
Integrating Security in a Large Distributed
System

M. SATYANARAYANAN

Carnegie Mellon University

Andrew is a distributed computing environment that is a synthesis of the personal computing and

timesharing paradigms. When mature, it is expected to encompass over 5,000 workstations spanning

the Carnegie Mellon University campus. This paper examines the security issues that arise in such

an environment and describes the mechanisms that have been developed to address them. These

mechanisms include the logical and physical separation of servers and clients, support for secure

communication at the remote procedure call level, a distributed authentication service, a file-

protection scheme that combines access lists with UNIX mode bits, and the use of encryption as a

basic building block. The paper also discusses the assumptions underlying security in Andrew and

analyzes the vulnerability of the system. Usage experience reveals that resource control, particularly

of workstation CPU cycles, is more important than originally anticipated and that the mechanisms

available to address this issue are rudimentary.

Categories and Subject Descriptors: C.2.0 [Computer-Communication Networks]: General-

security and protection; C.2.2 [Computer-Communication Networks]: Network Protocols; C.2.4

[Computer-Communication Networks]: Distributed Systems; D.2.0 [Software Engineering]:

General--protection mechanisms; D.4.3 [Operating Systems]: File Systems Management--distrib-
uted file systems; D.4.6 [Operating Systems]: Security and Protection--access controls, authenti-

cation, cryptographic controls; E.3 [Data Encryption]: data encryption standard (DES); K.6.m

[Management of Computing and Information Systems]: Miscellaneous-security

General Terms: Algorithms, Design, Security

Additional Key Words and Phrases: Access lists, AFS, Andrew, Needham-Schroeder, negative rights,

orange book, protection domain, RPC, scalability, trust, UNIX

1. INTRODUCTION

Andrew is a distributed computing environment that has been under development
at Carnegie Mellon University since 1983. An early paper [21] describes the
origin of the system and presents an overview of its components. Other papers

Andrew is a joint project of Carnegie Mellon University and the IBM Corporation. The author was

supported in the writing of this paper by the National Science Foundation (contract CCR-8657907),

Defense Advanced Research Projects Agency (order 4976, contract F33615-84-K-1520), and the IBM
Corporation (Faculty Development Award). The views and conclusions in this document are those of

the author and do not represent the official policies of the funding agencies or Carnegie Mellon

University.

Author’s address: School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213-

3890.

Permission to copy without fee all or part of this material is granted provided that the copies are not

made or distributed for direct commercial advantage, the ACM copyright notice and the title oft&
publication and its date appear, and notice is given that copying is by permission of the Association

for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific
permission.

0 1989 ACM 0734-2071/89/0800-0247 $01.50

ACM Transactions on Computer Systems, Vol. 7, No. 3, August 1989, Pages 247-280.

248 l M. Satyanarayanan

[13, 271 focus on the distributed file system that is the information sharing
mechanism of Andrew.

The characteristic of Andrew that has influenced almost every aspect of its
design is its scale. The belief that there will eventually be a workstation for each
person at CMU suggests that Andrew will grow into a distributed system of 5,000
to 10,000 nodes. A consequence of its large scale is that the laissez-faire attitude
towards security typical of closely-knit distributed environments is no longer
viable. The relative anonymity of users in a large system requires security to be
maintained by enforcement rather than by the goodwill of the user community.

A sizable body of literature exists on algorithms for security in distributed
environments. The survey by Voydock and Kent [35] describes many of these
algorithms and discusses the basic security problems they address. In contrast,
this paper focuses on the design and implementation aspects of building a secure
distributed environment. It sets forth the fundamental assumptions on which
security in Andrew is based, examines their effect on system structure, describes
associated mechanisms, and reports on usage experience.

Although Andrew is no longer an experimental system, it is far enough from
maturity that many of its details are still evolving. Rather than trying to describe
a moving target, this paper presents a snapshot of Andrew at one point in time.
The point of reference is the date of the official inauguration of Andrew, on
November 11, 1986. At that point in time, there were over 400 Andrew worksta-
tions serving about 1,200 active users. The file system stored 15 gigabytes of
data, spread over 15 servers. The system was then mature and robust enough to
be in regular use in undergraduate courses at CMU and in demonstrations of
Andrew at the EDUCOM conference on educational computing. In the rest of
this paper the present tense refers to the state of the system at this reference
point. Exceptions to this are explicitly stated.

The paper begins with an overview of the entire system and an identification
of its major components. Section 3 then discusses the underlying assumptions
and the conditions that must be met for Andrew to be secure. Sections 4 to 7
describe the protection domain, authentication, and enforcement of protection
in the distributed file system. Section 8 discusses the problem of resource control.
Section 9 underlines the fundamental role of encryption and proposes that
encryption hardware be made an integral part of all workstations in distributed
environments. Section 10 deals with various other security concerns, while
Section 11 examines the ways in which the security of Andrew could be com-
promised and suggests defenses against some of the possible modes of attack.
Section 13 outlines the changes that have occurred since the snapshot pre-
sented here. Finally, Section 14 concludes the paper with a recapitulation of
its central theme.

2. SYSTEM STRUCTURE

Andrew combines the user interface advantages of personal computing with the
data sharing simplicity of timesharing. This synthesis is achieved by close
cooperation between two kinds of components, Vice and Virtue, shown in
Figure 1. A Virtue workstation provides the power and capability of a dedicated

ACM Transactions on Computer Systems, Vol. 7, No. 3, August 1989.

Integrating Security in a Large Distributed System 249

Fig. 1. Vice and Virtue. The amoeba-like structure in the center is a collection of insecure networks

and secure servers that constitute Vice. Virtue is typically a workstation, but can also be a mainframe.

personal computer, while Vice provides support for the timesharing abstraction.
Although Vice is shown as a single logical entity in Figure 1, it is actually
composed of a collection of servers and a complex local area network. This
network spans the entire CMU campus and is composed of Ethernet and IBM
Token Ring segments interconnected by optic fiber links and active elements
called Routers.

Each Virtue workstation runs the UNIX 4.3BSD operating systems, and is
thus an autonomous timesharing node. Multiple users can concurrently access a
workstation via the console keyboard, via the network, or via terminals that are
hardwired to the workstation. But the most common use of a workstation, and
the usage mode most consistent with the Andrew paradigm, is by a single user at
the console.

A distributed file system that spans all workstations is the primary data-
sharing mechanism in Andrew. In Virtue, this file system appears as a single
large subtree of the local file system. Files critical to the initialization of Virtue
are present on the local disk of the workstation and are accessed directly. All
other files are in the shared name space and are accessed through an intermediary
process called Venus that runs on each workstation. Venus finds files on individ-
ual servers in Vice, caches them locally, and performs emulation of UNIX file
system semantics. Both Vice and Venus are invisible to processes in Virtue. All
they see is a UNIX file system, one subtree of which happens to be identical on
all workstations. Processes on two different workstations can read and write files
in this subtree just as if they were on a single timesharing system.

A mainframe computer that runs Venus appears exactly like a Virtue worksta-
tion to Vice. But it is more likely to have multiple concurrent users, who depend
on the operating system to protect them against each other. Subverting its
operating system is more serious, since more individuals are affected.

@ UNIX is a trademark of AT&T Bell Laboratories.

ACM Transactions on Computer Systems, Vol. 7, No. 3, August 1989.

250 l M. Satyanarayanan

3. ASSUMPTIONS

Saltzer [%I makes an important distinction between a securable system and
specific secure instances of that system. Our purpose in this section is to describe

the level of security offered by Andrew and to state the assumptions under which
this is achieved. The degree to which a specific Andrew site is secure depends

critically on the effort taken to meet these assumptions.
It is easiest to characterize Andrew using the taxonomy introduced by Voydock

and Kent. Their survey [35] classifies security violations into unauthorized release
of information, modification of information, and denial of resource usage. The
security mechanisms in Andrew primarily ensure that information is released
and modified only in authorized ways. The difficult issue of resource denial is
not fully addressed. The complexity of this problem becomes apparent if one
considers a situation where a piece of network hardware is tampered with such
that it floods the network with packets. The resulting denial of network band-
width to legitimate users is clearly a security violation in the strict sense of the
term. However, it is not clear what Andrew could possibly do in such situations
except to bring the problem to the attention of system administrators. This issue
of resource control is discussed at length in Section 8.

Alternative taxonomies of security also exist. Wulf [37], for instance, considers
the security of the Hydra operating system in the light of the problems of mutual
suspicion, modification, conservation, confinement, and initialization. It is more
difficult to characterize Andrew within this framework. Since Vice and Virtue do
not trust each other until a user successfully executes the authentication proce-
dure described in Section 5, there is indeed mutual suspicion. But users do depend
on Vice to provide safe, long-term storage of their files and to enforce their
protection policies. Andrew can protect against modification of files by other
users, but there is no safeguard against incorrect modifications by Vice itself.
Since Andrew supports revocation, it does address the problem of conservation.
But the problem of confinement, extensively discussed by Lampson [18], is one
that Andrew makes no attempt to solve. It is not clear how the initialization
problem in Wulf’s model applies to Andrew.

The Department of Defense taxonomy of computer systems [lo] classifies
computer systems into four major categories with numerous subcategories. Se-
curity ranges in strength from class D (minimal protection) to class A2 (verified
implementation). In this classification scheme, Andrew meets the criteria for
class Cl (discretionary security protection). It comes close to meeting the criteria
for class C2 (controlled access protection), the main deficiency being in the area
of audit. Although Andrew does log authentication failures and modifications to
the authentication database, it does not maintain audit trails of all events
specified in Class C2.

For simplicity, we restrict our attention in the rest of this paper to the model
put forth by Voydock and Kent. We do recognize, however, that a complete
analysis of Andrew security in terms of a variety of taxonomies would be a
valuable exercise in itself.

A fundamental assumption pertains to the question of who enforces security
in Andrew. Rather than trusting thousands of workstations, security in Andrew
is predicated on the integrity of the much smaller number of Vice servers. These

ACM Transactions on Computer Systems, Vol. 7, No. 3, August 1989.

Integrating Security in a Large Distributed System l 251

servers are located in physically secure rooms, are accessible only to trusted
operators, and run trusted software. No user software is ever run on servers. For
operational reasons, it is necessary to provide utilities that can be run on servers
to directly manipulate Andrew file system data. These utilities can be run only
by superusers on servers.’ Both access to servers and the ability to become a
superuser on them must be closely guarded privileges.

Workstations may be owned privately or located in public areas. We assume
that owners may modify both the hardware and software on their workstations
in arbitrary ways. It is therefore the responsibility of users to ensure that they
are not being compromised by software on a private workstation. Such a piece of
software, referred to as a Trojan horse [12], can be trivially installed by a
superuser. Consequently, the user has to trust every individual who has the
ability to become superuser on the workstation. A user who is seriously concerned
about security would ensure the physical integrity of his workstation and would
deny all remote access to it via the network.

