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Andrew is a distributed computing environment that is a synthesis of the personal computing and 

timesharing paradigms. When mature, it is expected to encompass over 5,000 workstations spanning 

the Carnegie Mellon University campus. This paper examines the security issues that arise in such 

an environment and describes the mechanisms that have been developed to address them. These 

mechanisms include the logical and physical separation of servers and clients, support for secure 

communication at the remote procedure call level, a distributed authentication service, a file- 

protection scheme that combines access lists with UNIX mode bits, and the use of encryption as a 

basic building block. The paper also discusses the assumptions underlying security in Andrew and 

analyzes the vulnerability of the system. Usage experience reveals that resource control, particularly 

of workstation CPU cycles, is more important than originally anticipated and that the mechanisms 

available to address this issue are rudimentary. 
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1. INTRODUCTION 

Andrew is a distributed computing environment that has been under development 
at Carnegie Mellon University since 1983. An early paper [21] describes the 
origin of the system and presents an overview of its components. Other papers 
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[13, 271 focus on the distributed file system that is the information sharing 
mechanism of Andrew. 

The characteristic of Andrew that has influenced almost every aspect of its 
design is its scale. The belief that there will eventually be a workstation for each 
person at CMU suggests that Andrew will grow into a distributed system of 5,000 
to 10,000 nodes. A consequence of its large scale is that the laissez-faire attitude 
towards security typical of closely-knit distributed environments is no longer 
viable. The relative anonymity of users in a large system requires security to be 
maintained by enforcement rather than by the goodwill of the user community. 

A sizable body of literature exists on algorithms for security in distributed 
environments. The survey by Voydock and Kent [35] describes many of these 
algorithms and discusses the basic security problems they address. In contrast, 
this paper focuses on the design and implementation aspects of building a secure 
distributed environment. It sets forth the fundamental assumptions on which 
security in Andrew is based, examines their effect on system structure, describes 
associated mechanisms, and reports on usage experience. 

Although Andrew is no longer an experimental system, it is far enough from 
maturity that many of its details are still evolving. Rather than trying to describe 
a moving target, this paper presents a snapshot of Andrew at one point in time. 
The point of reference is the date of the official inauguration of Andrew, on 
November 11, 1986. At that point in time, there were over 400 Andrew worksta- 
tions serving about 1,200 active users. The file system stored 15 gigabytes of 
data, spread over 15 servers. The system was then mature and robust enough to 
be in regular use in undergraduate courses at CMU and in demonstrations of 
Andrew at the EDUCOM conference on educational computing. In the rest of 
this paper the present tense refers to the state of the system at this reference 
point. Exceptions to this are explicitly stated. 

The paper begins with an overview of the entire system and an identification 
of its major components. Section 3 then discusses the underlying assumptions 
and the conditions that must be met for Andrew to be secure. Sections 4 to 7 
describe the protection domain, authentication, and enforcement of protection 
in the distributed file system. Section 8 discusses the problem of resource control. 
Section 9 underlines the fundamental role of encryption and proposes that 
encryption hardware be made an integral part of all workstations in distributed 
environments. Section 10 deals with various other security concerns, while 
Section 11 examines the ways in which the security of Andrew could be com- 
promised and suggests defenses against some of the possible modes of attack. 
Section 13 outlines the changes that have occurred since the snapshot pre- 
sented here. Finally, Section 14 concludes the paper with a recapitulation of 
its central theme. 

2. SYSTEM STRUCTURE 

Andrew combines the user interface advantages of personal computing with the 
data sharing simplicity of timesharing. This synthesis is achieved by close 
cooperation between two kinds of components, Vice and Virtue, shown in 
Figure 1. A Virtue workstation provides the power and capability of a dedicated 
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Fig. 1. Vice and Virtue. The amoeba-like structure in the center is a collection of insecure networks 

and secure servers that constitute Vice. Virtue is typically a workstation, but can also be a mainframe. 

personal computer, while Vice provides support for the timesharing abstraction. 
Although Vice is shown as a single logical entity in Figure 1, it is actually 
composed of a collection of servers and a complex local area network. This 
network spans the entire CMU campus and is composed of Ethernet and IBM 
Token Ring segments interconnected by optic fiber links and active elements 
called Routers. 

Each Virtue workstation runs the UNIX 4.3BSD operating systems, and is 
thus an autonomous timesharing node. Multiple users can concurrently access a 
workstation via the console keyboard, via the network, or via terminals that are 
hardwired to the workstation. But the most common use of a workstation, and 
the usage mode most consistent with the Andrew paradigm, is by a single user at 
the console. 

A distributed file system that spans all workstations is the primary data- 
sharing mechanism in Andrew. In Virtue, this file system appears as a single 
large subtree of the local file system. Files critical to the initialization of Virtue 
are present on the local disk of the workstation and are accessed directly. All 
other files are in the shared name space and are accessed through an intermediary 
process called Venus that runs on each workstation. Venus finds files on individ- 
ual servers in Vice, caches them locally, and performs emulation of UNIX file 
system semantics. Both Vice and Venus are invisible to processes in Virtue. All 
they see is a UNIX file system, one subtree of which happens to be identical on 
all workstations. Processes on two different workstations can read and write files 
in this subtree just as if they were on a single timesharing system. 

A mainframe computer that runs Venus appears exactly like a Virtue worksta- 
tion to Vice. But it is more likely to have multiple concurrent users, who depend 
on the operating system to protect them against each other. Subverting its 
operating system is more serious, since more individuals are affected. 

@ UNIX is a trademark of AT&T Bell Laboratories. 
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3. ASSUMPTIONS 

Saltzer [%I makes an important distinction between a securable system and 
specific secure instances of that system. Our purpose in this section is to describe 

the level of security offered by Andrew and to state the assumptions under which 
this is achieved. The degree to which a specific Andrew site is secure depends 

critically on the effort taken to meet these assumptions. 
It is easiest to characterize Andrew using the taxonomy introduced by Voydock 

and Kent. Their survey [35] classifies security violations into unauthorized release 
of information, modification of information, and denial of resource usage. The 
security mechanisms in Andrew primarily ensure that information is released 
and modified only in authorized ways. The difficult issue of resource denial is 
not fully addressed. The complexity of this problem becomes apparent if one 
considers a situation where a piece of network hardware is tampered with such 
that it floods the network with packets. The resulting denial of network band- 
width to legitimate users is clearly a security violation in the strict sense of the 
term. However, it is not clear what Andrew could possibly do in such situations 
except to bring the problem to the attention of system administrators. This issue 
of resource control is discussed at length in Section 8. 

Alternative taxonomies of security also exist. Wulf [37], for instance, considers 
the security of the Hydra operating system in the light of the problems of mutual 
suspicion, modification, conservation, confinement, and initialization. It is more 
difficult to characterize Andrew within this framework. Since Vice and Virtue do 
not trust each other until a user successfully executes the authentication proce- 
dure described in Section 5, there is indeed mutual suspicion. But users do depend 
on Vice to provide safe, long-term storage of their files and to enforce their 
protection policies. Andrew can protect against modification of files by other 
users, but there is no safeguard against incorrect modifications by Vice itself. 
Since Andrew supports revocation, it does address the problem of conservation. 
But the problem of confinement, extensively discussed by Lampson [18], is one 
that Andrew makes no attempt to solve. It is not clear how the initialization 
problem in Wulf’s model applies to Andrew. 

The Department of Defense taxonomy of computer systems [lo] classifies 
computer systems into four major categories with numerous subcategories. Se- 
curity ranges in strength from class D (minimal protection) to class A2 (verified 
implementation). In this classification scheme, Andrew meets the criteria for 
class Cl (discretionary security protection). It comes close to meeting the criteria 
for class C2 (controlled access protection), the main deficiency being in the area 
of audit. Although Andrew does log authentication failures and modifications to 
the authentication database, it does not maintain audit trails of all events 
specified in Class C2. 

For simplicity, we restrict our attention in the rest of this paper to the model 
put forth by Voydock and Kent. We do recognize, however, that a complete 
analysis of Andrew security in terms of a variety of taxonomies would be a 
valuable exercise in itself. 

A fundamental assumption pertains to the question of who enforces security 
in Andrew. Rather than trusting thousands of workstations, security in Andrew 
is predicated on the integrity of the much smaller number of Vice servers. These 
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servers are located in physically secure rooms, are accessible only to trusted 
operators, and run trusted software. No user software is ever run on servers. For 
operational reasons, it is necessary to provide utilities that can be run on servers 
to directly manipulate Andrew file system data. These utilities can be run only 
by superusers on servers.’ Both access to servers and the ability to become a 
superuser on them must be closely guarded privileges. 

Workstations may be owned privately or located in public areas. We assume 
that owners may modify both the hardware and software on their workstations 
in arbitrary ways. It is therefore the responsibility of users to ensure that they 
are not being compromised by software on a private workstation. Such a piece of 
software, referred to as a Trojan horse [12], can be trivially installed by a 
superuser. Consequently, the user has to trust every individual who has the 
ability to become superuser on the workstation. A user who is seriously concerned 
about security would ensure the physical integrity of his workstation and would 
deny all remote access to it via the network. 

In the case of a public workstation, it is assumed that there is constant 
surveillance by administrative personnel to ensure the integrity of hardware and 
software. It is relatively simple to visually monitor and detect hardware tampering 
in a public area. But it is much harder to detect a miscreant becoming superuser 
and installing a Trojan horse. Keeping the superuser password on a workstation 
a secret is not adequate because workstations can be easily booted up standalone, 
with the person at the console acquiring superuser privileges. An organization 
that is serious about security would have to physically modify workstations so 
that only authorized personnel can boot up public workstations standalone. 
At the present time, public workstations at CMU do not have such physical 
safeguards. 

