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Abstract 

It is anticipated that the decarbonisation of the entire energy system will require the introduction of 

large shares of variable renewable electricity generation into the power system. Long term 

integrated energy systems models are useful in improving our understanding of decarbonisation but 

they struggle to take account of short term variations in the power system associated with increased 

variable renewable energy penetration. This can oversimplify the ability of power systems to 

accommodate variable renewables and result in mistaken signals regarding the levels of flexibility 

required in power systems. Capturing power system impacts of variability within integrated energy 

system models is challenging due to temporal and technical simplifying assumptions needed to make 

such models computationally manageable. This paper addresses a gap in the literature by reviewing 

prominent methodologies that have been applied to address this challenge and the advantages & 

limitations of each. The methods include soft linking between integrated energy systems models and 

power systems models and improving the temporal and technical representation of power systems 

within integrated energy systems models. Each methodology covered approaches the integration of 

short term variations and assesses the flexibility of the system differently. The strengths, limitations, 

and applicability of these different methodologies are analysed. This review allows users of 

integrated energy systems models to select a methodology (or combination of methodologies) to 

suit their needs. In addition, the analysis identifies remaining gaps and shortcomings. 

 Keywords 

Energy system planning; Integration of renewable energy sources; Technical Resolution; Temporal 

resolution; Power systems 
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Highlights 

 Long term energy system modelling challenges identified for the power sector 

 State-of-the-art methodologies for integrating the challenges related to the integration of 

variable renewables are presented 

 Comparison of methodologies succinctly exposes the strengths & limitations of each 

respective methodology 

1. Introduction 

The transition to a low-carbon energy system is expected to require the electricity sector to 

integrate large amounts of variable renewable energy sources (VRES) [1-4]. The instantaneous 

electricity generation by VRES is highly intermittent, location specific and only predictable to a 

limited extent. A massive penetration of VRES, therefore, has a strong impact on the operation of 

the power system [5-9]. Capturing the economic and technical challenges related to a large-scale 

penetration of VRES, therefore, requires modelling the variability in system load and renewable 

generation, the limited flexibility of thermal units and the spatial smoothing of the variability. This 

requires models with a high level of temporal, technical and spatial detail.  

Long-term planning models have been applied frequently to analyse scenarios for the evolution of 

the energy system over multiple decades. Due to computational restrictions, the level of temporal, 

technical and spatial detail in these models is typically low. In contrast, operational power system 

models focus on the operations of the power system using a high level of detail but do not consider 

its long-term evolution.   

Multiple authors have recently analysed the impact of temporal detail [10-16], technical detail [10, 

11, 17-20] and spatial detail [21-23] employed in long-term planning models. Depending on the 

representation of integration challenges, low levels of detail can either favour or disfavour VRES: For 

high penetrations of VRES, If electricity is treated as a homogeneous good or only a low number of 

averaged time-slices is used, the low level of detail leads to an overestimation of the value of 

baseload technologies and VRES, while the value of flexible generation technologies with higher 

generation costs is underestimated [10]. In contrast, if a model uses rather crude representations of 

integration challenges such as upper limits on VRES shares or fix backup requirements, the low level 

of detail can overly restrict the deployment of VRES compared to more detailed representations 

[24]. As a result, the cost of achieving ambitious greenhouse gas emission reduction targets can be 

either significantly under- or overestimated.  

Moreover, the importance of capturing critical elements of power system operation for planning a 

reliable and adequate power system is analysed in [25-29], making clear that a reliable operation of 

the power system cannot be guaranteed for the scenarios generated by current long-term planning 

models. As such, Pfenninger et al [30] consider ‘resolving time and space’ to be the main challenge 
for energy system optimization models. For such long term modelling analyses it is also critical from 

an operational perspective to capture the current state of play and development of technologies so 

as to ensure a realistic trajectory of future technology development is considered [31-35]. 

Bridging the gap between highly-detailed operational power system models and long-term planning 

models has become an active field of research, in view of the challenge of the transition to a less 
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carbon-intensive energy system. Numerous methodologies to bridge this gap have recently been 

developed [10, 24, 30, 36, 37]. 

This paper presents a review of prominent methodologies developed to better capture the 

economic and technical challenges related to the integration of VRES in two families of long-term 

planning models, namely long-term energy system optimization models (ESOMs) usually focusing on 

country-level (or group of countries, e.g. EU-level) scenarios for the next decades, and Integrated 

Assessment Models (IAMs), which focus on global long-term scenarios for the full 21st century. The 

strengths, limitations, and applicability of these different methodologies described in the literature 

are analysed. This analysis allows users of long-term planning models to select a methodology (or 

combination of methodologies) to suit their needs. In addition, the analysis exposes the needs for 

further research. 

The remainder of this paper is organized as follows. First, Section 2 identifies the problem space by 

presenting a comprehensive overview of the different types of models and the level of temporal, 

technical and spatial detail typically employed in these models. Second, Section 3 presents the 

different methodologies developed in the literature for improved capturing of the economic and 

technical challenges related to the integration of VRES in planning models. The strengths and 

limitations of each approach are discussed in detail. Finally, main conclusions are formulated in 

Section 4. 

2. Overview of energy modelling tools 

This section first presents a brief description of the models considered in this paper, i.e., operational 

power system models, energy system optimization models and integrated assessment models. 

Subsequently, the level of temporal, technical and spatial detail typically used in each of these 

models is discussed.  

2. 1. Operational power system models    

Operational power system models analyse the operations of a given power system, i.e., investment 

decisions are not considered. While there are large differences in the focus and applications of 

operational power system models [38], the focus of this work is on unit commitment and economic 

dispatch (UCED) models. UCED models determine for every time step within a certain time horizon 

which units should be online and how much each unit should be generating in order to minimize the 

cost of supplying a given demand for electricity. Detailed technical constraints, such as the minimal 

operating level, restricted ramping rates, minimum up and down times, start-up costs and efficiency 

losses during part-load operation are accounted for on a unit by unit level. Properly accounting for 

the minimal operating level requires tracking the commitment status of individual units. As such, 

most current UCED models rely on mixed-integer linear programming (MILP). Due to a large amount 

of integer variables, solving UCED models can be computationally challenging. The time horizon of 

UCED models is typically restricted to one day up to one year. This time horizon is disaggregated into 

different time steps with a resolution in the range of 5 minutes up to one hour. Prominent examples 

of UCED models include PLEXOS [39], LUSYM [40], GTMax [41], ORCED [42] and EnergyPLAN [43].  

While UCED models allow analysing the operation of the power system in detail, these models do 

not allow to consider the (cost-optimal) evolution of the installed generation capacity. Moreover, 

the scope of these models is restricted to the power system. Interactions with other energy sectors 
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such as the heating and transport sector are generally modelled by exogenously specifying the 

demand for electricity. 

2. 2. Long-term energy system optimization models (ESOMs) 

ESOMs are used mainly to generate scenarios for the long-term evolution of the energy system. As 

such, ESOMS compute the investments and operation of the energy system that result in a partial 

equilibrium of the energy system, i.e., ESOMs simultaneously compute the production and 

consumption of different commodities (fuels, materials, energy services) and their prices in such a 

way that at the computed price, production exactly equals consumption. This equilibrium is referred 

to as a partial equilibrium since the scope of ESOMs is restricted to the energy system (comprising 

the power sector, transport sector, heating sector, etc.), being merely a part of the overall economic 

system. To compute this partial equilibrium, ESOMs rely on the fact that this equilibrium is 

established when the total surplus is maximized (or when total cost is minimized in case of an 

inflexible demand). Optimization techniques, such as linear programming, are applied to retrieve the 

investments, production and consumption patterns as well as trade flows yielding a maximal surplus. 

In contrast to some of the IAMs discussed below, partial equilibrium models are bottom-up models, 

meaning that each specific sector is composed of multiple explicitly defined technologies which are 

interlinked by their input and output commodities. Regarding the geographical scope, ESOMs are 

generally applied to countries or regions, but can also be applied on a city level. The time horizon 

spanned is generally multiple decades. The main strength of ESOMs is that these models provide a 

comprehensive description of possible scenarios for the transition of the energy system by 

considering the inter-temporal, inter-regional and inter-sectoral relationships. A limitation of ESOMs 

that are applied to only one country is that they ignore the potential benefit of international 

cooperation for the integration of VRES via expanded transmission grids. Well-known examples of 

ESOMS are MARKAL/TIMES [44], MESSAGE [45] and REMIX [46]. 

 

2. 3. Integrated assessment models 

IAMs and ESOMs share many characteristics and can consist of the same modelling frameworks1. 

The main difference is their aim and scope: ESOMs typically focus on near-term energy system 

transformations in individual countries or regions, whereas IAMs complement  socio-economic 

modelling with natural sciences to analyse long-term interdisciplinary questions, typically of a global 

scope, such as assessing policies to mitigate climate change [50, 51]. To address these questions, 

IAMs need to represent not only the different energy demand sectors such as transport, residential, 

and industrial energy use, but also topics like economic growth, resource availability, and land-use-

related emissions. These differences in temporal, spatial and topical coverage imply that IAMs 

require higher temporal and geographical aggregation compared to ESOMs in order to keep 

computational complexity at a manageable level.  