In the case of a public workstation, it is assumed that there is constant
surveillance by administrative personnel to ensure the integrity of hardware and
software. It is relatively simple to visually monitor and detect hardware tampering
in a public area. But it is much harder to detect a miscreant becoming superuser
and installing a Trojan horse. Keeping the superuser password on a workstation
a secret is not adequate because workstations can be easily booted up standalone,
with the person at the console acquiring superuser privileges. An organization
that is serious about security would have to physically modify workstations so
that only authorized personnel can boot up public workstations standalone.
At the present time, public workstations at CMU do not have such physical
safeguards.

It is common for a pool of private workstations to be used by a small collection
of users. Workstations located in shared offices or laboratories are examples of
such situations. From the point of view of security, such workstations are
effectively co-owned by all users who can physically access them. It is their joint
responsibility to ensure the integrity of the hardware and software on the
workstations.

It should be emphasized that the preceding discussion of software integrity on
workstations pertains to local files. There are usually only a few such files,
typically system programs for initializing the workstation and for authenticating
users to Vice. All other user files are stored in Vice and are subject to the
safeguards discussed in Section 6.

The network underlying Andrew has segments in every building at CMU,
including student dormitories. It is impossible to guarantee the physical integrity
of this network. It can be tapped at any point, and private workstations with
modified operating systems can eavesdrop on network traffic. A consequence of
these observations is that end-to-end mechanisms based on encryption are the
only way to ensure secure communication between Vice and Virtue. These
mechanisms are described in Section 5.

I The servers also run UNIX 4.3BSD. A “superuser” is a privileged UNIX user free of normal access

restrictions.

ACM Transactions on Computer Systems, Vol. 7, No. 3, August 1989.

252 l M. Satyanarayanan

The routers mentioned earlier are dedicated computers that run specialized
software. The integrity of these routers is not critical to Andrew security. Because
Andrew uses end-to-end encryption, a compromised router cannot expose or
modify information that is transmitted through it. At worst, it can cause packets
to be misrouted or modified in ways that cause the receiver to reject them. These
are essentially cases of resource denial, which Andrew does not attempt to address
completely. Physical damage to a network segment has similar consequences.

Finally, the design of the Andrew file system postulates the use of an indepen-
dent, secure communication channel connecting all the Vice servers. This is used
for administrative functions such as tape backups and distribution of the protec-
tion database described in Section 4. This secure channel has to be realized either
by a separate, physically secure network or by the use of end-to-end encryption
as in the case of Vice-Virtue communication. At the present time, neither of
these measures is used at CMU. The “secure” communication channel is the
same as the public network, and communication on it is unencrypted.

4. THE PROTECTION DOMAIN

The fundamental protection question is “Can agent X perform operation Y on
object Z?” We refer to the set of agents about whom such a question can be
asked as the Protection Domain [26]. In Andrew, the protection domain is
composed of Users and Groups. A user is an entity, usually a human, that? can
authenticate itself to Vice, be held responsible for its own actions, and be charged
for resource consumption. A group is a set of other groups and users associated
with a user called its Owner. The name of the owner is a prefix of the name of
the group. It is possible to impose meaningful structure in the names of groups,
although Andrew ignores such structure. For example, “Bovik : Friends”,
“Bovik : Friends. CatLovers”, and “Bovik : Friends. CatHaters” could mnemoni-
cally indicate the purpose of three groups owned by user “Bovik”.

Vice internally identifies users and groups by unique 32-bit integer identifiers.
An id cannot be reassigned after creation. Such reassignment would require
elimination of all existing instances of the id from long-term Vice data structures,
an operational nightmare in a large distributed system. User and group names,
on the other hand, can easily be changed.

A distinguished user named “System” is omnipotent; Vice applies no protection
checks to it. Our original intent was that “System” would play the same role that
a superuser plays in the UNIX systems. In practice, we have found it more
convenient to define a special group named “System :Administrators”. It is
membership in this group, rather than authentication as “System”, that now
endows special privileges. An advantage of this approach is that the actual
identity of the user exercising the privileges is available for use in audit trails.’
We consider this particularly important in view of the scale of Andrew. Another
advantage is that revocation of special privileges can be done by modifying group
membership rather than by changing a password and communicating it securely
to the users who are administrators.

‘To prevent a system administrator from erasing records of his actions, audit trails have to be

maintained on nonerasable media such as write-once optical disks or on hardcopy. We do not do this

at present at CMU.

ACM Transactions on Computer Systems, Vol. 7, No. 3, August 1989.

Integrating Security in a Large Distributed System 253

The protection domain includes two other special entities: the group “Sys-
tem : AnyUser”, which has all authenticated users of Vice as its implicit members,
and the user “Anonymous”, corresponding to an unauthenticated Vice user.
Neither of these special entities can be made a member of any group. Although
the current implementation blurs the distinction between these two entities,3 we
foresee situations where the distinction will become valuable.

Membership in a group can be inherited. The IsAMemberOf relation holds
between a user or group X and a group G, if and only if X is a member of G. The
reflexive, transitive closure of this relation for X defines a subset of the protection
domain called its Current Protection Subdomain (CPS). Informally, the CPS is
the set of all groups that X is a member of, either directly or indirectly, including
X itself.

The CPS is important because the privileges that users have at any time are
the cumulative privileges of all the elements of their CPS. For example, suppose

“System : CMU”, “System : CMU . Faculty”, and “System : CMU . Students” are
three groups with the obvious interpretations. If the second and third groups are
members of the first, new additions to those groups will automatically acquire
privileges granted to “System: CMU”. Conversely, it is only necessary to remove
a student or faculty member who leaves from those groups in which that person
is explicitly named as a member. Inheritance of membership thus conceptually
simplifies the maintenance and administration of the protection domain. The
scale of Andrew makes this an important advantage.

A common practice in timesharing systems is to create a single entry in the
protection domain to stand for a collection of users. Such a collective entry, often
referred to as a “group account” or a “project account,” may be used for a number
of reasons. First, obtaining an individual entry for each human user may involve
excessive administrative overheads. Second, the identities of all collaborating
users may not be known a priori. Third, the protection mechanisms of the system
may make it simpler to specify protection policies in terms of a single pseudouser
than for a number of users.

We believe that this practice should be strongly discouraged in an environment
like Andrew. Collective entries will exacerbate the already difficult problem of
accountability in a large distributed system. The hierarchical organization of the
protection domain, in conjunction with the access list mechanism described in
Section 6, make the specification of protection policies simple in Andrew. In
spite of this, we are disappointed to observe that there are some collective entries
at CMU. We conjecture that this is primarily because the addition of a new user
is cumbersome at present. In addition, groups can only be created and modified
by system administrators. As discussed in Section 13, these problems are being
addressed, and we hope that collective entries will soon become unnecessary.

5. AUTHENTICATION AND SECURE COMMUNICATION

Authentication is the indisputable establishment of identities between two mu-
tually suspicious parties in the face of adversaries with malicious intent. In
Andrew, the two parties are a user at a Virtue workstation and a Vice server,

a Files stored in Vice by an unauthenticated user appear as if they were stored by “System:AnyUser”
rather than by “Anonymous.”

ACM Transactions on Computer Systems, Vol. 7, No. 3, August 1989.

254 - M. Satyanarayanan

while the adversaries are eavesdroppers on the network, or modified network
hardware or software that alters the data being transmitted.

The authentication mechanism we use is a derivative of Needham and Schroe-
der’s original scheme [22] using private encryption keys. The overall function is
decomposed into three major components:

-a Remote Procedure Call mechanism that provides support for security,

-a scheme for obtaining and using Authentication Tokens,

-an Authentication Server that is a repository of password information.

These components, described in detail in the next three sections, are used in
the following way. In response to a standard UNIX login prompt at a workstation,
the user provides his name and password. The password is used to establish a
secure RPC connection to the authentication server. A pair of authentication
tokens is obtained from the authentication server and saved by Venus on the
workstation. These tokens are used, as needed, by Venus to establish secure RPC
connections to file servers. The establishment of a connection is completely
transparent to the user, who in particular, does not have to supply the password
each time a new connection is made. Virtue seems no different from a standalone
workstation to the user.

5.1 Secure RPC

Early in our implementation, it became clear that the remote procedure call
package used between Vice and Virtue was a natural level of abstraction at which
to provide support for secure communication. Birrell’s report on security in the
Cedar RPC package [4] independently confirmed the validity of our decision.

The interface of the RPC package is described in detail in the user manual
[28]. When a client wishes to communicate with a server, it executes a BIND

operation that sets up a logical Connection. Connections are relatively cheap to
establish and require only about a hundred bytes of storage overhead at each
end. A connection can be set up at one of four levels of security:

OpenKimono neither authenticated nor encrypted,
AuthOnly authenticated, but packets not encrypted;
HeadersOnly authenticated and RPC packet headers, but not bodies, en-

crypted;
Secure authenticated, and each RPC packet fully encrypted.4

Only the last of these four levels provides true end-to-end security in an
insecure communication environment. The third level represents a compromise
between security and efficiency. Since data is not encrypted, it is vulnerable to
release and modification attacks. But since packet headers are encrypted, an
intruder cannot interpose requests on a RPC connection. The second level is
useful when mutually suspicious entities communicate over a secure channel.
The first level provides no security, and is useful only where trusted peers
communicate over a secure channel.

4 Source and destination addresses are not encrypted. Modification of addresses would result in denial

of service, a class of attacks we do not address. Exposure of addresses could leak indirect information,
but this is part of the confinement problem that we do not address either.

ACM Transactions on Computer Systems, Vol. 7, No. 3, August 1989.

Integrating Security in a L&ge Distributed System l 255

A client can specify the kind of encryption to be used when establishing a
connection. The server provides a bit mask indicating the kinds of encryption it
can handle, and will reject attempts by a client to use any other kind. This
flexibility makes it feasible to equip servers with encryption hardware as well as
a suite of software encryption algorithms of differing strength and cost. A

workstation owner can make a trade-off between economy, performance, and
degree of security in determining the kind of encryption to use. The preferred
approach is, of course, to equip all workstations with encryption hardware.
Section 9 discusses encryption in greater detail.

For all the authenticated security levels, the BIND operation involves a 3-phase
handshake between client and server. The client side of the application provides
a variable-length byte sequence called ClientIdent and an B-byte encryption key
for the handshake. The server side of the application supplies a procedure,
GetKeys, to perform key lookup and a procedure, AuthFail, to be invoked on
authentication failure. GetKeys and AuthFail are invoked by the RPC runtime
system on the server side. The actual key lookup mechanism implemented by
GetKeys, and the action taken by AuthFail on authentication failure are trans-

parent to the RPC package.
Denoting the encryption and decryption of a string a by key k as E[a, k] and

D[a, k], respectively, the steps performed by the RPC package during BIND are
described below. Figure 2 describes the same sequence pictorially.

(1) The client chooses a random number X, and encrypts it with its handshake
key, HKC. It sends the result, E[X,., HKC], and ClientIdent (in the clear) to
the server.

