
Integrating Software Testing and Run-Time
Checking in an Assertion Verification Framework

Edison Mera1 Pedro Lopez-García2 '3 Manuel Hermenegildo2 '4

edisonQfdi .ucm.es pedro. lopezQimdea.org hermeQfi.upm.es

1 Complutense University of Madrid (UCM), Spain
2 IMDEA Software, Spain

3 Spanish Research Council (CSIC), Spain
4 School of Computer Science, Technical University of Madrid (UPM), Spain.

Abstract. We have designed and implemented a framework that unifies unit
testing and run-time verification (as well as static verification and static de-
bugging). A key contribution of our approach is that a unified assertion lan­
guage is used for all of these tasks. We first propose methods for compiling run-
time checks for (parts of) assertions which cannot be verified at compile-time
via program transformation. This transformation allows checking preconditions
and postconditions, including conditional postconditions, properties at arbi-
trary program points, and certain computational properties. The implemented
transformation includes several optimizations to reduce run-time overhead. We
also propose a minimal addition to the assertion language which allows defining
unit tests to be run in order to detect possible violations of the (partial) spec-
ifications expressed by the assertions. This language can express for example
the input data for performing the unit tests or the number of times that the
unit tests should be repeated. We have implemented the framework within the
Ciao/CiaoPP system and effectively applied it to the verification of ISO-prolog
compliance and to the detection of different types of bugs in the Ciao system
source code. Several experimental results are presented that ¡Ilústrate differ­
ent trade-offs among program size, running time, or levéis of verbosity of the
messages shown to the user.

Keywords: dynamic verification, unit testing, static/dynamic debugging, as­
sertions.

1 Introduction

We present a framework (and its implementation) tha t uniñes unit testing and run-

time verification (as well as static verification and static debugging). Our approach
builds on [BDD+97,HPB99,PBH00a,HPBLG05], where an approach to program devel-
opment has been designed and implemented whose objective is to on one hand validate
and on the other ñnd bugs in programs with respect to speciñcations tha t are given
in terms of assertions. The approach is based on a novel and expressive language of
assertions for describing safety policies and, in general, very general program proper­
ties [PBH97,PBH00b][CLI97,BCC+06]. We have also proposed strategies for static (i.e.,
compile-time) checking of such policies as well as techniques for reducing at compile-
time, using information from static analysis, the number of checks tha t have to be done
dynamically (i.e., at run time) [PBH98,PBH99,HPBLG05]. Using these techniques, any

http://edisonQfdi.ucm.es
http://pedro.lopezQimdea.org
http://hermeQfi.upm.es

assertions present in the program are falsiñed or veriñed as completely as possible dur-
ing the compilation phase, since compile-time checking is always preferable to run-time,
which is necessarily always incomplete as a means of veriñcation. However the existence
in all practical programs of parameters and data only known at run-time and the rich
nature of the properties that we are interested in determine that a certain degree of
run-time checking is inevitable. In return the approach allows using very expressive
safety policies with reduced overhead.

While the static checking part of this model has been the subject of considerable
work, in this paper we shift to the actual run-time checking of safety policies, which
has received little previous attention. Our aim is to a) develop effective implementation
techniques for run-time checking that intégrate seamlessly into our combined compile-
time/run-time framework and b) to also develop integrated facilities for unit testing.
To this end, we have ñrst developed an implementation of run-time checks based on
transforming the program into a new one which at the same time preserves the se-
mantics of the original program and also checks during its execution the assertions
present in it, and thus the safety policy. The transformation allows checking precon-
ditions and postconditions, including conditional postconditions, i.e., postconditions
that must hold only when certain preconditions hold. It also allows checking properties
at arbitrary program points (i.e., between any two literals in a body clause) as well
as checking certain computational properties, i.e., properties that are not speciñc to a
program point but rather to whole computations, such as, for example, determinism,
non-failure, or use of resources (steps, time, memory, etc.).

Our transformation also addresses to some extent one of the main drawbacks of
run-time checking (in addition to incompleteness): the overhead introduced during
execution of the program. The proposed transformation reduces run-time overhead by
avoiding meta-interpretation whenever possible and by using special features of the
low-level language when appropriate. Also, run-time checks can be compiled inline as
opposed to calling a library, which introduces overhead due to additional (meta-)calls.

Another relevant issue addressed by our transformation is being able to provide
messages to the user which are as informative as possible when a violation of the safety
policy is found, i.e., when a run-time check fails. To this end, the transformation saves
appropriate information at source code level in the transformed ñle. Depending on the
level of code instrumentation selected, increasingly more accurate information about
the assertions will be saved, and, thus, presented, offering different trade-offs between
information level and program size.

With respect to the closely related subject of testing, we require only a minimal
extensión to the assertion language in order to be able to define unit tests [ER96]. The
resulting language can express for example the input data for performing such unit
tests, the expected output, the number of times that the unit tests should be repeated,
etc. In contrast to previous work in this área (e.g., [BJ93], [ZGQC08], or the unit-test
framework recently included in SWI-Prolog), a key contribution of our approach is
that these unit tests blend in with and reuse the assertion language and the overall
framework. In particular, only test drívers need to be added because the assertions and
their run-time tests act as the checkers for the cases defined by the unit tests.

Both the run-time check generation and the unit testing approaches proposed have
been implemented within the CiaoPP/Ciao system. We provide some experimental
results which illustrate the implementation trade-offs involved. The integration with
the CiaoPP/Ciao compile-time checking allows reducing run-time overhead to checking
only those aspects of the safety policy that could not be determined statically. I.e., only

the checks in assertions (including "tests") which cannot be veriñed at compile-time
are converted into run-time checks. Note tha t since in our approach unit tests are
also assertions, static analysis this also eliminates parts of or whole unit tests which
may have been veriñed statically. At the same time, the tight integration also allows
using the unit test drivers to exercise run-time checks corresponding to those par ts of
assertions tha t could not be checked at compile-time, even if they were not conceived
as tests. Finally, properties inferred by static analysis (e.g., types) can also be used for
automatically generating input da ta for the unit tests (see [GZAP08] for a technique
for this purpose).

2 The Ciao Assertion Language

Assertions are linguistic constructions which allow expressing properties of programs. In
the Ciao assertion language, assertions are always instances of some assertion schema.

Such schemas allow talking about preconditions, (conditional) postconditions, whole
executions, program points, etc. Each schema in tu rn contains one or two logic formulae
which are (intuitively) used to say things such as "X is a list of integers," LL

Y is ground,"
u
p(X) does not fail," etc. In this approach the user has a high degree of freedom for

deñning these logic formulae for the properties considered of interest.
For space considerations, we will focus on a subset of the Ciao assertion language

(see [PBHOOb] for a detailed description of the full language). In particular, although
the language has assertions speciñcally designed for expressing properties related to
the declarative semantics, in this paper we will focus on the operatíonal semantics
of programs. Also, although the assertion language incorporates signiñcant syntactic
sugar, we will use only the (unfortunately more verbose) raw forms.