                                                           
1
 The IAMs ETSAP-TIAM and TIAM-UCL use the TIMES modelling framework, while IIASA's MESSAGE IAM 

model is built on a MESSAGE modelling framework with additional non-energy sector modules. MESSAGE 
modelling framework is distributed by the IAEA for national and regional planning purposes. [47] ETSAP. 
http://www.iea-etsap.org/web/applicationGlobal.asp 2016, [48] UCL. https://www.ucl.ac.uk/energy-
models/models/tiam-ucl/#etsap-tiam. 2016, [49] Messner S, Schrattenholzer L. MESSAGE–MACRO: linking an 
energy supply model with a macroeconomic module and solving it iteratively. Energy. 2000;25:267-82. 
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IAMs come in a variety of types: some IAMs like MESSAGE [52], TIAM [47, 48], POLES [53], IMAGE 

[54] or GCAM [55] originate from a bottom-up approach with relatively high technological detail, 

others like AIM/CGE [56], MERGE [57], or EPPA [58] came from a more top-down approach with 

stronger focus on economic interactions and less on technological detail. In the last decades, most of 

these models have evolved to become more hybrid in their approach, merging technology detail 

with macro-economic feedbacks, a feature also found in more recently developed models like 

WITCH [59] or REMIND [60].  

To offset the low temporal detail and still represent the variability of load and VRES, most IAMs have 

introduced additional equations and constraints that try to mimic the effect of variability in a stylized 

way. Examples include implementing hard upper bounds on VRES shares, using inflexible 

substitution functions, requiring a fixed amount of backup per unit of VRES capacity, adding 

integration cost mark-ups, or implementing peak capacity equations. [4, 24, 61-64]  

2.4 Overview of model simplifications 

This section describes the main model simplifications which are made in ESOMs and IAMs in terms 

of the level of temporal, spatial and technical detail used to describe the electric energy system. 

These simplifications are in contrast with the high resolution modelling of operational power system 

models that are of a narrower scope.  Insufficient temporal, technical or spatial representation can 

provide incorrect signals regarding the potential and value of different technologies leading to an 

under- or overestimation2   of the effort required to transition to an energy system with high 

proportions of renewable power generation.  

Different modelling tools employ different levels of temporal, technical and spatial detail. An 

overview of the level of detail typically employed in each of these models is presented in in Figure 1, 

these are further discussed in the sections 2.4.1, 2.4.2 and 2.4.3. 

                                                           
2
   In IAMs and ESOMs that represent VRES integration challenges in a stylized way, the lack of detail can lead 

to an overestimation of the effort if the representations are overly restrictive, e.g. by being parameterized 
based on local time series data that does not represent the potential pooling effect of grid expansion [24] 
Pietzcker RC, Ueckerdt F, Carrara S, De Boer H-S, Després J, Fujimori S, et al. System integration of wind and 
solar power in Integrated Assessment Models: a cross-model evaluation of new approaches. Submitted to 
Energy Economics. 2016.. 
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Figure 1 - Comparison of the level of detail of the model types considered in this analysis 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.4.1 Temporal Representation 

In ESOMs, the considered time horizon is divided into a number of multi-year periods. Each of these 

periods is represented by a single year, the so-called milestone year. This milestone year is in turn 

subdivided into a number of so-called time-slices which represent seasonal, weekly and/or diurnal 

variations in demand and supply. In most ESOMs, the number of time-slices used and their definition 

can be determined freely by the user. However, the number of time-slices used typically lies in the 

range 4-48. Whether or not chronology is retained depends on how the time-slices are defined. A 

frequently occurring time-slice division uses 12 time-slices to distinguish between day, night and 

peak hours for four seasons. Examples of models using this time-slice division are the Irish TIMES 

model [65] and the JRC-EU-TIMES model [66]. Recently, multiple authors have investigated the 

impact of the stylized temporal representation and have experimented with different ways of 

creating time-slice divisions by increasing the number of time-slices and/or changing the way these 

time-slices are defined. A detailed discussion of the impact of the stylized temporal representation in 

ESOMs and different approaches for setting up the time-slice division can be found in Section 3.2.1. 

Due to the large scope of IAMs, the level of temporal detail employed in these models is usually 

lower than in most ESOMs, i.e., the temporal resolution is generally one or several years, although 

some models like TIMER have as much as 10 time-slices per year. As aforementioned in section 2.3, 

many IAMs represent the effect of temporal variability in a stylized fashion, for these stylized 

representations, an accurate parameterization is of fundamental importance due to its impact on 

results. In [24] it is found that many of the older parameterizations overly restrict the deployment of 

VRES compared to newer representations based on better data and more detailed bottom-up 

analysis. One advanced methodology for representing a number of variability effects in an 

aggregated way will be discussed in Section 3.2.3. 
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2.4.2 Technical Representation 

In contrast to UCED models, ESOMs operate on a technology-type level and do not consider the 

operation of individual units. Hence, their load-following constraints and cycling costs are generally 

not explicitly accounted for [10]. Moreover, as modelling detailed load-following constraints such as 

ramping rate restrictions requires chronological data at a sufficiently high resolution, the possibilities 

to integrate technical constraints are dependent on the temporal representation, i.e., the time-slice 

division [10]. Hence, from a technology perspective, the technological detail is typically restricted to 

the specification of the efficiency and availability of different generation technologies, while 

flexibility restrictions are generally not accounted for. 

Detailed technical constraints are not considered in IAMs. Similar to the level of temporal detail, 

additional constraints and parametrizations are used to account for the impact of technical 

constraints in a stylized fashion. This is also true in the case of ESOMs where technical details are 

often represented in a stylized way. Such as nuclear plants which are frequently defined on the 

seasonal time slice level. 

2.4.3 Spatial Representation  

The spatial scope and resolution are important to analyse trade flows and capture the impact of 

network-related constraints between regions. Both in ESOMs and IAMs, a set of regions is 

considered, rather than a more detailed nodal level. Hence, these models are currently not capable 

of accurately reflecting the impact of transmission network constraints and can encounter 

challenges in representing the distributed nature of VRES generation.  

In ESOMs, the modelling of transmission networks is generally restricted to incorporating the limited 

capacities of cross-border transmission lines. In addition, the grid representation is typically trade-

based. This means that Kirchhoff’s voltage law does not need to be respected and there are no 
differences between AC and DC lines. This is in contrast to the DC load flow grid representation 

commonly used in UCED models [40]. 

Given the regional nature of ESOMs and IAMs, typically without low level nodal disaggregation, the 

benefits associated with spatial smoothing of VRES generation are challenging to account for. This 

becomes increasingly important with an increasing penetration of VRES because the correlation 

between the output of power at different renewable generation sites and from different renewable 

resources can strongly impact the overall variability and uncertainty of the residual load [60]. 
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3. State of the Art Methodologies 

This section describes different methodologies that aim to better capture the economic and 

technical challenges related to the integration of VRES. The methodologies described can be 

classified into two categories: direct integration and soft-linking model coupling methodologies. 

Fundamental differences between these categories of methodologies exist. The direct integration 

methodologies aim to improve the representation of VRES and their impact on the power system by 

directly improving the temporal, technical and/or spatial representation in the ESOM/IAM, or by 

introducing additional equations that mimic the effects of higher temporal, technical or spatial 

detail. In contrast, soft-linking methodologies recognize the limitations of using a single all-

encompassing model. In these methodologies, a soft-link between the ESOM/IAM, having a limited 

level of temporal and technical detail, and a dedicated UCED model is established.  

The following sections present an overview of the applications of these different methodologies as 

well as their respective strengths and limitations. First, Section 3.1 describes the soft-linking 

methodologies for ESOMs and IAMs. Next, Section 3.2 and 3.3 present direct integration 

methodologies for ESOMs and IAMs respectively.  

3.1. Soft-linking ESOMs/IAMs to an operational power system model 

In this methodology, the power system as derived by an ESOM/IAM is used as input for an 

operational power systems model (i.e., UCED model), which re-computes the operations of this 

power system using a high level of temporal and technical detail. By analysing the power sector 

results from the ESOM/IAM in greater temporal and technical detail using the UCED model, this 

methodology aims to gain additional insights with regard to the operation of the resulting power 

system. More specifically, it allows more accurate calculations of the expected operational cost, the 

expected generation mix and corresponding greenhouse gas emissions, the need for curtailment of 

renewable energy and the reliability of the power system. In addition, the role that different 

generation technologies play in providing the flexibility required to balance demand and supply can 

be analysed [11].   

The main methodological difference in different soft-linking methodologies described in the 

literature are found in the way the information provided by the UCED model is used. In this regard, 

we can distinguish between uni-directional and bi-directional soft-linking methodologies. In uni-

directional soft-linking methodologies, there is no direct link from the UCED model to the 

ESOM/IAM, i.e., the UCED model is only used to provide additional information and as a check on 

the results provided by the ESOM/IAM. In bi-directional soft-linking methodologies, the information 

provided by the UCED model is used to systematically adapt certain parameters and/or add certain 

constraints in the ESOM/IAM. In an iterative procedure, both models are executed repeatedly until 

convergence between both models is obtained. Bi-directional soft-linking poses additional 

difficulties but allows to move closer to the globally optimal solution, i.e., the solution that would 

have been found if the ESOM/IAM could have been solved with high levels of temporal, technical 

and spatial detail. Hence, the added value of using a bi-directional soft-linking methodology 

increases as the results provided by the ESOM/IAM and the UCED diverge more strongly (and the 

solution of the ESOM/IAM drifts away from the global optimal solution). As shown by multiple 

authors, the divergence between the results provided by ESOMs and UCED models increases with 

the penetration of VRES in the power system [10, 12, 15, 20], which indicates that bi-directional soft-

linking methodologies are especially useful for modelling scenarios with very high shares of VRES.      
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It is important to note that in order to employ the soft-linking methodology correctly, both the 

ESOM/IAM and the UCED models should share certain common inputs, in particular, the time series 

for the electricity demand and renewable generation to ensure comparable model results. An 

example of a  detailed step-by-step uni-directional soft-linking methodology is presented in [11]: 

1. Define the scenario and time horizon of the analysis and execute the ESOM/IAM. 

2. For a specific year of interest, extract the electricity generation portfolio, fuel prices and 

carbon prices from the ESOM/IAM and populate the UCED model with this data. Include 

additional technical parameters, such as minimum stable generation levels, ramp rates, start 

costs, failure rates and maintenance rates, in the UCED model. 