It is common for a pool of private workstations to be used by a small collection 
of users. Workstations located in shared offices or laboratories are examples of 
such situations. From the point of view of security, such workstations are 
effectively co-owned by all users who can physically access them. It is their joint 
responsibility to ensure the integrity of the hardware and software on the 
workstations. 

It should be emphasized that the preceding discussion of software integrity on 
workstations pertains to local files. There are usually only a few such files, 
typically system programs for initializing the workstation and for authenticating 
users to Vice. All other user files are stored in Vice and are subject to the 
safeguards discussed in Section 6. 

The network underlying Andrew has segments in every building at CMU, 
including student dormitories. It is impossible to guarantee the physical integrity 
of this network. It can be tapped at any point, and private workstations with 
modified operating systems can eavesdrop on network traffic. A consequence of 
these observations is that end-to-end mechanisms based on encryption are the 
only way to ensure secure communication between Vice and Virtue. These 
mechanisms are described in Section 5. 

I The servers also run UNIX 4.3BSD. A “superuser” is a privileged UNIX user free of normal access 

restrictions. 
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The routers mentioned earlier are dedicated computers that run specialized 
software. The integrity of these routers is not critical to Andrew security. Because 
Andrew uses end-to-end encryption, a compromised router cannot expose or 
modify information that is transmitted through it. At worst, it can cause packets 
to be misrouted or modified in ways that cause the receiver to reject them. These 
are essentially cases of resource denial, which Andrew does not attempt to address 
completely. Physical damage to a network segment has similar consequences. 

Finally, the design of the Andrew file system postulates the use of an indepen- 
dent, secure communication channel connecting all the Vice servers. This is used 
for administrative functions such as tape backups and distribution of the protec- 
tion database described in Section 4. This secure channel has to be realized either 
by a separate, physically secure network or by the use of end-to-end encryption 
as in the case of Vice-Virtue communication. At the present time, neither of 
these measures is used at CMU. The “secure” communication channel is the 
same as the public network, and communication on it is unencrypted. 

4. THE PROTECTION DOMAIN 

The fundamental protection question is “Can agent X perform operation Y on 
object Z?” We refer to the set of agents about whom such a question can be 
asked as the Protection Domain [26]. In Andrew, the protection domain is 
composed of Users and Groups. A user is an entity, usually a human, that? can 
authenticate itself to Vice, be held responsible for its own actions, and be charged 
for resource consumption. A group is a set of other groups and users associated 
with a user called its Owner. The name of the owner is a prefix of the name of 
the group. It is possible to impose meaningful structure in the names of groups, 
although Andrew ignores such structure. For example, “Bovik : Friends”, 
“Bovik : Friends. CatLovers”, and “Bovik : Friends. CatHaters” could mnemoni- 
cally indicate the purpose of three groups owned by user “Bovik”. 

Vice internally identifies users and groups by unique 32-bit integer identifiers. 
An id cannot be reassigned after creation. Such reassignment would require 
elimination of all existing instances of the id from long-term Vice data structures, 
an operational nightmare in a large distributed system. User and group names, 
on the other hand, can easily be changed. 

A distinguished user named “System” is omnipotent; Vice applies no protection 
checks to it. Our original intent was that “System” would play the same role that 
a superuser plays in the UNIX systems. In practice, we have found it more 
convenient to define a special group named “System :Administrators”. It is 
membership in this group, rather than authentication as “System”, that now 
endows special privileges. An advantage of this approach is that the actual 
identity of the user exercising the privileges is available for use in audit trails.’ 
We consider this particularly important in view of the scale of Andrew. Another 
advantage is that revocation of special privileges can be done by modifying group 
membership rather than by changing a password and communicating it securely 
to the users who are administrators. 

‘To prevent a system administrator from erasing records of his actions, audit trails have to be 

maintained on nonerasable media such as write-once optical disks or on hardcopy. We do not do this 

at present at CMU. 
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The protection domain includes two other special entities: the group “Sys- 
tem : AnyUser”, which has all authenticated users of Vice as its implicit members, 
and the user “Anonymous”, corresponding to an unauthenticated Vice user. 
Neither of these special entities can be made a member of any group. Although 
the current implementation blurs the distinction between these two entities,3 we 
foresee situations where the distinction will become valuable. 

Membership in a group can be inherited. The IsAMemberOf relation holds 
between a user or group X and a group G, if and only if X is a member of G. The 
reflexive, transitive closure of this relation for X defines a subset of the protection 
domain called its Current Protection Subdomain (CPS). Informally, the CPS is 
the set of all groups that X is a member of, either directly or indirectly, including 
X itself. 

The CPS is important because the privileges that users have at any time are 
the cumulative privileges of all the elements of their CPS. For example, suppose 

“System : CMU”, “System : CMU . Faculty”, and “System : CMU . Students” are 
three groups with the obvious interpretations. If the second and third groups are 
members of the first, new additions to those groups will automatically acquire 
privileges granted to “System: CMU”. Conversely, it is only necessary to remove 
a student or faculty member who leaves from those groups in which that person 
is explicitly named as a member. Inheritance of membership thus conceptually 
simplifies the maintenance and administration of the protection domain. The 
scale of Andrew makes this an important advantage. 

A common practice in timesharing systems is to create a single entry in the 
protection domain to stand for a collection of users. Such a collective entry, often 
referred to as a “group account” or a “project account,” may be used for a number 
of reasons. First, obtaining an individual entry for each human user may involve 
excessive administrative overheads. Second, the identities of all collaborating 
users may not be known a priori. Third, the protection mechanisms of the system 
may make it simpler to specify protection policies in terms of a single pseudouser 
than for a number of users. 

We believe that this practice should be strongly discouraged in an environment 
like Andrew. Collective entries will exacerbate the already difficult problem of 
accountability in a large distributed system. The hierarchical organization of the 
protection domain, in conjunction with the access list mechanism described in 
Section 6, make the specification of protection policies simple in Andrew. In 
spite of this, we are disappointed to observe that there are some collective entries 
at CMU. We conjecture that this is primarily because the addition of a new user 
is cumbersome at present. In addition, groups can only be created and modified 
by system administrators. As discussed in Section 13, these problems are being 
addressed, and we hope that collective entries will soon become unnecessary. 

5. AUTHENTICATION AND SECURE COMMUNICATION 

Authentication is the indisputable establishment of identities between two mu- 
tually suspicious parties in the face of adversaries with malicious intent. In 
Andrew, the two parties are a user at a Virtue workstation and a Vice server, 

a Files stored in Vice by an unauthenticated user appear as if they were stored by “System:AnyUser” 
rather than by “Anonymous.” 
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while the adversaries are eavesdroppers on the network, or modified network 
hardware or software that alters the data being transmitted. 

The authentication mechanism we use is a derivative of Needham and Schroe- 
der’s original scheme [22] using private encryption keys. The overall function is 
decomposed into three major components: 

-a Remote Procedure Call mechanism that provides support for security, 

-a scheme for obtaining and using Authentication Tokens, 

-an Authentication Server that is a repository of password information. 

These components, described in detail in the next three sections, are used in 
the following way. In response to a standard UNIX login prompt at a workstation, 
the user provides his name and password. The password is used to establish a 
secure RPC connection to the authentication server. A pair of authentication 
tokens is obtained from the authentication server and saved by Venus on the 
workstation. These tokens are used, as needed, by Venus to establish secure RPC 
connections to file servers. The establishment of a connection is completely 
transparent to the user, who in particular, does not have to supply the password 
each time a new connection is made. Virtue seems no different from a standalone 
workstation to the user. 

5.1 Secure RPC 

Early in our implementation, it became clear that the remote procedure call 
package used between Vice and Virtue was a natural level of abstraction at which 
to provide support for secure communication. Birrell’s report on security in the 
Cedar RPC package [4] independently confirmed the validity of our decision. 

The interface of the RPC package is described in detail in the user manual 
[28]. When a client wishes to communicate with a server, it executes a BIND 

operation that sets up a logical Connection. Connections are relatively cheap to 
establish and require only about a hundred bytes of storage overhead at each 
end. A connection can be set up at one of four levels of security: 

OpenKimono neither authenticated nor encrypted, 
AuthOnly authenticated, but packets not encrypted; 
HeadersOnly authenticated and RPC packet headers, but not bodies, en- 

crypted; 
Secure authenticated, and each RPC packet fully encrypted.4 

Only the last of these four levels provides true end-to-end security in an 
insecure communication environment. The third level represents a compromise 
between security and efficiency. Since data is not encrypted, it is vulnerable to 
release and modification attacks. But since packet headers are encrypted, an 
intruder cannot interpose requests on a RPC connection. The second level is 
useful when mutually suspicious entities communicate over a secure channel. 
The first level provides no security, and is useful only where trusted peers 
communicate over a secure channel. 

4 Source and destination addresses are not encrypted. Modification of addresses would result in denial 

of service, a class of attacks we do not address. Exposure of addresses could leak indirect information, 
but this is part of the confinement problem that we do not address either. 
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A client can specify the kind of encryption to be used when establishing a 
connection. The server provides a bit mask indicating the kinds of encryption it 
can handle, and will reject attempts by a client to use any other kind. This 
flexibility makes it feasible to equip servers with encryption hardware as well as 
a suite of software encryption algorithms of differing strength and cost. A 

workstation owner can make a trade-off between economy, performance, and 
degree of security in determining the kind of encryption to use. The preferred 
approach is, of course, to equip all workstations with encryption hardware. 
Section 9 discusses encryption in greater detail. 

