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Abstract

Predictions of interactions between target proteins and potential leads are of great benefit in the drug discovery process.
We present a comprehensively applicable statistical prediction method for interactions between any proteins and chemical
compounds, which requires only protein sequence data and chemical structure data and utilizes the statistical learning
method of support vector machines. In order to realize reasonable comprehensive predictions which can involve many false
positives, we propose two approaches for reduction of false positives: (i) efficient use of multiple statistical prediction
models in the framework of two-layer SVM and (ii) reasonable design of the negative data to construct statistical prediction
models. In two-layer SVM, outputs produced by the first-layer SVM models, which are constructed with different negative
samples and reflect different aspects of classifications, are utilized as inputs to the second-layer SVM. In order to design
negative data which produce fewer false positive predictions, we iteratively construct SVM models or classification
boundaries from positive and tentative negative samples and select additional negative sample candidates according to
pre-determined rules. Moreover, in order to fully utilize the advantages of statistical learning methods, we propose a
strategy to effectively feedback experimental results to computational predictions with consideration of biological effects of
interest. We show the usefulness of our approach in predicting potential ligands binding to human androgen receptors
from more than 19 million chemical compounds and verifying these predictions by in vitro binding. Moreover, we utilize
this experimental validation as feedback to enhance subsequent computational predictions, and experimentally validate
these predictions again. This efficient procedure of the iteration of the in silico prediction and in vitro or in vivo experimental
verifications with the sufficient feedback enabled us to identify novel ligand candidates which were distant from known
ligands in the chemical space.
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Introduction

In the early stages of the drug discovery process, prediction of

the binding of a chemical compound to a specific protein can be of

great benefit in the identification of lead compounds (candidates

for a new drug). Moreover, the effective screening of potential

drug candidates at an early stage generates large cost savings at a

later stage of the overall drug discovery process.

In the field of virtual screening for the drug discovery, docking

analyses and molecular dynamics simulations have been the

principal methods used for elucidating the interactions between

proteins and small molecules [1–4]. Fast and accurate statistical

prediction methods for binding affinities of any pair of a protein

and a ligand have also been proposed for the case where

information regarding 3D structures, binding pockets and binding

affinities (e.g. pKi) for a sufficient number of pairs of proteins and

chemical compounds is available [5]. However, the requirement of

these programs for 3D structural information is a severe

disadvantage, as the availability of these data is extremely limited.

Although a number of structures in PDB [6] is increasing (from

23,642 structures in 2003 to 48,091 structures in 2007), not all

proteins which have been derived from many genome-sequencing

projects are suitable for experimental structure determination.

Hence, the genome-wide application of these methods is in fact

not feasible. For example, among the GPCRs (G-protein coupled

receptors), whose modulation underlies the actions of 30% of the

best-known commercial drugs [7], the full structure of only a few

mammalian members, including bovine rhodopsin [8] and human

beta 2 adrenoreceptor [9], is known.

To achieve more comprehensive and faster protein-chemical

interaction predictions in the post-genome era producing a vast

number of protein sequences whose structural information is not

available, it is essential to be able to utilize more readily available

biological data and more generally applicable methods which do

not require 3D structural data [10–12]. In our previous study, we

developed a comprehensively applicable statistical method for

predicting the interactions between proteins and chemical

compounds by exploiting very general biological data, including
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amino acid sequences, 2-dimensional chemical structures, and

mass-spectrometry (MS) data [11]. These statistical approaches

provided a novel framework where the input space consists of pairs

of proteins and chemical compounds. These pairs are classified

into binding and non-binding pairs, while most chemoinformatics

approaches assess only chemical compounds and classify them

according to their pharmacological effects. Our previous study

[11] demonstrated that screening target proteins for a chemical

compound could be performed on a genome-wide scale. This is

due to the fact that our method can be applied to all proteins

whose amino acid sequences have been determined even though

the 3D structural data is not yet available. Genome-wide target

protein predictions were conducted for MDMA, or ecstasy, which

is one of the best known psychoactive drugs, from a pool of 13,487

human proteins, and known bindings of MDMA were correctly

predicted [11].

Although the method yielded a relatively high prediction

performance (more than 80% accuracy) in cross-validation and

usefulness in the comprehensive prediction of target proteins for a

given chemical compound with tens of thousands of prediction

targets [11], it suffered from the problem of predicting many false

positives when comprehensive predictions were conducted.

Although these false positives might include some unknown true

positives, they were mainly due to the low quality of the negative

data, which is one of the common problems in utilizing statistical

classification methods such as Support Vector Machines (SVMs)

and Artificial Neural Networks (ANNs).