The assertions refer to execution states. An execution state (G I 0) consists of the
current goal G and the current constraint store (or store for short) 0 which contains
information on the valúes of variables. The operational semantics is given in terms
of derivations, which are sequences of reductions between such execution states. By
computatíon we mean the (sorted) execution tree containing all possible derivations of
a goal from a calling state. The rules for the grammar describing the assertion language
considered (including the extensions tha t will be described later) are listed in Fig. 1.

Predícate assertions: They refer to properties of a particular predicate. Given the
schemas below, a concrete assertion will include concrete properties in place of the
symbols Pred, Precond and Postcond. In all schemas Pred is a predícate descriptor,

Le., a predicate symbol as main functor and all arguments are distinct free variables
(pred-desc in the grammar shown in Fig. 1), and Precond and Postcond are logic formu­
las about execution states, represented with the non-terminal symbol state-formula in
the grammar. An atomic state-formula is a State-prop constructed with a state property

predícate (e.g., l i s t (X) or X > 3) which expresses properties about (the valúes) of the
variables. A state-formula can also be a conjunction or disjunction of state-formulae.

Standard (C)LP syntax is used, so tha t the comma should be interpreted as conjunction
(e.g., "(l i s t (X) , l i s t (Y))"), and the semicolon as disjunction (e.g., "(l i s t (X)
; i n t (X))").

Describing success states: : - s u c c e s s Pred [: Precond] => Postcond.

Interpretation: in any invocation of Pred if Precond holds in the calling state and
the computation succeeds, then Postcond should also hold in the success state.

Example 1. : - s u c c e s s q s o r t (A , B) : l i s t (A , n u m) => l i s t (B , n u m) .

If Precond is omitted, it is equivalent to: : - succe s s Pred : t rue => Postcond.

and it is interpreted as "in any activation of Pred which succeeds, Postcond should
hold in the success state."

— Describing admissihle calis: : - c a l i s Pred : Precond.

Interpretation: in all activations of Pred the formula Precond should hold in the
calling state.

Example 2. The following assertion expresses tha t in all calis to predicate q s o r t / 2

the ñrst argument should be bound to a list:

: - c a l i s qsort (L,R) : l i s t (L) .

The set of all c a l i assertions is considered closed in the sense tha t they must cover
all valid calis.

Describing properties of the computation:

: - comp Pred [: Precond] + comp-formula.

Interpretation: in any activation of Pred if Precond holds in the calling s tate then
comp-formula should also hold for the computation of Pred.

Example 3. : - comp qsort (L,R) : (l i s t (L , n u m) , var(R)) + n o t _ f a i l s .

where the atom n o t . f a i l s is implicitly interpreted as n o t _ f a i l s (q s o r t (L , R)) ,

i.e., it is as if it executed {qsort(L, R) I 0) and checked tha t it does not fail.

In addition, entry and e x i t assertions are identical to pred assertions, except tha t
they refer to external calis to the module (or predicate). Independently of the schema
used, each assertion has a flag (check, t r u s t , true , etc.), the assertion "status," which
determines whether the assertion is to be checked, to be trusted, has already been
proved correct by analysis, etc. Again for simplicity we use only the check status
herein (which is assumed by default when no flag is present).

Program-point assertions: The program points tha t we will consider are the places
in a program in which a new literal may be added, i.e., before the ñrst literal (if
any) of a clause, between two literals, and after the last literal (if any) of a clause.
Program-point assertions are literals appearing at the corresponding program point and
which are of the form: check(state-formula). where state-formula is a logic formula

about execution states (see the grammar in Fig. 1). The resulting assertion should be
interpreted as "whenever execution reaches a state originated at the program point in
which the assertion is, state-formula should hold."

The logic formulae: We allow conjunctions and disjunctions in the formulae, and
choose to write them down, for simplicity, in the usual CLP syntax. Thus, logic formulae
about execution states can be:

— An atom of the form p(ti,... ,tn) with n > 0, where p/n is a property predicate

(e.g., l i s t (X) or X > 3).

— An expression of the form (Fí, F2) where Fí and F'l are logic formulae about exe­
cution states and, as usual in CLP, the comma should be interpreted as conjunction
(e .g, "(l i s t (X) , l i s t (Y))").

— An expression of the form (Fí; F2) where Fí and F'l are logic formulae about
execution states and, as usual in CLP, the semicolon should be interpreted as
disjunction (e .g, "(l i s t (X) ; in t (X)) ").

program-assert :

predícate- as sert :

pred-assert :

pred-cond :

pred-desc :

args :

state-formula :

comp-formula :

exec-formula :

status :
prog-point-assert :

:= : - predicate-assert . | prog-point-assert

:= pred-assert | status pred-assert | entry pred-cond | ex i t pred-cond

| exec pred-cond + exec-formula

:= c a l i s pred-cond | success pred-cond => state-formula

| comp pred-cond + comp-formula

:= pred-desc \ pred-desc : state-formula

:= Pred-name(args)

:= Var \ Var, args

:= (state-formula , state-formula) \ (state-formula ; state-formula)

| compat (State-prop) \ State-prop

:= (comp-formula , comp-formula) \ (comp-formula ; comp-formula)

| Comp-prop

:= (exec-formula , exec-formula) \ Exec-prop

:= check | t rue | checked | t r u s t | f a l se
:= status (state-formula)

Fig. 1. Syntax of the assertion language.

3 Run-Time Checking of Predícate Assertions
We start by discussing two possible approaches regarding the source-to-source trans-
formations to be performed in order to implement run-time checking schemes.

In the ñrst kind of transformation the run-time checks are placed before and after
any cali to predicates which are affected by assertions; let p/2 be one such predicate.
We will cali this kind of transformation "transforming calis". In the second kind of
transformation the original predicate is rewritten so that it performs the run-time
checks itself, each time it is called. In this case only the deñnition of the procedure is
modiñed (in the example the original p predicate is renamed to p ' and a new deñnition
of p is added which performs the run-time checks; calis to p are left unchanged). We
will cali this kind of transformation "transforming procedure deñnitions."

Clearly, each scheme has advantages and disadvantages, specially when considering
a program consisting of several modules. When transforming calis, additional run-
time checking code will be introduced in all modules that cali the predicate which
contains a given assertion. This will likely result in a larger code size than in the
transforming procedure deñnitions approach, since a program can easily see a large
number of assertions from, e.g., librarles. Also, if a given ñle containing an assertion is
modiñed, all the modules using it will have to be recompiled. The big advantage of the
transforming calis approach is that if no run-time assertion checking is required in a
given module, only that module needs to be recompiled, whereas in the transforming
procedure deñnitions approach all the modules containing procedures with run-time
checks and which are used by the given module need recompilation. Thus, for librarles,
in the transforming calis approach only one versión of each ñle is compiled whereas in
the transforming procedure deñnitions approach typically two versions of the librarles
are kept in the system, one with run-time checks and the other one without. Both
approaches allow mixing modules with and without run-time checks. Another potential
advantage of the transforming calis approach is that it makes it easier for certain kinds
of analysis and specialization algorithms (specially those which are not multivariant)
to analyze and optimize programs annotated with run-time checks. On the other hand,
if the analysis and specialization system is multivariant (as in the case of CiaoPP) this
is less of an issue.

