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ABSTRACT

Spreadsheets contain valuable data on many topics. How-
ever, spreadsheets are difficult to integrate with other data
sources. Converting spreadsheet data to the relational model
would allow data analysts to use relational integration tools.

We propose a two-phase semiautomatic system that ex-
tracts accurate relational metadata while minimizing user
effort. Based on an undirected graphical model, our sys-
tem enables downstream spreadsheet integration applica-
tions. First, the automatic extractor uses hints from spread-
sheets’ graphical style and recovered metadata to extract
the spreadsheet data as accurately as possible. Second, the
interactive repair identifies similar regions in distinct spread-
sheets scattered across large spreadsheet corpora, allowing
a user’s single manual repair to be amortized over many
possible extraction errors. Our experiments show that a hu-
man can obtain the accurate extraction with just 31% of
the manual operations required by a standard classification
based technique on two real-world datasets.

Categories and Subject Descriptors

H.2.8 [Database Management]: Database applications-
Data Mining
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1. INTRODUCTION
Spreadsheets are a critical data management tool that are

diverse and widely used: Microsoft estimates the number of
worldwide Excel users at more than 400 million, and For-
rester Research estimates 50 to 80% of businesses use spread-
sheets1. Moreover, there is a large amount of data on the
Web that is, practically speaking, only available via spread-
sheets. For example, the United States government for many
years published a compilation of thousands of spreadsheets
about economic development, transportation, public health,

1
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Relational Tuples:
(a)

(b)

Male White 45 to 64 years 28.7Total smokers
Male White 65 years and over 13.7Total smokers
Male White 45 to 64 years 25.8Total smokers
Male Black 65 years and over 14.2Total smokers

1990
1990
2000
2000

Figure 1: A spreadsheet about smoking rates, from
the Statistical Abstract of the United States.

and other important social topics; a spreadsheet was the
only data format used.

However, there is at least one area where spreadsheet
functionality badly trails the relational world: data inte-
gration. For example, imagine that a policy expert wants to
see whether the strength of the connection between smoking
and lung cancer is consistent across all U.S. states. Different
branches of the government have published data relevant to
his task, and he is likely to obtain the data via two down-
loadable spreadsheets, one for the smoking statistics and one
for the lung cancer statistics. Unfortunately, the policy ex-
pert may have to write tedious customized code to combine
the two spreadsheets for the analysis.

If spreadsheet data could be easily converted to the rela-
tional model, many researchers — in public policy, public
health, economics, and other areas — could benefit from so-
ciety’s huge investment in relational integration tools. There
has been a substantial amount of work in converting grid-
style data to the relational model much of it in connection to
Web HTML tables [4, 14], rather than spreadsheets. How-
ever, projects to date [1, 2, 12, 18] have either been ex-
tremely labor-intensive, or they have ignored data layouts
that are very typical of spreadsheets.

For example, Figure 1(a) shows a portion of a spreadsheet
downloaded from the government’s Statistical Abstract of



the United States.2 A human reader can easily tell that
the data value 28.7 is annotated by the annotations 1990,
Male, White, and 45 to 64 years. We call this implicit re-
lationship between annotations and data a mapping. By
repeatedly finding such mappings, a human could eventu-
ally reconstruct the relational tuples seen in Figure 1(b).

This annotation-to-data mapping is common in tabular
data such as Web HTML tables and financial reports, but is
especially common in spreadsheets. We manually examined
200 randomly selected spreadsheets from the Web and found
that more than 32% of the spreadsheets in a general English-
language Web crawl contain an implicit mapping between
annotations and data. When examining the top ten Internet
domains that publish the greatest number of spreadsheets,
more than 60% of spreadsheets do so [7].

Our Goal — This paper is to study a critical problem in
spreadsheets: recovering mappings between annotations and
data accurately and with low effort. Doing so opens up the
opportunities for an ad-hoc spreadsheet integration tool [9],
which a variety of people in society can use for data analysis.

Finding all the accurate mappings is important to avoid
misleading results in our downstream spreadsheet integra-
tion tool. But even a high-quality automatic extractor will
eventually make a mistake, and obtaining fully accurate
mappings is hard to achieve without incorporating user in-
teractions into our extraction system. Thus, our goal is to
extract fully accurate mappings with low human effort.

Technical Challenges — Unfortunately, we face a number
of challenges. First, the annotation relationship shown in
Figure 1 is clear to a human because of the textual format-
ting, but many other spreadsheets use different or contra-
dictory formatting; methods based on formatting heuristics
will be quite poor at reconstructing these relationships.

Second, many implicit mappings rely on human under-
standing of domain-specific metadata. Consider a spread-
sheet of US states that does not use any stylistic cues to
distinguish Michigan from Midwest; the human reader’s do-
main knowledge is what makes the annotations recoverable.

Finally, our extraction system is designed to be interac-
tive; the user will likely give the system very little labeled
data. The system must be able to repair extraction errors
and obtain accurate annotation mappings with an unusually
small amount of user input.

Our Approach – We propose a new two-phase semiauto-
matic approach based on an undirected graphical model to
extracting spreadsheet annotation-to-data mappings accu-
rately and with little human effort.

First, the automatic extractor receives spreadsheets as in-
put and computes a mapping without human interaction.
Based on an undirected graphical model, it exploits single-
spreadsheet graphical style hints, such as the font and ty-
pographic alignment, that are obvious to a human observer.
It also identifies and exploits correlated extraction decisions;
these correlated decisions can appear within one spreadsheet
or between two unrelated spreadsheets. Our resulting auto-
matic extractor obtains accuracy that beats a baseline ap-
proach by up to 91% on a large workload of spreadsheets.

Second, our system offers an interactive repair phase, in
which a human repeatedly reviews and corrects the auto-
matic extractor’s output until no errors remain. We expect
a human will review the automatic extractor’s output. But

2
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Before Repair: ''White, total'' After Repair: ''White, total''

Figure 2: Our user interface for repairing mappings.

our interactive repair is more than simply asking a human to
fix every single extraction error. We again exploit the cor-
relations among different extraction decisions to make more
effective use of each user repair operation. A user’s single re-
pair can be silently and probabilistically applied to multiple
possible errors, allowing us to amortize the user’s effort over
many likely extractor mistakes. Building a model that can
perform this amortization, and managing the inadvertent er-
rors that such an approach might introduce (a problem we
call backtracking), is one of this paper’s core contributions.