For all the authenticated security levels, the BIND operation involves a 3-phase 
handshake between client and server. The client side of the application provides 
a variable-length byte sequence called ClientIdent and an B-byte encryption key 
for the handshake. The server side of the application supplies a procedure, 
GetKeys, to perform key lookup and a procedure, AuthFail, to be invoked on 
authentication failure. GetKeys and AuthFail are invoked by the RPC runtime 
system on the server side. The actual key lookup mechanism implemented by 
GetKeys, and the action taken by AuthFail on authentication failure are trans- 

parent to the RPC package. 
Denoting the encryption and decryption of a string a by key k as E[a, k] and 

D[a, k], respectively, the steps performed by the RPC package during BIND are 
described below. Figure 2 describes the same sequence pictorially. 

(1) The client chooses a random number X, and encrypts it with its handshake 
key, HKC. It sends the result, E[X,., HKC], and ClientIdent (in the clear) to 
the server. 

(2) When the BIND request arrives at the server, the RPC package invokes 
GetKeys with ClientIdent as a parameter. 

(3) GetKeys does a key lookup and returns two keys. One of these keys is a 
handshake key, HKS (which should be identical to HKC for successful 
authentication), and the other is a newly generated session key, SK, to be 
used after the connection is established. If the return code from GetKeys 
indicates that the key lookup was unsuccessful (as would happen if a user 
typed in an invalid login name), the BIND request is rejected immediately, 
and AuthFail is invoked with ClientIdent and the network address of the 
client as parameters. 

(4) Otherwise the server decrypts E[X,, HKC] with its handshake key, yielding 

D[E[X,, HKC], HKS]. This should be identical to X, if the keys match. 

(5) The server adds one to the result of its decryption, then encrypts this and a 
new random number Y, with its handshake key. It sends the result to the 
client. 

(6) The client uses its handshake key to decrypt this message. If HKC and HKS 
match, the first number of the decrypted pair will be X, + 1. If this is the 
case, the client concludes that the server is genuine. Otherwise the server is 
a fake and BIND terminates. 

(7) The client adds one to the second number of the decrypted pair and encrypts 
it with its handshake key. It sends the result, E[(D[E[Y,, HKS], HKC] + l), 
HKC], to the server. 
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Client S0WW 

Fig. 2. RPC authentication handshake. This figure shows the sequence of events in the BIND 

handshake. Each arrow represents a packet. The notation E[a, k] means that a is encrypted with key 

k. X, and Y, are random numbers. HKC and HKS, the handshake keys of the client and the server, 

should be identical for a successful BIND. SK is a randomly chosen session key, and n0 is a randomly 

chosen initial sequence number. All random entities are chosen afresh for each BIND. 

(8) The server decrypts this message with its handshake key. If HKC and HKS 
match, the decrypted number will be Y, + 1. In that case the server concludes 
that the client is genuine. Otherwise the client is a fake and the BIND 

terminates after AuthFail is invoked. 

(9) The server then encrypts the session key SK and a randomly chosen initial 
RPC sequence number n0 with its handshake key. It completes BIND by 
sending the result, E[(SK, no), HKS], to the client. All future encryption on 
this connection uses SK. The sequence numbers of RPC requests and replies 
will increase monotonically from n0.5 

Thus, at the end of successful BIND, the server is assured that the client 
possesses the correct handshake key for ClientIdent. The client, in turn, is 
assured that the server is capable of deducing the handshake key from Client- 
Ident. The possession of the handshake key is assumed to be prima facie evidence 
of authenticity. 

The correctness of this authentication procedure hinges on the fact that 
possession of the handshake key by both parties is essential for all steps of the 
handshake to succeed. Without the correct key, it is extremely unlikely that an 
adversary will be able to generate outgoing messages that correspond to appro- 
priate transformations of the incoming messages. Mutual authentication is 

5 Burrows, Abadi, and Needham [5] point out that this step of the protocol should also include the 
original random number 20 encrypted by HKS. This guards against replay attacks by an individual 

who has broken a previous session key. 
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achieved because both the client and the server are required to demonstrate that 
they possess the handshake key. The use of new random numbers for each BIND 

prevents an adversary from eavesdropping on a successful BIND and replaying 
packets from that sequence. The presence of an initial sequence number chosen 
afresh for each BIND defeats replays of the last packet. 

Figure 2 summarizes the steps involved in the BIND authentication procedure. 
It is important to note that the RPC package makes no assumptions about the 
format of ClientIdent or the manner in which GetKeys derives the handshake 
key from ClientIdent. The next section describes how this generality is used in 
Andrew in two different ways: to communicate with an authentication server at 
login and with a file server when Venus contacts it for the first time. A connection 
is terminated by an UNBIND call, which destroys every state associated with that 
connection. 

Security in Andrew is not critically dependent on the details of the authenti- 
cation handshake. The code pertaining to it is small and self-contained. The 
handshake can therefore be treated as a black box and an alternative mutual 
authentication technique substituted with relative ease. 

5.2 Authentication Tokens 

Andrew uses a two-step authentication scheme that is built on top of the RPC 
authentication mechanism described in the previous section. In the first step, an 
authentication server is contacted and a pair of authentication Tokens is obtained 
and saved for future use by Venus. In the second step, which occurs each time 
Venus contacts a new file server, these tokens are used to establish a secure RPC 
connection for the user. The rest of this section explains what tokens are and 
describes the details of the two authentication steps. 

An authentication token is an object whose possession is proof of authenticity. 
It is like a Capability [17] in that no consultation with an external agency is 
required when using it, but is different from a capability in that it establishes 
identity rather than granting rights. Tokens are conceptually similar to Authen- 
ticators described by Birrell [4]. 

Tokens come in pairs. One of the components of the pair, the Secret Token, is 
encrypted at creation and can be sent in the clear. The other component, the 
Clear Token, has fields that are sensitive and should be sent only on secure 
connections. Both tokens contain essentially the same information: the Vice id 
of the user, a handshake key, a unique handle for identifying the token, a 
timestamp that indicates when the token becomes valid, and another timestamp 
that indicates when it expires. The secret token contains, in addition, a fixed 
string for self-identification. The appearance of this string when decrypting a 
secret token confirms that the right key has been used. The secret token also 
contains noise fields that are filled with new random values each time a token is 
created. This is done to thwart attempts to break the key used for encrypting 
tokens. 

The UNIX program for logging in on workstations has been extensively 
modified, although its user interface is unaltered. LOGIN now contacts an authen- 
tication server using the RPC mechanism described in Section 5.1. The name 
and password typed in by the user are used as the ClientIdent and handshake 
key respectively. The GetKeys routine in the authentication server obtains this 
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password from an internal table. When the RPC handshake completes, a secure, 
authenticated connection has been established between LOGIN and the authen- 
tication server. LOGIN uses this connection to obtain a pair of tokens for the 
user. The authentication server generates a new handshake key for each pair of 
tokens it creates. It encrypts the secret token with a key known only to itself and 
the Vice file servers. LOGIN now passes the clear and secret tokens to Venus, 
which retains them in an internal data structure. At this point LOGIN terminates, 
and the user can use the workstation. 

Whenever Venus needs to establish a RPC connection to a Vice file server on 
behalf of a user, it invokes BIND using the secret token for that user as ClientIdent 
and the key in the clear token as the handshake key. In the first phase of the 
BIND, the GetKeys routine on the server is invoked with ClientIdent as the input 
parameter. The server obtains the handshake key from the secret token by 
decrypting it. The authentication procedure is critically dependent on the as- 
sumption that only legitimate servers possess the key to decrypt secret tokens. 
At this point Venus and the server each have a key that they believe to be the 
correct handshake key. The remaining steps of the BIND proceed as described in 
Section 5.1, leading to mutual authentication. If the BIND is successful, the server 
uses the id in the secret token as the identity of the client on this RPC connection 
and sets up an appropriate internal state. 

Since tokens have a finite lifetime, a user will need to be periodically reau- 
thenticated. At present, tokens are valid for 24 hours at CMU. The program LOG, 

which is functionally identical to LOGIN, can be used for reauthentication without 
first logging out. This allows users to retain logged-in context. Users with long- 
running programs, such as simulations, have to remember to reauthenticate at 
least once a day. In practice, the 24-hour limit has not been a serious source of 
inconvenience to our users. 

When multiple users are logged into a workstation, Venus maintains a separate 
secure RPC connection for each of them for each of the Vice file servers they 
have accessed. When a user logs out of a workstation, Venus deletes his tokens. 
In the future, Vice may support other services besides a distributed file system. 
The components of such services which execute in Virtue will be able to use 
tokens for authentication, just as Venus does at present. 

The two-step approach used in Andrew is more convenient and more robust 
than a single-step authentication scheme for the following reasons: 

(1) it allows Venus to establish secure connections as it needs them, without 
users having to supply their password each time; 

(2) it allows system programs other than Venus to perform Vice authentication 
without user intervention; 

(3) it avoids having to store passwords in the clear on workstations; and 

(4) it limits the time duration during which lost tokens can cause damage. 

5.3 Authentication Server 

The authentication server, which runs on a trusted Vice machine, is responsible 
for restricting Vice access and for determining whether an authentication attempt 
by a user is valid. To perform these functions it maintains a database of password 
information about users. An excerpt of this database is shown in Figure 3. The 
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277 545c5058595a5256 aad Anthony Datri 
265 Sl5c585f5bSb575a AOq Alfred Blumstein 
672 13020a0306190912 *2g A. Leonard Drown 
969 5f55595c595e555e h'% Ahmadou Barry 
131 565956595fSa545e abrahama Julia Abraham6 
913 565857585dSa5459 ac2d Arjun Bijoy Chatterjee 
,........................................................................ 