In view of all the advantages and disadvantages discussed in this work, we currently
use the transforming procedure deñnitions approach. Figure 3 illustrates this approach

Step One

pred :-
entry-checks,
exit-checks (preconditions),
pred',

exit-checks (postconditions).

VL rename pred by pred'
VL inside the module

Step Two

pred' :-
calls-checks,
success-checks (preconditions),
comp-checks (callstack(pred" , locator)) ,
success-checks (postconditions).

pred" :- bodyo . - - -
pred" :- body^.

Fig. 2 . Transformation scheme for a predicate pred, predicate assertions.

Assertion:
: - c a l i s Pred : Cond.

:- success Pred : Precond => Postcond.

:- comp Pred + Comp.

:- comp Pred : Precond + Comp.

The definition of Pred is transformed into:
Pred :- r tcheck(Cond), Pred'.

Pred':-....

Pred :- checkc(Precond,F), Pred',

checkif (F, Postcond).

Pred':-....

Pred :- check_comp(Comp,Pred').
Pred':-....

Pred :- checkc(Precond,F),
checkif_comp(F, Comp,Pred").

Pred':-....

Fig. 3 . Translation schemes for different kinds of predicate assertions.

for any assertion. Our run-time checking system is composed of a set of transformations,
to be performed by the preprocessor, and a library containing a number of primitives
that the transformed programs will cali. Figure 3 presents schemes of how procedures
are transformed in order to incorpórate run-time checking, for each type of (kernel),
predicate level assertions, i.e., c a l i s , succes s , or comp. Other, higher-level assertions
(such as pred assertions) and all additional syntactic sugar (such as modes or star
notation) is t ranslated by the compiler into the kernel assertions before applying the
transformation. In the case of entry and e x i t assertions, a renaming technique is used
inside the module to avoid checks in internal calis, as shown in the "Step One" column.

The run-time library includes the following predicates. These predicates can actu-
ally be used for both the transforming calis and transforming procedure deñnitions
approaches.

checkc (C ,F): checks condition C and sets F to t rue or false depending on whether
it succeeds or not. From a logical point of view this can be understood as:

(\ + C -> F = f a l s e ; F = t rue)

r t c h e c k (C) : checks if condition C succeeds or not. If C fails an exception is raised.
From a logical point of view this can be understood simply as \ + \ + C.

checkif (F ,P): postcondition P is checked iff F is t rue . If P fails an exception is
raised. From a logical point of view this can be understood as:

(F == t rue -> r t c h e c k (P) ; t r u e) .

r t c h e c k (C) is a specialized versión of checki f (t r u e , C) .

check.compif (í 1 , C o m p , P r e d ') : checks a computational property iff F is true. For a
given computational property P/í, and a predicate Pred' to be checked, a term
P(Pred') is built and passed as Comp. For example, if the property is not_f a i l s / 1

and the predicate qsor t_ l (A,B) , then Comp = n o t _ f a i l s (q s o r t _ l (A , B)) . In

turn, Pred' is used to pass the direct cali to the predicate (i.e., qsort_ l (A,B)

in the example). If F is f a l s e then Pred' is called, executing the procedure di-
rectly. If F is t rue then Comp is called. This relies on the fact tha t comp properties

are writ ten assuming tha t the goal to be called is passed as an argument and tha t
they take care of both running the procedure and checking whether the computa-
tional property holds. Again, if the (in this case, computational) property does not
hold an exception is raised. Prom a logical point of view this can be understood as:

(F == t rue -> Comp ; Pred') .

check_comp (C o m p , P r e d ') : a specialized versión of check_comp(true , Comp,Pred')

where the ñrst parameter is assumed to be true.
c a l l _ s t a c k (C , L): adds the current source code locator L to the locator stack S

allowing to show the cali stack on run-time errors. This can be understood as:
i n t e r c e p t (C ,r tc_error (S ' ,_T) , throw(rtc_error ([L | S] ,-T))).

The previous library predicates are implemented in such a way tha t they perform
the checks without modifying the program state, introducing side effects, errors, etc. In
other words, if all run-time errors are intercepted, the semantics of the program must
be preserved.

4 Combining Several Predícate Assertions
The schemes presented previously have illustrated how a single assertion is t ranslated
into run-time checks. Translating several c a l i s or succe s s assertions is relatively
straightforward: the corresponding r t c h e c k / 1 and checkc /2 are placed before the cali
to Pred', and any calis to c h e c k i f / 2 are gathered after it. But note tha t in the case of
c a l i s assertions, run-time check exceptions for the unsatisñed assertions are thrown
only if all such checks failed.

Combining computational properties is somewhat more involved. First we consider
the case of a single comp assertion with several properties, such as, e.g.:
: - comp qsort(A,B) : (l i s t (A , i n t) , var(B)) + (i s _ d e t , n o t _ f a i l s) .
In this case the properties will simply be nested in the Comp ñeld as follows: propl (prop2 (
... propN(Pred') ...)) (the Pred' ñeld stays obviously the same). For example, for
the assertion above the Comp ñeld will be n o t _ f a i l s (i s _ d e t (q s o r t _ l (A , B))) . If the
comp property has a precondition, it will be checked only once and then either the
Comp ñeld or Pred' will be called.

The situation is more complex when several comp assertions have to be combined.
Consider for example the following two comp assertions:
: - comp qsort(A,B) : (ground(A), var(B)) + i s _ d e t .

: - comp qsort(A,B) : (l i s t (A , i n t) , var(B)) + n o t _ f a i l s .

Assuming tha t Fl and F2 are the flags resulting from checking the conditions ground(A),

var(B) and l i s t (A , i n t) , var(B) respectively, the composition of the two assertions
above would be:

checkif_comp(F2, n o t _ f a i l s (c h e c k i f _ c o m p (F l , i s _ d e t (q s o r t _ l (A , B)) , q s o r t _ l (A , B))) ,

c h e c k i f _ c o m p (F l , i s _ d e t (q s o r t _ l (A , B)) , q s o r t _ l (A , B))) .

5 Run-Time Checking of Program-Point Assertions
Clauses are transformed as follows for run-time checking at program-points:

Program-point assertion:
Pred :- ..., check(Cond), ...
Pred :- ..., che ck (CompProp (Goal)), ...