3. Convert the annual electricity demand time series from the ESOM/IAM to a chronological 

time series with hourly or lower resolution. This is done through taking a historical demand 

time series and scaling using quadratic optimisation so as the annual demand and peak 

demand for electricity are equal to the demand from the ESOM/IAM. In addition, use high-

resolution time series for VRES electricity generation based on the installed capacity and  

available historical generation time series or resource data (e.g., wind speed or solar 

irradiance data) for each region. 

4. Initially run the UCED model for the target year using the high-resolution time series without 

any additional technical constraints such as minimum stable generation, ramp rates or start 

costs to demonstrate the impact of increased temporal detail within the model. 

5. As next step, run the model with increasing levels of technical detail in order to determine 

the impacts of these technical constraints on the model results. 

6. Contrast results between the models, identify differences and scrutinise the reliability and 

flexibility of the power system. Analyse the role that different generation technologies play 

in system operation.   

7. Determine the implications of low production years for VRES modes of generation, such as 

wind and solar, on the reliability of the derived portfolio from the energy system model by 

running the power systems model with a number of different years of production profiles. 

This uni-directional soft-linking methodology is illustrated in Figure 2 for an example where a TIMES 

ESOM with the target year of 2030 is soft-linked to the PLEXOS UCED model to analyse the results 

for the year 2020.  

For a bi-directional soft-link, an additional step is required in the methodology: 
 

8. Use the insights gained from the results comparison to introduce constraints into the 

ESOM/IAM model to take account of the power system operation characteristics that are 

not readily captured within the ESOM/IAM. 
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Figure 2 -Flow chart of soft-linking methodology. [11] 

The main difficulty with bi-directional soft-linking is specifying the adaptation of parameters and/or 

constraints of the ESOM/IAM in response to the results provided by the UCED model in such a way 

that both models converge to a globally optimal solution. In [67], a bi-directional soft-link is used, 

but no information is provided on the details of the feedback from the UCED model to the ESOM. As 

stated in [68], this feedback mechanism is often ignored. In [14], maximum investment in wind 

generation capacity is restricted if annual curtailment of wind generation exceeds 10% of the 

expected annual wind generation. This feedback loop thus only directly impacts wind generation 

capacities. Sub-optimalities in the thermal generation fleet resulting from using a low level of 

temporal and technical detail are not corrected for. Hence, while this approach might result in a 

solution closer to the global optimum, this cannot be guaranteed. Further research is required to 

investigate the convergence in bi-directional soft-linking of ESOMs/IAMs and UCED models. 

Soft-linking methodologies have recently been applied frequently to ESOMs. A number of studies 

used a uni-directional soft-link to analyse the impact of the limited level of temporal and technical 

detail typically used in ESOMs [10, 19, 69]. In addition, this approach has been applied in a number 

of studies to scrutinise energy system model results [67, 70, 71]. In [71], a soft-link between a 

MARKAL model of the Netherlands and REPOWERS is used to assess flexibility sufficiency, quantify 

the impact of part-load efficiency losses and assess the profitability of power plants in scenarios for 

the evolution of the Dutch power system. A similar analysis is performed in [70], where a soft-link 

between the ESOM MONET and PLEXOS is used to scrutinise the evolution of the Italian power 

system in different scenarios, with a focus on power system security. Rosen et al. [67] use a bi-

directional soft link between the PERSEUS-CERT model and the AEOLIUS model to obtain more 

accurate estimates of displacement of intermediate-load and base-load plants by wind generation 

and the resulting impact on greenhouse gas emission reduction in Germany.  

Recently, Zeyringer et al.  [21] used a soft-link between an ESOM and a power system model with a 

high level of temporal and geographical detail. In contrast to the soft-linking approaches between 



11 
 

ESOMs and UCED models, the power system model endogenously optimizes the location of the VRES 

and the need for conventional dispatchable technologies and storage technologies. This type of soft-

link has the benefit that it allows the provision of a solution which is closer to the global optimal 

solution without requiring a bi-directional soft-link. 

While the soft-linking methodology can theoretically be applied to IAMs as well, the increased 

complexity due to a large number of regions and long time horizon covered make this a challenging 

exercise, as each power sector in each region and time step needs to be checked by a power system 

model run. Thus, the only examples we know of are a country-level IAM, namely the  US-REGEN 

model that soft-links a CGE model of the United States to  a bottom-up unit commitment and 

dispatch model [72], and a study with the global POLES model that soft-linked only the EU countries 

to a dispatch model based on 12 representative days [73].  

Advantages and Limitations 

The main advantage of soft-linking ESOMs/IAMs to UCED models is that it provides very detailed 

information on the operation of the power system. As such, this approach not only provides 

accurate estimates of the cost, fuel consumption and GHG emissions of operating the power system 

but also allows to analyse power system reliability, the need and provision of flexibility and the role 

specific generation technologies play in balancing demand and supply. As such, this methodology 

provides a robust check on the results provided by the ESOM/IAM. Using a bi-directional soft-link 

provides the additional advantage of improving the overall solution of the ESOM/IAM without 

requiring the computational resources needed to solve one ESOM/IAM with very high levels of 

temporal, technical and operational detail. 

A first disadvantage is that two separate models need to be constructed and maintained, requiring 

additional resources and expertise. An additional disadvantage is that uni-directional soft-linking 

methodologies do not impact the investment decisions of the ESOM/IAM, and thus do not provide a 

globally optimal solution. In contrast, investment decisions can be altered in bi-directional soft-

linking methodologies. However, the feedback from the UCED model to the ESOM/IAM model is 

currently based on the skill and judgment of the modeller given the undertaking at hand. A limitation 

of this approach is that it is not a directly integrated approach, which makes it a sub-optimal 

approach because insights gained from the power system model have to be exogenously forced 

within the energy system model. More research is needed to investigate the convergence and the 

optimality of results provided by bi-directional soft-linking methodologies. 

 

 

3.2. Direct integration methodologies for ESOMs 

3.2.1 Improving the temporal representation 

As discussed in Section 2.4, ESOMs typically have a stylized temporal representation, in which intra-

annual variations in demand and supply are represented by a low number of so-called time-slices. 

Haydt et al in [12] distinguish between two methods of balancing supply and demand in ESOMs.  

A first method is the so-called ‘integral method’, in which typically 5-10 time-slices are used to 

distinguish between different load levels occurring throughout the year. In this method, each time 
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slice thus represents an average load level during a certain fraction of the year. In this method, all 

chronological information is lost as different load levels can occur at different moments in time. Due 

to the loss of chronology, average VRES capacity factors are used. In addition, the dynamics of 

variations in demand and supply are not captured. As a result, the value of storage systems and 

other flexibility options cannot be determined.  

A second method is the so-called ‘semi-dynamic method’ which is based on using a number of 
typical or representative days. In this ‘semi-dynamic method’ method, each typical or representative 
day represents a fraction of the year, e.g., corresponding to (a part of) a season. Each day can, in 

turn, be disaggregated into a number of diurnal time-slices. Due to the fact that chronology is 

retained within each day, the value of storage systems and other sources of flexibility can be 

endogenously determined. An example of a time-slice division disaggregating a year into seasonal, 

daily and diurnal time-slices is presented in Figure 3 [74]. At the lower level, each time-slice is 

defined by a fraction of the year it represents and a fixed value for the load and VRES capacity 

factors [10]. 

 

Figure 3: Example of a time-slice division used in energy system optimization models [74] 

Recent literature has shown that the approach used to assign values for the load and VRES capacity 

factors to every time-slice can strongly impact the results [10]. The approach traditionally applied is 

to take the average value of that part of the time series that corresponds to the definition of the 

time-slice (e.g., the average solar capacity factor during summer days). A second approach only uses 

the data of a selected number of representative historical periods. These periods can in principle be 

hours (e.g., [72]), days (e.g., [75, 76]), or weeks (e.g., [16]). However, most commonly, a set of days 

is used.  

In literature, the terms ‘representative days’, ‘typical days’ and ‘type-days’ are used interchangeably. 
All these terms are used to refer to both time-slice divisions based on using the data of a small 

selection of historical days, and to time slice divisions using the traditional approach where data 

averaging is used to obtain a number of typical days. In this text, we will refer to ‘typical days’ as 
days formed by averaging data, whereas we refer to ‘representative days’ as specific historical days. 

In the majority of ESOMs, the semi-dynamic method of balancing demand and supply is used where 

data averaging is used to create a number of typical days. In this regard, a frequently occurring time-

slice division uses 12 time-slices to distinguish between day, night and peak hours for four seasons, 

i.e., a single typical day is created per seasons which is further disaggregated into 3 diurnal time-
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slices. Examples of models using this time-slice division are the Irish TIMES model [65] and the JRC-

EU-TIMES model [66].  