&i”” 
18 
18 
1022 
1023 
1024 
1025 
1026 

,....................... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
13020a030619091f zubrow David Zubrow 
0503135c5a6e676f # By 18 at Wed Mar 19 13:09:23 1986 
0503135cSa6e676f # By 18 at Wed Mar 19 16:36:55 1986 
Ob0317040709676f rk27 # By 18 at Wed Mar 19 16:37:37 1986 
1500081d190b156f bdOP # By 18 at Wed Mar 19 16:37:37 1986 
150018030cld146f cc37 # By 18 at Wed Mar 19 16:37:38 1986 
Ob0315021bld676f cc38 # By 18 at Wed Mar 19 16:37:38 1986 

150f13020502146f jC15 # By 18 at Wed Mar 19 16:37:38 1986 

. . 

. 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Fig. 3. Excerpt from authentication database. Each entry corresponds to information about one 

user. The first field is the Vice id of the user, the second is the user’s encrypted password; the third 

field is the name of the user. Other fields are ignored by the authentication server. The first few lines 

correspond to entries that were present when the database was initialized. The entries at the bottom 

represent modifications. Each modification is tagged with the identity of the user making the change 

and the time the change was made. 

passwords stored in the database are effectively in the clear, but are encrypted 
with a key known to the server so that nonmalicious system personnel are 
prevented from accidentally reading the passwords. This database is used for 
password lookup whenever a user logs in to a Virtue workstation. It is updated 
whenever users created, deleted, or have their names or passwords changed. Users 
can change their own password; other operations can only be performed by 
system administrators. 

Note that it would not be adequate to store a one-way transformation of the 
password in a publicly readable authentication database, as is done in timesharing 
systems such as UNIX. That approach assumes that terminals are connected to 
a mainframe by physically secure lines. The password typed in by a user is 
securely conveyed to the mainframe, where it is transformed and compared with 
the string stored in the authentication database. Since the client and the server 
do not communicate over a secure channel in Andrew, the password cannot be 
sent in the clear. Further, the UNIX approach does not provide mutual authen- 
tication. Although the timesharing system is assured of the user’s identity, the 
inverse is not true. The requirement that passwords (or keys derived from them) 
be stored in the clear on a server can also be explained by observing that the 
Needham-Schroeder authentication scheme is’ built around a shared secret. A 
publicly readable transformation of the password would not constitute a secret. 

Server performance is considerably improved by exploiting the fact that queries 
are far more frequent than updates. This makes it appropriate for the server to 
maintain a write-through cache copy of the entire database in its virtual memory. 
A modification to the database immediately overwrites cached information. The 
copy on disk is not, however, overwritten. Rather, an audit trail of changes is 
maintained in the database by appending a timestamped entry indicating the 
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Data : Mon Sep 29 09:51:13 1986 

09:51:13 
11:03:49 
11:05:22 

11:05:54 

11:09:50 
11:10:25 
11:12:28 
11:12:58 
11:20:43 
12:00:26 
13:58:46 
15:22:26 
16:16:17 
16:19:17 
16:24:57 
16:56:53 

server successfully started 
Authentication failed for "fsOt" from 128.2.14.11 
Authentication failed for "f8Ot" from 128.2.14.11 
Authentication failed for "an09" from 128.2.14.8 
Authentication failed for "whoa" from 128.2.14.4 
Authentication failed for "rhOa" from 128.2.14.4 
Authentication failed for "ao07" from 128.2.14.14 
Authentication failed for "whoa" from 128.2.14.4 
Authentication failed for "ao07" from 128.2.14.14 
Authentication failed for "ka2n" from 128.2.13.3 
Authentication failed for "dana" from 128.2.243.3 
Authentication failed for "dtla" from 128.2.17.17 
AuthChangePassdO attempt on dh2u by ja8c denied 
AuthChangePasodO attempt on dh2u by js8c denied 
Authentication failed for “akll” from 128.2.14.14 
Authentication failed for "js8c" from 128.2.17.4 

........................................................................ 

........................................................................ 
. . 
. . 

Fig. 4. Excerpt from authentication log. This figure shows typical entries from the authentication 

log. Most of the entries are invalid authentication attempts, probably caused by users typing in their 

passwords incorrectly. Each entry identifies the user and the workstation from which the 

operation was attempted. Two of the entries are failed attempts by one user to change the password 

ofanotheruser. 

change and the identity of the user making the modification. On startup the 
authentication server initializes its cache by reading the database sequentially. 
Later changes thus override earlier ones. An offline program has to be run 
periodically to compact the database. 

The key used by the authentication server for encrypting secret tokens has to 
be known to all the Vice file servers. This key should be changed periodically if 
an Andrew site is serious about security. The Vice file servers remember the two 
most recent such keys and try them one after the other when decrypting a secret 
token. This allows unexpired tokens to be used even if the authentication server 
has changed keys. At present, key distribution is manual; this should be auto- 
mated in the future. 

For robustness, there is an instance of the authentication server and database 
on each Vice machine. All but one are slaves and respond only to queries. Only 
one server, the master, accepts updates. Changes are propagated to slaves over 
the secure communication channel referred to in Section 3. For this specific 
application, nonuniform propagation speed and the temporary inconsistencies 
that may result do not pose a serious problem. For further robustness, each 
instance of the authentication server has an associated watchdog UNIX process 
that restarts it in the event of a crash. 

Each server instance has a log file in which authentication failures and 
unsuccessful attempts to update the password database are recorded. Figure 4 
shows an excerpt from such a log. It would not be difficult to provide a more 
sophisticated and timely warning mechanism for system personnel if suspicious 
events are observed by authentication servers. 
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6. PROTECTION IN VICE 

As the custodian of shared information in Andrew, Vice enforces the protection 
policies specified by users. The scale, character, and periodic change in the 
composition of the user community in a university necessitates a protection 
mechanism that is simple to use yet allows complex policies to be expressed. A 
further consequence of these factors is that revocation of access privileges is an 
important and common operation. In the light of these considerations, we opted 
to use an Access List mechanism in Andrew. The next three sections describe 
how access lists are implemented, how they are used for file protection, and how 
Vice represents and maintains information on the protection domain. 

6.1 Access Lists 

The access list mechanism is implemented as a package available to any service 
in Vice, though only the distributed file system currently uses it. An entry in an 
access list maps a member of the protection domain into a set of Rights, which 
are merely bit positions in a 32-bit mask. The interpretation of rights is specific 
to each Vice service. The total rights possessed by a user on an object is the 
union of all the rights possessed by the members of the user’s CPS. In other 
yards, the user possesses the maximal rights collectively possessed and all the 
groups of which he or she is a direct or indirect member. 

An access list is actually composed of two sublists: a list of Positive Rights and 
a list of Negative Rights. An entry in a positive rights list indicates possession of 
a set of rights. In a negative rights list, it indicates denial of those rights. In case 
of conflict, denial overrides possession. 

Negative rights are primarily a means of rapidly and selectively revoking access 
to sensitive objects. Revocation is usually done by removing an individual from 
an access list. But that individual may be a direct or indirect member of one or 
more groups that bestow rights on the object. The protection domain has therefore 
to be modified to exclude the individual from those groups. The process of 
discovering all groups that the user should be removed from, performing the 
removal at the site of the master authentication server, and propagating it to all 
slaves may take a significant amount of time in a large distributed system. 
Negative rights can reduce the window of vulnerability, since changes to access 
lists are effective immediately. 

As an example, if it is discovered that a member of a group is misusing 
privileges, that individual can be immediately given negative rights on critical 
objects used by the group. That member can then be deleted from the group. 
After the change in membership is effective at all Vice servers, the negative 
rights entries can be removed. Negative rights thus decouple the problems of 
rapid revocation, management of the protection domain, and propagation of 

information in a large distributed system. 
Negative rights can be used to specify protection policies of the form “Grant 

rights R to all members of group G, except user U.” The security mechanisms of 
Multics [25] also allowed the expression of such protection policies. Rabin and 
Tygar, in their recent work on ITOSS [24], confirm the advantages of providing 
negative privileges. 
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The algorithm executed during an access list check is quite efficient. Suppose 
A is an arbitrary access list and C is the CPS of U. The entries in A and C are 
maintained in sorted order. The rights possessed by U are determined as follows: 

(1) let M and N be rights masks, initially empty; 

(2) for each element of C, if there is an entry in the positive rights list of A, 
inclusive-OR it4 with the rights portion of the entry; 

(3) for each element of C, if there is an entry in the negative rights list of A, 
inclusive-OR N with the rights portion of the entry; 

(4) bitwise subtract N from M; 

(5) M now specifies the rights that U possesses. 

Profiling of the Vice servers in actual use confirms that the overheads due to 
access list checks are negligible. 

6.2 File Protection 

Vice associates an access list with each directory. The access list applies to all 
files in the directory, thus giving them uniform protection status. The primary 
reason for this design decision is conceptual simplicity. Users have, at all times, 
a rough mental picture of the protection state of the files they access. In a large 
system, the reduction in conceptual state obtained by associating protection with 
directories rather than files is considerable. A secondary benefit is the reduced 
storage overhead on servers. Usage experience in Andrew has proved that this is 
an excellent compromise between providing protection at fine granularity and 
retaining conceptual simplicity. In the rare instances where a file needs to have 
a different protection status from other files in its directory, we place that tile in 
a separate directory with appropriate protection and put a symbolic link to it in 
the original directory. 