The clause is transformed into:
Pred :- ..., r tcheck(Cond) , ...
Pred :- ..., check_comp(CompPropiGoal)), ...

This is a comparatively simpler task than implementing predicate-level assertions: the
natural transformation is a similar one to the "transforming calis" approach, but with
the advantage tha t only one program point needs to be transformed for each assertion.
Also, only the r t c h e c k / 1 and check_comp/l primitives are required. In the case of
computational properties its deñnition is called directly.

6 Deflning Unit Tests
In order to deñne a unit test we have to express on one hand what to execute and on
the other hand what to check at run-tíme. A key characteristic of our approach is tha t
we use the assertion language supported by the Ciao /CiaoPP system for expressing
what to check. This way, the same properties tha t can be expressed for static or run-
time checking can also be checked in unit testing. However, we have added a minimal
number of elements to the assertion language grammar for expressing what to execute.

They appear underlined in Fig. 1. In particular, we have added a new assertion schema

for expressing what to execute: : - exec Peed [: Precond] [+exec-formula].

This assertion states tha t we want to execute (as a test) a cali to Peed with its
variables instantiated to valúes tha t satisfy Precond. exec-formula is a conjunction of
properties about how to drive this execution. In uur approach many of the properties
usable in Precond (e.g., types) can be run as valué generators in order to genérate valúes
for these variables. We also have speciñc generator properties such as, for example, for
generating random valúes for the variables (e.g., for floating point numbers) including
special cases like infinite, not-a-number or zero with sign. Properties typically inferred
by static analysis (e.g., types) can also be used for automatically generating input da ta
for the unit tests (see [GZAP08] for a technique for this purpose).

Regarding the atomic formulas appearing exec-formula (Exec-prop in the grammar)
the following are two (currently deñned) useful properties:

t r y _ s o l s (N) : Expresses an upper bound N on the number of solutions to be checked.
t imes (N) : Expresses tha t a the execution should be repeated N times. This increases

the chances of test failure, for intermittent failures.

Example 4- The assertion:

: - exec append(A, B, C) : (A= [1 , 2 , 3] ,B=[4] , v a r (O) + t i m e s (5) .

expresses tha t a cali to append/3 with the ñrst and second arguments bound to [1 , 2 , 3]

and [4] respectively and the third one unbound should be executed ñve times.

Example 5. The assertion:

: - exec append(A, B, C): (A=X, B=Y, C=Z) + t r y _ s o l s (7) .

expresses tha t the cali to append(X, Y, Z) should be executed to get at most the ñrst
7 solutions through backtracking.

Example 6. We can deñne a unit test with the previous assertion in Example 4 together
with the following two assertions expressing what to check at run-time:

: - check succes s a p p e n d (A , B , C) : (A = [l , 2] , B = [3] , v a r (C)) => C = [l , 2 , 3] .

: - check comp a p p e n d (A , B , C) : (A = [l , 2] , B = [3] , v a r (C)) + n o t _ f a i l s .

The success assertion states tha t if a cali to append/3 with the ñrst and second
arguments bound to [1 , 2] and [3] respectively and the third one unbound terminates
with success, then the third argument should be bound to [1 , 2 , 3] . The comp assertion
says tha t such a cali will not fail. D

The advantage of the integrated framework tha t we propose is tha t the execution
expressed by the ñrst assertion for unit testing is also used for checking par ts of other
assertions tha t could not have been checked at compile-time and thus remain as run-
time checks. This way, a single run-time checking machinery is used for run-time checks
and unit testing. In addition, static checking of assertions can safely avoid (parts of)
unit tests execution.

7 Compound Assertions for Unit Tests
In order to simplify the process of writing tests we introduce another predícate assertion
schema, the t e s t schema, which can be seen as syntactic sugar for a set of predícate
assertions, and has the form:2

: - t e s t Pred [: Precond] [=> Postcond] [+ Comp-Exec-Props].

This assertion is interpreted as the combination of three assertions, one assertion ex-
pressing what to execute:

: - exec Pred [: Precond] [+ Exec-Props].

and two assertions expressing what to check:

: - check s u c c e s s Pred [: Precond] [=> Postcond].

: - check comp Pred [: Precond] [+Comp-Props].

For example, the assertion:
: - t e s t append(A,B,C) : (A = [1 , 2] , B = [3] , v a r (C)) => C = [l , 2 , 3]

+ (n o t _ f a i l s , t i m e s (5)) .
is t ranslated into the assertion in Example 4, plus the two in Example 6.

We now give some more (non-exhaustive) examples of unit test deñnition using
compound assertions.
Example 7. Tes t ing Failures a n d E x c e p t i o n s : In this example we illustrate the use
of some computational properties, namely, the property f a i l s (respectively not_f a i l s) ,

which expresses tha t the whole computation described by the test should fail (respec­
tively should not fail), and the property e x c e p t i o n (E x c e p) , which is used for express­
ing tha t a test execution should throw the exception Excep. Consider the predícate p / 2
deñned as follows:
p (a) .

p(b) : - f a i l .

p (c) : - t h r o w (e r r o r (c , "error c ")) .

The following tests succeed:
: - t e s t p(A) : (A = a) + n o t _ f a i l s .

: - t e s t p(A) : (A = b) + f a i l s .

: - t e s t p(A) : (A = c) + e x c e p t i o n (e r r o r (c , _)) .

The ñrst one says tha t the cali p (a) should not fail; the second one says tha t the
cali p (b) should fail; and the third one tha t the cali p (c) should raise an exception.
However, the following test reports an error, i.e., fails:
: - t e s t p(A) : (A = c) + n o t _ f a i l s .

Example 8. Tes t ing t h e W r i t t e n O u t p u t : For this purpose we use the (computa­
tional) property u ser_output (S tr ing) , which expresses tha t a predícate should write
the string S t r i n g into the current output stream.
The following test involving the library predícate d i s p l a y / 1 succeeds:
: - t e s t d i sp lay(A) : (A = h e l i o) + u s e r _ o u t p u t (" h e l i o ") .
However, the following tests report an error:
: - t e s t d i sp lay(A) : (A = h e l i o) + user_output ("bye") .

: - t e s t d i sp lay(A) : (A = h e l i o) + u s e r _ o u t p u t (" h e l i o ! ") .
Example 9. Tes t ing M ú l t i p l e So lut ions : Assume now tha t want to check all possible
solutions to a cali to append/3 with the ñrst two arguments uninstantiated. We can
write the following assertion for this purpose:
: - t e s t append(A,B,C) : (v a r (A) , v a r (B) , C = [1 , 2 , 3])

=> member((A, B) , [([] , [1 , 2 , 3]) , ([1] , [2 , 3]) ,

([1 , 2] , [3]) , ([1 , 2 , 3] , [])]) + n o t . f a i l s .