In this paper, we describe two strategies, namely two-layer SVM

and reasonable negative data design, which are used for the

purpose of reducing the number of false positives and improving

the applicability of our method for comprehensive prediction. In

two-layer SVM, in which outputs produced by the first-layer SVM

model are utilized as inputs to the second-layer SVM, in order to

design negative data which produce fewer false positives, we

iteratively constructed SVM models or classification boundaries

and selected negative sample candidates according to pre-

determined rules. By using these two strategies, the number of

predicted candidates was reduced to around 100 (Table 1) in

experiments in which the potential ligands for some druggable

proteins (UniProt ID P10275 (androgen receptor), P11229

(muscarinic acetylcholine receptor M1) and P35367 (histamine

H1 receptor)) are predicted on the basis of more than 100,000

compounds in the PubChem Compound database (http://

pubchem.ncbi.nlm.nih.gov/).

With the aim of validating the usefulness of our method, our

proposed prediction model with fewer false positives was applied

to the PubChem Compound database in order to predict the

potential ligands for the ‘‘androgen receptor’’, which is one of the

genes responsible for prostate cancer. We verified some of these

predictions by measuring the IC50 values in an in vitro assay.

Biological experiments, conducted to verify the computational

predictions based on statistical methods, docking methods or

molecular dynamics methods, typically involve success as well as

failure. In addition to fast calculation and wide applicability, one

of the merits of using statistical methods that involve training with

known data is that results obtained by verification experiments can

be efficiently utilized as feedback to produce new and more

reliable predictions. Most previous work on virtual screening has

focused on the computational prediction and listing of dozens or

hundreds of candidates, followed by their experimental verifica-

tion. However, only on rare occasions have these experimental

results been utilized for the further improvement of computational

predictions and experiments. Moreover, even without verification

experiments, additional data acquired from, for example, relevant

literature can be used for enhancing the prediction reliability.

Therefore, we propose a strategy based on the effective

combination of computational prediction and experimental

verification. Our second computational prediction utilizing

feedback from the first experimental verification successfully

discovered novel ligands (Figure 1 and 2) for the androgen

receptor. Our approach suggests the significance of utilizing

statistical learning methods and feedback from experimental

results in drug lead discovery.

In the following section, we first describe the real application of

our method involving the computational prediction, the experi-

mental verification and the feedback, and then explain the

computational experiments conducted to verify the usefulness of

our computational prediction method in comprehensive prediction.

Results

Application of our strategy to the discovery of androgen
receptor binding ligands

First computational prediction. We set the human

androgen receptor (AR) as the target protein, whose binding

ligands were predicted by using the PubChem database. Here, AR

is a steroid hormone receptor and a transcription factor belonging

to the nuclear receptor superfamily. In pathology, AR is one of the

genes responsible for prostate cancer, which is the most frequently

diagnosed cancer in men in the United States according to the

American Cancer Society Statistics for 2008. The two-layer SVM

model with an additional model for the androgen receptor, which

constitutes a prediction model trained on the basis of

supplementary information obtained from the relevant literature

or databases as well as feedback from experimental verifications,

was applied to the screening for human androgen receptor binding

ligands from 19,171,127 chemical compounds in the PubChem

Compound database. As a result, 500 chemical compounds

(compounds with the same connectivity were counted only once)

were predicted (Figure 1A).

First experimental verification. Out of 500

computationally predicted candidates, an in vitro binding assay

Author Summary

This work describes a statistical method that identifies
chemical compounds binding to a target protein given the
sequence of the target or distinguishes proteins to which a
small molecule binds given the chemical structure of the
molecule. As our method can be utilized for virtual
screening that seeks for lead compounds in drug
discovery, we showed the usefulness of our method in
its application to the comprehensive prediction of ligands
binding to human androgen receptors and in vitro
experimental verification of its predictions. In contrast to
most previous virtual screening studies which predict
chemical compounds of interest mainly with 3D structure-
based methods and experimentally verify them, we
proposed a strategy to effectively feedback experimental
results for subsequent predictions and applied the strategy
to the second predictions followed by the second
experimental verification. This feedback strategy makes
full use of statistical learning methods and, in practical
terms, gave a ligand candidate of interest that structurally
differs from known drugs. We hope that this paper will
encourage reevaluation of statistical learning methods in
virtual screening and that the utilization of statistical
methods with efficient feedback strategies will contribute
to the acceleration of drug discovery.

Statistical Protein-Chemical Binding Prediction
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was applied to 18 purchasable chemical compounds (details are

provided in Figure S4), which were chosen by considering

chemical structures and predicted probabilities from 43 chemical

compounds marked as purchasable in ChemCupid (http://www.

namiki-s.co.jp/chemcupid/) in October 2007, and there were 6

known drugs or androgens among the chosen chemical

compounds (Figure 2A). The results obtained for these 6 known

ligands agreed well with the results found in the relevant literature

[13], thus proving the reliability of the assay.