(2) When the BIND request arrives at the server, the RPC package invokes
GetKeys with ClientIdent as a parameter.

(3) GetKeys does a key lookup and returns two keys. One of these keys is a
handshake key, HKS (which should be identical to HKC for successful
authentication), and the other is a newly generated session key, SK, to be
used after the connection is established. If the return code from GetKeys
indicates that the key lookup was unsuccessful (as would happen if a user
typed in an invalid login name), the BIND request is rejected immediately,
and AuthFail is invoked with ClientIdent and the network address of the
client as parameters.

(4) Otherwise the server decrypts E[X,, HKC] with its handshake key, yielding

D[E[X,, HKC], HKS]. This should be identical to X, if the keys match.

(5) The server adds one to the result of its decryption, then encrypts this and a
new random number Y, with its handshake key. It sends the result to the
client.

(6) The client uses its handshake key to decrypt this message. If HKC and HKS
match, the first number of the decrypted pair will be X, + 1. If this is the
case, the client concludes that the server is genuine. Otherwise the server is
a fake and BIND terminates.

(7) The client adds one to the second number of the decrypted pair and encrypts
it with its handshake key. It sends the result, E[(D[E[Y,, HKS], HKC] + l),
HKC], to the server.

ACM Transactions on Computer Systems, Vol. 7, No. 3, August 1989.

256 - M. Satyanarayanan

Client S0WW

Fig. 2. RPC authentication handshake. This figure shows the sequence of events in the BIND

handshake. Each arrow represents a packet. The notation E[a, k] means that a is encrypted with key

k. X, and Y, are random numbers. HKC and HKS, the handshake keys of the client and the server,

should be identical for a successful BIND. SK is a randomly chosen session key, and n0 is a randomly

chosen initial sequence number. All random entities are chosen afresh for each BIND.

(8) The server decrypts this message with its handshake key. If HKC and HKS
match, the decrypted number will be Y, + 1. In that case the server concludes
that the client is genuine. Otherwise the client is a fake and the BIND

terminates after AuthFail is invoked.

(9) The server then encrypts the session key SK and a randomly chosen initial
RPC sequence number n0 with its handshake key. It completes BIND by
sending the result, E[(SK, no), HKS], to the client. All future encryption on
this connection uses SK. The sequence numbers of RPC requests and replies
will increase monotonically from n0.5

Thus, at the end of successful BIND, the server is assured that the client
possesses the correct handshake key for ClientIdent. The client, in turn, is
assured that the server is capable of deducing the handshake key from Client-
Ident. The possession of the handshake key is assumed to be prima facie evidence
of authenticity.

The correctness of this authentication procedure hinges on the fact that
possession of the handshake key by both parties is essential for all steps of the
handshake to succeed. Without the correct key, it is extremely unlikely that an
adversary will be able to generate outgoing messages that correspond to appro-
priate transformations of the incoming messages. Mutual authentication is

5 Burrows, Abadi, and Needham [5] point out that this step of the protocol should also include the
original random number 20 encrypted by HKS. This guards against replay attacks by an individual

who has broken a previous session key.

ACM Transactions on Computer Systems, Vol. 7, No. 3, August 1989.

Integrating Security in a Large Distributed System l 257

achieved because both the client and the server are required to demonstrate that
they possess the handshake key. The use of new random numbers for each BIND

prevents an adversary from eavesdropping on a successful BIND and replaying
packets from that sequence. The presence of an initial sequence number chosen
afresh for each BIND defeats replays of the last packet.

Figure 2 summarizes the steps involved in the BIND authentication procedure.
It is important to note that the RPC package makes no assumptions about the
format of ClientIdent or the manner in which GetKeys derives the handshake
key from ClientIdent. The next section describes how this generality is used in
Andrew in two different ways: to communicate with an authentication server at
login and with a file server when Venus contacts it for the first time. A connection
is terminated by an UNBIND call, which destroys every state associated with that
connection.

Security in Andrew is not critically dependent on the details of the authenti-
cation handshake. The code pertaining to it is small and self-contained. The
handshake can therefore be treated as a black box and an alternative mutual
authentication technique substituted with relative ease.

5.2 Authentication Tokens

Andrew uses a two-step authentication scheme that is built on top of the RPC
authentication mechanism described in the previous section. In the first step, an
authentication server is contacted and a pair of authentication Tokens is obtained
and saved for future use by Venus. In the second step, which occurs each time
Venus contacts a new file server, these tokens are used to establish a secure RPC
connection for the user. The rest of this section explains what tokens are and
describes the details of the two authentication steps.

An authentication token is an object whose possession is proof of authenticity.
It is like a Capability [17] in that no consultation with an external agency is
required when using it, but is different from a capability in that it establishes
identity rather than granting rights. Tokens are conceptually similar to Authen-
ticators described by Birrell [4].

Tokens come in pairs. One of the components of the pair, the Secret Token, is
encrypted at creation and can be sent in the clear. The other component, the
Clear Token, has fields that are sensitive and should be sent only on secure
connections. Both tokens contain essentially the same information: the Vice id
of the user, a handshake key, a unique handle for identifying the token, a
timestamp that indicates when the token becomes valid, and another timestamp
that indicates when it expires. The secret token contains, in addition, a fixed
string for self-identification. The appearance of this string when decrypting a
secret token confirms that the right key has been used. The secret token also
contains noise fields that are filled with new random values each time a token is
created. This is done to thwart attempts to break the key used for encrypting
tokens.

The UNIX program for logging in on workstations has been extensively
modified, although its user interface is unaltered. LOGIN now contacts an authen-
tication server using the RPC mechanism described in Section 5.1. The name
and password typed in by the user are used as the ClientIdent and handshake
key respectively. The GetKeys routine in the authentication server obtains this

ACM Transactions on Computer Systems, Vol. '7, No. 3, August 1989.

258 l M. Satyanarayanan

password from an internal table. When the RPC handshake completes, a secure,
authenticated connection has been established between LOGIN and the authen-
tication server. LOGIN uses this connection to obtain a pair of tokens for the
user. The authentication server generates a new handshake key for each pair of
tokens it creates. It encrypts the secret token with a key known only to itself and
the Vice file servers. LOGIN now passes the clear and secret tokens to Venus,
which retains them in an internal data structure. At this point LOGIN terminates,
and the user can use the workstation.

Whenever Venus needs to establish a RPC connection to a Vice file server on
behalf of a user, it invokes BIND using the secret token for that user as ClientIdent
and the key in the clear token as the handshake key. In the first phase of the
BIND, the GetKeys routine on the server is invoked with ClientIdent as the input
parameter. The server obtains the handshake key from the secret token by
decrypting it. The authentication procedure is critically dependent on the as-
sumption that only legitimate servers possess the key to decrypt secret tokens.
At this point Venus and the server each have a key that they believe to be the
correct handshake key. The remaining steps of the BIND proceed as described in
Section 5.1, leading to mutual authentication. If the BIND is successful, the server
uses the id in the secret token as the identity of the client on this RPC connection
and sets up an appropriate internal state.

Since tokens have a finite lifetime, a user will need to be periodically reau-
thenticated. At present, tokens are valid for 24 hours at CMU. The program LOG,

which is functionally identical to LOGIN, can be used for reauthentication without
first logging out. This allows users to retain logged-in context. Users with long-
running programs, such as simulations, have to remember to reauthenticate at
least once a day. In practice, the 24-hour limit has not been a serious source of
inconvenience to our users.

When multiple users are logged into a workstation, Venus maintains a separate
secure RPC connection for each of them for each of the Vice file servers they
have accessed. When a user logs out of a workstation, Venus deletes his tokens.
In the future, Vice may support other services besides a distributed file system.
The components of such services which execute in Virtue will be able to use
tokens for authentication, just as Venus does at present.

The two-step approach used in Andrew is more convenient and more robust
than a single-step authentication scheme for the following reasons:

(1) it allows Venus to establish secure connections as it needs them, without
users having to supply their password each time;

(2) it allows system programs other than Venus to perform Vice authentication
without user intervention;

(3) it avoids having to store passwords in the clear on workstations; and

(4) it limits the time duration during which lost tokens can cause damage.

5.3 Authentication Server

The authentication server, which runs on a trusted Vice machine, is responsible
for restricting Vice access and for determining whether an authentication attempt
by a user is valid. To perform these functions it maintains a database of password
information about users. An excerpt of this database is shown in Figure 3. The

ACM Transactions on Computer Systems, Vol. 7, No. 3, August 1989.

Integrating Security in a Large Distributed System - 259

277 545c5058595a5256 aad Anthony Datri
265 Sl5c585f5bSb575a AOq Alfred Blumstein
672 13020a0306190912 *2g A. Leonard Drown
969 5f55595c595e555e h'% Ahmadou Barry
131 565956595fSa545e abrahama Julia Abraham6
913 565857585dSa5459 ac2d Arjun Bijoy Chatterjee
,..

&i””
18
18
1022
1023
1024
1025
1026

,.......................
13020a030619091f zubrow David Zubrow
0503135c5a6e676f # By 18 at Wed Mar 19 13:09:23 1986
0503135cSa6e676f # By 18 at Wed Mar 19 16:36:55 1986
Ob0317040709676f rk27 # By 18 at Wed Mar 19 16:37:37 1986
1500081d190b156f bdOP # By 18 at Wed Mar 19 16:37:37 1986
150018030cld146f cc37 # By 18 at Wed Mar 19 16:37:38 1986
Ob0315021bld676f cc38 # By 18 at Wed Mar 19 16:37:38 1986

150f13020502146f jC15 # By 18 at Wed Mar 19 16:37:38 1986

. .

.

.

.

Fig. 3. Excerpt from authentication database. Each entry corresponds to information about one

user. The first field is the Vice id of the user, the second is the user’s encrypted password; the third

field is the name of the user. Other fields are ignored by the authentication server. The first few lines

correspond to entries that were present when the database was initialized. The entries at the bottom

represent modifications. Each modification is tagged with the identity of the user making the change

and the time the change was made.

passwords stored in the database are effectively in the clear, but are encrypted
with a key known to the server so that nonmalicious system personnel are
prevented from accidentally reading the passwords. This database is used for
password lookup whenever a user logs in to a Virtue workstation. It is updated
whenever users created, deleted, or have their names or passwords changed. Users
can change their own password; other operations can only be performed by
system administrators.

Note that it would not be adequate to store a one-way transformation of the
password in a publicly readable authentication database, as is done in timesharing
systems such as UNIX. That approach assumes that terminals are connected to
a mainframe by physically secure lines. The password typed in by a user is
securely conveyed to the mainframe, where it is transformed and compared with
the string stored in the authentication database. Since the client and the server
do not communicate over a secure channel in Andrew, the password cannot be
sent in the clear. Further, the UNIX approach does not provide mutual authen-
tication. Although the timesharing system is assured of the user’s identity, the
inverse is not true. The requirement that passwords (or keys derived from them)
be stored in the clear on a server can also be explained by observing that the
Needham-Schroeder authentication scheme is’ built around a shared secret. A
publicly readable transformation of the password would not constitute a secret.