There are also other properties tha t can be used for example to express tha t a
predícate should write the string S tr into the current error s tream (user_error(Str)) ,

to express a time-out T for a test execution (resource(ub, t ime , T)), or to genérate
mmloni j n p u l dataA valúes with a given probabili ty distribution. . Al .

Note mat me syntax grammar présentea previousry aoes not mcmde tms extensión.

8 Generat ing User-friendly Messages

Whenever a run-time check fails an exception is raised. An exception handler will
then catch the exception and report the error. However, with the transformations
presented so far little information can be provided to the user, beyond the precondition
or postcondition that is producing the violation, since this is the only parameter passed
to most of the checking predicates.

Reporting simply that some condition failed is less informative than saying where
it did, to what assertion it corresponds, or what was the last cali mode of the predicate
that violated it. In the case of a comp assertion the actual cali could also be printed.

In contrast, during compile-time checking, when an assertion is proved not to hold,
both the assertion and the program point where the assertion was violated are reported,
an in a particular format so that the graphical program development environment can
lócate these points in the source code and highlight them automatically.

Our goal is to provide precise information when reporting violated assertions also
when performing run-time checks. This requires adding an extra argument to the check­
ing predicates through which certain information is passed, such as the location of the
corresponding assertion(s) and the cali program point in the source code. This infor­
mation can then be passed to the exception handler when the exception occurs, and
the handler can print it out in a suitable way. In particular, messages are generated
in a format that is compatible with that used when reporting compile-time checking
errors, and thus run-time errors can also be easily traced back to the sources by the pro­
gram development environment. The transformation is responsible for instrumenting
the transformed code to include the necessary information.

On the other hand, while having rich information available when a run-time check
fails is crucial to being able to lócate bugs in programs, there is a clear trade-off be-
tween the size of the program and the overhead introduced in it and the quality of
the messages issued. Different levéis of information may be appropriate for different
contexts. For example, programs can be compiled with a setting that implies lower
overhead and, if an exception is raised, the program can be recompiled with a higher
level of instrumentation and rerun until the exception is raised again, this time obtain-
ing more precise information for location of the error in the sources. Also, in systems
that are resource constrained, such as many pervasive and embedded systems, lower
levéis of instrumentation would be appropriate and perhaps even load and use of the
pretty printer library can be avoided, since the error messages can be interpreted in a
different host.

There are several levéis of instrumentation in the current implementation of the run-
time check transformations that can be conñgured. However, to keep this discussion
shorter, we report on 2 levéis in our experiments, explained below:

Low: information is saved to report the actual assertion being violated and the prop-
erty or properties that caused such violation.

High: in addition, predicates with assertions are further instrumented so that when a
run-time check fails, a cali stack dump is also shown up to the exact program point
where the violation occurs, showing for each predicate the literal in its body that
caused such violation.3

To illustrate the different code instrumentation levéis, consider the following assertion
and property deñnitions, in addition to a deñnition of qsort/2 such as that of Figure 4:
3 This can also be done at a lower level, via engine primitives, but we are interested in

measuring the cost of source level-only transformations.

:- success qsort(A,B) => (ground(B),sorted_num_list(B)).
: - prop sorted_num_list/l .
sorted_num_list([]) .
sorted_num_list([X]):- number(X).
sorted_num_list([X,Y|Z]):- number(X),number(Y),X=<Y,sorted_num_list([Y|Z]).

which ensures that q so r t /2 always returns a ground, sorted list. Assume also that the
program has been written in a buggy way (about which we will discover later). If we
select low instrumentation level the output during execution would be similar to:

?- q s o r t ([l , 2] , X) .
{In / tmp/qso r t .p l
ERROR: (lns 8-9) Run-time check f a i l u r e in a s se r t i on for :

q s o r t : q s o r t ([l , 2] , [2,1]) .
Unsat isf ied « s u c c e s s » property:
sor ted_num_l i s t ([2 ,1]) .

ERROR: (lns 16-21) Check f a i l ed in q s o r t / 2 .
}

Note that two errors are reported for a single run-time check failure. The ñrst error
shows the actual assertion being violated and the second marks the ñrst clause of the
predícate which violates the assertion. However, not enough information is provided to
be able to determine the literal in which the predícate was called causing the violation.
If we perform instead the transformation with the hígh instrumentation level the output
is:

?- call_rtc(qsort([3,1,2],B)).

{In /tmp/qsort.pl

ERROR: (lns 8-9) Run-time check failure in assertion for:

qsort:qsort([l,2] , [2,1]) .

Unsatisfied «success» property:

sorted_num_list([2,1]).

ERROR: (lns 16-21) Check failed in qsort/2.

ERROR: (lns 16-21) Check failed when invocation of

qsort([3,l,2],_l)

called qsort([1,2],_2) in its body.

}

{In /tmp/qsort.pl

ERROR: (lns 8-9) Run-time check failure in assertion for:

qsort:qsort([3,l,2],[3,2,1]).

Unsat isf ied « s u c c e s s » property:
so r t ed_num_l i s t ([3 ,2 ,1]) .

ERROR: (lns 16-21) Check f a i l ed in q s o r t / 2 .

In this example we have used the c a l l j r t c / 1 meta-predicate, which intercepts the
run-time error, shows the related message and lets the execution program continué as
if the program where not being checked. With this new output it is easier to detect
the error. Looking at the cali stack dump, we can see the list of predicates being
checked up to the cali of the buggy code. Note that the ñrst part of the assertion is
not violated, since B is ground. However, on success, the output of q so r t /2 is a sorted
list but in reverse order, which gives us a hint: the arguments in the cali to append/3
are mistakenly swapped.

: - c a l i s qsort(A,B) : l i s t (A,num).
: - success qsort(A,B) : l ist(A,num) => l i s t (B,num) .
: - comp qsort(A,B) : (l ist(A,mam), var(B)) + n o t _ f a i l s .

qsort([X|L],R) : - pa r t i t i on (L ,X ,L l ,L2) , qsort(L2,R2), qsort(L1.R1),
append(R2, [X|R1] ,R) .

qsor t ([] , []) .

: - c a l i s part i t ion(A,B,C,D) : (l i s t (A) ,num(B)) .
: - success part i t ion(A,B,C,D) : (l i s t (A) , num(B)) => (l i s t (C) , l i s t (D)) .
: - comp part i t ion(A,B,C,D) : (l i s t (A) , num(B)) + (n o t _ f a i l s , i s _ d e t) .

p a r t i t i o n ([] , B , [] , []) .
pa r t i t i on ([E |R] ,C, [ElLeftl] ,Right) : - E < C, !, pa r t i t i on (R ,C ,Lef t l ,R igh t) .
pa r t i t i on ([E |R] ,C,Left , [ElRightl]) : - pa r t i t i on (R ,C ,Lef t ,R igh t l) .

Fig. 4. A quick-sort program with assertions.