Figure 2 shows an example of the user interface for ap-
plying repairs. (We discussed this interface in more detail
previously [9].) The left side of the diagram indicates the
initial hierarchy obtained by the automatic extractor for Fig-
ure 1. The dashed arrow shows that a user performs a repair
by clicking and dragging White so that it becomes a child
of Male, indicating that Male annotates White. This one re-
pair operation triggers multiple error fixes, including setting
Male to also annotate Black. By making our system part of
the user’s natural review-and-repair loop, we can reduce the
number of manual repairs by up to 71% when compared to
our already-effective automatic extractor.

A critical component of both the automatic extractor and
interactive repair is the detection of similar extraction de-
cisions. By automatically constructing our own domain-
specific metadata resource, we can more effectively detect
these decisions than when using no metadata or when using
an off-the-shelf resource such as Freebase [3].

Background – In our previous work, we described the Web
spreadsheet corpus and a basic form of the extractor [7]; we
compared against and beat that basic extractor (see Sec-
tion 7 for more detail). We also demonstrated the ad hoc in-
tegration application [9]. We have not previously described
the graphical model based extraction and repair technique
that forms our core technical contribution in this paper.

Contributions — In this paper, we focus on extracting the
annotation-to-data mapping in spreadsheets. To the best of
our knowledge, we are the first to present the semiautomatic
extraction approach. Our contributions include:

• A graphical model based automatic extractor for ob-
taining spreadsheet annotation mappings. (Section 4.)

• An extended graphical model to implement interactive
repair. This technique amortizes each user repair over
many extraction errors at once. (Section 5.)

• A method for building a domain-specific metadata re-
source that assists with the above steps. (Section 6.)

• An evaluation of our overall extraction system on two
distinct spreadsheet corpora. (Section 7.)

We cover related work in Section 2, and define the annotation-
to-data mapping extraction task in Section 3. Finally, we
conclude with a discussion of future work in Section 8.



2. RELATED WORK
There are three main areas of related work:

Spreadsheet Management – Existing approaches for trans-
forming spreadsheet data into databases fall into a few broad
categories. First, rule-based approaches [2, 16, 18, 25] often
require users to learn a newly defined language to describe
the transformation process. The approaches are flexible but
often require explicit conversion rules that are difficult and
time-consuming for the user to compose. Second, there is a
range of visualization systems [27] that help the user nav-
igate and understand spreadsheets with visualization tech-
niques, but the mechanisms are not able to extract relational
data from spreadsheets. Finally, automated approaches are
the most similar to ours. Abraham and Erwig [1] attempted
to recover spreadsheet tuples, and Cunha et al. [12] primar-
ily focused on the problem of data normalization. But their
work assumes a simple type of spreadsheets and they did
not address the hierarchical structures that are key to un-
derstanding a huge portion of the online spreadsheet data.

Tabular Data Extraction – There has been a large amount
of work centered on extracting tabular data on the Web [4,
5, 14]. Most of these projects have focused on the details
of identifying data-centric tables or on applications that
can be built on top of them. HTML tables likely contain
hierarchical-style data examples, but we are not aware of
any research to date focused on this problem.

Programming By Demonstration – The interactive re-
pair component of our work is part of an intellectual thread
that ties programming by demonstration [15, 20, 21, 28],
mixed-initiative systems [17], and incorporation of user feed-
back into extraction systems [6]. Many of these systems are
driven by a programming language that the user must learn;
our system does not require the user to learn a language,
just to use a “drag-and-release” interface. Our solution’s de-
sign, which alternates automatic and human-driven effort,
is similar in spirit to Wrangler [15, 21] and mixed initiative
systems [17, 19, 20, 28]. However, Wrangler-style techniques
cannot be applied to our situation directly, as they gener-
ally process data with standard textual cues that are often
missing from real-world spreadsheets.

3. PRELIMINARIES
In this section, we briefly describe the spreadsheet data

model and provide a short summary of a graphical model.

3.1 Data Model & Problem Definition
In its most generic incarnation, a spreadsheet is simply

an M × N grid of cells, in which each cell can contain a
string, a number, or nothing. In practice, most spreadsheets,
especially the high-quality ones that carry data that we want
to extract, have substantially more structures. We make two
assumptions about the spreadsheets we will process without
seriously compromising our approach’s generality.

Data Frames – First, we focus on a prototypical form of
spreadsheet that we call a data frame. Figure 3 shows the
three components that make up a data frame: two rectangu-
lar annotation regions (left and top) and a single rectangular
data region. We previously addressed the problem of finding
data frames in spreadsheets using a linear chain CRF [7].

Hierarchies – Second, we focus on hierarchical spread-
sheets. We assume a spreadsheet is hierarchical if the anno-
tations in the top or left annotation region exhibit a hierar-

Top Annotations

Data RegionLeft Annotations

Figure 3: The three primary components of a data

frame spreadsheet.

chical tree structure of at least two layers. For example, the
left annotation region of the spreadsheet in Figure 3 shows
a hierarchical structure of three layers. In this paper, we
primarily discuss left annotation hierarchies, but hierarchies
also exist in top. However, top annotation hierarchies are
generally easier to recover than left, as the row and column
number in top are very strong and reliable clues [7].

Problem Statement — Thus, we now formally describe
our implicit mappings recovery task.

Let A = {a1, ..., aN , root} be a set of annotations in an
annotation region, where root is a synthetic node as the root
of every hierarchical tree. Given ap, ac ∈ A, we say (ap, ac) is
a ParentChild pair if ap is the parent of ac in the annotation
hierarchy. For example, in Figure 1, (row-20, row-26) (the
strings (Male, White)) is a ParentChild pair, while (row-25,
row-26) (the strings (65 years and over, White)) is not.

The spreadsheet annotation-to-data mapping task, thus,
amounts to recovering all the ParentChild pairs for its an-
notation regions. For example in Figure 1, the solution for
mappings in left is a set of all its ParentChild pairs {(row-
19, row-20), ..., (row-32, row-37)}. We also call this the
hierarchy extraction task.

