categories both provide perspective on the different ways of viewing the physics-
ML integration methodologies in Section 3 for different purposes and also allow for coverage of
a variety of disciplines that have been pursuing these ideas mostlyindependently in recent years.
Researchers working in one of these objectives can see how their methods fit within the taxonomy
and relate them to how they are being used in other objectives. Our hope is that this survey will
accelerate the cross-pollination of ideas among these diverse research communities.

The discussion and structure provided in this survey also serve to benefit the ML community,
where, for example, techniques for adding physical constraints to loss functions can be used to
enforce fairness in predictive models, or realism for data generated by GANs. Furthermore, novel
architecture designs can enable new ways to incorporate prior domain information (beyond what
is usually done using Bayesian frameworks) and can lead to better interpretability.

This survey focuses primarily on improving the modeling of engineering and environmental
systems that are traditionally solved using mechanistic modeling. However, the general ideas dis-
cussed here for integrating scientific knowledge in ML have wider applicability, and such research
is already being pursued in many other contexts. For example, there are several interesting works
in system control which often involves reinforcement learning techniques (e.g., combining model
predictive control with Gaussian processes in robotics [13], informed priors for neuroscience mod-
eling [104], physics-based reward functions in computational chemistry [63], and fluidic feedback
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control from a cylinder [152]). Other examples include identifying features of interest in the out-
put of computational simulations of physics-based models (e.g., high-impact weather predictions
[194], segmentation of climate models [202], and tracking phenomena from climate model data
[97, 237]). There is also recent work on encoding domain knowledge in geometric deep learning
[41, 50] that is finding increasing use in computational chemistry [71, 81, 95], physics [25, 54], hy-
drology [133], geostatistics [14, 294], and neuroscience [155]. We expect that there will be a lot of
potential for cross-over of ideas amongst these different efforts that will greatly expedite research
in this nascent field.
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