The impact of such a commonly applied, stylized, temporal representation on the model results has 

been investigated in great detail by multiple authors [10-13, 15, 16, 77]. The results of their analyses 

have shown that using time-slices based on simple averaging leads to an underestimation of the 

variability of variable RES. This underestimation of the variability follows from the fact that when 

typical days are derived from a strictly temporal pattern (each time-slice represents a certain season, 

week, part of the day) , the capacity factor assigned to each time-slice results from taking the 

average over each instance of the pattern. As VRES and specifically wind generation does usually not 

follow the same temporal pattern, the averaging thus smooths periods of very high and very low 

VRES generation. [10, 13, 16]. This, in turn, leads to an overestimation of the potential uptake of 

variable RES and an overestimation of the potential of baseload technologies while flexible and 

peak-load technologies are not sufficiently valued [14, 69]. As a result, such a stylized temporal 

representation is shown to lead to an underestimation of the total system costs. While the impact 

on model results has shown to be limited to a low penetration of variable RES, it grows with 

penetrations of variable RES [10].  In the following, we present four methodologies to directly 

improve the temporal representation in ESOMs 

3.2.1.1 Semi-dynamic balancing using typical days with increased resolution 

First, a number of authors have experimented with increasing the temporal resolution (i.e., the 

number of diurnal time-slices) of the typical days [10, 12, 13, 15, 77-79]. Pina et al. [77] increase the 

number of time-slices used in a TIMES model for Sao Miguel (Azores, Portugal) to 288 by considering 

4 seasons, 3 types of day per season (weekday, Saturday, Sunday) and 24 hours per day. By varying 

the number of diurnal time-slices, they show that using an hourly resolution impacts results. More 

specifically, fewer investments in wind turbines are observed when the resolution is increased. In an 

analysis of the Swiss power system using the Swiss TIMES electricity model (STEM –E) [79], the 

benefits of a greater temporal resolution are demonstrated by a comparison between the model 

with 288 time-slices and an aggregated version with 8 time-slices  [78]. While increasing the 

temporal resolution is shown to yield some benefits, mainly in capturing the variations in load and 

solar generation, Ludig et. al. [13] have shown that increasing the resolution of the typical days is not 

sufficient to grasp the inherent variability of wind power, because wind generation in the studied 

area (Germany) is little correlated with the time of the day. A more elaborate discussion in this 

regard can be found in [10] where it is shown that it is not merely the temporal resolution which 

impacts results.  

3.2.1.2 Integral balancing based on approximating the joint probability distribution of the load and 

VRES generation 

A second methodology is to expand the integral method of balancing demand and supply to slicing 

the joint probability distribution of load and VRES generation. This can be done by not only 

distinguishing explicitly between different load levels occurring throughout a year but by 

simultaneously accounting for different levels of VRES generation [10, 73, 80]. Following the 

methodology of the integral method, a year can first be subdivided into different bands of load 

levels, each representing a certain fraction of the year. These time-slices can be further 

disaggregated into periods with high and low wind generation and high and low solar generation. 

The advantage of this approach is that the variability of load and VRES generation and their 
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correlation are accounted for with only a limited number of time-slices. However, the disadvantage 

of this approach is that the chronology is lost, and the dynamics of the system and the 

corresponding value of flexibility options, such as storage systems, cannot be represented [10]. The 

importance of retaining chronology for the cost-optimal evolution of the South-Australian power 

system is analysed in  [18], where the results of a model with and without chronology were 

compared. In the presented case, differences in the capacity mix were shown to be significant. The 

model that retains chronology is shown to invest less in VRES and baseload technologies and more in 

flexible thermal power plants. However, the total system cost resulting from the capacity expansion 

plans obtained using the model with and without chronology were shown to be very similar for the 

presented case. Recently, this improved integral method has been applied to the GET model [80]. 

3.2.1.3 Semi-dynamic balancing using representative historical periods 

A final methodology is to use the semi-dynamic method with representative historical periods 

instead of averaged typical days. A schematic of using a set of historical periods in ESOMs is 

presented in Figure 4. From various time series (e.g., load, wind speed, solar irradiance), a number of 

representative periods 𝑑 ∈ 𝐷′ are selected. Each of these selected periods is given a certain weight 𝑤𝑑, i.e., the number of times this period is assumed to be repeated within a single year. The ESOM 

aims to minimize the sum of fixed costs and variable costs. While the fixed costs are only dependent 

on the investment decisions 𝑐𝑎𝑝𝑔 in different technologies 𝑔, the variable costs are dependent on 

the electricity generated by each of these technologies in every time step 𝑔𝑒𝑛𝑔,𝑑,𝑡. The balance of 

demand and supply is imposed for every time step 𝑡 (e.g., hour) of every representative period 𝑑. 

The weights 𝑤𝑑 are then used to scale the variable costs incurred during each representative period 

to an equivalent annual amount. Similarly, the annual electricity generation from different 

generation technologies 𝑔 and the corresponding greenhouse gasses can be scaled to equivalent 

annual amounts. Since only the data of historical periods is used, averaging of load or VRES 

generation is only needed to reduce the number of diurnal time-slices. As a result, the variability of 

load levels and VRES generation can be captured. In addition, chronology is maintained. For these 

reasons, this methodology can capture the short-term dynamic variations in demand and supply, 

which is crucial to assess the value of and need for short-term storage systems, and to allow 

modelling the limited flexibility of the generation technologies (e.g., ramping rates, start-up costs). 

However, a careful selection of a set of representative historical periods is essential for the quality of 

this methodology. Indeed, not every set of historical periods will provide a good approximation of 

the joint probability distribution of load and VRES generation levels, as shown in [10].  Therefore, 

care should be taken in carefully selecting a representative set of historical periods.  
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Figure 4: Schematic of how a set of representative days can be used in ESOMs [76] 

To select a representative set of historical periods, multiple approaches can be found in the 

literature. A comprehensive overview of different approaches, their strengths and limitations can be 

found in [76]. Certain approaches rely on simple heuristics (e.g.[81-85]). More advanced approaches 

make use of clustering algorithms to cluster days with similar load, wind speed and solar irradiance 

patterns. Different clustering algorithms, such as Ward’s hierarchical clustering algorithm [75], the k-

medoids [86], k-means [87-89] and fuzzy C-means algorithm [86] have been applied in this regard. 

Once all days are grouped into a number of clusters, a single representative day is selected from 

each cluster. The weight assigned to each representative day, i.e., the number of time this 

representative days is assumed to be repeated within one year, corresponds to the number of days 

that are grouped into its parent cluster. These clustering algorithms thus have the advantage that 

the weights of each representative day are determined exogenously. This allows to account for rare 

events, while common situations can be represented by a low number of days with large weights. 

Clustering techniques have been applied to select representative periods in the LIMES-EU model 

[90], the US-REGEN model [72] and the POTEnCIA model [91].  Other approaches randomly select 

numerous potential sets of representative historical periods and use metrics to assess the quality of 

these sets in order to pick a representative set of historical periods [16]. A fundamental difference 

with the heuristic approaches discussed above is that the selection is based on the evaluation of the 

full set of representative periods, whereas in the heuristic approaches, the selection is based on the 

characteristics of individual historical periods or the similarity between individual historical periods. 

A final approach makes use of a mixed-integer linear programming (MILP) model to select a set of 

representative historical days (binary variables) and their weights (linear variables) in order to 

minimize the errors in approximating the distribution of load and VRES generation time series as 

well as their correlation [76]. 

Different approaches to select representative days are compared in [76]. It is shown that by 

optimizing the selection and weights of the representative days using the MILP model, more 

accurate results are obtained than the ones obtained through random selection algorithms, 
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clustering algorithms and heuristic approaches. A better selection of representative days allows to 

increase the accuracy from the ESOM without increasing the computational cost. Particularly for 

models which are restricted to a low number of time-slices, the added value of a better selection of 

representative days can be high. 

 

In an application of the LIMES-EU model of the European power system, Nahmmacher et al. [75] 

have compared the model results for a varying number of representative days. Their results show 

that the accuracy of the ESOM increases as more representative days are selected, but the marginal 

benefit of increasing the number of days rapidly decreases. As a trade-off needs to be made 

between the computational complexity and the accuracy of the model, they conclude that using 6 

representative days is sufficient to obtain a reasonable accuracy: in their presented case, increasing 

the resolution from 6 to 100 representative days only changes total system costs by 4%. Using a 3-

hourly time-resolution, the 6 representative days corresponds to a total of 48 time-slices, which lies 

in the range of time-slices frequently used in ESOMs.  

 

3.2.1.4 Using stochastic programming as a means to address modelling uncertainties 

Increasing the temporal representation to capture RES profiles improves the quality of the solution 
obtained, and by using state-of-the-art methodologies for selecting representative days leads to 
accurate sampling of solar and wind availability historical profiles and results in investment decisions 
that incorporate notions of hedging. Yet, these investment decisions are taken with perfect 
knowledge about the availability of solar and wind energy, while in reality they are made before the 
uncertainty surrounding this availability is resolved. This decision problem can be accurately 
modelled with a two-stage stochastic programming [92] which can be applied in a similar manner as 
it has been applied for long-term decisions under uncertainty, e.g. in [93-95]. Thus, the investments 
in power generation and storage technologies can be made in the first stage, while in the second 
stage these investment decisions are fixed, the uncertainty about the solar/wind profiles is resolved 
and recourse actions are taken to find optimal investment decisions. The application of stochastic 
programming relies on scenario trees, in which each stage corresponds to a resolution time3 and is 
characterised by a set of states4 (Figure5 on the left). Each path from the first node to any last node 
in the tree is called “scenario”. A typical mathematical formulation of a two-stage stochastic 
programming problem can be found in [96]. 