3.2 Graphical Model
A graphical model G [22] describes a joint distribution

over a set of n random variables x = {x1, ..., xn}, where
each variable xi takes a label li from a set of labels L. The
model captures properties of each variable and dependencies
among variables in the graph by defining potential functions
on cliques of correlated variables.

A common method to define the potentials is as a dot
function between the weight parameters and a feature vec-
tor [26]. A node potential captures the features that cor-
respond to a single variable. The node potential is usu-
ally defined on a variable xi as θ(xi) = w1

T f(xi, li), where
f(xi, li) is a feature vector and w1 is the associated weight
parameters. Similarly, the edge potential is usually defined
on pairwise variables xi and xj to describe their correlation
as θ(xi, xj) = w2

T f(xi, li, xj , lj). Users generally provide
domain knowledge via the feature vectors f , while the pa-
rameters w = {w1,w2} are trained from labeled data. In
the training stage, the feature vector is derived from a set
of labeled data in order to obtain the optimal value for the
weight parameters w. In the inference stage, the optimal la-
beling can be obtained by finding the maximum joint prob-
ability. As our model is conditionally trained, it belongs to
the class of general graph conditional random fields [24].

4. AUTOMATIC EXTRACTION
In this section, we describe how to exploit the different

sources of information and how to encode the automatic
extraction as an undirected graphical model.



Spreadsheet ParentChild Pairs

(18 to 24 years, Male)

(25 to 34 years, Male)

(Male, 25 to 34 years)

(18 to 24 years, 25 to 34 years)

(Male, 18 to 24 years)

(25 to 34 years, 18 to 24 years)

Figure 4: A sample of ParentChild variables.

4.1 Encoding Hierarchy Extraction
We now formally describe our problem and observations.

The task of hierarchy extraction is to detect all of the Par-
entChild pairs P = {ParentChild(ai, aj)} in an annotation
region A. One way to model this problem is to create a
Boolean variable x to represent a ParentChild pair candidate
(ap, ac) for every annotation pair ap, ac ∈ A. Each variable
x takes a label l ∈ L = {true, false}, and x holds true if ap

is the parent of ac. For example, Figure 4 shows a portion of
the created variables for Figure 1’s left metadata. Each oval
node corresponds to a single boolean ParentChild decision.
For example, setting the node (18 to 24 years, Male) to true
indicates that 18 to 24 years is the hierarchy parent of Male.
However, simply enumerating all pairs in a region A can

yield thousands of variables. In practice, it is possible to
greatly reduce the set of ParentChild candidates with a few
heuristics. 3 Failing to create a node for a true ParentChild
relationship is bad, but not catastrophic: the user can still
describe the correct relationship during interactive repair.

A true ParentChild variable may be indicated by the sur-
rounding style and layout information. For example, a vari-
able that describes annotations which are physically close is
likelier to be true than a variable that describes annotations
that are physically distant. We formulated 32 features for
evaluating a ParentChild variable. The full set of features
can be refered in our technical report version [8].

4.2 Correlating ParentChild Decisions
ParentChild decisions can be correlated; knowing the as-

signment of one ParentChild variable sheds light on some
others. We found the following four types of correlations.

Correlation (i) — Stylistic Affinity. When two Par-
entChild variables in the same spreadsheet have identical
visual style for parents and for children, it is likely that
the two variables should be decided together. For exam-
ple in Figure 5 (a), the two ParentChild variables ((White,
College) and (Male, 18 to 24 years)) should be decided to-
gether because the parents (White and Male) share the same
typographic style, as do the children (College and 18 to 24
years). We say that two variables have stylistic affinity when
the parents and children share a range of visual qualities:
alignment, indentation, capitalization, typeface, type size,
type style (i.e., bold or italicized), and use of certain spe-
cial strings (i.e., a colon, a number, or the word “total”).
Note that stylistic affinity only makes sense when testing
ParentChild pairs within a single spreadsheet; different

3
We prioritize ParentChild candidates in which the typographic

styles of the two nodes differ. We also prioritize pairs that are ge-
ometrically close to each other in the spreadsheet. Testing on our 200
testbed spreadsheets for SAUS and WEB, our heuristics only incor-
rectly filtered out just 0.01% and 0.13% of correct pairs, respectively.

White Male

College 18 to 24 years

Black

Male

White

Female

(b) Metadata Affinity(a) Stylistic Affinity

Figure 5: An example of stylistic affinity shown in
(a) and metadata affinity shown in (b).

spreadsheets may have different or contradictory ways of vi-
sually indicating the ParentChild relationship.

Correlation (ii) — Metadata Affinity. If we have a
metadata resource available, we can use it to find additional
correlations between ParentChild variables both within and

between spreadsheets. For example in Figure 5 (b), the two
ParentChild candidates, (White, Female) and (Black, Male),
should be decided together because the parents (White and
Black) belong to the same semantic category race; similarly
the children (Female andMale) belong to gender. The details
of how to test whether two variables have metadata affinity
are discussed in Section 6.

Correlation (iii) — Adjacent Dependency. If we con-
sider the ParentChild pairs of a single spreadsheet as a
sequence, adjacent variables often follow a transition pat-
tern of the labels.

Correlation (iv) — Aggregate Design. There are two
further constraints that reflect typical overall spreadsheet
design and ensure that the resulting variable assignment
yields a legal hierarchy (i.e., a tree).
The first is the orientation constraint. Spreadsheets tend

to have an“upward”or “downward”orientation; that is, par-
ents do not appear above their children in some cases and
below their children in other cases. For example in Figure 4,
the pairs (Male, 18 to 24 years) and (25 to 34 years, 18 to 24
years) cannot simultaneously be true.

The second is the one-parent constraint. We enforce our
assumption that ParentChild relationships genuinely form a
tree; one annotation can only have one parent. Put another
way, for all of the variables sharing the same child, only
one of them is true and the rest are false. For example, in
Figure 4, (Male, 25 to 34 years) and (18 to 24 years, 25 to 34
years) could not both be true.

4.3 Graphical Model Potentials
Now we describe how we encode the ParentChild pair

properties and their correlations into the graphical model.