For 12 predictions, except 6 known ligands, by applying a

threshold level of IC50 = 100 mM, which was based on the fact that

IC50 of flutamide was more than 50 mM, a precision of 67% (4/6)

and an accuracy of 67% (8/12) were obtained (Figure 2A). As a

result, it was possible to subsequently refine the predictions by

using two misclassified compounds which were not detected in our

method but which proved to bind to the androgen receptor.

Second computational prediction with feedback. By

utilizing the results of the first experimental verification, the

prediction model was reconstructed. Although the first

computational prediction and experimental verification involved

many compounds with steroid skeletons, binding of steroid-like

compounds to the androgen receptor, which is a steroid-hormone

receptor, is relatively obvious. Moreover, since steroid-like

compounds are expected to act as agonists of the androgen

receptor, antagonists are given preference in terms of search for

chemical compounds with potential therapeutic effects for human

prostate cancer, which involves activation of the androgen

receptor. Thus, the prediction model in which pairs of the

androgen receptor and steroid-like chemical compounds were

regarded as negatives was also constructed in order to search for

antagonists of the androgen receptor. The prediction coverage of

these two models (Figure 1B and 1C) was different. The latter

prediction models predicted chemical compounds without steroid

skeletons, as expected.

Second experimental verification. Among the second

predictions, experimental verification was performed with

respect to 5 purchasable candidates, which were predicted with

the two models reconstructed with feedback data and different

strategies, as described in the previous section, and which were

selected from predictions specific to each model, including 49

compounds marked as purchasable in ChemCupid in July 2008

(details are provided in Figure S4). Out of these 5 candidates, 3

chemical compounds bound to the androgen receptor at a

threshold of 100 mM (Figure 2B), thus achieving 60% precision

(3/5).

As shown in Figure 2C, known drugs and chemical compounds

in the additional data can be roughly divided into two regions in

the chemical space, which is based on the results of the Principal

Component Analysis (PCA) applied to known ligands and

chemical compounds in additional data represented by E-Dragon

Table 1. Evaluation of our method with respect to comprehensive interaction prediction.

dataset1 neg.2 1sts3 P102754 P112294 P353674 rec0.5 (%)5 rec0.95 (%)5 evaluation6

(A)

mlt 16 – 714 1408 1187 100 98.97 82.50

random 16 – 1869.3(6136.1) 10503.3(61250.7) 9305.3(6517.8) 100 99.66(61.09) 69.45(60.32)

(B)

mlt 14 10 177 535 451 96.91 93.81 75.56

random 14 10 848.3(6345.0) 1531.7(6628.9) 988.0(6411.4) 96.56(62.89) 81.10(619.44) 66.44(67.82)

(C)

max 16 9 28 231 129 100 97.94 82.92

random 16 9 74.7(642.6) 255.3(632.2) 146.7(68.3) 100 100 80.67(60.93)

(D)

– – – 640 1791 838 86.60 71.13 59.66

(E)

– – – 1869 1816 1580 – – –

(A) One-layer SVM. (B) Two-layer SVM with the first-layer SVM models based on the subpos datasets. (C) Two-layer SVM with the first-layer SVM models based on the
allpos datasets. (D) {SVM only utilizing chemical compound information. (E) {Similarity search.
{SVM model which only classifies chemical compounds (not pairs) according to the binding property to the target proteins. Chemical compounds binding to each
target protein were treated as positives, and all other compounds in the DrugBank dataset were regarded as negatives.
{A chemical compound i was predicted as binding to a protein a by using the similarity method if predsim ið Þ~maxj[A I\Jj j= I|Jj j§0:9, where A represents the known
binding ligands of a, and I (or J) represents a set of substructures considered in calculating the feature vector of the chemical compounds.

1refers to negative data expansion rules (details are provided in Materials and Methods). ‘‘random’’ indicates that three types of random pairs comprising a protein and a
drug are used as negatives. The 95% confidence intervals are shown.

2the number of negatives ( = 1,7506x).
3the number of first-layer SVM models utilized to construct the second-layer SVM model.
4target proteins whose ligands were predicted from 109,841 compounds. The number of predicted ligands is shown.
5recx is the recall rate( = TP/(TP+FN)) at the threshold x. 0.5 is the threshold following the definition of SVM. TP: true positives, FN: false negatives.
6

evaluation~100|
1

2
rec0:5z

rec0:95zprec0:95

2 1z 1{rec0:95ð Þ 1{prec0:95ð Þf g

� �
{

total # of predicted positives � # of known positives

total # of predicted targets � # of known positives

� �
ð1Þ

Here, precx is the precision ( = TP/(TP+FP)) at the threshold x. FP: false positives.
doi:10.1371/journal.pcbi.1000397.t001

Statistical Protein-Chemical Binding Prediction
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descriptors [14]. Although all true positives of the first computa-

tional prediction belonged to one of these regions, T5853872

(Figure 2C and 2D), which is one of the second computational

predictions based on the designed strategy, was not included in

these regions. This result suggests that repeating the processes of

the computational prediction, the experimental verification and

the feedback of the experimental results for new predictions

contributes to the efficient exploration of the chemical space

targeted in the search as well as to the discovery of novel ligands.