Recurring uncertainties, such as hydrological and wind/solar conditions, lead to a simplified 
formulation, because the information about already resolved uncertainties of the past cannot be 
used for future investment decisions [97]. Thus, the investment decisions variables have a single 
state in all periods, and only period-specific generation variables are split into the set of states 
implied by the scenario tree. If the recurring uncertainties can be also considered independent 
between successive periods5, then a further simplification can be achieved by taking into account 
that the impacts these uncertainties are no longer conditional on the state of the previous period. 
This assumption eliminates the necessity to branch the scenario tree in every modelling time period 
(Figure5 on the right). Following this approach, the investment decisions are made in the first stage 
for every modelled time period and come into effect in the second stage of the same modelled 
period, by when the true availability of wind and solar energy is revealed [98].  

                                                           
3
 Resolution time is the time when the actual value of the uncertain parameter is revealed. 

4
 The states correspond to the different values, together with their corresponding probabilities, that an 

uncertain parameter has in this particular stage. 
5
 This holds for example in the uncertainties related to solar and wind availability. 
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Each node of the second stage in the scenario tree has an operational time structure, defined by a 
number of timeslices (in Figure5 288 timeslices are defined in each node delineated into 4 seasons 
and 3 typical days of hourly resolution).  Solar and wind profiles are mapped to these timeslices 
either by random sampling or by using representative days (see section 3.2.1.3). All nodes belonging 
to the same scenario have exactly the same wind and solar profiles. However, across different 
scenarios the solar and wind profiles are different and they are associated with a probability of 
occurrence6. The total number of timeslices in a modelling year is the product of scenarios with the 
number of timeslices in each node7. 

 

Figure 5: On the left a multi-stage scenario tree; On the right: a modified scenario tree for 

recurring independent between successive periods short-term uncertainties.  

The derived scenario tree must be stable in order to ensure that the solution obtained does not 
depend on the representation of the scenario tree but on the underlying data set. This requires a 
large number of scenarios to be initially created by using appropriate scenario tree generation 
algorithms [99, 100] and then to employ scenario reduction techniques [101] to improve the 
computational time. For example, iterative random sampling of actual historical days can be 
employed8 [98] in order to create a large number of different scenario trees and then to select the 
one that displays the minimum deviation in the first four moments9 with the historical data. 
Alternatively one may consider the application of state-of-the-art methodologies for selecting 
representative days (section 3.2.1.3) to generate different scenarios that correspond for example to 
different historical years. 

Among the advantages of using stochastic programming are: a) the evaluation of hedging strategies; 
b) the endogenous requirements of back-up capacity; c) the possibility to measure the expected 
system cost disregarding uncertainty through the metric of the Value of Stochastic Solution10 (VSS) 
[102, 103], and; d) the provision of insights regarding the additional cost for providing back-up 

                                                           
6
 This also implies that there is the flexibility to use state-of-the-art methodologies for selecting representative 

days for each scenario in the scenario tree and then each scenario to correspond to wind and solar profiles 
from different historical years. 
7
 For example if we assume 90 scenarios with 288 timeslices in each node, then the total number of timeslices 

in a year is 25920; this implies that a typical operational hour in a year is delineated into several instances with 
respect to the values of the underlying random variables. 
8
 For example 𝑆 days are randomly selected to form the nodes of a scenario tree and by repeating this 

sampling 𝑁 times, 𝑁 different scenario trees are constructed from which the one that better reflects the 
underlying probability distributions of the random variables is selected. 
9
 The first four moments of a probability distribution include: mean, variance, skewness and kurtosis. 

10
 The VSS is defined as the difference between the expected optimal objective function value of the stochastic 

model with fixed investment decisions as they calculated by the deterministic model and the value of the 
objective function from the stochastic model. 
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capacity and storage options11 (and also for diversifying the electricity generation mix) through other 
metrics [102] and especially through the Expected Value of Perfect Information12 (EVPI) .  

In concluding this section, it should be noted that the approach presented in section 3.2.1.3 can be 
used in stochastic programming to improve the sampling of the underlying distributions of wind and 
solar power. This synergy occurs when constructing a specific scenario in the scenario tree. In fact, 
the similarity of stochastic programming and the approach presented in section 3.2.1.3 is that both 
are sampling the distributions of solar and wind availability with high accuracy. The difference lies 
that in deterministic approaches the investments are made with perfect knowledge about the solar 
and wind availability, while in stochastic programming this information is unknown at the time of the 
investment.  

 

 

Advantages and Limitations 

Four distinct methodologies have been put forward in literature. The first methodology to improve 

the temporal representation in ESOMs that has been described above is to increase the resolution of 

the typical days. Due to the fact that typical days are created by averaging data of multiple days, the 

variability of VRES capacity factors is underestimated, even if the resolution is increased. 

A second methodology is to expand the integral method of balancing demand and supply to 

approximate the joint probability distribution of load and VRES generation. The first advantage of 

this approach is that the distribution of the load and VRES generation can be captured relatively well 

in a limited number of time-slices. Second, the correlation between different time series is 

accounted for. This way, the RLDC will be approximated well for varying shares of VRES. Finally, 

implementing this approach requires a minimal effort. However, the main drawback of this approach 

is that chronology is lost, making it impossible to endogenously incorporate technical dynamic 

constraints and to determine the value of storage and other flexibility options. 

Another methodology is to use the data of a limited number of representative historical periods. The 

advantage of this approach is that both the distribution of the load and VRES generation can be 

captured while at the same time retaining the chronology. The main disadvantage of this approach is 

that the quality of this approach is strongly dependent on a good selection of a representative set of 

historical periods. A proper selection of a representative set of historical periods, therefore, requires 

the implementation of specific selection algorithms or optimization routines.   

The stochastic programming based methodology has benefits in that it makes the need for back-up 

capacity endogenous, allows for the hedging of flexible generation and allows for detailed 

quantification of uncertainty. Limitations of the approach are its dependence on the representation 

of uncertainty parameters which are specific and influential in model results and that the approach 

adds to the computation cost required for the model run13 

                                                           
11

 This can be also viewed as the support for enabling investment in flexible technologies (e.g. capacity 
payments) and in storage options to cope with the intermittency of solar and wind power. 
12

 The EVPI is the difference between the average performance with perfect information and the optimal 
stochastic solution. The EVPI can be also used as a proxy of how much are willing to pay to eliminate 
uncertainty.  
13

 Solving a recourse problem is generally difficult because it requires the evaluation of the expected costs of 
the second stage. This implies a high-dimensional numerical integration on the solutions to the individual 
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All these methodologies aim to improve the temporal representation such that the operations of the 

power system and the resulting cost, fuel consumption, GHG emissions, and reliability are better 

approximated. As such, by improving the temporal representation directly in the ESOM, the solution 

will become closer to the global optimal solution. While these approaches can be used to provide a 

more adequate and reliable power system, using either of these approaches is not sufficient to 

guarantee a reliable system. To this end, an even higher level of temporal detail and the inclusion of 

technical constraints would be required, as is the case in the soft-linking methodology. Moreover, all 

three methodologies highlighted above require using a somewhat higher number of time-slices than 

most ESOMs use at this moment. 

 

3.2.2 Improving the technical representation  

As discussed in Section 2.4, ESOMs typically do not consider individual power plants and the 

corresponding load-following constraints. This leads to an underestimation of total system cost and 

the need for flexibility providers [10, 11, 19, 20, 104]. Although the impact of reduced technical 

detail is significant, for high penetration levels of VRES, it was shown that the impact of the stylized 

temporal representation typically used in ESOMs is higher than the impact of the level of technical 

detail [11, 104]. 

3.2.2.1 Stylized integration of operational constraints 

A detailed implementation of the technical constraints which limit the flexibility of dispatchable 

power plants requires considering individual units and use of chronological data with a sufficiently 

high resolution [10]. As using such a high level of detail would make ESOMs intractable, more 

stylized representations of technical constraints are frequently implemented. As such, these stylized 

constraints do not directly represent the physical processes, but rather aim to mimic the impact of 

these physical constraints on the generation scheduling. Therefore, calibration of such constraints 

using more detailed models is required. Moreover, as this calibration depends on a lot of 

parameters, care is needed in transferring these constraints to applications of different power 

systems.  

 

There are ample examples of such stylized representations of technical constraints. A first example 

can be found in [105], where a must-run level and ramping rates are specified at a technology level 

to represent all technical constraints and costs related to load-following. For this reason, they state 

that the applied ramping rates should not be directly compared to the ramping rates of individual 

power plants. The European Electricity Market Model (EMMA) also does not consider individual 

plants (and corresponding integer variables). To mimic the behaviour of plant operators with respect 

to start-ups, generation costs of certain technologies are lowered such that these plants would not 

shut down if electricity prices would briefly drop below the actual generation cost. To prevent 

distorting total costs, the fixed costs of these technologies are increased [106]. Although this 

approach can to some extent mimic the effect of start-up costs, it does not allow modelling of hard 

physical constraints such as maximal ramping rates and minimum up and down times. Similarly, in 

the Regional Energy Deployment System (ReEDS), a cost penalty is attached to ramping and a 

                                                                                                                                                                                     
mathematical programs of the second stage. However, when the random data are discreetly distributed then 
the stochastic problem can be written as a deterministic equivalent problem, in which the expectations are 
included as finite sums and each constraint is duplicated for each realisation of the random variables. 
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minimum loading constraints prevents certain technologies from excessive cycling [107]. One 

specific, very popular, though highly stylized, method frequently used is to differentiate between 

inflexible (baseload) plants and flexible (peakload) plants by defining them at a different time slice 

levels. Typically, nuclear plants are defined at the annual level, meaning that their output is assumed 

to be fixed at one level for the entire year. Coal plants are often assumed to be slightly more flexible 

so that they can change their output between different seasonal time slices, while more flexible 

technologies are allowed to adapt power output freely. Although the exact implementation can 

differ, this method is amongst others used in [15, 66, 84, 108]. Recent developments of modelling 

frameworks for ESOMs enable stylized capture of the Unit Commitment and Economic Dispatch 

(with representation of characteristics such as ramping, minimum stable operation levels, minimum 

up and down times, start up and shutdown times and partial load efficiencies), such as for the TIMES 

ESOM in [109].  