Node Potentials – Each variable x in the graphical model
represents a ParentChild decision, which takes a label l ∈
L = {true, false}. We define the node potential θ(x, l)
on each variable x assigned the label l. The node potentials
depend on Boolean feature functions {fk(x, l)} (The 32 fea-
tures mentioned in Section 4.1) and trained weights {wk}
associated with the feature functions:

θ(x, l) =
∑

k

wkfk(x, l) (1)

Edge Potentials – The correlations (i) (ii) and (iii) men-
tioned in Section 4.2 are encoded in the graphical model as
pairwise edge potentials. The edge potential θ(x, l, x′, l′)
is defined on two variables x and x′ in the graphical model
on their assignments l and l′ if the variables x and x′ are
found to be correlated in one of the three ways mentioned
above. We define,



θ(x, l, x′
, l

′) = Jl = l
′K
∑

e

wefe(x, x
′) (2)

where Jl = l′K takes the value 1 when l = l′ and 0 other-
wise; {we} are the associated weights. The edge features
{fe(x, x

′)} test which type of correlation x and x′ belong to
and whether x and x′ have the same child/parent.

Global Potentials – Finally we encode the correlation (iv)
mentioned in Section 4.2 as global potentials. Let x = (ap, ac)
and x′ = (a′

p, a
′
c) be two arbitrary variables in the graphical

model with the assigned labels l and l′, and R(a) repre-
sents the row number of an annotation a. We now define
two global potentials: φa(x, l) to encode the orientation
constraint and φb(x, l) to encode the one-parent constraint:

φa(x, l) = J∃x, x′ ∈ x s.t. l = true, l
′ = true,

R(ap) > R(ac), R(a′
p) < R(a′

c)K
0
−∞

(3)

φb(x, l) = J∀c,
∑

p

Jl = trueK01 = 1K−∞
0 (4)

where JCKvalue2value1 takes the value 1 when condition C is true
and value 2 otherwise.

5. INTERACTIVE REPAIR
The interactive repair phase allows the user to check and

fix any ParentChild decision mistakes made by the system.
The goal of interactive repair is to save user effort by using
each explicit user-given repair to fix not just the error in
question, but also additional extraction errors that the user
never directly inspects. In this section, we describe the in-
teractive repair workflow in more detail, plus how to modify
the graphical model to support the repair process. Finally,
we describe the training and inference methods.

5.1 User Repairs
During interactive repair, we assume a user always fixes

extraction errors correctly. We do not focus on the problem
of noisy human-labeled data, and there is crowdsourcing lit-
erature on how to ensure trustworthy answers [13].

We now discuss our model workflow for interactive repair.
The system starts by presenting to the user the initial ex-
traction results computed by the automatic extraction and
then enters the interactive repair interaction loops (shown
in Figure 6). For each loop, the system takes two steps:

1. Review and Repair — A user is able to repair an
error in the extracted hierarchy by dragging and releasing an
annotation node on the interface. One user repair action
changes an annotation’s parent from one to another. For
example in Figure 2, a user changes the parent annotation
of White from Root to Male.

A user repair operation has two implications. First, the
variable x that represents the new correct ParentChild rela-
tionship is set to true. In the case of Figure 2, the variable
(Male, White) is true. Second, all the other variables that
represent ParentChild relationships sharing the same child
with x are set to false. In the case of Figure 2, variables
(Root, White) and (Total smoker, White) are false.

As a result, a user’s repair to an extraction error yields a
set of label assignments to some ParentChild variables.

2. Spread Repairs — The system now aims to save user
effort by repairing other similar extraction errors.

Of course, the system has already given its best extraction
estimate in the automatic extraction phase, so it does not
know where any latent extraction errors are. But we have

Extraction

Model

Interactive

Interface

21

Review and 

Repair

Spread 

Repairs

Figure 6: Interaction cycle for interactive repair.

Algorithm 1 SpreadRepair

Input: All user repairs R, and automatic extraction model G
Output: New assignments l to all variables of G.

1: From user repairs R, create repair-induced variables xr with
labels lr (as described in Section 5.1 Step 1).

2: Build new model G′ by adding to G the new repair potentials
based on xr. G′ has the same set of nodes (variables) as G.

3: Condition on xr and infer assignments l to G′ (and thus, G)

already used different kinds of affinity to connect two Par-
entChild decisions that are highly likely to share the same
label; it is a shame to forget about this information just
when the user is providing a new source of correct labels.

It is appealing to spread each user-repaired label on a vari-
able to other variables that are identified by affinity correla-
tions (i) and (ii). But simply propagating assignments might
introduce errors where none previously exist, which we call
the backtracking problem. We want to leverage the graphi-
cal model to integrate probability information with the node,
edge, and global correlations to prevent backtracking.

5.2 Encoding User Repairs
Here, we describe how to encode the user repair interac-

tion to the graphical model. Algorithm 1 shows the Spread-
Repair function that is invoked after each user repair op-
eration (described in step 2 of the previous section). First,
when a new repair arrives, we translate this new repair and
all the previous repairs to the assignments on a set of vari-
ables xr = {xr1 , ..., xrn} with labels lr = {lr1 , ..., lrn}. Sec-
ond, we generate a new graphical model G′ by adding the re-
pair potentials to the original automatic extraction graphical
model G. The repair potentials capture the pairwise correla-
tion between variables, and we describe the repair potentials
later. Finally, we condition on the known variables xr and
infer labels for the variables of G′. The inferred labels are
returned as the updated answer.

Note that by adding repair potentials only to nodes that
we also condition on, we add information to the inference
process without increasing any inference-time computational
complexity. The conditioning process essentially removes
the observed nodes and their edges prior to the inference [22].

There is nothing in principle that prevents our system
from backtracking, unless we can find heuristics to prop-
agate the assignments fully correctly, which is often hard
especially on real-world datasets. However, our mechanism
is designed to prevent it. First, we only probabilistically
propagate known variable assignments to others, via the re-
pair potentials. Second, this probabilistic repair informa-
tion is combined with all our previous information sources:
the node potentials, edge potentials and global potentials.
The hope is that adding high quality new information to
the automatic extraction graphical model (instead of treat-
ing spreading repairs as a non-probabilistic post-processing
stage) will yield better outcomes overall.

We now discuss how to generate the repair potentials.