Server performance is considerably improved by exploiting the fact that queries
are far more frequent than updates. This makes it appropriate for the server to
maintain a write-through cache copy of the entire database in its virtual memory.
A modification to the database immediately overwrites cached information. The
copy on disk is not, however, overwritten. Rather, an audit trail of changes is
maintained in the database by appending a timestamped entry indicating the

ACM Transactions on Computer Systems,Vol. 7, No.3,August1989.

260 l M . Satyanarayanan

Data : Mon Sep 29 09:51:13 1986

09:51:13
11:03:49
11:05:22

11:05:54

11:09:50
11:10:25
11:12:28
11:12:58
11:20:43
12:00:26
13:58:46
15:22:26
16:16:17
16:19:17
16:24:57
16:56:53

server successfully started
Authentication failed for "fsOt" from 128.2.14.11
Authentication failed for "f8Ot" from 128.2.14.11
Authentication failed for "an09" from 128.2.14.8
Authentication failed for "whoa" from 128.2.14.4
Authentication failed for "rhOa" from 128.2.14.4
Authentication failed for "ao07" from 128.2.14.14
Authentication failed for "whoa" from 128.2.14.4
Authentication failed for "ao07" from 128.2.14.14
Authentication failed for "ka2n" from 128.2.13.3
Authentication failed for "dana" from 128.2.243.3
Authentication failed for "dtla" from 128.2.17.17
AuthChangePassdO attempt on dh2u by ja8c denied
AuthChangePasodO attempt on dh2u by js8c denied
Authentication failed for “akll” from 128.2.14.14
Authentication failed for "js8c" from 128.2.17.4

..

..
. .
. .

Fig. 4. Excerpt from authentication log. This figure shows typical entries from the authentication

log. Most of the entries are invalid authentication attempts, probably caused by users typing in their

passwords incorrectly. Each entry identifies the user and the workstation from which the

operation was attempted. Two of the entries are failed attempts by one user to change the password

ofanotheruser.

change and the identity of the user making the modification. On startup the
authentication server initializes its cache by reading the database sequentially.
Later changes thus override earlier ones. An offline program has to be run
periodically to compact the database.

The key used by the authentication server for encrypting secret tokens has to
be known to all the Vice file servers. This key should be changed periodically if
an Andrew site is serious about security. The Vice file servers remember the two
most recent such keys and try them one after the other when decrypting a secret
token. This allows unexpired tokens to be used even if the authentication server
has changed keys. At present, key distribution is manual; this should be auto-
mated in the future.

For robustness, there is an instance of the authentication server and database
on each Vice machine. All but one are slaves and respond only to queries. Only
one server, the master, accepts updates. Changes are propagated to slaves over
the secure communication channel referred to in Section 3. For this specific
application, nonuniform propagation speed and the temporary inconsistencies
that may result do not pose a serious problem. For further robustness, each
instance of the authentication server has an associated watchdog UNIX process
that restarts it in the event of a crash.

Each server instance has a log file in which authentication failures and
unsuccessful attempts to update the password database are recorded. Figure 4
shows an excerpt from such a log. It would not be difficult to provide a more
sophisticated and timely warning mechanism for system personnel if suspicious
events are observed by authentication servers.

ACM Transactions on Computer Systems,Vol. 7, No. 3,August 1989.

Integrating Security in a Large Distributed System - 261

6. PROTECTION IN VICE

As the custodian of shared information in Andrew, Vice enforces the protection
policies specified by users. The scale, character, and periodic change in the
composition of the user community in a university necessitates a protection
mechanism that is simple to use yet allows complex policies to be expressed. A
further consequence of these factors is that revocation of access privileges is an
important and common operation. In the light of these considerations, we opted
to use an Access List mechanism in Andrew. The next three sections describe
how access lists are implemented, how they are used for file protection, and how
Vice represents and maintains information on the protection domain.

6.1 Access Lists

The access list mechanism is implemented as a package available to any service
in Vice, though only the distributed file system currently uses it. An entry in an
access list maps a member of the protection domain into a set of Rights, which
are merely bit positions in a 32-bit mask. The interpretation of rights is specific
to each Vice service. The total rights possessed by a user on an object is the
union of all the rights possessed by the members of the user’s CPS. In other
yards, the user possesses the maximal rights collectively possessed and all the
groups of which he or she is a direct or indirect member.

An access list is actually composed of two sublists: a list of Positive Rights and
a list of Negative Rights. An entry in a positive rights list indicates possession of
a set of rights. In a negative rights list, it indicates denial of those rights. In case
of conflict, denial overrides possession.

Negative rights are primarily a means of rapidly and selectively revoking access
to sensitive objects. Revocation is usually done by removing an individual from
an access list. But that individual may be a direct or indirect member of one or
more groups that bestow rights on the object. The protection domain has therefore
to be modified to exclude the individual from those groups. The process of
discovering all groups that the user should be removed from, performing the
removal at the site of the master authentication server, and propagating it to all
slaves may take a significant amount of time in a large distributed system.
Negative rights can reduce the window of vulnerability, since changes to access
lists are effective immediately.

As an example, if it is discovered that a member of a group is misusing
privileges, that individual can be immediately given negative rights on critical
objects used by the group. That member can then be deleted from the group.
After the change in membership is effective at all Vice servers, the negative
rights entries can be removed. Negative rights thus decouple the problems of
rapid revocation, management of the protection domain, and propagation of

information in a large distributed system.
Negative rights can be used to specify protection policies of the form “Grant

rights R to all members of group G, except user U.” The security mechanisms of
Multics [25] also allowed the expression of such protection policies. Rabin and
Tygar, in their recent work on ITOSS [24], confirm the advantages of providing
negative privileges.

ACM Transactions on Computer Systems, Vol. 7, No. 3, August 1989.

262 l M. Satyanarayanan

The algorithm executed during an access list check is quite efficient. Suppose
A is an arbitrary access list and C is the CPS of U. The entries in A and C are
maintained in sorted order. The rights possessed by U are determined as follows:

(1) let M and N be rights masks, initially empty;

(2) for each element of C, if there is an entry in the positive rights list of A,
inclusive-OR it4 with the rights portion of the entry;

(3) for each element of C, if there is an entry in the negative rights list of A,
inclusive-OR N with the rights portion of the entry;

(4) bitwise subtract N from M;

(5) M now specifies the rights that U possesses.

Profiling of the Vice servers in actual use confirms that the overheads due to
access list checks are negligible.

6.2 File Protection

Vice associates an access list with each directory. The access list applies to all
files in the directory, thus giving them uniform protection status. The primary
reason for this design decision is conceptual simplicity. Users have, at all times,
a rough mental picture of the protection state of the files they access. In a large
system, the reduction in conceptual state obtained by associating protection with
directories rather than files is considerable. A secondary benefit is the reduced
storage overhead on servers. Usage experience in Andrew has proved that this is
an excellent compromise between providing protection at fine granularity and
retaining conceptual simplicity. In the rare instances where a file needs to have
a different protection status from other files in its directory, we place that tile in
a separate directory with appropriate protection and put a symbolic link to it in
the original directory.

Seven kinds of rights are associated with a directory:

read(r)
write(w)
lookup (1)
insert(i)

delete(d)
administer(a)
lock(k)

read any file,
write any file,
lookup status of any file,
insert a new file in this directory (only if it does not already
exist). This is particularly useful in implementing mailboxes.
delete any existing file,
modify the access list of this directory.
lock any file. This has turned out not to be a particularly
useful right, but continues to be supported for historical
reasons.

The three most commonly used combinations of rights are rl, for read access,
rwlidk for write access, and rwlidka for complete access. Figure 5 shows an
example of the access list on a Vice directory. Modifications to access lists take
effect immediately.

Certain privileges commonly found in timesharing systems do not make sense
in the context of Andrew. Execute only privilege, for example, is not a right that
Vice can enforce since program execution is done by Virtue. Revocation of read

ACM Transactions on Computer Systems, Vol. 7, No. 3, August 1989.

Integrating Security in a Large Distributed System - 263

mozart> fs la /cmu/itdsatya/sll
Normal rights:

System:ITC.FileSystemGroup rlidwk
System:AnyUser rl
satya rlidwka

Negative rights:

System:ITC.UserInterfaceGroup rlidwka
mozart>

Fig. 5. Access list on a Vice directory.

This figure shows how an access list is

displayed in Andrew. The string “moz-

art)” is the prompt by the workstation.

The command “fs la” lists the specified

directory. Note the use of negative

rights; a member of System:ITC.User-

InterfaceGroup would have no rights

on this directory, even though Sys-

tem:AnyUser has read and lookup rights.

rights is another area where Vice can do little since Virtue caches files. At best
it can ensure that new versions of a file are not readable by the user whose access
is revoked.

6.3 Protection Domain Representation

Protection domain information is maintained in a database that is replicated at
each Vice file server. The database consists of a data file on disk and an index
file that is cached in its entirety in virtual memory, The index file enables id-to-
name translations in constant time, and name-to-id translations in logarithmic

time. For each entry, the index also contains the offset in the data file where the
first byte of information about the corresponding user or group is stored. A
typical lookup of the database by user or group name involves a search to find
the id, followed by a seek operation and a read operation on the data file.

Each entry in the database corresponds to a single user or group. It consists of
a name and an id followed by three lists specifying membership information. The
first list specifies the groups to which that user or group directly belongs, while
the second list is the precomputed CPS. For a user, the third list enumerates the
groups owned by the user; for a group, it is the list of users or groups who are its
direct members. Each entry also has an associated access list, which is unused at
the present time. We intend to allow users to directly manipulate the database
via a protection server. The access lists will then control the examination and
modification of group membership. Figure 6 shows an excerpt from the database.

When Venus makes a secure RPC connection on behalf of a user, the file
server caches the CPS of the user in virtual memory and uses it on access list
checks. At present, changes to the protection domain do not affect the cached
copy until the RPC connection is terminated. It would be relatively simple to
modify the server to invalidate cached CPS copies whenever the protection
database changes.

At present, changes to the protection database are manually performed at a
central site in Vice. Utilities are available to simplify the creation or deletion of
a user or to modify the membership of a group. These utilities also precompute
the CPS by transitive closure and construct the index file. Modifications per-
formed at the central site are asynchronously propagated to all other Vice sites
via the secure communication channel mentioned in Section 3. In our experience,
the minor temporary inconsistencies that occasionally arise due to varying
propagation speeds have not significantly affected the usability of the system.

ACM Transactions on Computer Systems, Vol. ‘7, No. 3, August 1989.

264 l M . Satyanarayanan

##l#W#C#####################
VICE protection databamr #

#I##########################

Line8 such am these are coannenta. Conmenta and whitespoce are ignored.

This film conaiatm of ueer entrim and group entries in no particular order.
An empty entry indicates the end.