3.2.2.2 Modelling ancillary services markets in long-term energy system models 

Ancillary services (or operating reserves) are provided by power plants in order to balance the power 
system in the case of forecast errors in supply and demand that result in frequency deviations. Three 
types of operating reserves are typically distinguished with different activation times [110]: primary, 
secondary and tertiary. A number of studies have already shown that inclusion of the need for 
operating reserves can have a significant impact on the results obtained from power system models 
[17, 19, 20]  and this provides an argument for implementing them also in ESOMs. Because in ESOMs 
a technology is usually assumed to comprise an indefinite number of power plants14, a stylized 
approach has to be followed [111], in which the technologies compete in both wholesale electricity 
and ancillary services markets. A technology can be logically divided into two parts:  the part 𝑝 
participates in the electricity market, while the part 𝑝𝑝 participates in the ancillary services markets 
(Figure 6). A capacity transfer equation ensures that there is sufficient capacity for both electricity 
generation and provision of positive reserves. On the other hand, negative reserves can be 
implemented as constraints on the minimum electricity generation requirements. The trade-off 
between committing capacity to the electricity market versus grid balancing is based on the marginal 
cost of electricity production (in order to cover generation costs) and the marginal cost of capacity in 
the reserve market (which accounts as a revenue in order to cover fixed operating and investment 
costs). 

The analyst may define also a maximum share of online capacity of each technology, according to 
which a technology can contribute to meeting negative reserves. The provision of positive reserves 
may not be dependent on the online capacities, since some technologies can ramp-up fast enough 
to provide positive reserve without the need for any plants to be online.  

                                                           
14

 Otherwise mixed integer programming can be employed to identify concrete power plant block sizes.  
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Figure 6: A stylized approach for introducing ancillary markets in ESOMs.  

Following the approach presented in [68] a power plant can be classified into one of the following 
three categories with respect to the provision of primary and secondary reserve, given that the 
analyst has specified the time horizon associated with each reserve type:  

 Flexible technologies with high ramping rates, which can bring additional online capacity (or 
withdraw capacity) within the specified reserve timeframe to meet the reserve demand. The 
provision of positive reserve is constrained by the total available capacity, while the 
provision of negative reserve can be equal to the electricity generation capacity. Thus, there 
is no need to keep more capacity online than what is needed for electricity generation.   

 Non-flexible units with low ramping rates, which can provide limited negative reserve 
(constrained by the ramping rates), which is not more than the difference between the 
current generation level and the minimum stable operation, and limited positive reserve 
(constrained by the ramping rates), which is not more than the difference between the 
maximum available capacity and the capacity committed for electricity generation). Thus, 
the capacity committed for electricity generation should exceed the minimum stable 
operation level and the provided negative reserves, while the total online capacity should be 
equal to the capacity committed for electricity generation plus all provided positive reserves. 

 Technologies which cannot provide fast enough primary reserve but are suitable for 
secondary reserve. This implies a combination of the above two categories: the provision of 
primary reserve requires an operation below the online capacity in order to ramp-up the 
generation if needed; the secondary reserve is constrained by the ramping characteristics 
and the total available capacity of a technology. The required minimum electricity 
generation has to be at least as high as the secondary negative reserve provided. Any 
additional primary negative reserve requires an operation above the minimum stable 
operation level 

 

The demand for operating reserves can be determined endogenously by using a probabilistic 
approach [112] (see also Figure 7). First, the individual probability density functions (PDF) of the 
random variables regarding the forecast errors in electricity demand, in wind production and in solar 
production are estimated, either from historical data or theoretical considerations15. Then the joint 
density distribution is derived by means of statistical convolution. Additional random variables, e.g. 

                                                           
15

 The most common approach is to assume a Gaussian distribution of the forecast error with mean 0 and 
standard error equal to the forecast error [113] Doherty R, O'Malley M. A new approach to quantify reserve 
demand in systems with significant installed wind capacity. IEEE Transactions on Power Systems. 2005;20:587-
95, [114] Ortega-Vazquez MA, Kirschen DS. Estimating the spinning reserve requirements in systems with 
significant wind power generation penetration. Ibid. 2009;24:114-24. or a hyperbolic distribution[115] Hodge 
B-M, Florita A, Orwig K, Lew D, Milligan M. A comparison of wind power and load forecasting error 
distributions.  2012 World Renewable Energy Forum2012. p. 13-7. 
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plant outages, can also be included provided that there is an underlying probability density function 
that describes them. Finally, positive and negative reserves are set in a way that the area under the 
density function equals three standard deviations16 [113]. For example, by assuming independence 
between demand, wind and solar forecast errors, the reserve requirements in hour 𝑡 are: 𝑅𝑡 = 3 ∗ √∑(𝜎𝐷,𝑘2 ∙ 𝐷𝑘,𝑡2 ) +𝑘 ∑(𝜎𝑆,𝑚2 ∙ 𝑆𝑚,𝑡2 )𝑚  

where 𝐷𝑘,𝑡 is the electricity demand of end-use sector 𝑘, 𝑆𝑚,𝑡 is the electricity generation of the 
stochastic RES option 𝑚, 𝜎𝐷,𝑘 is the variance of the probability density function of the forecast error 
of electricity demand in sector 𝑘, 𝜎𝑆,𝑚 is the variance of the probability density function of the 
forecast error of electricity production from the stochastic renewable source 𝑚. Additional terms, 
e.g. the loss of the largest unit (N-1 criterion) can be also included in the above equation [112]. 

 

Figure 7: A probabilistic approach for ex-ante determination of requiring positive and negative 

control capacity [112]. 

The above approach implies different standard deviations for the PDFs of demand, wind and solar 
forecast errors for the different operational reserve types (primary, secondary and tertiary). In [118] 
it is suggested that variations in wind production, solar production and demand over a half an hour 
time horizon to be chosen for estimating primary reserve requirements and over a four-hour horizon 
for secondary reserve requirements17.  

                                                           
16

 Since this is a non-linear equation, in LP models this expression has to be linearised, by applying techniques 
based on regression [116] Freedman DA. Statistical models: theory and practice: cambridge university press; 
2009. or stochastic linearisation [117] Socha L. Linearization methods for stochastic dynamic systems: Springer 
Science & Business Media; 2007. or simple linearisation.  
17

 For example, by following this approach, standard deviations for demand wind and solar for primary reserve 
is 0.25%, 1.4% and 0.4% respectively in [111] Vögelin P, Georges G, Noembrini F, Koch B, Boulouchos K, Buffat 
R, et al. System modelling for assessing the potential of decentralised biomass-CHP plants to stabilise 
the Swiss electricity network with increased fluctuating renewable generation. 
http://www.bfe.admin.ch/php/modules/enet/streamfile.php?file=000000011337.pdf 2016., while for 
secondary reserves is 1.3%, 6.0% and 5.9% in the same study. Similarly in [68] Welsch M, Howells M, 
Hesamzadeh MR, Ó Gallachóir B, Deane P, Strachan N, et al. Supporting security and adequacy in future energy 
systems: The need to enhance long‐term energy system models to better treat issues related to variability. 
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The stylized approach described above requires assumptions on the maximum share of online 
capacity of each technology that can contribute to negative reserve provision. In addition, the 
analyst may introduce minimum shares of positive primary and secondary reserve that has to be 
provided from online plants, in order to avoid unrealistic situations when all the positive reserve is 
provided by offline units. A key assumption, though, is the forecast errors in wind, solar and 
electricity load. Moreover, they are also needed assumptions about the evolution of the quality of 
the forecasting techniques in the long-term and to the extent that different technologies can 
contribute to these reserves [119]. Another consideration is that the forecast error depends on 
weather and geographical conditions, as well as on technology sites, that if aggregated can lead to a 
decrease in the spread of forecasting errors [120]. 

Advantages and Limitations 

Two approaches have been described with the aim of directly improving the technical 

representation in ESOMs each with their respective advantages and limitations.  

The stylized integration of operational constraints has a key benefit in that it allows easy integration 

of different operational constraints the model that directly increase the optimality of the solution. 

However, given they are stylized, they do not explicitly capture the system constraints – they mimic 

them. This means that the validity of such integrated constraints cannot always be guaranteed and 

they often require calibration through use of more detailed models. 

The methodology that integrates the requirement ancillary services into the optimisation of the 

system adds value to modelling result in that it allows for the increased optimality of the solution 

and captures a very influential technical constraint on system operation that is often omitted from 

such long-term planning models. An obvious limitation is that it requires the use of additional 

variables and constraints that increase the computation complexity required for a solution. Another 

is the uncertainty surrounding the endogenous sizing of operating reserve requirement over long 

time horizons, which makes the integration of these requirements into ESOMs challenging given the 

technological developments that may alter required operational reserves in future. A final limitation 

is that it requires an assumption on the evolution of the accuracy of the forecasting techniques 

regarding wind, solar and electricity load profiles.  