The third computational prediction, which utilized the results of

the second experimental verification, further extended the

predictions (details are provided in Text S1 and Figure S5) and

successfully predicted chemical compounds which were of

structural variety (data not shown). The repetition of the process

of integrating computational prediction and experimental verifi-

cation continues to provide novel candidates.

Indication of the biological validity of statistical
approaches

In bioinformatics, statistical approaches extract rules from

numerical data corresponding to biological properties. Here, it is

not guaranteed that the extracted rules are biologically valid, and

furthermore it is possible to utilize statistical methods to obtain

general rules from any kind of numerical data which are

meaningless and irrelevant to biological properties. The biological

relevance of our approach can be verified as follows on the basis of

supporting evidence which indicates that our method can extract

significant rules only if biologically valid and relevant data is given.

First, high prediction performances on diverse datasets might

support the validity of our approach. In several datasets consisting

of known pairs of proteins, including nuclear receptors, GPCRs,

ion channels and enzymes, and drugs and random protein-drug

pairs, our statistical approach with SVM showed high prediction

performances (details are provided in Text S1, Table S1 and

Figure S2). The fact that more than 0.85 AUC and an accuracy of

80% were obtained for diverse datasets suggests that it is possible

to extract some properties accountable for interactions between

proteins and drugs by statistical approaches. This possibility can be

further supported by the fact that integrating several datasets

whose target proteins were not relevant to each other improved

the prediction performances with respect to pairs of proteins and

chemical compounds which had a specific binding mode (details

are provided in Text S1 and Table S2).

Second, we showed the biological relevance of these high

prediction performances by calculating the prediction perfor-

mances using biologically meaningless artificial datasets as

positives. Several datasets which contained fractions of valid

samples found in the DrugBank dataset, and which comprised

artificial pseudo-positive samples of protein-chemical pairs pro-

duced by shuffling with the same frequency of chemical

compounds and proteins as that in the DrugBank dataset, were

generated. Our method was applied to these shuffled artificial

datasets (Figure 3). Here, if our approach did not depend on the

biological properties of the given dataset but only succeeded in

classifying given pairs comprising a protein and a chemical

compound and random pairs derived from them, the prediction

accuracy for each shuffled dataset was assumed not to fluctuate.

As shown in Figure 3, the prediction accuracy was proportional

to the content rate of the biologically valid samples. Therefore, the

classification of our approach was shown to function only when a

certain amount of biologically valid pairs comprising a protein and

a chemical compound are given. This result suggests that our

statistical approach succeeds in extracting the rules which are only

relevant for the biological binding properties.

False positive reduction in comprehensive prediction
It is often observed that although statistical learning approaches

achieve very high prediction performances in given datasets,

statistical prediction models suffer from the problem of generating

vast prediction sets including many false positives when applied to

a huge dataset, such as the PubChem database. In our approach,

SVM models based on feature vectors directly representing amino

acid sequences, chemical structures, and random protein-com-

pound pairs as negatives also produced many predictions and

inevitably yielded many false positives (Table 1A random).

Upon the introduction of the two-layer SVM and the negatives

designed to overcome this drawback, the prediction precision, or

the confidence of positive prediction, was significantly improved in

computational experiments based on the DrugBank dataset

(Table 2). In Table 2, the external dataset consisted of 170

positives and 2,450 negatives that were randomly chosen from

1,731 positives and 24,500 designed negatives with the mlt rule

(details are provided in Materials and Methods) and that were

excluded in constructing first-layer and second-layer SVM models.

The external dataset contained much more negatives than

positives as it simulated the real application of virtual screening

with vast databases where only a fraction of chemical compounds

in the databases have the effect of interest. Tables 2A and 2B

showed improvement of precision by introducing the designed

negatives and the two-layer SVM respectively. Table 2B also

indicated that the application of SVM to outputs of the first-layer

SVM models was superior to other statistical learning methods

[15] and naive combination of the first-layer SVM models, and

that rational selection of the first-layer SVM models achieved

Figure 1. The scope of the predictions changed depending on
whether feedback data were used and how they were utilized.
(A) 500 predictions without feedback data. (B) 527 predictions with
feedback from the first experimental verification. (C) 213 predictions
based on the feedback strategy where pairs of chemical compounds
with steroid structures and the androgen receptor were regarded as
negatives.
doi:10.1371/journal.pcbi.1000397.g001