A umr entry has the form:
UserName UserId

**Im a group I directly belong to"-List
"113 P group in my CPS"-List
I "I# a group owned by me"-Limt

Acce88 List
II ;

A group entry has the form:
GroupName GroupId CwnerId

I "18 a group I directly belong to"-Liet

"18 a group in my CP.9"-List

"1s a user or group who ia a direct member of me'*-List

Accra8 List

:

A mimpla list has the form (il 12 13)

An access list has two tuple lists:

one for positive and the other for negative rights:

(+ (il rl) (12 r2) . ..)
(- (il rl) (12 r2) . ..)

.

satya

hi. Satyanarayanan
19
(-201 -207 -209)
(-201 -207 -209)
(-203 -205)
(t (19 -1) (-101 1))

(-)
;

.

.
System:UnerSupport -213 777

(1
(1
(427 177 117 746 585 416 64 201 1032 1247 1244 3017 377 259 172)
(t (777 -1) (-101 1))

(- 1

..

..

Fig. 6. Excerpt from Vice protection domain database.

ACM Transactions on Computer Systems, Vol. 7, No. 3, August 1989.

Integrating Security in a Large Distributed System l 265

7. PROTECTION IN VIRTUE

As a multiuser UNIX system, Virtue enforces the usual firewalls between multiple
users concurrently using a workstation. In addition, its role in Andrew places
other responsibilities related to security on it:

-it emulates UNIX semantics for Vice files;

-it ensures that caching is consistent with protection in Vice;

-it allows owners full control over their workstations, without compromising
Vice security; and

-it provides user and program interfaces for explicitly using the security mech-
anisms of Vice.

The next four sections describe these functions in detail.

7.1 UNIX Emulation

Virtue provides strict UNIX protection semantics for local files and a close
approximation for Vice files. Each UNIX file has 9 Mode bits associated with it.
These mode bits are, in effect, a 3-entry access list specifying whether or not the
owner of the file, a single specific group of users, and everyone else can read,
write, or execute the file.

Venus does the emulation of UNIX protection for Vice files. In addition to the
Vice access list check described in Section 6.1 that performs the real enforcement
of protection, the three owner bits of the file mode are used to indicate readability,
writability or executability. These bits, which now indicate what can be done to
the file rather than who can do it, are set and examined by Venus. They are
stored and retrieved, but otherwise ignored, by Vice. For directories, the mode
bits are completely ignored. The directory listing program, LS, has been modified
in Andrew to omit mode bits for directories and show only the owner bits for
files. Figure 7 shows an example of a directory listing in Vice.

This combination of an access list mechanism for directories with a UNIX
mode bit mechanism on individual files is an evolved strategy. In a prototype of
Andrew, the mode bits of a file were derived from the access list of its parent
directory and could not be changed by applications. Unfortunately, a few appli-
cations, such as version control software, encode state in the mode bits. In
addition, our users expressed the need to prevent themselves from accidentally
deleting critical files in a directory. The current mechanism provides closer
emulation of UNIX and greater functionality, while retaining much of the
conceptual simplicity of the original scheme.

Since the group mechanisms of Vice and standard UNIX are incompatible,
Venus does not emulate UNIX group protection semantics. Our experience
indicates that no real applications have been affected by this. From the point of
view of an application, all Vice files belong to a single UNIX group.

7.2 Caching Protection Information

Although ignorant of the Vice group mechanism, Venus caches protection infor-
mation. When a directory is cached on behalf of a user, Vice supplies rights
information for the user and System: AnyUser. Future requests are checked by

ACM Transactions on Computer Systems, Vol. 7, No. 3, August 1989.

. . . .
* -?I . .
- .n . .
* *c * .
* -0 . .
. .a . .
* .Ll . .
- -0 . .
* .a . .
.
* -0 . .
. :tj

. .
* .

- *$. *
. .a . ,
. .G . .
* *a . *
.
: :z . . * .
. :$
: :>
* mu . .
, :<

integrating Security in a Large Distributed System l 267

Venus without contacting Vice. If a different user on that workstation wishes to
access the same directory, and the rights for System : AnyUser are inadequate,
Venus explicitly obtains the user’s rights from Vice. Protection information can
be cached for a small number of distinct users on each directory. If there are
more users on a workstation, the protection checks will be functionally accurate,
but will take longer because of ineffective caching. Vice notifies Venus whenever
the protection on a cached directory changes.

Caching interacts with UNIX semantics in a counterintuitive manner. In
UNIX, protection failures can only occur when opening a file. In Andrew, a
protection failure can occur when closing a file if the protection on one of the
directories in its path was changed while the file was open. There is no simple
solution to this problem because Vice cannot delegate the responsibility of
checking access on store operations. It cannot trust the access check that Venus
performs when opening a cached file.

This difference from UNIX semantics affects a number of common UNIX
applications that do not expect the close operation to fail, and hence do not
check return codes from it. In rare instances the user of such an application may
be unaware that one or more files were not stored in Vice because of a protection
violation. We do try to inform users of the problem by printing a message on the
workstation console. However, using the console as an out-of-band notification
mechanism does not help in situations where there is no user to act upon the
message. The only robust solution to this insidious failure mode is to modify the
applications to check return codes.

7.3 Superuser Privileges

Certain sensitive operational procedures in UNIX can only be performed by the
pseudouser “root”. Workstation owners need to become root on occasion to
perform these procedures. As a result, root is logically equivalent to a group
account as discussed in Section 4. A RPC connection on behalf of root provides
no knowledge about which actual user it corresponds to.

A further complication is that the initialization of a workstation causes a
number of standard processes belonging to root to come into existence automat-
ically. Since there may be no users logged in, Venus may not have tokens with
which to make authenticated connections for these processes.” We address these
problems by treating root specially and granting it the same default access
privileges in Vice as System : AnyUser. RPC connections made on behalf of root
are unauthenticated and insecure.

The Setuid mechanism in UNIX effectively provides amplification of rights
[161. When a file marked setuid is executed, it acquires the access privileges of
the owner of the file rather than the user executing the file. The interpretation
and enforcement of the setuid property is done by Virtue, but Vice requires
authentication tokens for the owner of the program being run setuid. Since the
tokens will not be available except in the unlikely case of the owner of the file
being logged in to the workstation, Andrew cannot support the setuid mechanism

6 Automatic logging in of root would require the password to be stored in the clear on workstations,
a security risk we were unwilling to assume.

ACM Transactions on Computer Systems, Vol. 7, No. 3, August 1989.

268 l M. Satyanarayanan

in its general form. However, many useful system utilities on workstations are
owned by root and are run setuid. Since root has only System : AnyUser privileges
on Vice files and since RPC connections for root do not require tokens, we are
able to support setuid in this limited form.

If naively implemented, setuid programs owned by root would make Trojan
horses trivial. A user could become root on the workstation, store a Trojan horse
program in Vice, and mark it setuid. If this program were run by any other user,
it would be able to compromise that user’s workstation. To guard against this,
we define a special Vice user, “stem.” No one can be authenticated as stem, but
a system administrator can make stem the owner of a file. When Venus caches
a setuid tile owned by stem, it translates the owner to root and honors the setuid
property. If the file is not owned by stem, the setuid property is ignored.

In our experience this implementation of the setuid mechanism has proven to
be a sound compromise between security, UNIX compatibility, and ease of
maintenance of system software. Little disruption has been caused by restricting
setuid support to root.

7.4 Vice Interface

Virtue provides a number of programs to allow users to use the security mecha-
nisms of Vice. FS is a program to allow users to set and examine Vice access lists.
LOGIN, LOG, and Su are modified versions of standard UNIX programs. They
prompt for a password, contact the authentication server, obtain tokens and pass
them to Venus. A modified version of the UNIX PASSWD program allows users
to change their passwords by contacting the authentication server.

For other applications, Virtue provides a library of routines to get, set, and
delete tokens stored by Venus. An important user of these routines is the Andrew
version of the standard UNIX program RSH that allows a user to execute a
program on a remote workstation. Another important user is REM, a program
that makes idle workstations available for remote use [23]. In order that the
remote site can access Vice files on behalf of the user, both these programs
extract tokens from the user’s workstation and send them in the clear to the
remote Venus. Sending the tokens in the clear is an obvious breach of security,
violating the assumptions of Section 3. Yet these programs are popular in our
user community! Unfortunately, there is no simple fix to make these programs
more secure. To perform the mutual authentication handshake described in
Section 5, the local and remote sites would need to share a secret key. No such
key exists between an arbitrary pair of Andrew workstations.

There are occasions when a user may wish to voluntarily restrict personal
rights, for example, by running a program being debugged in an environment
that will not allow it to modify critical files. Virtue allows a user to temporarily
disable personal membership in one or more groups, with the group Sys-
tem: Administrators being disabled by default. Disabled groups may be enabled
at a later time. At present, a user does not have to be reauthenticated when
enabling a group. An additional measure of security would be provided by
requiring this.

To implement this temporary disabling of membership, Virtue associates an
integer called a Process Access Group (PAG) with each process. When a process

ACM Transactions on Computer Systems, Vol. 7, No. 3, August 1989.

Integrating Security in a Large Distributed System - 269

forks, its child inherits the PAG. Venus associates secure RPC connections to a
server with (user, PAG) pairs. Usually all the processes of a user have a single
PAG. If a user disables his membership in a group, the process in which the
disabling command was issued acquires a new PAG that is distinct from all other
PAGs created in this incarnation of UNIX. Each time another server is contacted
on behalf of the new (user, PAG) pair, Venus makes a secure RPC connection
and requests the server to disable membership in the specified groups. The server
constructs a reduced CPS for that connection and uses it on access list checks.
PAGs also change when a LOG or su command is executed.

8. RESOURCE USAGE

The absence of a focal point for allocation of resources makes resource control
difficult in a distributed system. Processes in a typical timesharing system are
constrained in the rate at which they can consume resources by the CPU
scheduling algorithm. No such throttling agent exists in a typical distributed
system. Another significant difference is that a process in a timesharing system
has to be authenticated before it can consume appreciable amounts of resources.
In contrast, each Andrew workstation can be modified to anonymously consume
network bandwidth and server CPU cycles.

As discussed in Section 3, Andrew is not designed to be immune to security
violations by denial of resources. However, it does provide control over some of
the resources. The major resources in Andrew are

-network bandwidth,

-server disk storage and CPU cycles,

-workstation disk storage and CPU cycles.

In the next three sections we examine how Andrew treats these resources.

8.1 Network Bandwidth

Since Andrew does not provide mechanisms to control use of network bandwidth,
responsible use of the network is primarily achieved by peer pressure and social
mores of the user community. Blatant misuse, such as by flooding with packets,
is relatively easy to detect. But it is hard to detect subtle misuse. For example, a
malicious user can generate a level of traffic that degrades performance but does
not bring useful network activity to a standstill. Or the user can use multiple
widely separated public workstations to generate high volumes of traffic. Identi-
fying the user can be particularly difficult because workstations can be modified
to generate packets with arbitrary source addresses.