 

 

 

 

 

 

 

                                                                                                                                                                                     
International Journal of Energy Research. 2015;39:377-96. the standard deviations of 1% and 1.4% were used 
for demand and the wind standard deviations respectively for assessing primary reserve requirements, while 
2% and 6% for secondary reserves. 
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3.3. Direct integration methodologies for IAMs  

A very different approach to representing the integration challenges of wind and solar in large-scale 

energy-economy models (or IAMs) was developed by Ueckerdt et al [121, 122]: the residual load 

duration curve (RLDC) approach. IAMs are used to analyse long-term mitigation strategies, and are 

therefore very complex – they need to include all energy sectors and carriers, all world regions, and 

cover the full 21st century. Adding hundreds of time-slices would increase the numerical complexity 

to a level that currently would make them unsolvable. In contrast to other approaches that 

substantially increase the temporal resolution of the energy modelling tool, the RLDC-approach is 

based on a pre-analysis of detailed temporal data about load and generation from variable 

renewable energies (VRE) in order to extract the important dynamics and only implements these in 

the IAM. It takes advantage of the fact that many of the fundamental properties of a power system 

are contained in the RLDC [123]. An RLDC is the temporally reordered residual load that needs to be 

supplied by dispatchable power plants at a given share of VRE in the electricity generation mix (see 

Figure 8). The RLDC contains i) the peak demand that needs to be met by dispatchable capacities, ii) 

the number of hours that a certain capacity level is needed, and iii) the curtailment in times when 

VRE supply is larger than load. Because the RLDC ignores the chronology of the year, the RLDC and 

thereby these characteristics of a power system can be described quite accurately with a relatively 

small number of parameters.  

 

Figure 8: Chronological (left) and duration curves (right). The upper black line represents the load, while the lower grey 

line represents the residual load that needs to be covered by dispatchable power plants after adding 25% generation 

from wind and 25% generation from PV. To calculate the duration curves on the right, both load and residual load are 

reordered from highest to lowest value. The RLDC on the right shows three main challenges arising from including wind 

and solar: They do not fully contribute to the reduction of peak load, they lead to lower utilization of dispatchable 

power plants, and they can produce more than load, leading to curtailments. 
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The RLDC approach as implemented in the integrated assessment model REMIND [4, 60, 64] is based 

on a direct representation of the dynamic changes of the residual load duration curve with 

increasing wind and solar generation [122]. While the representative day approach presented in the 

following section uses a large number of time-slices to recreate the RLDC at various VRE shares, the 

RLDC approach uses only very few load bands to represent the shape of the RLDC but varies the 

height of each load band non-linearly depending on the share of wind and solar. Accordingly, the 

RLDC approach is only useful for non-linear models. The RLDC implementation in REMIND increased 

model runtimes by a factor 3-5. 

In REMIND, the RLDC is represented through six values: four load bands representing the shape of 

the RLDC curve, a superpeak capacity requirement, and the amount of curtailment (see Figure 9). 

Each of these 6 values is represented by a third-order polynomial that depends on the relative 

contribution of PV and wind to load (see Figure 10 to see how the height of the superpeak decreases 

with increasing wind and solar share). The model ensures that sufficient dispatchable capacity is 

installed to cover each load band, and calculates the resulting capacity factors from the full load 

hours of a load band. For a more detailed description including a full parameterization for all world 

regions, see [122]. 

 

Figure 9: Left: Representation of RLDCs in REMIND in a discretized form with the help of four load bands. Left: Black line 

represents the RLDC at 0% VRE; the load band heights of the four load bands are fitted to best represent the RLDC.  

Right: At a wind share of 40%, the RLDC is decreased (black curve). According to the changing slope of the RLDC, the 

reduction of load band heights (as shown by the blue arrows) is very different across the different load bands. The 

height of the base load band is reduced much stronger than the height of the mid and peak load bands.  

The REMIND model intertemporally optimizes the investment into both VRE and dispatchable 

capacities to meet a price-elastic electricity demand. In climate mitigation scenarios, carbon prices 

increase the cost of conventional power plants, so that more wind and solar power is deployed. As 

wind and solar shares increase, the base load band shrinks in comparison to the mid and peak load 

bands (see Figure 9, right). Accordingly, the model will over time replace the current power system 

consisting of a large share of baseload plants and invest more into dispatchable power plants with 

low capital intensity, such as open-cycle gas turbines or hydrogen turbines. 
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Figure 10: Change of the superpeak value (z-axis) with increasing wind and solar share (x/y-axes), assuming use of short-

term storage. The depicted values are normalized to the superpeak value in a system without wind or solar. Blue crosses 

represent individual DIMES model runs, the coloured surface represents the third order polynomial representation in 

REMIND. In x/y direction, blue crosses sit at the crossing of black surface lines – if the crosses are fully visible, they have 

a value larger than the polynomial fit, if the crosses are clipped or hidden by the surface, they have a value lower than 

the polynomial fit.  

While the REMIND full implementation of the RLDCs requires the use of non-linear solvers to 

represent the third-order polynomials, the MESSAGE model includes mixed-integer approximations 

of some of the key characteristics of the RLDC, such as the VRES-share-dependent contribution of 

wind and solar to covering peak demand, or VRES-share-dependent flexibility requirements [124]. 

As the RLDC contains no information on chronology, the use of short-term storage such as pumped 

hydro storage or battery storage is difficult to implement endogenously in this approach. The reason 

is that short-term storage technologies like batteries are relatively costly and have especially high 

reservoir costs, thus they are most competitive if times with overproduction and times with high 

demand alternate frequently – therefore, photovoltaics with its diurnal variation is a natural 

complement for short-term storage. However, an RLDC does not contain any information whether or 

not the times with high demand on the left side of the RLDC alternate with the hours of 

overproduction on the right-hand side of the RLDC. 

To still include the effect of short-term storage in RLDC-based approaches, it is necessary to pre-

process the RLDC data and derive some proxy for the periodicity of the residual load. For the RLDCs 

developed in [122], the one node full year hourly dispatch and investment model DIMES was used to 

calculate cost-optimal short-term storage deployment at different wind and solar shares on the basis 

of the load and generation time series with full hourly detail over the year. In a way, this process has 

similarities with the uni-directional soft-linking described in 3.1 but acts in the opposite direction: 

the highly detailed model is used to parameterize the inputs to the IAM. For the implementation in 

REMIND, the short-term storage capacities calculated by DIMES are also parameterized by a third-

order polynomial depending on wind and PV shares, and input as requirements into REMIND. While 

this required investment into storage results in additional costs to the electricity system, it also leads 

to an RLDC with reduced curtailment and reduced peak demand, as can be seen in Figure 11. 
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In contrast, long-term/seasonal storage can be endogenously represented with the help of the RLDC, 

because it relies on filling and emptying the reservoir only once per year. The model can use 

curtailed electricity from the right of the RLDC to produce hydrogen, which then can either be used 

in other sectors or in hydrogen turbines to provide dispatchable generation at times of high residual 

demand. 

 

 

Figure 11: Effect of short-term storage deployment in DIMES on the RLDC for Europe with a gross contribution (gross 

meaning “before curtailments”) to a load of 30% from wind and 40% from PV. The LDC is displayed in black. Compared 

to the RLDC before use of short-term storage (red), the RLDC with storage (blue) shows much lower residual peak 

demand and less curtailment. 

Advantages and Limitations 

The main advantage of the RLDC-approach is the reduction of complexity through pre-processing of 

load and VRE generation time series. This enables a decent representation of the power system with 

a relatively small number of parameters: six variables, each represented by a third-order polynomial, 

capture the most important power sector characteristics, as shown by a comparison of REMIND 

results with the hourly power sector model REMIX [24]. 

There are, however, a number of limitations to this methodology: 

 Due to the loss of chronology, short-term flexibility (ramping) constraints cannot be 

explicitly represented. However, as the RLDC captures the shift to low capacity factors at 

high shares of VRE, it will result in power systems with high amounts of low-capital cost 

power plants such as gas or hydrogen combustion turbines, which should ensure sufficient 

flexibility.  

 There are also issues regarding the spatial aspect of VRE integration (pooling, impact of grid 

extensions) in that these effects cannot be calculated from RLDCs, but rather need to be 

accounted for already in the original data from which the RLDCs were derived.  

 While the effect of using short-term storage cannot be directly calculated from the RLDC in 

REMIND itself, it was be implemented in an approximate way through a pre-processing step: 

cost-optimal storage capacities at different wind and solar shares are calculated with the 

help of a smaller dispatch and investment model with high temporal resolution, and this 
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information is basis for the REMIND investments into VRE, storage, and dispatchable 

capacities.  

 

4. Discussion and Conclusions 

The aim of this work was to review the current state of play with regards to how integration 

challenges of VRES are represented in ESOMs and IAMs. A key motivator in this was to aid future 

research by presenting and contrasting these methodologies so that, in future, energy system 

modellers can select and apply methodologies best suited to their situation. Failure to sufficiently 

capture the integration challenges of VRES can lead to unrealistic assessment of the difficulty 

associated with achieving a low carbon energy system and thus lead to sub-optimal energy system 

planning.  

The presented methodologies all have their own strengths and limitations but also differ in their 

ease of use. To aid the discussion, Table 1 presents an overview of the different methodologies and 

their respective advantages and disadvantages.  