Statistical Protein-Chemical Binding Prediction
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Figure 2. The first and the second experimental verifications showed more than 60% accuracy of computational predictions and
the chemical space of verified compounds was explored. (A) Results of the first in vitro binding assay. (B) Results of the second in vitro
binding assay. (C) The chemical space based on E-Dragon [14] descriptors and the principal component analysis (PCA) applied to known ligands and
additional data. The black squares correspond to known ligands in the training data, the solid black squares represent known approved drugs, the
blue triangles correspond to true positives in the first computational prediction, and the red diamonds correspond to true positives in the second
computational prediction. The open red diamonds belong to Figure 1B, and the solid red diamonds belong to Figure 1C. Chemical compounds
located between the two dashed lines have steroid-like structures. (D) A potential ligand with a chemical structure differing from the structures of
known ligands. In (A) and (B), 1; PubChem Compound ID. 2; computational prediction expressed as ‘‘label (predicted probability for a positive
outcome)’’. 3; The concentration of an unlabeled test compound, in which, according to the measured radioactivity, 50% of the [3H]-DHT is still bound
to MBP-ARC. 4; chemical compounds included in the DrugBank set or additional data. B (C); predictions belonging to Figure 1B (C).
doi:10.1371/journal.pcbi.1000397.g002

Figure 3. The prediction accuracy is proportional to the content rate of biologically valid samples. The average of 10 datasets produced
by shuffling pairs corresponded to each content rate (ex. 50%) of pairs comprising a protein and a chemical compound in the original dataset. A usual
SVM training, which is referred to as the first-layer SVM in the Materials and Methods section, and a 10-fold cross-validation evaluation were
performed for each dataset of 1,731 positives and 1,750 negatives (or random pairs other than positives). Here, the SVM parameters were selected in
such a way that they gave the best accuracy.
doi:10.1371/journal.pcbi.1000397.g003

Statistical Protein-Chemical Binding Prediction
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significant higher precision (P-value = 0.0081 by t test) than

randomly selected models (other comparisons are provided in

Text S1, Table S3 and Table S4). Particularly, the second-layer

SVM utilizing the allpos first-layer SVM models achieved higher

precision than use of higher thresholds in the other SVM models

(Table 2C). The high precision contributes to the selection of more

reliable predictions and thus to the reduction of the number of

false positives.

Following these results on given datasets, our approaches were

evaluated with respect to comprehensive binding ligand predic-

tion. For three proteins (UniProt ID P10275 (androgen receptor),

P11299 (muscarinic acetylcholine receptor M1) and P35367

(histamine H1 receptor)), their binding ligands were predicted

from PubChem Compound 0000001–00125000 which contains

109,841 compounds (Table 1). Here, P35367 and P11299 are the

two most frequently targeted proteins in the DrugBank dataset,

and P10275 is a protein of average occurrence in the DrugBank

dataset. Among the 109,841 compounds, 47, 45, and 5 known

ligands were included for P35367, P11299, and P10275,

respectively.

As shown in Tables 1A, 1B and 1C, the use of carefully selected

negatives, the introduction of the two-layer SVM, and the

integration of these two approaches efficiently reduced the number

of predictions and thus the number of false positives. For example,

in comparison to Tables 1A and 1C, the number of candidates

discovered by using the max dataset in the allpos two-layer SVM

approach was about one fiftieth of the number of chemical

compounds predicted by using the random negative dataset in the

one-layer SVM. Furthermore, in comparison to other approaches

based solely on the use of chemical compounds (Tables 1D and

1E), our approaches gave a reasonable number of predictions

(other comparisons are described in Text S1 and Tables S5, S6,

S7).

These results suggest that our prediction models select a

reasonable number of ligand candidates from all chemical

compounds in large databases and encourage the comprehensive

binding ligand prediction for the target protein.

Utilization of feedback and additional data
The experimental verification of the computational predictions

produces feedback data or samples which are not included in the

given training datasets. The efficient utilization of these data can

contribute to the fast identification of compounds with the desired

properties and can be of advantage to statistical learning

approaches.

We compared several strategies for utilizing feedback data as

follows. For three proteins (UniProt ID P10275 (androgen

receptor), P11299 (muscarinic acetylcholine receptor M1) and

P353367 (histamine H1 receptor)), ligand data which were not

included in the DrugBank dataset were collected from relevant

literature [16–18] and public databases, PDSP Ki database [19]

and GLIDA [20], in February 2008. Overall, 35 androgen

Table 2. Evaluation of our method with respect to internal and external prediction of the dataset.