Qsort

Obj Size:
7625 (bytes)

Entry
Exit
Comp*

E / E / C

Calis
Success
Comp

c/s/c

Low

Inline
Modes

1.37
1.50
1.69
2.27

1.32
1.45
1.64
2.07

Types

1.04
1.78
1.93
2.62

1.62
1.73
1.88
2.41

Library
Modes

1.19
1.11
5.43
5.72

1.14
1.07
5.35
5.53

Types

1.22
1.15
5.45
5.77

1.17
1.11
5.38
5.58

High

Inline
Modes

1.81
1.94
2.60
3.20

1.72
1.85
2.57
3.01

Types

2.11
2.22
2.85
3.55

2.01
2.13
2.81
3.35

Library
Modes

1.32
1.23
5.53
5.83

1.23
1.14
5.45
5.64

Types

1.35
1.28
5.55
5.88

1.26
1.19
5.48
5.69

Table 1. Qsort size increment with several conñgurations of run-time checks.

9 Implementation and Experimental Results
We have implemented the framework within the Ciao/CiaoPP system.

The cali stack dump was implemented by reusing the exception handling mecha­
nism which is native in Ciao. Each time an exception is cached in a predicate with
run-time checks enabled, a locator is added to the exception. This way, a more infor-
mative message of the form "Failed when ... called ..." can be generated. However, such
exception handling mechanism was implemented using meta-calis, assert and retracts,
causing a negative impact in the benchmarks that use it.

We now report on some experimental results from our implementation within the
Ciao/CiaoPP system of the testing and run-time checking transformations proposed.
The experiments report both size and time overhead due to run-time checks. We have
used the qsort program in Figure 4, with an input list of size 600 to run several exper­
iments for different variations of the following parameters:

— Library or inlined run-time checks: we have implemented the transformation
ñrst as described in the previous sections, where the check predicates are assumed
to be in a library. The results are provided in the columns labeled Library. The
ratios shown are with respect to the execution time of the program with no run-time
checks. In addition, an alternative approach has been implemented, in which the
deñnitions of the run-time check library predicates are actually inlined in the calling

Qsort

exec time:
661 (us)

Entry
Exit
Comp*
E/E/C

Calis
Success
Comp
C/S/C

Low

Inline
Modes

1.00
1.00
1.00
1.00

3.36
4.58
6.25

10.20

Types

1.75
2.51
1.76
3.26

50.89
101.00
53.59

117.84

Library
Modes

1.00
1.01
1.01
1.03

65.30
151.54
95.86

192.01

Types

1.77
2.64
1.77
3.29

121.37
265.54
152.66
323.90

High

Inline
Modes

1.01
1.01
1.05
1.05

36.58
38.98

118.47
120.74

Types

1.76
2.52
1.81
3.31

86.15
141.96
164.30
238.56

Library
Modes

1.01
1.02
1.06
1.08

112.65
209.01
223.53
386.44

Types

1.77
2.54
1.82
3.35

169.62
325.77
281.82
547.87

Table 2. Slowdown of qso r t /2 with several conñgurations of run-time checks.

program. This often achieves allows better performance but sometimes at the cost
of the increased code size. Note however that not in all cases the code is increased,
because such inlining is in fact, a restricted kind of partial evaluation, that tries to
solve as many uniñcations as possible at compilation time, and sometimes terms
become smaller after such optimization.

— Use of types or modes properties: since checking complex types, such as in the
l i s t (i n t) check, which needs to traverse lists of integers over and over again,4 is
more expensive than checking modes (which in our case is handled through a cali to
the var/1 ISO-Prolog builtin) we have separated these cases in the experiments. In
the columns labeled Types only types are checked, whereas in the columns labeled
Modes only the modes are checked.

— Low or high instrumentation: as deñned in Section 8.
— Using several kinds of assertions: several combinations of different kinds of

assertions have been tested (ñrst column).

Table 1 and 2 present the overhead, in size and time respectively for the experiments,
expressed as the ratio w.r.t. the execution of the program with run-time checks disabled.
Execution was on a MacBook Pro, Intel Core 2 Dúo at 2.4Ghz, 2GB of RAM, Ubuntu
Linux 8.10 and Ciao versión 1, patch 13.

Note that the columns in the tables have been organized with several combinations
of the conñgurations explained above. In the rows of the tables we have tested the
different kind of assertions. For assertions about computational properties we have
that in Comp* the check is performed only at the entry point of the module, but not
for the infernal calis that occur inside.

The results show that the high level of instrumentation is quite expensive while the
overhead implied by the low level is better, specially in the case of inlining. This con-
ñrms our expectations. The high overhead implied by the high level of instrumentation
is also due in part to the lack of optimization in the exception handling mechanism of
Ciao.

Table 3 shows experimental results for larger programs, namely, the systems Ciao,
CiaoPP and LPdoc (and the librarles they use), all of which contain numerous asser­
tions in their code. It shows the size (in kilobytes) of binary and object ñles using

4 This overhead can be significantly reduced via múltiple specialization [PH99,PH95]. How­
ever, that optimization has not been applied in this case in order to measure the overhead
of fully checking the assertion.

App
Ñame

Ciao

CiaoPP

LPdoc

Source Metrics
Size
Lines

S
L
S
L
S
L

4018
121305

4819
152536

316
8810

Assertions
Modules

A
M
A
M
A
M

3062
610

1131
517
105

8

Compiled
Binary
Objects

B
O
B
O
B
O

2881
6660

13073
12868
5052

736

Run-Time Checked (ratio)
Low

Inline

1.34
2.78
1.15
1.28
1.22
1.18

Library

1.39
2.73
1.17
1.28
1.23
1.07

High
Inline

1.47
2.93
1.20
1.33
1.33
1.23

Library

1.48
2.85
1.21
1.32
1.29
1.12

Table 3. Size (in kilobytes) of binary and object ñles using several instrumentation
levéis of run-time checks, for large benchmarks.

several instrumentation levéis of run-time checks. The binary refers to the statically
linked executable of the main program of such systems and in all of them, it is the com-
mand line tool provided. The object ñles include all the librarles used by such systems.
Note that in all cases the sizes of the ñles depend on the number of assertions instru-
mented for run-time checking. Interestingly the impact of run-time tests on execution
time in these much larger benchmarks is much smaller than for qsort. For example,
the overhead introduced in the execution of LPdoc, which includes a good number of
assertions in its source, is below the measurement noise level.

In order to facilítate the execution of tests, the unit testing framework has been
integrated in the development environment allowing executing the tests present in a
module easily. The execution of the tests is done as follows:

1. The user selects the module or the directory that contains the modules with tests
to be executed.

2. The assertions are read and each time a test is found, a method is added to the
main procedure of an auto generated program that invoques such method. The
goal of such method is to cali the predicate being tested in the way speciñed by
the unit test commands.