Seven kinds of rights are associated with a directory: 

read(r) 
write(w) 
lookup (1) 
insert(i) 

delete(d) 
administer(a) 
lock(k) 

read any file, 
write any file, 
lookup status of any file, 
insert a new file in this directory (only if it does not already 
exist). This is particularly useful in implementing mailboxes. 
delete any existing file, 
modify the access list of this directory. 
lock any file. This has turned out not to be a particularly 
useful right, but continues to be supported for historical 
reasons. 

The three most commonly used combinations of rights are rl, for read access, 
rwlidk for write access, and rwlidka for complete access. Figure 5 shows an 
example of the access list on a Vice directory. Modifications to access lists take 
effect immediately. 

Certain privileges commonly found in timesharing systems do not make sense 
in the context of Andrew. Execute only privilege, for example, is not a right that 
Vice can enforce since program execution is done by Virtue. Revocation of read 
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mozart> fs la /cmu/itdsatya/sll 
Normal rights: 

System:ITC.FileSystemGroup rlidwk 
System:AnyUser rl 
satya rlidwka 

Negative rights: 

System:ITC.UserInterfaceGroup rlidwka 
mozart> 

Fig. 5. Access list on a Vice directory. 

This figure shows how an access list is 

displayed in Andrew. The string “moz- 

art)” is the prompt by the workstation. 

The command “fs la” lists the specified 

directory. Note the use of negative 

rights; a member of System:ITC.User- 

InterfaceGroup would have no rights 

on this directory, even though Sys- 

tem:AnyUser has read and lookup rights. 

rights is another area where Vice can do little since Virtue caches files. At best 
it can ensure that new versions of a file are not readable by the user whose access 
is revoked. 

6.3 Protection Domain Representation 

Protection domain information is maintained in a database that is replicated at 
each Vice file server. The database consists of a data file on disk and an index 
file that is cached in its entirety in virtual memory, The index file enables id-to- 
name translations in constant time, and name-to-id translations in logarithmic 

time. For each entry, the index also contains the offset in the data file where the 
first byte of information about the corresponding user or group is stored. A 
typical lookup of the database by user or group name involves a search to find 
the id, followed by a seek operation and a read operation on the data file. 

Each entry in the database corresponds to a single user or group. It consists of 
a name and an id followed by three lists specifying membership information. The 
first list specifies the groups to which that user or group directly belongs, while 
the second list is the precomputed CPS. For a user, the third list enumerates the 
groups owned by the user; for a group, it is the list of users or groups who are its 
direct members. Each entry also has an associated access list, which is unused at 
the present time. We intend to allow users to directly manipulate the database 
via a protection server. The access lists will then control the examination and 
modification of group membership. Figure 6 shows an excerpt from the database. 

When Venus makes a secure RPC connection on behalf of a user, the file 
server caches the CPS of the user in virtual memory and uses it on access list 
checks. At present, changes to the protection domain do not affect the cached 
copy until the RPC connection is terminated. It would be relatively simple to 
modify the server to invalidate cached CPS copies whenever the protection 
database changes. 

At present, changes to the protection database are manually performed at a 
central site in Vice. Utilities are available to simplify the creation or deletion of 
a user or to modify the membership of a group. These utilities also precompute 
the CPS by transitive closure and construct the index file. Modifications per- 
formed at the central site are asynchronously propagated to all other Vice sites 
via the secure communication channel mentioned in Section 3. In our experience, 
the minor temporary inconsistencies that occasionally arise due to varying 
propagation speeds have not significantly affected the usability of the system. 
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##l#W#C##################### 
# VICE protection databamr # 

#I########################## 

# Line8 such am these are coannenta. Conmenta and whitespoce are ignored. 

# This film conaiatm of ueer entrim and group entries in no particular order. 
# An empty entry indicates the end. 

# A umr entry has the form: 
# UserName UserId 

# **Im a group I directly belong to"-List 
# "113 P group in my CPS"-List 
I "I# a group owned by me"-Limt 

# Acce88 List 
II ; 

# A group entry has the form: 
# GroupName GroupId CwnerId 

I "18 a group I directly belong to"-Liet 

# "18 a group in my CP.9"-List 

# "1s a user or group who ia a direct member of me'*-List 

# Accra8 List 

# : 

# A mimpla list has the form ( il 12 13 . . . . . ) 

# An access list has two tuple lists: 

# one for positive and the other for negative rights: 

# (+ (il rl) (12 r2) . ..) 
# (- (il rl) (12 r2) . ..) 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

# 
satya 

hi. Satyanarayanan 
19 
( -201 -207 -209 ) 
( -201 -207 -209 ) 
( -203 -205 ) 
(t (19 -1) (-101 1)) 

(- ) 
; 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
System:UnerSupport -213 777 

( 1 
( 1 
( 427 177 117 746 585 416 64 201 1032 1247 1244 3017 377 259 172 ) 
(t (777 -1) (-101 1)) 

(- 1 

.................................................................................. 

.................................................................................. 

Fig. 6. Excerpt from Vice protection domain database. 
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7. PROTECTION IN VIRTUE 

As a multiuser UNIX system, Virtue enforces the usual firewalls between multiple 
users concurrently using a workstation. In addition, its role in Andrew places 
other responsibilities related to security on it: 

-it emulates UNIX semantics for Vice files; 

-it ensures that caching is consistent with protection in Vice; 

-it allows owners full control over their workstations, without compromising 
Vice security; and 

-it provides user and program interfaces for explicitly using the security mech- 
anisms of Vice. 

The next four sections describe these functions in detail. 

7.1 UNIX Emulation 

Virtue provides strict UNIX protection semantics for local files and a close 
approximation for Vice files. Each UNIX file has 9 Mode bits associated with it. 
These mode bits are, in effect, a 3-entry access list specifying whether or not the 
owner of the file, a single specific group of users, and everyone else can read, 
write, or execute the file. 

Venus does the emulation of UNIX protection for Vice files. In addition to the 
Vice access list check described in Section 6.1 that performs the real enforcement 
of protection, the three owner bits of the file mode are used to indicate readability, 
writability or executability. These bits, which now indicate what can be done to 
the file rather than who can do it, are set and examined by Venus. They are 
stored and retrieved, but otherwise ignored, by Vice. For directories, the mode 
bits are completely ignored. The directory listing program, LS, has been modified 
in Andrew to omit mode bits for directories and show only the owner bits for 
files. Figure 7 shows an example of a directory listing in Vice. 

This combination of an access list mechanism for directories with a UNIX 
mode bit mechanism on individual files is an evolved strategy. In a prototype of 
Andrew, the mode bits of a file were derived from the access list of its parent 
directory and could not be changed by applications. Unfortunately, a few appli- 
cations, such as version control software, encode state in the mode bits. In 
addition, our users expressed the need to prevent themselves from accidentally 
deleting critical files in a directory. The current mechanism provides closer 
emulation of UNIX and greater functionality, while retaining much of the 
conceptual simplicity of the original scheme. 

Since the group mechanisms of Vice and standard UNIX are incompatible, 
Venus does not emulate UNIX group protection semantics. Our experience 
indicates that no real applications have been affected by this. From the point of 
view of an application, all Vice files belong to a single UNIX group. 

7.2 Caching Protection Information 

Although ignorant of the Vice group mechanism, Venus caches protection infor- 
mation. When a directory is cached on behalf of a user, Vice supplies rights 
information for the user and System: AnyUser. Future requests are checked by 
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Venus without contacting Vice. If a different user on that workstation wishes to 
access the same directory, and the rights for System : AnyUser are inadequate, 
Venus explicitly obtains the user’s rights from Vice. Protection information can 
be cached for a small number of distinct users on each directory. If there are 
more users on a workstation, the protection checks will be functionally accurate, 
but will take longer because of ineffective caching. Vice notifies Venus whenever 
the protection on a cached directory changes. 

Caching interacts with UNIX semantics in a counterintuitive manner. In 
UNIX, protection failures can only occur when opening a file. In Andrew, a 
protection failure can occur when closing a file if the protection on one of the 
directories in its path was changed while the file was open. There is no simple 
solution to this problem because Vice cannot delegate the responsibility of 
checking access on store operations. It cannot trust the access check that Venus 
performs when opening a cached file. 

This difference from UNIX semantics affects a number of common UNIX 
applications that do not expect the close operation to fail, and hence do not 
check return codes from it. In rare instances the user of such an application may 
be unaware that one or more files were not stored in Vice because of a protection 
violation. We do try to inform users of the problem by printing a message on the 
workstation console. However, using the console as an out-of-band notification 
mechanism does not help in situations where there is no user to act upon the 
message. The only robust solution to this insidious failure mode is to modify the 
applications to check return codes. 

7.3 Superuser Privileges 

Certain sensitive operational procedures in UNIX can only be performed by the 
pseudouser “root”. Workstation owners need to become root on occasion to 
perform these procedures. As a result, root is logically equivalent to a group 
account as discussed in Section 4. A RPC connection on behalf of root provides 
no knowledge about which actual user it corresponds to. 

A further complication is that the initialization of a workstation causes a 
number of standard processes belonging to root to come into existence automat- 
ically. Since there may be no users logged in, Venus may not have tokens with 
which to make authenticated connections for these processes.” We address these 
problems by treating root specially and granting it the same default access 
privileges in Vice as System : AnyUser. RPC connections made on behalf of root 
are unauthenticated and insecure. 