Model type{ prec.in (%){ sens.in (%){ acc.in (%){ prec.ex (%){ sens.ex (%){ acc.ex (%){

(A)

one-layer(designed) 71.76 42.99 95.11 64.66 50.59 95.00

one-layer(random) 82.38(60.64) 38.22(60.95) 95.38(60.06) 40.68(61.19) 50.00(61.87) 92.02(60.28)

(B)

subpos 97.11 92.57 99.33 82.81 31.18 95.11

subpos(r.f.) 95.66(60.32) 78.33(61.60) 98.33(60.10) 78.76(62.86) 25.59(61.09) 94.71(60.09)

voting - - - 8.89 57.06 59.27

2nd ANN 95.98 93.21 99.29 75.81 27.65 94.73

2nd QDA 70.69 54.39 95.49 34.52 17.06 92.52

(C)

allpos 99.68 100.00 99.98 100.00 10.59 94.20

subpos(t = 0.9) - - - 90.70 22.94 94.85

one-layer(t = 0.9) - - - 86.67 15.29 94.35

(A) Effect of rational negative design. (B) Effect of the second-layer SVM with designed negatives. (C) Improvement of precision with the two-layer SVM ant the type of
the first-layer SVM models.
{‘‘Model type’’ exhibits the one-layer SVM model or the second-layer SVM, which is specified by the type of 11 first-layer SVM model, was utilized. Here,
N (designed) means that the rationally designed negatives was used to construct the SVM model.
N (random) means that three types of randomly chosen 22,050 pairs of protein and chemical compounds were used use to construct the SVM model. The 95%
confidence intervals were shown.
N (r.f.) means that twenty types of randomly chosen 11 first-layer SVM models were used to construct the second-layer SVM model.
N 2nd ANN means that Artificial Neural Network (ANN; implemented by the statistical software package R (http://cran.r-project.org/) function nnet [15]) was applied to
outputs of 11 subpos first-layer SVM models. Parameters were selected to give the best accuracy in internal 10-fold cross validation. For example, 17 units were used in
the hidden layer.
N voting means that voting with 11 subpos first-layer SVM models was used for prediction.
N 2nd QDA means that Quadratic Discriminant Analysis (QDA) (implemented by R function qda [15]) was applied to outputs of 11 subpos first-layer SVM models.
N (t = 0.9) means that final probability outputs were evaluated with the threshold t = 0.9.
{precision (prec.) = TP/(TP+FP), sensitivity (sens.) = TP/(TP+FN), accuracy (acc.) = (TP+TN)/(TP+FN+TN+FP). TN: true negatives. Here,
N ex means the prediction performances of the external prediction. The external dataset consisted of 170 positives and 2,450 negatives that were randomly chosen from
1,731 positives and 24,500 designed negatives with the mlt rule (details are provided in Materials and Methods) and that were excluded in constructing first-layer and
second-layer SVM models.
N in means the prediction performances of internal 10-fold cross-validation. The internal dataset utilized 1,561 positives and 22,050 negatives, which were not included in
the external dataset.
doi:10.1371/journal.pcbi.1000397.t002

Statistical Protein-Chemical Binding Prediction
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receptor-ligand pairs, 49 muscarinic acetylcholine receptor M1-

ligand pairs, and 1,060 histamine H1 receptor-ligand pairs were

supplemented. Additional models were constructed by using these

supplemental pairs as positives (details are provided in Text S1).

As shown in Figure 4, the use of the additional model with a

sufficient weighting factor controlled the increase of the predic-

tions with a slight decrease of the recall rate. The use of large

weighting factors results in the relative decrease of the influence of

other first-layer SVM models derived from the DrugBank dataset

in classification. However, the low performance of ‘‘only

additional model:st2’’, shown in Figure 4A, where only one first-

layer SVM model derived from additional data was used to

construct the second-layer SVM model, indicates the need for

first-layer SVM models derived from the DrugBank dataset as well

as combinations of these first-layer SVM models with an

additional first-layer SVM model.

With this efficient strategy for utilizing feedback data,

computational prediction and experimental verification improve

each other to enable faster search toward the identification of

useful small molecules.

Discussion

We proposed a comprehensively applicable computational

method for predicting the interactions between proteins and

chemical compounds, in which the number of false positives was

reduced in comparison to other methods. Furthermore, we

proposed the strategy for the efficient utilization of experimental

feedback and the integration of computational prediction and

experimental verification.

The application of our method to the androgen receptor

resulted in 67% (4/6) prediction precision according to in vitro

experimental verification in the first computational prediction and

60% (3/5) in the second prediction, which included the feedback

of the first experimental verification. However, these relatively low

precision values do not represent the true statistical significance of

the method.

This 60–70% precision can also be evaluated by using the

following P-value.