3. The modules being tested are compiled with run-time checking enabled.
4. The main procedure that invoques the tests is called by the unittest driver in a

sepárate process, to prevent undesirable side effects or failures if the program being
checked aborts due to an unexpected error. This program writes a log ñle containing
the results of the execution (such as, for example, exit or failure of the predicate,
unhandled exceptions and so on), that is further analyzed by the unittest driver in
order to take actions depending on the observed behavior.

5. If a test causes the failure of the main program, the control is returned to the driver,
and the aborted test is recorded to be processed. After that, the driver (optionally)
tries to execute the remaining tests. This process continúes until all the tests are
executed.

6. The generated log ñle is processed by the driver and, depending on the verbosity
level, different information about the execution is presented, such as for example,
the tests passed, failed, aborted and in each one the cause of such behavior. At this
point, the run-time check exceptions saved in the log ñle are processed in order to
show the related message.

We have added at the time of writing 220 unit tests to the Ciao/CiaoPP system (in
addition to the other traditional system tests which did not use the unit test frame­
work), which have helped us to check whether some errors have been introduced in the

development process. The execution time of such tests is approximately 90 seconds in
the computer described before. We also have applied the implemented framework to
the veriñcation of ISO-prolog compliance of Ciao. We have coded 976 unit tests for this
purpose. These tests currently run in under 15 seconds. This time is much less than
the other tests for Ciao because they are concentrated in only one ñle and the driver
does not need to sean all the source code. Note that in these experiments we are not
doing any compile-time checking, that would in fact eliminate many of the unit tests.

10 Conclusions

We have described our design and implementation of a framework that uniñes unit
testing and run-time veriñcation (as well as static veriñcation and static debugging).
A key contribution of our approach is that a uniñed assertion language is used for
all of these tasks. This has allowed us to propose and implement unit testing via a
minimal addition to the assertion language. We have proposed methods for compil-
ing run-time checks for (parts of) assertions which cannot be veriñed at compile-time
via program transformation. This transformation allows checking preconditions and
postconditions, including conditional postconditions, properties at arbitrary program
points, and certain computational properties. We also have proposed a minimal ad­
dition to the assertion language which allows deñning unit tests to be run in order
to detect possible violations of the (partial) speciñeations expressed by the assertions.
We have implemented the framework within the Ciao/CiaoPP system and effectively
applied it to the veriñcation of ISO-prolog compliance and to the detection of different
types of bugs in the Ciao system source code. Several experimental results have been
presented to illustrate different trade-offs among program size, running time, or levéis
of verbosity of the messages shown to the user. The experimental results conñrm our ex-
pectations regarding these trade-offs: run-time checks do not pose an excessive amount
of overhead, except with high levéis of instrumentation (e.g., gathering information on
the cali stack). However, this is due to the simplistic way in which this type of instru­
mentation is implemented, which can be optimized using lower-level primitives. For
example, it prevenís the compiler from performing some classical optimizations like tail
recursion. We also plan to further extend the assertion language with more primitives
such as time_out(T), which can be used to express that a test should ñnish in less
than T milliseconds, user_error(Str) which expresses that a predicate should write
the string Str into the current error stream, or to add more properties for generating
random input data valúes with a given probability distribution. We plan to study
how the múltiple specialization present in CiaoPP can further reduce run-time over­
head. Finally, we are also working on an improved and more compositional strategy to
deñning computational properties.

References

BCC+06. F. Bueno, D. Cabeza, M. Carro, M. Hermenegildo, P. López-García, and
G. Puebla (Eds.). The Ciao System. Ref. Manual (vi.13). Technical report,
C. S. School (UPM), 2006. Available at http://www.ciaohome.org.

BDD+97. F. Bueno, P. Deransart, W. Drabent, G. Ferrand, M. Hermenegildo, J. Maluszyn-
ski, and G. Puebla. On the Role of Semantic Approximations in Validation and
Diagnosis of Constraint Logic Programs. In Proc. of the 3rd. Irá 'l Workshop on
Automated Debugging-AADEBUG'97, pages 155-170, Linkoping, Sweden, May
1997. U. of Linkoping Press.

http://www.ciaohome.org

BJ93. B. Belli and O. Jack. Implementation-based Analysis and Testing of Prolog Pro-
grams. In ISSTA '93: Proceedings of the 1993 ACM SIGSOFT International

Symposium on Software Testing and Analysis, pages 70-80, New York, NY, USA,
1993. ACM.

CLI97. The CLIP Group. Program Assertions. The Ciao System Documentation Series
- TR CLIP4/97.1, Facultad de Informática, UPM, August 1997.

ER96. Nancy S. Eickelmann and Debra J. Richardson. An Evaluation of Software Test
Environment Architectures. In ICSE '96: Proceedings of the 18th International

Conference on Software Engineering, pages 353-364, Washington, DC, USA, 1996.
IEEE Computer Society.

GZAP08. M. Gómez-Zamalloa, E. Albert, and G. Puebla. On the Generation of Test Data
for Prolog by Partial Evaluation. In Workshop on Logic-based methods in Pro-

gramming Environments (WLPE'08), 2008. To appear.
HPB99. M. Hermenegildo, G. Puebla, and F. Bueno. Using Global Analysis, Partial Spec-

ifications, and an Extensible Assertion Language for Program Validation and
Debugging. In K. R. Apt, V. Marek, M. Truszczynski, and D. S. Warren, edi­
tora, The Logic Programming Paradigm: a 25-Year Perspective, pages 161-192.
Springer-Verlag, July 1999.

HPBLG05. M. Hermenegildo, G. Puebla, F. Bueno, and P. López-García. Integrated Program
Debugging, Verification, and Optimization Using Abstract Interpretation (and
The Ciao System Preprocessor). Science of Computer Programming, 58(1-2):115-
140, October 2005.

PBH97. G. Puebla, F. Bueno, and M. Hermenegildo. An Assertion Lan­
guage for Debugging of Constraint Logic Programs. In Proceed­

ings of the ILPS'97 Workshop on Tools and Environments for

(Constraint) Logic Programming, October 1997. Available from
f t p : / / c l i p . d i a . f i . u p m . e s / p u b / p a p e r s / a s s e r t _ l ang_t r_disc ip lde l iv .ps . gz
as technical report CLIP2/97.1.

PBH98. G. Puebla, F. Bueno, and M. Hermenegildo. A Framework for Assertion-based
Debugging in Constraint Logic Programming (abstract). In Proceedings of the

International Conference on Principies and Practice of Constraint Program­

ming (CP'98), number 1520 in LNCS, pages 472-473, Pisa, Italy, October 1998.
Springer-Verlag.

PBH99. G. Puebla, F. Bueno, and M. Hermenegildo. A Framework for Assertion-based
Debugging in Constraint Logic Programming. In Logic-based Program Synthesis

and Transformation (LOPSTR'99), pages 31-39, Venezia, Italy, September 1999.
U. Ca' Foscari di Venezia.