Repair Potentials — The repair potential ϕ(x, l, xr, lr)
describes the likelihood that the repaired node’s label should



be spread to a similar ParentChild node. A repair potential
exists between an observed variable xr ∈ xr and a variable
x ∈ x if xr and x exhibit either stylistic affinity or metadata
affinity. In other words, repair potentials do not introduce
any novel edges to the graphical model: the edges of repair
potentials are a subset of the edges derived from correlations
(i) and (ii). The repair potentials are defined as:

ϕ(x, l, xr, lr) = JStylistic(x, xr)Kfs(x, l, xr, lr)

+JMetadata(x, xr)Kfm(x, l, xr, lr)
(5)

JCK takes the value 1 when condition C is true; otherwise 0.
Stylistic(x, xr) and Metadata(x, xr) test whether x and xr

have stylistic or metadata affinity. The two feature functions
fs and fm weigh the strength of influence from observed
variables to unobserved ones. They characterize how similar
the unobserved variables are to the observed ones. To be
precise, we define fs(x, l, xr, lr) = logPs(x = l | xr = lr).
where Ps(x = l | xr = lr) represents the probability of
a variable x taking the label l once we observe a variable
xr with the label lr. This probability can be derived from
training data. For example, in the training data, among
1000 stylistic affinity edges detected, 900 of them connect
two variables with the same assignment. We then set Ps(x =
true|xr = true) = 0.9 and Ps(x = false|xr = true) = 0.1.
The fm potentials are defined in the same way.

Summary — We can now formally define the spreadsheet
annotation hierarchy extraction framework, which supports
both automatic extraction and interactive repair.

Let G be a graphical model that has a set of variables
x = {x1, ..., xn} where each xi ∈ x represents a ParentChild
candidate in an annotation region and takes a label li from
L ={true, false}. Let lr be the set of repair-induced labels
on variables xr. We define node potentials (Equation 1),
edge potentials (Equation 2), global potentials (Equation 3
and 4), and repair potentials (Equation 5) in G. The joint
distribution of the graphical model G is:

P (l | lr,x) =
1

Z(w)
exp(

∑

x

θ(x, l) +
∑

x

∑

x′

θ(x, l, x′
, l

′)

+
∑

k∈{a,b}

φk(x, l) +
∑

x

∑

xr∈xr

ϕ(x, l, xr, lr))

5.3 Training and Inference
In this section, we discuss how to train model parameters

and infer assignments to variables in the graphical model.

5.3.1 Parameter Estimation

In the graphical model, we only have unknown parameters
for node and edge potentials. Assuming that no user repairs
are involved, we can write the joint probability as,

1

Z(w)
exp(

∑

x

θ(x, l) +
∑

x

∑

x′

θ(x, l, x′
, l

′) +
∑

k∈{a,b}

φk(x, l))

Let w = {w} be the set of parameters for node and edge
potentials. Given training data D = {x, l} that describes
hand-labeled correct hierarchies of the training spreadsheets,
we estimate w for node and edge potential functions, θ(x, l)
and θ(x, l, x′, l′). A common choice of regularization to avoid
overfitting is to add a penalty on weight vectors, based on
the Euclidean norm of w and on a regularization parameter
1

2σ2 . The goal is to maximize the regularized log likelihood:

max
w

∑

x

θ(x, l)+
∑

x

∑

x′

θ(x, l, x′
, l

′)−logZ(w)−
∑

i

w2
i

2σ2
+C

Algorithm 2 EnforcedTreeInference

Input: The variables x = {x} and the annotations A =
{a1, ..., aN} in an annotation region.
Output: The ParentChild pairs P = {(ap, ac)} in the annota-
tion hierarchy and its confidence confidence.

1: P ← {}, confidence← 0
2: for each ac ∈ A do

3: maxprob← 0, ap0 ← root
4: for each ap ∈ A do

5: Find x ∈ x for the ParentChild pair (ap, ac)
6: Obtain the probability cprob that x = true
7: if cprob > maxprob then

8: maxprob← cprob, ap0 ← ap
9: end if

10: end for

11: P ← P ∪ {(ap0 , ac)}
12: confidence← confidence+ log(maxprob)
13: end for

where C is a constant. This is a standard form for param-
eter estimation, and known techniques, such as conjugate
gradient and L-BFGS, can be used to find the optimal pa-
rameters for this formula. Previous work [22, 24] discusses
this optimization problem and its solution in more detail.

5.3.2 Inference Technique

The graphical model described poses a serious computa-
tional challenge. Inference is NP-hard if no assumptions are
made about the structure of the graph [11], yet our appli-
cation requires that we infer labels after each user repair to
redisplay the updated hierarchy. In order to infer variables
in interactive time, we first simplify the graphical model.

Model Simplification — The potential stumbling blocks
to efficient inference are the edge and global potentials. (The
repair potentials do not complicate the inference because the
conditioning algorithm [22] erases observed variables along
with all the repair potential edges.) The edge potentials
alone can yield more than a million edges on a graph with
37,386 nodes derived from just 100 randomly-chosen WEB

spreadsheets (see Table 3 for details).
We considered two methods for conducting inference in

a limited amount of time: running the tree-reweighted be-
lief propagation algorithm [23] on the full graph, or running
an exact inference method on a simplified tree-structured
model. Our experiments show that when running on a
model derived from 100 random SAUS spreadsheets and
repeating this process 10 times, tree-reweighted belief prop-
agation is 48 times slower and 5.4% worse on F1 than the
tree-structured model. Thus, at inference time we convert
our graphical model into a tree-structured model.

It is not easy to find the tree-structured graphical model
that yields the highest-quality results. Exhaustively enu-
merating all the possible trees in a graph with more than
a million edges and 37,000 nodes is impractical. We simply
randomly sample edges from each type of pairwise correla-
tion (stylistic, metadata, and adjcency), rejecting any edge
that would induce a cycle. We terminate when all nodes
are connected. We add all possible metadata edges before
adding any stylistic edges, and add all stylistic edges before
adding any adjacency edges. We found experimentally that
this ordering helped slightly, though different orderings do
not change F1 very much: testing on 100 random spread-
sheets of SAUS, different orderings changed F1 from 0.8808
to 0.8867 and from 0.8237 to 0.8363 when testing on WEB.



Inference — We can now present our method for approx-
imating the graphical model’s optimal assignment. First,
we build the model with node potentials, tree-structured
edge potentials, and all the repair potentials if there exist
any. Given a set of observed variables xr with labels lr
translated from users’ repairs (we assume xr is empty if no
repairs are observed), the conditioning algorithm yields a
forest-structured model.