P{value~
Xt

x~p

M Cx| N{Mð ÞC t{xð Þ

NCt

Here, N is the number of prediction targets, M the number of

ligands potentially binding to the target proteins, t is the number of

tested compounds, and p is the number of true positives. With

N = 19171127, which is the number of chemical compounds in the

PubChem Compound database, and M = 191711276(456/

3000)6(7/964)V21160, which is based on the optimistic assump-

Figure 4. Effects of the strategy for the utilization of feedback and additional data. (A) 1: st1; a strategy where additional data, or pairs
comprising a chemical compound and a protein, were simply added to the training samples in constructing a prediction model. st2; a strategy where
additional data were first used for the construction of an additional first-layer SVM model and subsequently added to the training samples in the
construction of a second-layer SVM model. 2: target proteins whose ligands were predicted from 109,841 compounds. The number of predicted
ligands is shown. 3: one-layer SVM using the mlt dataset with 28,000 negatives. 4: two-layer SVM using 9 allpos first-layer SVM models and the max
dataset with 28,000 negatives. In st2, the weighting factor was set to 50. 5: SVM model where the chemical compounds binding to each target protein
were treated as positives, and all other compounds in the DrugBank dataset were regarded as negatives. 6: SVM model where pairs of all target
proteins and known ligands were treated as positives, while pairs of all target proteins with other compounds were regarded as negatives. 7: two-
layer SVM model in which only one first-layer SVM model derived from additional data was used for the construction of a second-layer SVM model. *:
a threshold of 0.9 was used instead of 0.95 for the calculation of ‘‘evaluation’’ (Eq. (1)). (B) The relation between the weighting factors and the number
of predictions is shown for the case where the threshold = 0.5.
doi:10.1371/journal.pcbi.1000397.g004
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tion that all compounds can be regarded as potential drugs for

some target protein, it is estimated that 3,000 druggable proteins

exist [21]. Moreover, the distribution of target proteins and drugs

in the DrugBank dataset, consisting of 456 target proteins and 964

drugs, including 7 known ligands for the human androgen

receptor, and P-values of 2:21610211 and 1:3461028 are

obtained for the prediction precision of the first and the second

computational prediction, respectively. These extremely small P-

values prove the significance of the virtual screening and its

precision in the drug discovery process.

These prediction performances are as good as or better than

several previous virtual screening studies based mainly on docking

analyses [22–24]. For example, at a threshold of 100 mM, 7%

precision (3/39) for Mycobacterium tuberculosis adenosine 59-phos-

phosulfate reductase [22], 71% precision (22/31) for Staphylococcus

aureus methyonyl-tRNA synthetase [23] and 8% precision (16/192)

for human DNA ligase I [24] were obtained, respectively. In

addition, 0.566 AUC was achieved in the docking analysis using

AutoDock [3] (Figure 5) for the 17 chemical compounds (12

chemical compounds verified in the first experimental verification,

with the exception of 6 known drugs, and 5 chemical compounds

verified in the second experimental verification). In contrast, 0.681

AUC was obtained with our method. Here, in the calculation of

AUC, the threshold level of IC50 = 100 mM for experimental

verification was used to define a label (binding or non-binding) for

each chemical compound, and {log Estimated Kið Þ or the

predicted probability was regarded as a value for each molecule.

Note that the docking analysis with AutoDock was not applied to

the 19,171,127 compounds in the PubChem Compound database

for the screening purpose, but was applied only to 17 compounds,

which were the results of virtual screening by our method. In terms

of computational time, for binding prediction of one pair of a

protein and a chemical compound, using one Opteron 275

2.2 GHz CPU, AutoDock took approximately 100 minutes on

average with 100 genetic algorithm (GA) runs, while our method

required less than 0.3 seconds. These computational time

comparisons indicate that our method can perform a virtual

screening of more than 19 million chemical compounds from the

PubChem Compound database for any proteins in genome-wide

scale and this immense screening task would be infeasible to

accomplish with any of the existing docking methods. Therefore,

our statistical approach can contribute as the first fast and rather

accurate virtual screening tool for the drug discovery process. It

can be followed by the application of more time-consuming but

more informative approaches, such as docking analysis and

molecular dynamics analysis, which can provide information

regarding the binding affinities and the molecular binding

mechanisms to outputs of the first screening.

In another perspective, the re-evaluation of statistical prediction

approaches by using 23 chemical compounds experimentally

verified in this study showed that our proposed methods, which

utilized information of both protein sequence and chemical

structures, were superior to a conventional LBVS (Ligand Based

Virtual Screening) method where only structures of specific

Figure 5. Docking analyses of experimentally verified chemical compounds. The blue circles denote known compounds and the red
triangles denote other tested compounds. {log Estimated Kið Þ was derived from the estimated inhibition constant of the first cluster in the
AutoDock output. Also, the horizontal dotted line denotes the threshold of 100 mM and the vertical dashed line denotes the threshold of 300 nM,
which is based on the estimated Ki 210.27 nM of flutamide, a known drug. With this threshold, 59% accuracy (10/17) and 57\% precision (8/14) were
achieved while our method obtained an overall 65% accuracy (11/17; 8/12 in the first experimental verification and 3/5 in the second experimental
verification) and 64% precision (7/11; 4/6 in the first experimental verification and 3/5 in the second experimental verification).
doi:10.1371/journal.pcbi.1000397.g005
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chemical compounds were considered (Figure 6). As shown in