In our experience, network-related problems have not been due to malicious
activity. Occasionally, we observe high network utilization and poor file transfer
rates on segments of the network that support nonAndrew diskless workstations.
The problem has not proved serious enough yet to warrant special attention. In
one memorable instance, a bug in the low-level network code on workstations
was triggered by a malformed broadcast packet generated by a nonmalicious user
during debugging. The bug affected every workstation in the environment and
effectively halted all of them.

ACM Transactions on Computer Systems, Vol. 7, No. 3, August 1989.

270 l M Satyanarayanan

8.2 Server Usage

Because of the long-term, shared nature of the resource, we felt it important to
be able to control disk usage on servers. An Andrew system administrator can
specify a storage quota for the Vice files of a user. The quota is actually placed
on a Volume, an encapsulation of a small subtree of the Vice file space [29].
Quotas can be easily changed by system administrators.

When storing a file on behalf of a user, a server will abort a store operation if
the quota is exceeded. This can cause a problem similar to the one described in
Section 7.1; an application program that does not check the return codes from a
close operation will not report a failure caused by the quota being exceeded. But
our users and system personnel consider server disk storage an important enough
resource that they have tolerated this problem.

A minor exposure arises from the manner in which electronic mail is imple-
mented in Andrew. Each user has a mailbox directory on which System : AnyUser
has insert rights. Mail is delivered by storing each message in its own file in this
directory. A malicious user could exhaust the quota of another user by sending
large quantities of junk mail. In practice, this has not proved to be a problem.

Although a user cannot execute a program on a server, the user’s Venus can
consume server CPU cycles in file system operations. Excessive demands on a
server are a form of resource denial to other users. At present, Vice does not
constrain the amount of server CPU cycles a user can utilize. It could do so, if
necessary, since user requests come in on distinct RPC connections.

8.3 Workstation Usage

Andrew does not restrict the amount of space used by local files on workstations.
For cached Vice files, Venus employs an LRU algorithm to limit disk usage below
a value specified at initialization. The algorithm is not infallible because read
and write operations are not intercepted by Venus. It is possible for a program
to open a short file and then append a large amount of data, thereby exceeding
the cache limit. In practice, this has rarely been a problem.

Since a workstation can be privately owned, it would seem inappropriate for
Andrew to constrain the use of its CPU cycles. However, the problem has proved
more complex than we anticipated. The primary source of difficulty is the fact
that each workstation is a full-fledged UNIX system. Hence it is possible to
remotely access one workstation from another via standard UNIX programs such
as TELNET and RSH. Since the Vice file space is identical at all workstations, it
is particularly easy for a user to use any workstation. Such convenience was, of
course, a fundamental motivation for the distributed file system.

Unfortunately, an individual at a workstation perceives the attempt to use its
cycles by another user as a security violation. This perception is particularly
strong if the first user is at the console of the workstation. Totally disabling the
network daemons that allow remote access is not a viable solution for two
reasons. First, system personnel sometimes need to remotely access workstations
for troubleshooting. Second, an owner may wish to access the workstation from
home. Our modem access facilities require the network daemons to be present.

We have evolved a mechanism whereby TELNET access to a workstation can
be restricted to a list of users stored in the local file system of that workstation.

ACM Transactions on Computer Systems, Vol. 7, No. 3, August 1989.

Integrating Security in a Large Distributed System l 271

This restriction is, however, stronger than what most users desire. When not
using the workstation, a user is usually amenable to others using it. It is also
unacceptable for public workstations, because every Andrew user should be able
to use them. At the present time we do not have a completely satisfactory solution
to this resource problem. The REM system, mentioned in Section 7.4, allows a
user to specify the conditions that must be satisfied for the workstation to become
available for remote use. Although satisfactory to a logged-in user, this approach
is harsh on the REM user who is in constant danger of having computation
aborted at the remote site. A full-fledged Butler mechanism [8] that migrates
remote users rather than aborting them would be a more acceptable alternative.

The problem of controlling workstation CPU usage will become acute as
Andrew grows. The large pool of idle workstations available for parallel compu-
tation, and the development of applications that exploit such parallelism, will
make remote use even more attractive in future.

9. ENCRYPTION

Security in Andrew is predicated on the ability of clients and servers to perform
encryption for authentication and secure communication. The design and imple-
mentation of the encryption algorithm has to satisfy certain properties:

-it must be difficult to break, given the computational resources available to a
malicious individual in a typical Andrew environment.

-it must be fast enough that neither the latency perceived by clients nor the
throughput of servers be noticeably degraded.

-it must be cheap enough that it does not appreciably increase the cost of a
workstation owned by an individual.

Based on considerations of strength and standardization, we have chosen the
Data Encryption Standard (DES) [20, 341 published by the National Bureau of
Standards as the preferred encryption algorithm in Andrew. Since the encryption
algorithm is a parameter to our RPC mechanism, it is possible to use other
algorithms. We believe, however, that standardizing on DES is appropriate in
our environment. This algorithm has been publicly scrutinized for many years,
and, although concerns have been expressed about its strength [9], we feel that
DES is adequate for the level of security we require.

At the present time the latency for a simple interaction between a client and
server is about 20 to 25 milliseconds, and the file transfer rate is about 50 to
70KB/s. We expect these numbers to improve over time as Venus, Vice, and the
routers in the network are improved. The fastest software implementation of
DES that we are aware of runs at less than lOKB/s on a typical workstation.
Software encryption would therefore be an intolerable performance bottleneck
in our system; hardware is essential.

It is important to note that Andrew depends on end-to-end encryption where
the ends are user-level processes on workstations and Vice servers. Since every
connection has a distinct key, the RPC software needs fine-grained and efficient
control over the key used to encrypt or decrypt a packet. This implies that link-
level encryption devices with fixed or long-term keys are unsuitable.

ACM Transactions on Computer Systems, Vol. 7, No. 3, August 1989.

272 l M. Satyanarayanan

Although a number of VLSI chips for DES are available [2, 361, integration of
such chips into workstation peripherals is not common. A commercially available

device for the IBM PC-AT [14, 151 could be used in our IBM RT-PC worksta-
tions, but its performance of 50KB/s is barely adequate. We have therefore built
a prototype device [7] for the IBM RT-PCs using the AMD 9568 chip. On the
basis of the cost and labor of our parts, we estimate that a commercial version of
this device, produced in quantity, would cost an end user between 500 and
800 dollars. As perceived by a user-level process, the time to encrypt N bytes
using the device is N * k + C, where k is 4 microseconds per byte and C is 470
microseconds. The overhead of the device is thus under a millisecond for a small
packet and the asymptotic encryption rate is about 200KB/s. We are confident
that the device can be redesigned to reduce k in the above expression to about
0.6 microseconds per byte, yielding an asymptotic encryption rate of over lMB/
s. At the present time, we do not have encryption devices for the Sun and
Microvax workstations in our environment.

A difficult nontechnical problem is justifying the cost of encryption hardware
to management and users. Unlike extra memory, processor speed, or graphics
capability, encryption devices do not provide tangible benefits to users. The
importance of security is often perceived only after it is too late. At present,
encryption hardware is viewed as an expensive frill. We believe, however, that
the awareness that encryption is indispensable for security in Andrew will
eventually make it possible for every client and server to incorporate a hardware
encryption device.

In the interim, while the logistic and economic aspects of obtaining encryption
hardware are being addressed, Andrew uses exclusive-or encryption in software.
Although it is trivially broken, we felt it worthwhile to use it for two reasons.
First, it exercises all paths in our code pertaining to security and allows us to
validate our implementation. Second, although a weak algorithm, it does require
a user to perform an explicit action to violate security by decrypting data. Merely
observing a sensitive packet on the network by accident will not divulge its
contents.

10. OTHER SECURITY ISSUES

We now consider two unrelated questions from the viewpoints of security in
Andrew:

-how do low-power personal computers access Vice files?

-can diskless workstations be made secure?

Sections 10.1 and 10.2 examine these questions. In focusing only on security, our
discussion ignores many broader issues and implementation details.

10.1 PC Server

Many Andrew users also use personal computers such as the IBM PC and Apple
Macintosh, and desire Vice access from PCs. PCs in our environment typically
have limited amounts of main memory and sometimes lack a local disk. These

ACM Transactions on Computer Systems, Vol. 7, No. 3, August 1989.

Integrating Security in a Large Distributed System * 273

characteristics make them substantially different from the class of powerful,
resource-rich UNIX workstations for which the design of the Andrew File System
is optimized. Rather than compromising the design of the latter to accommodate
PCs, we use a surrogate server to interface PCs to Vice. A collection of PCs
communicate with the surrogate, called PCServer, running on an Andrew work-
station. PCServer mediates Vice access from the PC and makes Vice files
transparently accessible to the latter.

Communication between a PC and PCServer uses a protocol distinct from that
used in the Andrew file system. To perform the 3-way BIND handshake described
in Section 5.1, each site running PCServer would need to share a secret key with
users at PCs. This could be done using tokens, in a manner analogous to that
used by file servers in Vice. But our implementation does not do this. Rather, it
supports a weaker form of authentication. The workstation running PCServer
also runs an authenticator process called Guardian. When a PC user needs to
access Vice files, the user supplies his or her Andrew user id and password. These
are transmitted to Guardian, logically in the clear, but encrypted with a fixed
key. The encryption protects the password against accidental exposure, but not
against malicious attacks. Guardian contacts the Andrew authentication server
and obtains authentication tokens in a manner identical to LOGIN, as described
in Section 5.2. Guardian hands these tokens to Venus and then forks a dedicated
UNIX PCServer process on behalf of the user. This process acts on behalf of the
PC user and services file requests from the user’s PC.

From the point of Venus, it appears as if the PC user had actually logged in at
the workstation running PCServer. Enforcement of protection for Vice files is
performed exactly as described in Section 6.2. The main security exposure in
using PCServer is the information sent in the clear between the PC and Guardian
during the establishment of a session. As mentioned earlier, it is technically
feasible to fix this problem. But the implementation effort to do this has not
been forthcoming.

10.2 Diskless Workstations

Operating workstations without local disks has been shown to be viable and cost-
effective [19]. However, the impact of diskless operation on security has been
ignored in the literature. To be secure when operating diskless, at least two
factors have to be considered. Page traffic has to be encrypted and workstations
have to be confident of the identity of their disk servers so that Trojan horses
are avoided.

How fast will encryption have to be done to avoid significant performance
penalty when running diskless? Cheriton and Zwaenepoel [6] present data from
the V kernel on a Sun workstation indicating that it takes about 5 milliseconds
plus disk access time to remotely read or write a random 512-byte block of data.
These numbers are for file access; but, to a first approximation, we assume that
they also hold for page access. We also assume that the server does write-behind,
that pages are stored encrypted on the server, and that encryption and decryption
take about the same amount of time. Under these conditions, a page fault with
replacement of a dirty page would involve a remote page store (5ms), a disk read
at the server (20ms for a typical disk), and a remote page fetch (5ms), yielding a

ACM Transactions on Computer Systems, Vol. 7, No. 3, August 1989.