The Setuid mechanism in UNIX effectively provides amplification of rights 
[ 161. When a file marked setuid is executed, it acquires the access privileges of 
the owner of the file rather than the user executing the file. The interpretation 
and enforcement of the setuid property is done by Virtue, but Vice requires 
authentication tokens for the owner of the program being run setuid. Since the 
tokens will not be available except in the unlikely case of the owner of the file 
being logged in to the workstation, Andrew cannot support the setuid mechanism 

6 Automatic logging in of root would require the password to be stored in the clear on workstations, 
a security risk we were unwilling to assume. 
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in its general form. However, many useful system utilities on workstations are 
owned by root and are run setuid. Since root has only System : AnyUser privileges 
on Vice files and since RPC connections for root do not require tokens, we are 
able to support setuid in this limited form. 

If naively implemented, setuid programs owned by root would make Trojan 
horses trivial. A user could become root on the workstation, store a Trojan horse 
program in Vice, and mark it setuid. If this program were run by any other user, 
it would be able to compromise that user’s workstation. To guard against this, 
we define a special Vice user, “stem.” No one can be authenticated as stem, but 
a system administrator can make stem the owner of a file. When Venus caches 
a setuid tile owned by stem, it translates the owner to root and honors the setuid 
property. If the file is not owned by stem, the setuid property is ignored. 

In our experience this implementation of the setuid mechanism has proven to 
be a sound compromise between security, UNIX compatibility, and ease of 
maintenance of system software. Little disruption has been caused by restricting 
setuid support to root. 

7.4 Vice Interface 

Virtue provides a number of programs to allow users to use the security mecha- 
nisms of Vice. FS is a program to allow users to set and examine Vice access lists. 
LOGIN, LOG, and Su are modified versions of standard UNIX programs. They 
prompt for a password, contact the authentication server, obtain tokens and pass 
them to Venus. A modified version of the UNIX PASSWD program allows users 
to change their passwords by contacting the authentication server. 

For other applications, Virtue provides a library of routines to get, set, and 
delete tokens stored by Venus. An important user of these routines is the Andrew 
version of the standard UNIX program RSH that allows a user to execute a 
program on a remote workstation. Another important user is REM, a program 
that makes idle workstations available for remote use [23]. In order that the 
remote site can access Vice files on behalf of the user, both these programs 
extract tokens from the user’s workstation and send them in the clear to the 
remote Venus. Sending the tokens in the clear is an obvious breach of security, 
violating the assumptions of Section 3. Yet these programs are popular in our 
user community! Unfortunately, there is no simple fix to make these programs 
more secure. To perform the mutual authentication handshake described in 
Section 5, the local and remote sites would need to share a secret key. No such 
key exists between an arbitrary pair of Andrew workstations. 

There are occasions when a user may wish to voluntarily restrict personal 
rights, for example, by running a program being debugged in an environment 
that will not allow it to modify critical files. Virtue allows a user to temporarily 
disable personal membership in one or more groups, with the group Sys- 
tem: Administrators being disabled by default. Disabled groups may be enabled 
at a later time. At present, a user does not have to be reauthenticated when 
enabling a group. An additional measure of security would be provided by 
requiring this. 

To implement this temporary disabling of membership, Virtue associates an 
integer called a Process Access Group (PAG) with each process. When a process 
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forks, its child inherits the PAG. Venus associates secure RPC connections to a 
server with (user, PAG) pairs. Usually all the processes of a user have a single 
PAG. If a user disables his membership in a group, the process in which the 
disabling command was issued acquires a new PAG that is distinct from all other 
PAGs created in this incarnation of UNIX. Each time another server is contacted 
on behalf of the new (user, PAG) pair, Venus makes a secure RPC connection 
and requests the server to disable membership in the specified groups. The server 
constructs a reduced CPS for that connection and uses it on access list checks. 
PAGs also change when a LOG or su command is executed. 

8. RESOURCE USAGE 

The absence of a focal point for allocation of resources makes resource control 
difficult in a distributed system. Processes in a typical timesharing system are 
constrained in the rate at which they can consume resources by the CPU 
scheduling algorithm. No such throttling agent exists in a typical distributed 
system. Another significant difference is that a process in a timesharing system 
has to be authenticated before it can consume appreciable amounts of resources. 
In contrast, each Andrew workstation can be modified to anonymously consume 
network bandwidth and server CPU cycles. 

As discussed in Section 3, Andrew is not designed to be immune to security 
violations by denial of resources. However, it does provide control over some of 
the resources. The major resources in Andrew are 

-network bandwidth, 

-server disk storage and CPU cycles, 

-workstation disk storage and CPU cycles. 

In the next three sections we examine how Andrew treats these resources. 

8.1 Network Bandwidth 

Since Andrew does not provide mechanisms to control use of network bandwidth, 
responsible use of the network is primarily achieved by peer pressure and social 
mores of the user community. Blatant misuse, such as by flooding with packets, 
is relatively easy to detect. But it is hard to detect subtle misuse. For example, a 
malicious user can generate a level of traffic that degrades performance but does 
not bring useful network activity to a standstill. Or the user can use multiple 
widely separated public workstations to generate high volumes of traffic. Identi- 
fying the user can be particularly difficult because workstations can be modified 
to generate packets with arbitrary source addresses. 

In our experience, network-related problems have not been due to malicious 
activity. Occasionally, we observe high network utilization and poor file transfer 
rates on segments of the network that support nonAndrew diskless workstations. 
The problem has not proved serious enough yet to warrant special attention. In 
one memorable instance, a bug in the low-level network code on workstations 
was triggered by a malformed broadcast packet generated by a nonmalicious user 
during debugging. The bug affected every workstation in the environment and 
effectively halted all of them. 
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8.2 Server Usage 

Because of the long-term, shared nature of the resource, we felt it important to 
be able to control disk usage on servers. An Andrew system administrator can 
specify a storage quota for the Vice files of a user. The quota is actually placed 
on a Volume, an encapsulation of a small subtree of the Vice file space [29]. 
Quotas can be easily changed by system administrators. 

When storing a file on behalf of a user, a server will abort a store operation if 
the quota is exceeded. This can cause a problem similar to the one described in 
Section 7.1; an application program that does not check the return codes from a 
close operation will not report a failure caused by the quota being exceeded. But 
our users and system personnel consider server disk storage an important enough 
resource that they have tolerated this problem. 

A minor exposure arises from the manner in which electronic mail is imple- 
mented in Andrew. Each user has a mailbox directory on which System : AnyUser 
has insert rights. Mail is delivered by storing each message in its own file in this 
directory. A malicious user could exhaust the quota of another user by sending 
large quantities of junk mail. In practice, this has not proved to be a problem. 

Although a user cannot execute a program on a server, the user’s Venus can 
consume server CPU cycles in file system operations. Excessive demands on a 
server are a form of resource denial to other users. At present, Vice does not 
constrain the amount of server CPU cycles a user can utilize. It could do so, if 
necessary, since user requests come in on distinct RPC connections. 

8.3 Workstation Usage 

Andrew does not restrict the amount of space used by local files on workstations. 
For cached Vice files, Venus employs an LRU algorithm to limit disk usage below 
a value specified at initialization. The algorithm is not infallible because read 
and write operations are not intercepted by Venus. It is possible for a program 
to open a short file and then append a large amount of data, thereby exceeding 
the cache limit. In practice, this has rarely been a problem. 

Since a workstation can be privately owned, it would seem inappropriate for 
Andrew to constrain the use of its CPU cycles. However, the problem has proved 
more complex than we anticipated. The primary source of difficulty is the fact 
that each workstation is a full-fledged UNIX system. Hence it is possible to 
remotely access one workstation from another via standard UNIX programs such 
as TELNET and RSH. Since the Vice file space is identical at all workstations, it 
is particularly easy for a user to use any workstation. Such convenience was, of 
course, a fundamental motivation for the distributed file system. 

Unfortunately, an individual at a workstation perceives the attempt to use its 
cycles by another user as a security violation. This perception is particularly 
strong if the first user is at the console of the workstation. Totally disabling the 
network daemons that allow remote access is not a viable solution for two 
reasons. First, system personnel sometimes need to remotely access workstations 
for troubleshooting. Second, an owner may wish to access the workstation from 
home. Our modem access facilities require the network daemons to be present. 

We have evolved a mechanism whereby TELNET access to a workstation can 
be restricted to a list of users stored in the local file system of that workstation. 
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This restriction is, however, stronger than what most users desire. When not 
using the workstation, a user is usually amenable to others using it. It is also 
unacceptable for public workstations, because every Andrew user should be able 
to use them. At the present time we do not have a completely satisfactory solution 
to this resource problem. The REM system, mentioned in Section 7.4, allows a 
user to specify the conditions that must be satisfied for the workstation to become 
available for remote use. Although satisfactory to a logged-in user, this approach 
is harsh on the REM user who is in constant danger of having computation 
aborted at the remote site. A full-fledged Butler mechanism [8] that migrates 
remote users rather than aborting them would be a more acceptable alternative. 

The problem of controlling workstation CPU usage will become acute as 
Andrew grows. The large pool of idle workstations available for parallel compu- 
tation, and the development of applications that exploit such parallelism, will 
make remote use even more attractive in future. 

9. ENCRYPTION 

Security in Andrew is predicated on the ability of clients and servers to perform 
encryption for authentication and secure communication. The design and imple- 
mentation of the encryption algorithm has to satisfy certain properties: 

-it must be difficult to break, given the computational resources available to a 
malicious individual in a typical Andrew environment. 

-it must be fast enough that neither the latency perceived by clients nor the 
throughput of servers be noticeably degraded. 

-it must be cheap enough that it does not appreciably increase the cost of a 
workstation owned by an individual. 