Second, we run a standard inference algorithm on this
new model to obtain the assignment to all the variables.
Because the model is now a forest-structured, a variety of
existing algorithms, such as belief propagation, can perform
exact inference on such a structure.

Finally, we treat the global potentials as a post-processing
stage to ensure that the inferred variable assignment yields
legal hierarchical trees for the input annotation regions. The
goal of global potentials is to handle the orientation and one-
parent constraints. Thus, we first enumerate all of the Par-
entChild candidates of each orientation, “upward” or “down-
ward,” and compute two separate annotation hierarchies
with EnforcedTreeInference, seen in Algorithm 2. For all
the ParentChild candidates with a given annotation as the
child, the algorithm selects the one with the maximal proba-
bility (derived from the graphical model), thereby handling
the one-parent constraint. We obtain two possible hierar-
chies, one “upward” and one “downward,” each with com-
puted confidence. We select the one with the higher con-
fidence to handle the orientation constraint. Therefore, our
algorithm yields legal annotation hierarchies.

6. THE METADATA RESOURCE
A critical part of both automatic extraction and interac-

tive repair is detecting metadata affinity. As described in
Section 4.2, ParentChild variables might be correlated be-
cause they describe data belonging to one semantic category.
This information is useful for examining annotations within
a single spreadsheet, and is the only way to tie ParentChild
decisions across multiple spreadsheets.

General-purpose schema resources, such as Freebase [3],
can be used to detect metadata affinity between two annota-
tions. But spreadsheet domains can be quite narrow. Fortu-
nately, we are able to synthesize a domain-specific metadata
resource from a corpus of spreadsheets. Our central observa-
tion is that any useful category of annotations — whether a
general-purpose one like gender or a hyper-specific one such
as chemicalPrecursor — will likely appear in many datasets.
Further, annotations drawn from the same category (such
as Male and Female) often appear as siblings in an extracted
annotation hierarchy. We measure whether two annotations
belong to the same category by testing how strongly the an-
notations appear as siblings in a large number of extracted
hierarchies. We perform the test as follows:

1. Extract all annotation hierarchies from a corpus of
spreadsheets using a simple classifier or a version of
our automatic extractor that does not use metadata
information. For each parent annotation, we create a
sibling set that contains all of its child annotations.

2. Count the number of sibling sets where an annotation
a is observed. Divide by the number of sibling sets to
obtain p(a), the probability that a randomly chosen
sibling set contains a.

3. Count the number of sibling sets where the annotation
pair ai and aj co-occur together. Divide by the number

Dataset
Hierarchy Levels # Left Annotations
Min Mean Max Min Mean Max

SAUS

R200 2 3.8 8 4 37.8 224
health 2 3.6 6 12 34.5 76
fin. 3 3.7 6 6 32.4 81

trans. 3 4.0 8 5 36.1 73

WEB

R200 2 3.4 10 2 59.3 669
bts 2 2.6 4 4 10.7 26
nsf 2 4.0 7 9 83.9 331
usda 2 3.2 4 5 34.5 56

Table 1: Basic statistics of our eight test sets.

of sibling sets to obtain p(ai, aj), the probability that
a randomly chosen sibling set contains both ai and aj .

We can then measure the extent to which two annotations
ai and aj are observed as siblings (and thus are likely to be
in the same category) by computing the pointwise mutual

information (PMI): PMI(ai, aj) = log
p(ai,aj)

p(ai)p(aj)
.

Let x1 = (ap1, ac1) and x2 = (ap2, ac2) be two variables
in the CRF. The two variables x1 and x2 have metadata
affinity if and only if PMI(ap1, ap2) > δ and PMI(ac1, ac2) >
δ, where δ is a predefined threshold.

7. EXPERIMENTS
We now evaluate the performance of automatic extrac-

tion (Section 4) and interactive repair (Section 5). We also
evaluate the quality of our metadata resource (Section 6).

7.1 Experimental Setup
Our experiments are based on two spreadsheet corpora 4:
• SAUS – The 2010 Statistical Abstract of the United

States (SAUS) consists of 1,369 spreadsheet files total-
ing 70MB. We downloaded the dataset from the U.S.
Census Bureau. It covers a variety of topics of general
public interest, such as state-level finances, educational
attainment, levels of public health, and so on.

• WEB –OurWeb dataset consists of 410,554 Microsoft
Excel files from 51,252 distinct Internet domains. They
total 101 GB. We found the spreadsheets by looking for
Excel-style file endings among the roughly 10 billion
URLs in the ClueWeb09 Web crawl [10].

From each of the two datasets, SAUS and WEB, we ran-
domly selected 200 hierarchical spreadsheets. We call these
test sets SAUS R200 and WEB R200. We constructed
them by randomly sampling from SAUS or WEB and re-
taining only the hierarchical ones (i.e., ones that have either
hierarchical left or top annotations). In addition, we con-
structed a series of topic-specific test sets. For SAUS, we
used government-provided category labels to identify spread-
sheets for each of three topic areas: health, finance, and
transportation; we chose 10 random hierarchical spread-
sheets from each topic. For WEB, we used URL domain
names as a rough proxy for the category label, choosing
10 random hierarchical spreadsheets from each of bts.gov,
usda.gov, and nsf.gov. We asked a human expert to manu-
ally examine the above spreadsheets and create ground truth
hierarchies. Details about the test sets are shown in Table 1.

We used the Python xlrd library to access data and for-
matting details of spreadsheet files. Our graphical model
was implemented with UGM [29].