Methodology Strengths Limitations and challenges 

Soft-link to an operational power 

system model 

Uni-directional soft-

link 

 Accurate assessment of operational costs, 
fuel consumption and greenhouse gas 
emissions 

 High level of temporal and technical detail 
allows assessment of power system 
reliability.  

 Good robustness check of energy system 
model results 

 Need for  a  UCED model in addition to 
the ESOM/IAM 

 Does not increase the optimality of the 
solution:  

 Can possibly overestimate integration 
costs of VRES, because the ESOM 
investments are not adjusted to 
account for the UCED challenges  

Bi-directional soft-

link 

 Allows for increased optimality of the 
solution 

 Iterative procedure has a lower 
computational cost than a single 
integrated ESOM/IAM with the same level 
of detail 

 Accurate assessment of costs, fuel 
consumption and greenhouse gas 
emissions 

 High level of temporal and technical detail 
allows assessment of power system 
reliability.  

 Good robustness check of energy system 
model results 

 Need for  a  UCED model in addition to 
the ESOM/IAM 

 Feedback to ESOM/IAM highly 
dependent on modeller skill and 
judgement 

 Optimality and convergence of the 
solution cannot be guaranteed 

Direct integration methodologies for 

ESOMs 

Semi-dynamic 

balancing using 

typical days with 

increased 

resolution 

 Allows for increased optimality of the 
solution 

 Ease of implementation 

 Retains chronology which allows the 
capture of the benefits associated with 
within-day storage systems and other 
types of flexibility 

 Averaging of VRES generation data of 
different days leads to smoothing of 
VRES output. 

 Reliable operation of the modelled 
power system in the short term 
(hourly)  is difficult to assess 

 Endogenous determination of the 
value of flexibility requires to include 
additional constraints, which further 
increase computational cost 

 Computational complexity increases 
with an increasing number of time-
slices 

Integral balancing 

based on 

approximating the 

joint probability 

distribution of the 

load and VRES 

 Allows for increased optimality of the 
solution 

 The variability of the load and VRES 
generation can be captured relatively well 
using a limited number of time-slices 

  The correlation between different time 
series is accounted for. This way, the RLDC 

 Chronology is lost making it impossible 
to assess the need for flexibility and 
the value of flexibility options 

 Reliable operation of the modelled 
power system in the short term 
(hourly)  is difficult to assess 
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generation  will be approximated well for varying 
shares of VRES. 

 Ease of implementation 

 

Semi-dynamic 

balancing using 

representative 

historical periods 

 Allows the strong increase of the 
optimality of the solution 

 The variability of the load and VRES 
generation can be captured well using a 
limited number of time-slices 

 The correlation between different time 
series can be accounted for. This way, the 
RLDC will be approximated well for 
varying shares of VRES. 

 Retains chronology which allows an 
endogenous determination of the value of 
flexibility options such as within-day 
storage. 

 Reliable operation of the modelled 
power system in the short term 
(hourly)  is difficult to assess  

 Good selection of representative 
historical periods requires 
implementation of a specific selection 
algorithm/model 

 Difficult to capture the impact of 
medium-term variations (e.g., periods 
of two weeks with almost no wind) 

 Endogenous determination of the 
value of flexibility requires to include 
additional constraints, which further 
increase computational cost 
 

Using stochastic 

programming as a 

means to address 

modelling 

uncertainties 

 The requirement for back-up capacity is 
endogenous removing the need for a 
commonly used peak constraint. 

 Hedges against not having enough 
flexibility generation capacity in the power 
system. 

 Detailed quantification of uncertainty  

 Can be combined with methodologies that 
increase intra-annual time resolution 

 Can incorporate several historical RES 
profiles 

 Measures the costs of disregarding 
uncertainty  

 Measures the cost of eliminating 
uncertainty (and hence provides insights 
about the order of magnitude of supports 
required in investments in back-up 
capacity and storage options) 

 Strongly increases computational 
complexity 

 Stochastic modelling requires a 
representation of the uncertain 
parameters that are specific to the 
model used  

 Requires advanced scenario tree 
generation techniques and reduction 
algorithms 

 Requires a solid understanding of 
probability concepts and sampling 
techniques 

 Can impose difficulties in interpreting 
the results obtained 

Stylized integration 

of operational 

constraints 

 Allows for increased optimality of the 
solution 

 Ease of implementation 

 Allows to mimic the impact of different 
constraints with only a minor increase in 
computational complexity 

 Requires calibration using more 

detailed models 

 General validity cannot be guaranteed 

Modelling ancillary 

services markets in 

long-term energy 

system models 

 Allows to increase the optimality of the 
solution 

 Captures the most influential technical 
constraint 

 Can be combined with a low level of 
temporal detail 

  

 Uncertainties related to endogenous 
sizing the need for operating reserves 
over long time horizons 

 Requires using additional variables and 
constraints which increase 
computational complexity 

Direct integration methodologies for 

IAMs 

Parametrization of 

residual load 

duration curves 

 Allows for increased optimality of the 
solution 

 The correlation between different time 
series is fully accounted for. This way, the 
RLDC will be approximated well for 
varying shares of VRES 

 Only a requires a limited increase in 
computational complexity compared to a 
time-slice approach 

 Chronology is lost, making it 
impossible to directly assess the need 
for flexibility and the value of flexibility 
options 

 Parametrization of the impact of 
short-term storage requires pre-
processing of the RLDC using a more 
detailed model 

 The spatial aspect of VRE integration 
(effect of transmission grid on pooling 
variability) cannot be endogenously 
calculated, but rather needs to be 
included in the RLDC data ex-ante. 

 Reliable operation of the modelled 
power system in short-term (hourly)  is 
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difficult to assess 

Table 1 - Tabular comparison of modelling methodologies 

Indirect soft linking approaches require the construction of new dedicated sectoral models and – 

more challengingly –handling the interface between the two models in order to arrive at consistent 

results. This allows for a good robustness check of energy system model results by leveraging the 

strengths of an operational power system model to gain additional insights into long term energy 

system model results. If it is a bi-directional soft-link then it also allows for increased optimality of 

the solution. The use of operational modelling means that also better assessment of operational 

costs, fuel consumption, greenhouse gas emissions and power system reliability is possible.  

A key strength of direct integration methodologies for ESOMs and IAMs discussed in this work is that 

are directly integrated into the model optimisation thus eliminating the need for an iterative 

approach as is required in the bidirectional soft-link approach. A key strength of such approaches 

improving the temporal representation in ESOMs is that they all allow for the better capture of 

variability of load and VRES generation. The use of stochastic programming and probability derived 

temporal representation also helps ensure that a wide range of possible outcomes are captured in 

the model optimisation, this makes the power system more robust in relation to modelling 

uncertainties. A common limitation of these approaches is that operation of the modelled power 

system in the short term remains difficult to assess, this is also true of the approach outlined for 

IAMs. The direct integration methodologies for ESOMs that improve the technical representation 

directly increase the optimality of solution. The stylized integration of operation constraints are easy 

to implement and the integration of ancillary services markets in ESOMs allow the capture of a very 

influential technical constraint on system operation. Generally, the challenge of the use of such 

approaches is that they require careful calibration to ensure validity and not doing so can lead to 

inaccurate assessment of VRES integration potential. In IAMs, the parameterization of RLDCs are 

effective in representing correlation between different time series thus making the RLDC well 

approximated well for varying shares of VRES while requiring only a limited increase in 

computational complexity. Loss of chronology makes it impossible for it to directly assess the value 

of flexibility measures and to thus assess the value of short term storage requires use of a separate 

more detailed model. This approach for IAMs also cannot endogenously capture the spatial element 

of VRES integration meaning it needs to be included in the RLDC data ex-ante. 

From this review it is evident that there are clear advantages and disadvantages to all the 

approaches discussed. Thus, it is apparent that the choice of methodology is highly dependent on 

the modelling situation to which it is to be applied regarding the models used, modeller skill and 

data availability. This work, by comparing a whole variety of approaches and identifying their 

strengths and limitations, helps modellers in their selection of a methodology best suited to them. 

There are certain principals that have been identified as guides for addressing flexibility in energy 

models such as careful consideration of model simplifications, definition of appropriate temporal 

and geographic resolution, definition of system flexibility constraints and model validation [36]. The 

inherent differences between the methodologies mean that each will integrate short term variations 
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differently into the modelling process and assess the flexibility of the system differently. To date 

these methodologies have been applied successfully to separate models and data sets, making it 

difficult to compare results. Future work is required to effectively compare strengths and 

weaknesses of the different approaches, this is a key hotspot for future research in this area.  

There are a number of avenues down which such research could be furthered. Any such work 

comparing methodologies should apply methodologies to the same region using the same data sets 

in order to increase comparability and reduce own-model bias in the evaluation. An example of such 

work are studies to directly compare methodologies that directly improve the temporal & technical 

representation respectively within long term planning models. This would quantify directly the 

trade-offs made when selecting a methodology to apply. Other work could be done to analyse the 

impact of improving the technical & technical representation of models in tandem. This could be 

done by applying various levels of technical representation in the model and coupling these 

additions with various levels of temporal representation. Such work would provide clarity on how 

the implementation of certain methodologies impact on one another and also how impactful certain 

technical elements become under various temporal representations in long term models and vice 

versa. These suggestions for future work would also benefit from uni-directional or bi-directional 

soft-linking which could operationally analyse under high resolution the various power sectors 

projected and give insights into their operational realisation.  Such analysis would provide clarity on 

the variety of results achieved by the different methodologies and lead to better estimation of the 

effort required to transition to an energy system with high proportions of renewable power 

generation which would, in turn, lead to better informed development of energy policy. 
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