Based on considerations of strength and standardization, we have chosen the 
Data Encryption Standard (DES) [20, 341 published by the National Bureau of 
Standards as the preferred encryption algorithm in Andrew. Since the encryption 
algorithm is a parameter to our RPC mechanism, it is possible to use other 
algorithms. We believe, however, that standardizing on DES is appropriate in 
our environment. This algorithm has been publicly scrutinized for many years, 
and, although concerns have been expressed about its strength [9], we feel that 
DES is adequate for the level of security we require. 

At the present time the latency for a simple interaction between a client and 
server is about 20 to 25 milliseconds, and the file transfer rate is about 50 to 
70KB/s. We expect these numbers to improve over time as Venus, Vice, and the 
routers in the network are improved. The fastest software implementation of 
DES that we are aware of runs at less than lOKB/s on a typical workstation. 
Software encryption would therefore be an intolerable performance bottleneck 
in our system; hardware is essential. 

It is important to note that Andrew depends on end-to-end encryption where 
the ends are user-level processes on workstations and Vice servers. Since every 
connection has a distinct key, the RPC software needs fine-grained and efficient 
control over the key used to encrypt or decrypt a packet. This implies that link- 
level encryption devices with fixed or long-term keys are unsuitable. 
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Although a number of VLSI chips for DES are available [2, 361, integration of 
such chips into workstation peripherals is not common. A commercially available 

device for the IBM PC-AT [14, 151 could be used in our IBM RT-PC worksta- 
tions, but its performance of 50KB/s is barely adequate. We have therefore built 
a prototype device [7] for the IBM RT-PCs using the AMD 9568 chip. On the 
basis of the cost and labor of our parts, we estimate that a commercial version of 
this device, produced in quantity, would cost an end user between 500 and 
800 dollars. As perceived by a user-level process, the time to encrypt N bytes 
using the device is N * k + C, where k is 4 microseconds per byte and C is 470 
microseconds. The overhead of the device is thus under a millisecond for a small 
packet and the asymptotic encryption rate is about 200KB/s. We are confident 
that the device can be redesigned to reduce k in the above expression to about 
0.6 microseconds per byte, yielding an asymptotic encryption rate of over lMB/ 
s. At the present time, we do not have encryption devices for the Sun and 
Microvax workstations in our environment. 

A difficult nontechnical problem is justifying the cost of encryption hardware 
to management and users. Unlike extra memory, processor speed, or graphics 
capability, encryption devices do not provide tangible benefits to users. The 
importance of security is often perceived only after it is too late. At present, 
encryption hardware is viewed as an expensive frill. We believe, however, that 
the awareness that encryption is indispensable for security in Andrew will 
eventually make it possible for every client and server to incorporate a hardware 
encryption device. 

In the interim, while the logistic and economic aspects of obtaining encryption 
hardware are being addressed, Andrew uses exclusive-or encryption in software. 
Although it is trivially broken, we felt it worthwhile to use it for two reasons. 
First, it exercises all paths in our code pertaining to security and allows us to 
validate our implementation. Second, although a weak algorithm, it does require 
a user to perform an explicit action to violate security by decrypting data. Merely 
observing a sensitive packet on the network by accident will not divulge its 
contents. 

10. OTHER SECURITY ISSUES 

We now consider two unrelated questions from the viewpoints of security in 
Andrew: 

-how do low-power personal computers access Vice files? 

-can diskless workstations be made secure? 

Sections 10.1 and 10.2 examine these questions. In focusing only on security, our 
discussion ignores many broader issues and implementation details. 

10.1 PC Server 

Many Andrew users also use personal computers such as the IBM PC and Apple 
Macintosh, and desire Vice access from PCs. PCs in our environment typically 
have limited amounts of main memory and sometimes lack a local disk. These 
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characteristics make them substantially different from the class of powerful, 
resource-rich UNIX workstations for which the design of the Andrew File System 
is optimized. Rather than compromising the design of the latter to accommodate 
PCs, we use a surrogate server to interface PCs to Vice. A collection of PCs 
communicate with the surrogate, called PCServer, running on an Andrew work- 
station. PCServer mediates Vice access from the PC and makes Vice files 
transparently accessible to the latter. 

Communication between a PC and PCServer uses a protocol distinct from that 
used in the Andrew file system. To perform the 3-way BIND handshake described 
in Section 5.1, each site running PCServer would need to share a secret key with 
users at PCs. This could be done using tokens, in a manner analogous to that 
used by file servers in Vice. But our implementation does not do this. Rather, it 
supports a weaker form of authentication. The workstation running PCServer 
also runs an authenticator process called Guardian. When a PC user needs to 
access Vice files, the user supplies his or her Andrew user id and password. These 
are transmitted to Guardian, logically in the clear, but encrypted with a fixed 
key. The encryption protects the password against accidental exposure, but not 
against malicious attacks. Guardian contacts the Andrew authentication server 
and obtains authentication tokens in a manner identical to LOGIN, as described 
in Section 5.2. Guardian hands these tokens to Venus and then forks a dedicated 
UNIX PCServer process on behalf of the user. This process acts on behalf of the 
PC user and services file requests from the user’s PC. 

From the point of Venus, it appears as if the PC user had actually logged in at 
the workstation running PCServer. Enforcement of protection for Vice files is 
performed exactly as described in Section 6.2. The main security exposure in 
using PCServer is the information sent in the clear between the PC and Guardian 
during the establishment of a session. As mentioned earlier, it is technically 
feasible to fix this problem. But the implementation effort to do this has not 
been forthcoming. 

10.2 Diskless Workstations 

Operating workstations without local disks has been shown to be viable and cost- 
effective [19]. However, the impact of diskless operation on security has been 
ignored in the literature. To be secure when operating diskless, at least two 
factors have to be considered. Page traffic has to be encrypted and workstations 
have to be confident of the identity of their disk servers so that Trojan horses 
are avoided. 

How fast will encryption have to be done to avoid significant performance 
penalty when running diskless? Cheriton and Zwaenepoel [6] present data from 
the V kernel on a Sun workstation indicating that it takes about 5 milliseconds 
plus disk access time to remotely read or write a random 512-byte block of data. 
These numbers are for file access; but, to a first approximation, we assume that 
they also hold for page access. We also assume that the server does write-behind, 
that pages are stored encrypted on the server, and that encryption and decryption 
take about the same amount of time. Under these conditions, a page fault with 
replacement of a dirty page would involve a remote page store (5ms), a disk read 
at the server (20ms for a typical disk), and a remote page fetch (5ms), yielding a 
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page fault service time of 30 milliseconds.7 If we require that encryption is to 
degrade paging performance by no more than 5 percent, it has to be possible to 
encrypt two 512-byte pages in no more than 1.5 milliseconds. This implies an 
average encryption rate of about 700KB/s. For the more typical UNIX page size 
of 4K bytes, an encryption rate in the range of 0.5 to lMB/s still seems necessary. 
As described in Section 9, encryption hardware whose performance meets these 
demands seems feasible, though not readily available. 

Authentication is also a difficult problem. To perform an authentication 
handshake, the client and server need to share a secret key. Where can this key 
be stored at the client? Embedding it in the ROM containing the boot sequence 
seems to be the only realistic solution, especially if the workstation has to be 
able to come up unattended after a power failure. Unfortunately, this violates 
the goal mentioned in Section 5.2, of not storing long-term authentication 
information in the clear on workstations. Authentication based on a public key 
scheme may be a better alternative. In such a scenario, the public keys of 
legitimate servers would be widely known and could be safely stored in the ROMs 
of workstations. A server would digitally sign each packet of the boot sequence 
with its private key, and clients would verify the signature using the public key 
of that server. Although this scheme only guarantees that the server is genuine, 
it is likely to be all that is needed for this application. 

In fairness, it must be pointed out that Andrew’s use of unauthenticated 
connections to obtain fresh versions of system software after a reboot is also 
vulnerable to Trojan horse attacks. The problem could, however, be easily 
alleviated by deferring the update of system software until a user logs in, and 
then using the user’s authenticated connections to perform the update. The 
integrity of system software on the local disk is also critical, but this is consistent 
with the assumption, stated in Section 3, that users are responsible for the 
physical security of the workstations they use. 

Although the security problems of diskless workstations are not insurmount- 
able, we know of no real implementations that address them. Concerns regarding 
security played a small but nontrivial part in our decision to avoid diskless 
operation in Andrew. 

11. RISK ANALYSIS 

In this section we briefly consider how security could be subverted in Andrew. 
Our analysis is not intended to be exhaustive, nor is it a proof of security. Its 
primary purpose is to summarize the discussions of the preceding sections of this 
paper. A secondary goal is to illustrate the complexity of applying relatively 
simple security algorithms to a real distributed environment of substantial scale 
and diversity. 

A fundamental assumption in Andrew is that encryption of sufficient strength 
and speed is available to Vice and Virtue. Otherwise it is trivial to violate security. 
For the purposes of this section, we assume that all servers and workstations 
have such encryption hardware. We also assume that all RPC connections on 
behalf of users are authenticated and fully encrypted. 

7 If a code page is being evicted the time would be slightly less, that is, 25 ms, since it does not have 

to be written back to the server. 
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Low-level network attacks can, at worst, result in denial of service to users. 
Since RPC packets are encrypted end-to-end, eavesdropping will not reveal 
useful information. Mutilating RPC packets will not violate security either. Such 
packets will be rejected by the recipient because RPC sequence numbering 
information is encrypted, and it is unlikely that a multilated RPC packet will 
have the correct sequence number when decrypted. For greater confidence, a 
checksum of the entire packet should be included in the encrypted header. 