7.2 Automatic Extraction
In this section, we evaluate the performance of the auto-

matic extraction phase. We evaluate the automatic extrac-

4
Downloadable:www.eecs.umich.edu/db/sheets/datasets.html



Dataset Methods Precision Recall F1

SAUS

AutoBasic 0.4641 0.4641 0.4641
AutoLR 0.8753 0.8750 0.8751
AutoEdge 0.8801 0.8787 0.8794
AutoGlobal 0.8834 0.8834 0.8834
AutoFull 0.8860 0.8860 0.8860

WEB

AutoBasic 0.4736 0.4736 0.4736
AutoLR 0.7886 0.7898 0.7892
AutoEdge 0.7979 0.7968 0.7973
AutoGlobal 0.8122 0.8122 0.8122
AutoFull 0.8327 0.8327 0.8327

Table 2: Performance of the automatic extractor on
SAUS and WEB R200 datasets.

tion’s accuracy in predicting correct ParentChild relation-
ships by using standard metrics of Precision, Recall, and F1.
We trained and tested automatic extraction using SAUS

R200 and WEB R200. We randomly split each of the two
datasets equally for training and testing. We trained pa-
rameters on the training set and constructed one graphical
model for the test set. We repeated the split-and-test pro-
cess 10 times, computing average Precision, Recall and F1.

We have previously discussed the simple classification based
approaches for automatic extraction [7], and the approaches
proposed are equivalent to AutoLR and AutoGlobal as below.

Automatic Models — A naive method AutoBasic to solve
the hierarchy extraction problem is to use simple features
(i.e. local alignment and indentation information) to classify
two annotations as having a ParentChild relationship or not
and assigns the most probable parent to each child.

We compared four different configurations of the auto-
matic extraction graphical model with AutoBasic to demon-
strate the power of each component of our automatic ex-
tractor: AutoLR uses node potentials only (with no edge or
global potentials, the model is equivalent to the logistic re-
gression, or LR, method)5. AutoEdge uses node potentials
and edge potentials. AutoGlobal uses node potentials and
global potentials. Finally, AutoFull uses all three potential
types and reflects the entire contents of Section 4.3. 6

Table 2 shows the performance of the five methods. We
can see that all of our four graphical models significantly out-
performed the baseline AutoBasic. Both partial models —
AutoEdge and AutoGlobal — performed better than AutoLR,
indicating that both edge and global potentials independently
helped to improve the performance of automatic extraction.
AutoFull, the model that includes all three potential types, is
the best of all (though AutoFull’s margin is small in the case
of SAUS). We noticed that many extraction errors are due
to contradictory spreadsheet formatting; designers of differ-
ent spreadsheets may have conflicting designs, but even the
format within one spreadsheet may not be consistent.

Training Data — We wanted to know if our supply of
training data was limiting the automatic extractor’s accu-
racy. We conducted a test in which we artificially con-
strained the training set size derived from SAUS R200 and
WEB R200, building a series of automatic extraction mod-
els with varying amounts of training data. Figure 7 shows
the F1 of the ParentChild pairs for AutoFull as we change
the size of the training set. The growth in both SAUS and

5
We also tried support vector machines and other non-joint-inference

techniques, but they offered no significant gains over AutoLR.
6
For AutoLR and AutoEdge we chose the probability threshold to max-

imize F1. For the rest two methods, there is no such flexibility, as the
algorithms always select the parent with the maximum ParentChild
probability for each child.

Figure 7: Performance
for automatic extractor
using different amounts
of training data.

Figure 8: Performance
for automatic extractor
on different domains in
WEB.

WEB accuracy plateaus after a certain size. This analysis
does not mean more training data cannot help, but does
indicates that additional gains will likely be expensive.

Domain Sensitivity — We also examined whether the
WEB automatic extractor’s accuracy varies with the qual-
ity of the spreadsheet. It is difficult to precisely describe
a spreadsheet’s quality, so as a proxy we use the rank of
the spreadsheet URL’s Internet domain, when sorted in de-
scending order of the number of spreadsheets hosted by the
domain. Figure 8 shows the average F1 within each Internet
domain’s spreadsheets. We followed the same training and
testing procedure as in the Automatic Models part above.
The figure shows that the publisher’s rank (or the quantity
of spreadsheets it publishes) does not correlate with extrac-
tion performance. However we did find that spreadsheets
from lower ranked domains are less likely to pass our initial
“hierarchical data frame spreadsheet” filter.

In summary, our system shows substantially better per-
formance than the baseline AutoBasic method, a 91% im-
provement in F1 on SAUS and a 76% improvement in F1
on WEB. We now turn to interactive repair to shrink the
user’s burden even further.

7.3 User Repairs
We now evaluate the performance of the interactive repair

phase. We use the eight datasets described in Section 7.1.
For each R200 of SAUS and WEB, we again randomly
split the dataset into 100 training spreadsheets and 100 test-
ing spreadsheets. We further randomly split the 100 testing
spreadsheets into 10 subgroups with 10 spreadsheets in each,
as R10; we then averaged the performance over the 10 sub-
groups. We created one model for each test set (health,
finance, etc), except R10, where we created one model for
each subgroup. Table 3 shows basic statistics for the inter-
active repair graphical models constructed for our test sets.

The metric of success for interactive repair is the amount
of user work reduced when compared to simply fixing all
the errors made by automatic extractor. We evaluate the
amount of user effort by counting the required number of
drag-and-drop repair operations to fix all the extraction er-
rors in an annotation hierarchy, via our visual repair tool
(seen in Figure 2). In the experiments, we simulated a user
who randomly chooses extraction errors to repair, and who
never makes a mistake. The user repairs errors until no er-
rors remain. For each dataset, we ran this process 20 times
and counted the average number of repairs performed. No-
tice that the maximum number of possible repair operations
for a given hierarchy is the number of annotations in it.

For each result shown in Figure 9, Figures 10 and 11, we
normalize the number of required repairs by the maximum
possible number of repairs in that dataset (i.e., the number



Figure 9: The normalized repair number for inter-
active repair on SAUS and WEB test sets.

Sheet Node Correlation Edge # (×1000)
# # Stylistic Metadata Total

S
A
U
S

train 100 11269 87.5 115.7 177.6
health 10 874 4.9 1.7 5
fin. 10 1228 8.6 5.5 11.1

trans. 10 1334 9.5 5.7 12.3
R10 100 13866 144.4 43.3 161.3

W
E
B

train 100 31925 724.2 566.9 1069.0
bts 10 249 0.5 0.0 0.5
nsf 10 10698 265.1 22.9 283.3
usda 10 1786 15.1 1.7 15.1
R10 100 37386 1522.0 289.8 1677.6

Table 3: Basic statistics for each test set’s interac-
tive repair model.

of annotations). Thus, smaller bars are better, and results
should be comparable across datasets.