274 l M. Satyanarayanan

page fault service time of 30 milliseconds.7 If we require that encryption is to
degrade paging performance by no more than 5 percent, it has to be possible to
encrypt two 512-byte pages in no more than 1.5 milliseconds. This implies an
average encryption rate of about 700KB/s. For the more typical UNIX page size
of 4K bytes, an encryption rate in the range of 0.5 to lMB/s still seems necessary.
As described in Section 9, encryption hardware whose performance meets these
demands seems feasible, though not readily available.

Authentication is also a difficult problem. To perform an authentication
handshake, the client and server need to share a secret key. Where can this key
be stored at the client? Embedding it in the ROM containing the boot sequence
seems to be the only realistic solution, especially if the workstation has to be
able to come up unattended after a power failure. Unfortunately, this violates
the goal mentioned in Section 5.2, of not storing long-term authentication
information in the clear on workstations. Authentication based on a public key
scheme may be a better alternative. In such a scenario, the public keys of
legitimate servers would be widely known and could be safely stored in the ROMs
of workstations. A server would digitally sign each packet of the boot sequence
with its private key, and clients would verify the signature using the public key
of that server. Although this scheme only guarantees that the server is genuine,
it is likely to be all that is needed for this application.

In fairness, it must be pointed out that Andrew’s use of unauthenticated
connections to obtain fresh versions of system software after a reboot is also
vulnerable to Trojan horse attacks. The problem could, however, be easily
alleviated by deferring the update of system software until a user logs in, and
then using the user’s authenticated connections to perform the update. The
integrity of system software on the local disk is also critical, but this is consistent
with the assumption, stated in Section 3, that users are responsible for the
physical security of the workstations they use.

Although the security problems of diskless workstations are not insurmount-
able, we know of no real implementations that address them. Concerns regarding
security played a small but nontrivial part in our decision to avoid diskless
operation in Andrew.

11. RISK ANALYSIS

In this section we briefly consider how security could be subverted in Andrew.
Our analysis is not intended to be exhaustive, nor is it a proof of security. Its
primary purpose is to summarize the discussions of the preceding sections of this
paper. A secondary goal is to illustrate the complexity of applying relatively
simple security algorithms to a real distributed environment of substantial scale
and diversity.

A fundamental assumption in Andrew is that encryption of sufficient strength
and speed is available to Vice and Virtue. Otherwise it is trivial to violate security.
For the purposes of this section, we assume that all servers and workstations
have such encryption hardware. We also assume that all RPC connections on
behalf of users are authenticated and fully encrypted.

7 If a code page is being evicted the time would be slightly less, that is, 25 ms, since it does not have

to be written back to the server.

ACM Transactions on Computer Systems, Vol. 7, No. 3, August 1989.

Integrating Security in a Large Distributed System 275

Low-level network attacks can, at worst, result in denial of service to users.
Since RPC packets are encrypted end-to-end, eavesdropping will not reveal
useful information. Mutilating RPC packets will not violate security either. Such
packets will be rejected by the recipient because RPC sequence numbering
information is encrypted, and it is unlikely that a multilated RPC packet will
have the correct sequence number when decrypted. For greater confidence, a
checksum of the entire packet should be included in the encrypted header.

Breaking of keys by cryptanalytic attacks are much less likely than violations
of physical or procedural security. However, one could imagine a malicious
individual with patience and considerable computational resources eavesdropping
on client-server traffic in Andrew and breaking the key under which the traffic
is encrypted. Since a new random session key is generated when a RPC connec-
tion is established, breaking that key will only give access to one server. To
masquerade as the user, the eavesdropper would have to carefully intersperse
fake RPC requests encrypted under the session key. The session key is not
adequate to establish connections with other servers.

Greater damage can be done by breaking the key in secret and clear tokens.
One way to do this is to break the key used by the authentication server for
encrypting secret tokens. This is extremely serious, since all tokens based on
that key are compromised. Periodic changing of this key, and careful safeguarding
of it, is essential. Another way to break the key in a token pair is to observe a
number of BIND requests that involve the same pair of tokens. This is unlikely,
because tokens expire after 24 hours, and the number of BIND requests made by
a user in that period is not likely to be sufficient to mount a serious key-breaking
effort. A compromised token pair allows the miscreant to establish secure RPC
connections with the privileges of the victim on any Vice file server. It is not
adequate, however, to establish a secure connection to the authentication server.

The most damage is caused when the password of a user, particularly one who
is a system administrator, is obtained. However, the password is typically used
only once a day when the user is contacting an authentication server for tokens.
The standard practice of changing passwords periodically will reduce the total
amount of information available for key-breaking.

A well-known mode of attack is via a Trojan horse. Public workstations are
particularly susceptible to this. A Trojan LOGIN program on a workstation could
compromise the password of every individual who uses that workstation. Con-
cerned sites should insist that users reboot a workstation before using it so as to
defeat user-level Trojan horse attacks at login. Further, such sites should ensure
that standalone rebooting of a workstation is impossible for normal users. This
would defeat the simplest way for malicious users to obtain superuser privileges.

A more subtle way to introduce a Trojan horse is by masquerading as a server
that is temporarily down and then handing out fraudulent binaries. During their
reboot sequence, workstations fetch new copies of local binaries from Vice over
insecure connections. As mentioned in Section 10.2, this problem could be avoided
by disabling the automatic update of system software on reboot.

Workstations with multiple logged-in users make a number of other security
threats possible. A malicious user with superuser privileges could cause Venus to
dump core, examine the dump, and extract the tokens of other logged-in users.
Andrew does not provide any special mechanisms to protect against such threats.

ACM Transactions on Computer Systems, Vol. 7. No. 3, August 1989.

276 - M. Satyanarayanan

As mentioned in Section 3, users of a shared workstation have to trust all
individuals who could become superusers on that workstation. A superuser can
also read and modify all cache copies of files on the workstation.

Vice is critically dependent on the physical security of its servers and on
carefully restricted superuser access on them. For maximum security, servers
should disallow TELNET access. Physically secure machine rooms and trustworthy
operators are, of course, also essential. A malicious individual with superuser

access on a server could read or modify all Vice file data.
Membership in the group System: Administrators has to be carefully guarded.

A system administrator can modify any access list in the system, and can
therefore read or write any file. The user can also change storage quotas and
modify the ownership of files. For increased security, it would be relatively simple
to modify Vice to grant System : Administrator privileges only to individuals who,

in addition to being authenticated, are logged in at one of a specific set of
physically secure workstations.

To keep things in perspective, it should be noted that this section is deliberately
negative in tone. Most of the scenarios described here are highly unlikely, and
typically involve the violation of the assumptions discussed in Section 3. A site
that adheres to those assumptions will find Andrew more secure than any existing
distributed system of comparable functionality. Further, in spite of the attention
it pays to security, Andrew remains a highly usable system.

12. RELATED WORK

As is often the case in other areas of research, there are many instances where
variants of the same basic idea have been independently developed by different
groups working on system security. Although Andrew is unique as a system,
many of its individual security mechanisms and design decisions resemble those
of other systems. We examine the most prominent of these similarities in this
section.

Treating the RPC transport protocol as the level of abstraction at which to
apply end-to-end authentication and secure transmission measures is a key design
decision. The Cedar RPC package [4] was the first to do so; Andrew independently
choosing the same approach. More recently, Sun Microsystems has extended
its RPC package to support authentication (but not encrypted transmission)
[32, 331.

The authentication model used by Kerberos [31] in Project Athena closely
resembles Andrew’s two-step authentication scheme. A user is required to supply
a password only once per login, with Kerberos generating authentication tickets
for further use. The Kerberos authentication server is replicated, with a single
master and multiple read-only slaves. Kerberos guards against replays of service
requests by the use of unique authenticators supplied by the client with each
service request. The use of authenticators requires clocks on servers and clients
to be closely synchronized. Andrew does not depend on synchronized clocks.
Rather, it uses a connection-based RPC, depending on the encrypted, monoton-
ically increasing sequence numbers in packet headers to guard against replays of
service requests.

ACM Transactions on Computer Systems, Vol. 7, No. 3, August 1989.

Integrating Security in a Large Distributed System l 277

Physical security of the authentication servers is required in both Kerberos
and Andrew, since they store passwords in the clear. In contrast, the key
distribution mechanism used by Sun [32, 331 avoids storing passwords in the
clear. The common DES key needed for mutual authentication is obtained from
information stored in a publicly readable database. Stored in this database for
each user and server is a pair of keys suitable for public key encryption. One key
of the pair is stored in the clear, while the other is stored encrypted with the
login password of the user. Any two entities registered in the database can deduce
a unique private key for mutual authentication.

Apollo has recently extended the UNIX protection mechanism on their work-
stations with access lists [111. But the details of the approach differ significantly
from those of Andrew. Apollo access lists are optional, and can be associated
with individual files and directories. A set of precedence rules determine the
rights accruing to a user if multiple entries of an access list apply to him. This is
in contrast to Andrew, where the user obtains the union of these rights.

The use of a hierarchical protection domain in Andrew is inherited from the
CMU-CFS file system [l]; Grapevine [3] also used a similar scheme.

13. CHANGES SINCE SNAPSHOT

As mentioned in Section 1, the details presented in the preceding sections of this
paper pertain to a snapshot of Andrew at one point in time. Andrew was modified
in an incremental manner from the date of that snapshot, November 1986, until
the summer of 1988.

Most of these modifications were improvements to existing functionality. The
protection database was changed so that its index was stored internally, rather
than in a separate file. This eliminated the occasional inconsistencies between
index and data that used to occur when propagating protection domain infor-
mation. The RPC2 remote procedure call mechanism, described in Section 5.1,
was replaced by R, a similar RPC mechanism that was more parsimonious in its
use of memory. The replacement enabled Venus to run on workstations with
very limited physical memory. Although there were differences in the details, the
authentication handshakes used by RPC2 and R were conceptually similar.

A significant enhancement to functionality was the addition of support for
multiple Cells [38]. A cell corresponds to a completely autonomous Andrew
system, with its own protection domain, authentication, file servers, and system
administrators. A federation of cells can cooperate in presenting users with a
uniform, seamless file-name space. Yet, for smooth and efficient operation, cells
allow administrative responsibility to be delegated along lines that parallel
institutional boundaries.

Although the presence of multiple protection domains complicates the security
mechanisms in Andrew, Venus hides much of the complexity from users. For
example, authentication tokens issued in a cell are valid for use within that cell
only. Venus maintains a collection of tokens, one pair for each cell to which the
user has been authenticated. When establishing a secure connection to a Vice
server, it uses the tokens appropriate to the cell in which the server is located. A
user who has not been authenticated to that cell gets System : AnyUser privileges

ACM Transactions on Computer Systems, Vol. 7, No. 3, August 1989.