Breaking of keys by cryptanalytic attacks are much less likely than violations 
of physical or procedural security. However, one could imagine a malicious 
individual with patience and considerable computational resources eavesdropping 
on client-server traffic in Andrew and breaking the key under which the traffic 
is encrypted. Since a new random session key is generated when a RPC connec- 
tion is established, breaking that key will only give access to one server. To 
masquerade as the user, the eavesdropper would have to carefully intersperse 
fake RPC requests encrypted under the session key. The session key is not 
adequate to establish connections with other servers. 

Greater damage can be done by breaking the key in secret and clear tokens. 
One way to do this is to break the key used by the authentication server for 
encrypting secret tokens. This is extremely serious, since all tokens based on 
that key are compromised. Periodic changing of this key, and careful safeguarding 
of it, is essential. Another way to break the key in a token pair is to observe a 
number of BIND requests that involve the same pair of tokens. This is unlikely, 
because tokens expire after 24 hours, and the number of BIND requests made by 
a user in that period is not likely to be sufficient to mount a serious key-breaking 
effort. A compromised token pair allows the miscreant to establish secure RPC 
connections with the privileges of the victim on any Vice file server. It is not 
adequate, however, to establish a secure connection to the authentication server. 

The most damage is caused when the password of a user, particularly one who 
is a system administrator, is obtained. However, the password is typically used 
only once a day when the user is contacting an authentication server for tokens. 
The standard practice of changing passwords periodically will reduce the total 
amount of information available for key-breaking. 

A well-known mode of attack is via a Trojan horse. Public workstations are 
particularly susceptible to this. A Trojan LOGIN program on a workstation could 
compromise the password of every individual who uses that workstation. Con- 
cerned sites should insist that users reboot a workstation before using it so as to 
defeat user-level Trojan horse attacks at login. Further, such sites should ensure 
that standalone rebooting of a workstation is impossible for normal users. This 
would defeat the simplest way for malicious users to obtain superuser privileges. 

A more subtle way to introduce a Trojan horse is by masquerading as a server 
that is temporarily down and then handing out fraudulent binaries. During their 
reboot sequence, workstations fetch new copies of local binaries from Vice over 
insecure connections. As mentioned in Section 10.2, this problem could be avoided 
by disabling the automatic update of system software on reboot. 

Workstations with multiple logged-in users make a number of other security 
threats possible. A malicious user with superuser privileges could cause Venus to 
dump core, examine the dump, and extract the tokens of other logged-in users. 
Andrew does not provide any special mechanisms to protect against such threats. 
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As mentioned in Section 3, users of a shared workstation have to trust all 
individuals who could become superusers on that workstation. A superuser can 
also read and modify all cache copies of files on the workstation. 

Vice is critically dependent on the physical security of its servers and on 
carefully restricted superuser access on them. For maximum security, servers 
should disallow TELNET access. Physically secure machine rooms and trustworthy 
operators are, of course, also essential. A malicious individual with superuser 

access on a server could read or modify all Vice file data. 
Membership in the group System: Administrators has to be carefully guarded. 

A system administrator can modify any access list in the system, and can 
therefore read or write any file. The user can also change storage quotas and 
modify the ownership of files. For increased security, it would be relatively simple 
to modify Vice to grant System : Administrator privileges only to individuals who, 

in addition to being authenticated, are logged in at one of a specific set of 
physically secure workstations. 

To keep things in perspective, it should be noted that this section is deliberately 
negative in tone. Most of the scenarios described here are highly unlikely, and 
typically involve the violation of the assumptions discussed in Section 3. A site 
that adheres to those assumptions will find Andrew more secure than any existing 
distributed system of comparable functionality. Further, in spite of the attention 
it pays to security, Andrew remains a highly usable system. 

12. RELATED WORK 

As is often the case in other areas of research, there are many instances where 
variants of the same basic idea have been independently developed by different 
groups working on system security. Although Andrew is unique as a system, 
many of its individual security mechanisms and design decisions resemble those 
of other systems. We examine the most prominent of these similarities in this 
section. 

Treating the RPC transport protocol as the level of abstraction at which to 
apply end-to-end authentication and secure transmission measures is a key design 
decision. The Cedar RPC package [4] was the first to do so; Andrew independently 
choosing the same approach. More recently, Sun Microsystems has extended 
its RPC package to support authentication (but not encrypted transmission) 
[32, 331. 

The authentication model used by Kerberos [31] in Project Athena closely 
resembles Andrew’s two-step authentication scheme. A user is required to supply 
a password only once per login, with Kerberos generating authentication tickets 
for further use. The Kerberos authentication server is replicated, with a single 
master and multiple read-only slaves. Kerberos guards against replays of service 
requests by the use of unique authenticators supplied by the client with each 
service request. The use of authenticators requires clocks on servers and clients 
to be closely synchronized. Andrew does not depend on synchronized clocks. 
Rather, it uses a connection-based RPC, depending on the encrypted, monoton- 
ically increasing sequence numbers in packet headers to guard against replays of 
service requests. 
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Physical security of the authentication servers is required in both Kerberos 
and Andrew, since they store passwords in the clear. In contrast, the key 
distribution mechanism used by Sun [32, 331 avoids storing passwords in the 
clear. The common DES key needed for mutual authentication is obtained from 
information stored in a publicly readable database. Stored in this database for 
each user and server is a pair of keys suitable for public key encryption. One key 
of the pair is stored in the clear, while the other is stored encrypted with the 
login password of the user. Any two entities registered in the database can deduce 
a unique private key for mutual authentication. 

Apollo has recently extended the UNIX protection mechanism on their work- 
stations with access lists [ 111. But the details of the approach differ significantly 
from those of Andrew. Apollo access lists are optional, and can be associated 
with individual files and directories. A set of precedence rules determine the 
rights accruing to a user if multiple entries of an access list apply to him. This is 
in contrast to Andrew, where the user obtains the union of these rights. 

The use of a hierarchical protection domain in Andrew is inherited from the 
CMU-CFS file system [l]; Grapevine [3] also used a similar scheme. 

13. CHANGES SINCE SNAPSHOT 

As mentioned in Section 1, the details presented in the preceding sections of this 
paper pertain to a snapshot of Andrew at one point in time. Andrew was modified 
in an incremental manner from the date of that snapshot, November 1986, until 
the summer of 1988. 

Most of these modifications were improvements to existing functionality. The 
protection database was changed so that its index was stored internally, rather 
than in a separate file. This eliminated the occasional inconsistencies between 
index and data that used to occur when propagating protection domain infor- 
mation. The RPC2 remote procedure call mechanism, described in Section 5.1, 
was replaced by R, a similar RPC mechanism that was more parsimonious in its 
use of memory. The replacement enabled Venus to run on workstations with 
very limited physical memory. Although there were differences in the details, the 
authentication handshakes used by RPC2 and R were conceptually similar. 

A significant enhancement to functionality was the addition of support for 
multiple Cells [38]. A cell corresponds to a completely autonomous Andrew 
system, with its own protection domain, authentication, file servers, and system 
administrators. A federation of cells can cooperate in presenting users with a 
uniform, seamless file-name space. Yet, for smooth and efficient operation, cells 
allow administrative responsibility to be delegated along lines that parallel 
institutional boundaries. 

Although the presence of multiple protection domains complicates the security 
mechanisms in Andrew, Venus hides much of the complexity from users. For 
example, authentication tokens issued in a cell are valid for use within that cell 
only. Venus maintains a collection of tokens, one pair for each cell to which the 
user has been authenticated. When establishing a secure connection to a Vice 
server, it uses the tokens appropriate to the cell in which the server is located. A 
user who has not been authenticated to that cell gets System : AnyUser privileges 
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in it. A user is aware of the existence of cells only in the beginning, when directing 
authentication requests to individual cells using the LOG program described 
earlier. In a small number of cases, application programs have to be modified to 
make cells transparent. For example, a user registered in multiple cells may have 
Vice ids that are different in each cell. An application such as the directory listing 
program, LS, that translates ids to user names has to be modified to display 
names correctly. 

Since the summer of 1988, a major reimplementation of the Andrew file system 
has been under way. This will result in a new version, AFS 3.0 [30]. The goals of 
this reimplementation are improved performance, ability to operate over wide- 
area networks, improved operability and system administration, and better 
standardization of components. Three major changes pertain to security. First, 
the new RPC mechanism, Rx, provides support for a variety of security modules. 
Different instances of Rx can use different authentication and encryption mech- 
anisms. Second, in the interests of standardization, Kerberos from Project Athena 
is being used for authentication. Third, a protection server is being implemented. 
This will allow users to create and manipulate groups themselves, rather than 

depending on system administrators to perform this function. 

14. CONCLUSION 

Throughout the evolution of Andrew, the underlying model of security has 
remained unchanged. A small collection of trusted servers jointly provide a secure 
storage repository for users at a large number of workstations. The security of 
the entire system is not contingent upon the integrity of these workstations or 
of the network. Loss of integrity of a workstation can, at worst, compromise the 
security of tiles accessible to those who use the workstation. This is a substantially 
higher level of security than that offered by most contemporary distributed 
systems. Our experience with Andrew gives us confidence that this level of 
security can be attained without significant loss of usability or performance, even 
at large scale. 

Security will be a more serious issue in the future. Although much theoretical 
research has been done in this area, applying those principles to real systems is 
difficult. The factors contributing to complexity include the many levels of 
abstraction spanned, the need for compatibility, and the existence of numerous 
minutiae that have to be correctly addressed. In spite of this, we are convinced 
that the distributed systems of the future will have to pay greater attention to 
security if they are to remain viable. 
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