Repair Models — A baseline method RepairBasic to incor-
porate interactive repair is to tie the ParentChild variables
in one spreadsheet if the parents share the same formatting
and so do the children: if a user changes one decision, the
system automatically applies the change to the tied ones.

We also evaluated six different versions of our extraction
system. AutoLR and AutoFull are the automatic extractors
described in the above section; we assume a user simply fixes
all of their extraction errors one after another. RepairLR, Re-
pairEdge, RepairGlobal and RepairFull are created by adding
repair potentials to the previous four automatic extraction
models. RepairFull is the full system described in Section 5.

Figure 9 shows the normalized number of repair opera-
tions of different interactive repair systems. RepairFull per-
formed the best of all, requiring just 7.2% of the maximum
number of possible repairs when averaged over all test sets.
In contrast, AutoFull (itself a dramatic improvement over the
automatic extraction baseline) requires 15.4% of the maxi-
mum; our exploitation of user repairs thus allows us to re-
duce the user burden by an additional 53%. AutoLR, an
automatic extractor without joint inference, yields an even
worse average of 23.3%; we improve by 69%. The absolute
number of user repairs is reasonable: RepairFull requires be-
tween 2 and 3.5 repairs per sheet for SAUS, and between
1.38 and 2.94 repairs per sheet for WEB.
Note that applying user repair information naively yields

terrible results: RepairBasic requires 60.2% of the maximum
possible number of repairs, much worse than even AutoLR.

Figure 10: The normalized repair number for four
interactive repair configurations.

Figure 11: The normalized repair number required
by different configurations of metadata links.

In all the datasets, RepairFull always improves or matches
AutoFull, which indicates that our repair mechanism is gen-
uinely beneficial to users; we managed to prevent backtrack-
ing and did not create more work for users. The same is not
true for AutoLR vs RepairLR, which backtracks in the cases
of SAUS/health and WEB/usda.

We further investigated interactive repair by considering
different possible configurations of the interactive repair model
on different test sets (shown in Figure 10). The Figure shows
that both edge and global potentials are useful in reducing
user burden, and using all of them helps the most.

Spreadsheet Grouping — We also investigated the in-
fluence of two spreadsheet grouping methods on interactive
repair performance. (1) By topic: We group spreadsheets
according to their human-given topic labels (such as finance
and health) or their URL hostnames (such as bts.gov and
nsf.gov); and (2) By Jaccard similarity: We compute the
clusters by creating a graph in which each spreadsheet is a
node, and edges exist when two spreadsheets have Jaccard
similarity (computed over the non-numeric strings from each
spreadsheet) greater than a threshold of 0.6. We find all
weakly connected components in the graph as the spread-
sheet groups. Note that grouping spreadsheets should only
impact metadata affinity, as metadata affinity is the only
way to connect ParentChild decisions across spreadsheets.

For both SAUS and WEB, we ran each grouping tech-
nique, then randomly selected 3 groups of size 2, 3 groups
of size 5, and 3 groups of size 10. For each group, we first
built one RepairFull on this group of spreadsheets and com-
puted the number of repairs required to eliminate all the
extraction errors. We then compared against the sum of
repairs needed by RepairFull when running on each spread-
sheet of the group in isolation. We found that grouping by
topic only reduces repairs up to 5.8% on SAUS and 2.1% on
WEB, while grouping by Jaccard similarity reduces repairs
by up to 64.0% in SAUS and 84.6% in WEB.

Thus, Jaccard similarity grouping yields a massive reduc-
tion in necessary user repairs when compared to topic group-
ing. We did not present these results in Figures 9 and 10
because we believe that highly coherent clusterings will only
be possible in certain situations. Shared spreadsheet tem-
plates is one such situation; another is when the metadata



resource is of especially high quality (perhaps even curated
by hand), allowing interactive repair to find otherwise invis-
ible connections among independent spreadsheets.

Metadata Resources – The quality of our metadata re-
source clearly impacts metadata affinity. Figure 11 shows
the normalized number of repairs required by different meta-
data resource configurations of RepairFull, when run on Jaccard-
clustered spreadsheets mentioned above in Spreadsheet Group-

ing. We compared the approach based on our metadata
resource from Section 6 (RepairFull-Metadata) against a no-
metadata technique (RepairFull-Style) and a technique that
uses Freebase to discover metadata affinity (RepairFull-Freebase).
(In that last case, two annotations have metadata affinity if
they share the same Freebase topic.) The figure shows that
in all cases, our RepairFull-Metadata technique performs the
best, usually followed by RepairFull-Freebase. On average,
our induced metadata resource reduces user effort by 34.4%
when compared to the Freebase resource. Note that some
of the spreadsheets we process are on extremely technical
topics (such as currency trading, health care, and minerals
processing) that are unlikely to be captured in a general-
purpose metadata resource such as Freebase.

Runtime Performance — After each user repair opera-
tion, users have to wait for the model to recompute the new
result. In our experiments, each repair’s inference took 0.7s
on R10 in SAUS and 3.2s on R10 in WEB on average. All
other test datasets took less than 0.7s, except for nsf (at
4.7s). The results indicate that interactive repair is compu-
tationally feasible, at least for relatively small datasets.

Overall, we have demonstrated that our RepairFull extrac-
tion system can extract accurate spreadsheet hierarchies us-
ing just 7.2% of the maximum possible human effort, a re-
duction of 53% compared to AutoFull, our automatic ex-
traction system (itself a significant improvement over previ-
ous automatic extraction techniques). These numbers apply
to real-world datasets; in certain cases where spreadsheets
share a large amount of metadata, we can improve the factor
even further. Moreover, our system works well on domain-
specific datasets with no explicit user-provided metadata.

8. CONCLUSIONS AND FUTURE WORK
We have described a semiautomatic framework for ex-

tracting data from spreadsheets. This system can derive
accurate extractions with dramatically lower user effort than
required by a traditional system. It should enable individu-
als and organizations to better exploit the large amount of
data currently locked away in spreadsheet files.

In the future work, we would like to automatically and
preemptively integrate spreadsheets with the data resources
in an organization: relational databases, unstructured docu-
ments, even data-centric images, such as plots. The resulting
cross-type integrated database could be used as the basis of
a general query tool that can ignore distracting details of
how each data item happened to be stored.
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