278 - M. Satyanarayanan

in it. A user is aware of the existence of cells only in the beginning, when directing
authentication requests to individual cells using the LOG program described
earlier. In a small number of cases, application programs have to be modified to
make cells transparent. For example, a user registered in multiple cells may have
Vice ids that are different in each cell. An application such as the directory listing
program, LS, that translates ids to user names has to be modified to display
names correctly.

Since the summer of 1988, a major reimplementation of the Andrew file system
has been under way. This will result in a new version, AFS 3.0 [30]. The goals of
this reimplementation are improved performance, ability to operate over wide-
area networks, improved operability and system administration, and better
standardization of components. Three major changes pertain to security. First,
the new RPC mechanism, Rx, provides support for a variety of security modules.
Different instances of Rx can use different authentication and encryption mech-
anisms. Second, in the interests of standardization, Kerberos from Project Athena
is being used for authentication. Third, a protection server is being implemented.
This will allow users to create and manipulate groups themselves, rather than

depending on system administrators to perform this function.

14. CONCLUSION

Throughout the evolution of Andrew, the underlying model of security has
remained unchanged. A small collection of trusted servers jointly provide a secure
storage repository for users at a large number of workstations. The security of
the entire system is not contingent upon the integrity of these workstations or
of the network. Loss of integrity of a workstation can, at worst, compromise the
security of tiles accessible to those who use the workstation. This is a substantially
higher level of security than that offered by most contemporary distributed
systems. Our experience with Andrew gives us confidence that this level of
security can be attained without significant loss of usability or performance, even
at large scale.

Security will be a more serious issue in the future. Although much theoretical
research has been done in this area, applying those principles to real systems is
difficult. The factors contributing to complexity include the many levels of
abstraction spanned, the need for compatibility, and the existence of numerous
minutiae that have to be correctly addressed. In spite of this, we are convinced
that the distributed systems of the future will have to pay greater attention to
security if they are to remain viable.

ACKNOWLEDGMENTS

Although this paper has a single author, many individuals deserve credit for their
valuable contributions to the work reported here.

The security architecture of Andrew was developed by the File System Group
of the Information Technology Center at Carnegie Mellon University. The
membership of this group over time has included John Howard, Michael Kazar,
David King, Sherri Menees Nichols, David Nichols, M. Satyanarayanan, Robert
Sidebotham, Michael West, and Edward Zayas. Preliminary design work on

ACM Transactions on Computer Systems, Vol. 7, No. 3, August 1989.

Integrating Security in a Large Distributed System l 279

security in Andrew was done by David Gifford, M. Satyanarayanan, and Alfred
Spector.

Many of the mechanisms described in this paper were implemented by M.
Satyanarayanan. David Nichols and Michael Kazar contributed to the mecha-
nisms in Virtue, while Michael West contributed to those in Vice. The security
mechanisms that support PC Server were built by Larry Raper and Jonathan
Rosenberg. Paul Crumley designed and implemented the encryption hardware
for RT-PCs.

James Kistler, James Morris, Jonathan Rosenberg, Robert Sansom, Ellen
Siegel, Doug Tygar, and the journal referees provided many useful comments on
this paper.

REFERENCES

1. ACCETTA, M. J., ROBERTSON, G. G., SATYANARAYANAN, M., AND THOMPSON, M. The design
of a network-based central file system. Tech. Rep. CMU-CS-80-134, Dept. of Computer Science,

Carnegie Mellon Univ., Pittsburgh, Pa., Aug. 1980.

2. ADVANCED MICRO DEVICES. MOS Microprocessors and Peripherals, 1985.

3. BIRRELL, A. D., LEVIN, R., NEEDHAM, R. M., AND SCHROEDER, M. D. Grapevine: An exercise

in distributed computing. Comnun. ACM 25, 4 (Apr. 1982), 260-273.

4. BIRRELL, A. D. Secure communication using remote procedure calls. ACM Trans. Comput. Syst.

3, 1 (Feb. 1985), 1-14.

5. BURROWS, M. L., ABADI, M., AND NEEDHAM, R. N. A logic of authentication. Tech. Rep. 39,

Digital Equipment Corporation, Systems Research Center, Palo Alto, Calif., Feb. 1989.
6. CHERITON, D. R., AND ZWAENEPOEL, W. The distributed V kernel and its performance for

diskless workstations. In Proceedings of the 9th Symposium on Operating System Principles

(Bretton Woods, N.H., Oct. ll-13,1983). ACM, New York, 1983 pp. 129-140.

7. CRUMLEY, P. TRADMYBD: Data Encryption Adapter Technical Reference Manual and Pro-

grammers’ Guide, Version 0.20. Tech. Rep. CMU-ITC-059, Information Technology Center,

Carnegie Mellon Univ., Pittsburgh, Pa., Dec. 1986.

8. DANNENBERG, R. B. Resource sharing in a network of personal computers. Ph.D. dissertation,

Dept. of Computer Science, Carnegie Mellon Univ., 1982.
9. DIFFIE, W., AND HELLMAN, M. E. Privacy and authentication: An introduction to cryptography.

Proc. IEEE 67, 3 (Mar. 1979), 397-427.

10. DOD. Trusted Computer System Evaluation Criteria. CSC-STD-001-83, Dept. of Defense, Com-

puter Security Center, 1985.

11. FERNANDEZ, G., AND ALLEN, L. Extending the UNIX protection model with access control

lists. In Usenix Conference Proceedings (Summer, 1988).

12. GRAMPP, F. T., AND MORRIS, R. H. Unix operating system security. Bell Lab. Tech. J. 63, 8

(Oct. 1984), 1649-1672.

13. HOWARD, J. H., KAZAR, M. L., MENEES, S. G., NICHOLS, D. A., SATYANARAYANAN, M.,
SIDEBOTHAM, R. N., AND WEST, M. J. Scale and performance in a distributed file system.

ACM Trans. Comput. Syst. 6, 1 (Feb. 1988), 51-81.

14. IBM. IBM 4700 Personal Computer Financial Security Adapter: Guide to Operations. No.

6024361, IBM Corp., 1985.

15. IBM. IBM 4700 Personal Computer Financial Security Adapter: Microcode Users Guide. No.

6024362, IBM Corp., 1985.
16. JONES, A. K. Protection in programmed systems. Ph.D. dissertation, Dept. of Computer Science,

Carnegie Mellon Univ., Pittsburgh, Pa., 1973.

17. JONES, A. K., AND WULF, W. A. Towards the design of secure systems. Softw. Pratt. Exper. 5

(1975), 321-336.

18. LAMPSON, B. W. A note on the confinement problem. Commun. ACM 16, 10 (Oct. 1973),

613-614.

19. LAZOWSKA, E. D., ZAHORJAN, J., CHERITON, D. R., AND ZWAENEPOEL, W. File access perfor-

mance of diskless workstations. ACM Trans. Comput. Syst. 4,3 (Aug. 1986), 238-268.

ACM Transactions on Computer Systems, Vol. 7, No. 3, August 1989.

280 - M Satyanarayanan

20. MEYER, C. H., AND MATYAS, S. M. Cryptography: A New Dimension in Computer Data Security.

John Wiley, New York, 1982.

21. MORRIS, J. H., SATYANARAYANAN, M., CONNER, M. H., HOWARD, J. H., ROSENTHAL, D. S.,

AND SMITH, F. D. Andrew: A distributed personal computing environment. Commun. ACM 29,

3 (Mar. 1986), 184-201.

22. NEEDHAM, R. M., AND SCHROEDER, M. D. Using encryption for authentication in large

networks of computers. Commun. ACM 21,12 (Dec. 1978), 993-998.

23. NICHOLS, D. A. Using idle workstations in a shared computing environment. In Proceedings of

the 11th ACM Symposium on Operating Systems Principles (Nov. 8-11, 1987). ACM, New York,

1987, pp. 5-12.

24. RABIN, M. O., AND TYGAR, J. D. An integrated toolkit for operating system security. Tech.

Rep. TR-05-87, Aiken Computation Lab., Harvard Univ., Cambridge, Mass., May 1987.

25. SALTZER, J. H. Protection and the control of information sharing in Multics. Commun. ACM

17, 7 (July 1974), 388-402.

26. SATYANARAYANAN, M. Users, groups and access lists: An implementor’s guide. Tech. Rep.

CMU-ITC-84-005, Information Technology Center, Carnegie Mellon Univ., Pittsburgh, Pa., Aug.

1984.

27. SATYANARAYANAN, M., HOWARD, J. H., NICHOLS, D. N., SIDEBOTHAM, R. N., SPECTOR, A. Z.,

AND WEST, M. J. The ITC distributed file system: Principles and design. In Proceedings of the

10th ACM Symposium on Operating System Principles (Dec. l-4, 1985). ACM, New York, 1985,

pp. 35-50.

28. SATYANARAYANAN, M. RX2 User Manual. Tech. Rep. CMU-ITC-84-038, Information Tech-

nology Center, Carnegie Mellon Univ., Pittsburgh, Pa., 1986 (revised).

29. SIDEBOTHAM, R. N. Volumes: The Andrew file system data structuring primitive. In European

Unix User Group Conference Proceedings (Aug. 1986). Also available as Tech. Rep. CMU-ITC-

053, Information Technology Center, Carnegie Mellon Univ., Pittsburgh, Pa., 1986.

30. SPECTOR, A. Z., AND KAZAR, M. L. Wide area file service and the AFS experimental system.

Unix Reu. 7, 3 (Mar. 1989).

31. STEINER, J. G., NEUMAN, C., AND SCHILLER, J. I. Kerberos: An authentication service for open

network systems. In Use& Conference Proceedings (Winter, 1988).
32. TAYLOR, B. Secure networking in the Sun environment. In Usenir Conference Proceedings

(Atlanta, Ga., Summer, 1986).

33. TAYLOR, B. A framework for network security. SunTechnology 1, 2 (Spring 1988).
34. U.S. DEPARTMENT OF COMMERCE, N.B.S., Data Encryption Standard. 1977. Federal Information

Processing Standards Publication, FIPS PUB 46.

35. VOYDOCK, V. L., AND KENT, S. T. Security mechanisms in high-level network protocols. ACM

Comput. Suru. 2.5,2 (June 1983), 135-171.

36. WESTERN DIGITAL CORP. Data Communication Products Handbook, 1985.

37. WULF, W. A., LEVIN, R., AND HARBISON, S. P. HYDRA/C.mmp: An Experimental Computer

System. McGraw-Hill, New York, 1981.

38. ZAYAS, E. R. Administrative cells: Proposal for cooperative Andrew file systems. Tech. Rep.

CMU-ITC-060, Information Technology Center, Carnegie Mellon Univ., Pittsburgh, Pa., June,

1987.

Received November 1987; revised January 1989; accepted April 1989

ACM Transactions on Computer Systems, Vol. 7, No. 3, August 1989.