PBHOOa. G. Puebla, F. Bueno, and M. Hermenegildo. A Generic Preprocessor for Program
Validation and Debugging. In P. Deransart, M. Hermenegildo, and J. Maluszyn-
ski, editors, Analysis and Visualization Tools for Constraint Programming, num­
ber 1870 in LNCS, pages 63-107. Springer-Verlag, September 2000.

PBHOOb. G. Puebla, F. Bueno, and M. Hermenegildo. An Assertion Language for Con­
straint Logic Programs. In P. Deransart, M. Hermenegildo, and J. Maluszynski,
editors, Analysis and Visualization Tools for Constraint Programming, number
1870 in LNCS, pages 23-61. Springer-Verlag, September 2000.

PH95. G. Puebla and M. Hermenegildo. Implementation of Múltiple Specialization in
Logic Programs. In Proc. A CM SIGPLAN Symposium on Partial Evaluation and

Semantics Based Program Manipulation, pages 77-87. ACM Press, June 1995.
PH99. G. Puebla and M. Hermenegildo. Abstract Múltiple Specialization and its Ap­

plication to Program Parallelization. J. of Logic Programming. Special Issue

on Synthesis, Transformation and Analysis of Logic Programs, 41(2&3):279-316,
November 1999.

ZGQC08. Lingzhong Zhao, Tianlong Gu, Junyan Qian, and Guoyong Cai. Test Frame Up-
dating in CPM Testing of Prolog Programs. Software Quality Control, 16(2):277-
298, 2008.

ftp://clip.dia.fi.upm.es/pub/papers/assert_l

Appendix A: Transformation Schemes
We start by discussing two possible approaches regarding the source-to-source transforma-

tions to be performed in order to implement run-time checking schemes. We concéntrate first
on the predicate (ca l i s , success, and comp) assertions. These two approaches are illustrated
in Figure 5.

In the first kind of transformation (Figure 5-b) the run-time checks are placed before and
after any cali to predicates which are affected by assertions (p/2 in the example). We will cali
this kind of transformation "transforming calis." In the second kind of transformation (Fig­
ure 5-c) the original predicate is rewritten so that it performs the run-time checks itself, each
time it is called. In this case only the definition of the procedure is modified (in the example
the original p predicate is renamed to p ' and a new definition of p is added which performs
the run-time checks; calis to p are left unchanged). We will cali this kind of transformation
"transforming procedure definitions."

: - c a l i s p(A,B): (l l s t (A) ; t r e e (B)) .
: - success p(A,B): l i s t (A) = > l i s t (B) .
: - success p(A,B): t ree(A)=>tree(A).

p(A,B) : -

q =-

p(X,Y),

p(Z,W).

r : -

p(L,H),

(a)

p(A,B) : -

q =-

call-related checks,

p (X , Y) ,
success-related checks,

call-related checks,

p (X , W) ,
success-related checks.

r : -

call-related checks,

p (L , H) ,
success-related checks,

(b)

p(A,B) : -
call-related checks,

p ' (A ; B) ,
success-related checks.

p ' (A , B) : -

q =-

p (X , Y) ,

p (X , W) .

r : -

p (L , H) ,

(c)

Fig. 5 . Two possible transformation schemes (b and c) for predicate assertions.

Appendix B: Examples of unit test Definitions
Other examples:

: - t e s t pred d i sp lay_fa i l + (user_outpu t ("he l io") , f a i l s) # "Test OK".

d i sp lay_fa i l : - d i s p l a y (h e l i o) , f a i l .

Characteristics

Code size increase
Number of files to recompile if an assertion
changes
Two versions of each file needed in order to
compile with and without run-time checks
Modules with and without run-time checks
can be mixed

Transforming Calis

higher
many

no

yes

Transforming Predicates

lower
one

yes

yes

Fig. 6. Advantages and disadvantages of transformation schemes.

Assertion:
: - c a l i s Pred : Cond.

:- success Pred : Precond => Postcond.

:- comp Pred + Comp.

:- comp Pred : Precond + Comp.

The definition of Pred is transformed into:
Pred : -

che ck(Cond) ,

Pred'.

Pred' : -

... ,
Pred : -

checkc (Precond,F),
Pred',
checkif (F, Postcond).

Pred' : -

... ,
Pred : -

check_comp(Comp,Pred
7
) .

Pred' : -

... ,
Pred : -

checkc (Precond,F),
checkif_comp(F, Comp,Pred").

Pred' : -

... ,

Fig. 7. Translation schemes for different kinds of predícate assertions.

:- test pred call_testlO(X) : (X=(write(3), call(l)))

+ (user_output("output"),

exception(error(type_error(callable, 1), 'in metacall')))

"Wrong test" .

:- meta_predicate call_testlO(goal).

call_testlO(X) :- call(X).

: - t e s t pred cu t_ tes t5 + (user_output("Cut d i s j u n c t i o n ") , f a i l s) # "Test OK".

cu t_ tes t5 : - (! ; w r i t e (' N o ')) , wr i te ('Cut d i s j u n c t i o n ') , f a i l .

Appendix C: Verifying ISO-prolog Compliance of Ciao
In this section we describe how the implemented the framework within the Ciao/CiaoPP sys-

tem has effectively been applied to the verification of ISO-prolog compliance.

Tests failed

m

i
f
f
i
f
m
m
m
m
m
m
f
i
f
i
m
f
i
m

i
m
f

Incompatible format of syntax error exception
Incompatible format of type error exception
Incompatible format of permission error exception
Incompatible format of Domain error exception
An error is expected, but ciao just fails
Ciao throws an error different than the specified in the standard
The predícate in Ciao Fails, but in ISO, it should succeed
The execution of a predícate should raise an error, but it succeed
Predicates with missing functionality
Ciao adds more information to a predícate (module expansión)
More solutions than the expected
stream manipulation related errors
unexpected abort of the test being executed
non-ascii characters (not iso, but SICSTUS-EDDBALI-like behavior)
aborted tests
Tests changed because currently we can't deal with several errors
stream options unimplemented:
alias for streams unimplemented:
stream option eof_action unimplemented:
stream option past_end_of_stream unimplemented:
unimplemented options for cióse:
char handling related errors:
Malformed body (negation of cut):
current output related:
predícate that succeeds:
failed test because time_out(_) property is not implemented:
Tests with side effects:
Arity mismatch issues:
Not relevant tests in ciao, due to unimplemented arithmetic behavior

Incompatibilities
Missing predicates or functionality
Failures and errors

Total number of failed tests
Total number of executed tests
Percentage of passed tests

10
9

28
2

138
15
22
19
24

6
1

14
14
7
1
7
2

32
12
2
5
2
1
1
1
1
7
3
5

262
90
39

391
976

6 0 %

Fig. 8. Summary of the application of unit tests for ISO-prolog compliance