Figure 6A, our proposed methods (‘‘one-layer SVM’’, ‘‘two-layer

SVM-subpos’’ and ‘‘two-layer SVM-allpos’’) achieved a higher recall

rate at ranks higher than 500 compared to a conventional Ligand

Based Virtual Screening method (‘‘only compound SVM’’ in

Figure 6A). The fact that experimentally verified chemical

compounds were identified at higher ranks in the pool by our

proposed prediction models suggests that our proposed models

were highly efficient with respect to the screening method.

Figure 6B also shows that our proposed methods were more

successful at discriminating between 15 experimentally verified

binding and 8 non-binding ligands better than the LBVS method.

These comparisons suggest that our proposed method utilizing

information of protein sequences as well as chemical structures can

be regarded as a more useful substitute for usual ligand-based

virtual screening methods utilizing only chemical structures.

Furthermore, the fact that the second computational prediction,

or the use of feedback data, contributed to the discovery of novel

ligands (Figure 2B–D) supports the utilization of statistical learning

methods in virtual screening.

Regarding the computational prediction method used in this

paper, we made the method available to the public as a web-based

service named COPICAT (COmprehensive Predictor of Interac-

tions between Chemical compounds And Target proteins; http://

copicat.dna.bio.keio.ac.jp/).

Materials and Methods

Experimental datasets
The DrugBank dataset was constructed from Approved

DrugCards data, which were downloaded in February, 2007 from

the DrugBank database [25]. These data consist of 964 approved

drugs and their 456 associated target proteins, constituting 1,731

interacting pairs or positives.

Computational prediction
Support vector machines. Given n samples, each of which

has an m-dimensional feature vector (xi~ x1
i , � � � ,xm

i

� �
) and one of

two classes, such as binding and non-binding (yi[ 1,{1f g), an

SVM produces the classifier

f xð Þ~sign
Xn

i~1

aiyiK xi,xð Þzb

 !
, ð2Þ

where x is any new object which needs to be classified, K :,:ð Þ is a

kernel function which indicates that the similarity between two

vectors and (a1, . . . ,an) are the learned parameters [26]. The

output of an SVM can be regarded as a probability [27].

First-layer SVM. In the first-layer SVM, a pair comprising a

protein and a small molecule, which constitutes a sample, is

Figure 6. Re-evaluation of our method using the data of experimentally verified chemical compounds. (A) Evaluation by recall rate with
10,000 chemical compounds. Here, the recall rate at the rank x in descending order of predicted binding probability was calculated as (the number of
15 binding ligands whose rank is higher than x)/15. The 10,000 tested chemical compounds included 1,041 predicted ligand candidates, as shown in
Figure 1, and 8,959 of the compounds were found within PubChem Compound CID 1-10427. (B) AUC using the data of 15 experimentally verified
ligands and 8 non-binding chemical compounds. *: In both (A) and (B), the prediction models were constructed as described in Figure 4, where 6
known chemical compound-androgen receptor pairs or 6 known chemical compounds among the 23 verified chemical compounds were excluded
from the dataset utilized to construct the final prediction model and the weighting factor for two-layer SVM models was set to 10.
doi:10.1371/journal.pcbi.1000397.g006
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mapped onto an n-dimensional numerical vector (feature vector)

space by using amino acid sequences for proteins and 2D chemical

structures for chemical compounds. Details regarding the

numerical representation of the proteins and the chemical

compounds are described in Text S1.

We generated 100 first-layer SVM models with different

random combinations of proteins and chemical compounds as

negatives. The SVM parameters were chosen to give the best

accuracy in a 10-fold cross validation in one set of positives and

negatives.

We prepared two sets of first-layer SVM models, each of which

consists of 100 models. One set allpos contains the SVM models

constructed from 1,731 positives, or the whole DrugBank dataset,

and 1,750 negatives. The other set subpos is composed of models

with 534 positives, one of 10 kinds of DrugBank subsets, and 550

negatives. A protein found n times in the DrugBank dataset is

designed to appear & n/10 & +1 times in a DrugBank subset, and

the chemical compounds with which the protein forms a pair differ

between different subsets.

Second-layer SVM. The second-layer SVM directly utilizes

the outputs of the first-layer SVM models as inputs. The second-

layer SVM model was constructed from the whole DrugBank

dataset and reasonably designed negatives, which are described in

detail later, on the basis of the RBF kernel

K x,yð Þ~exp {c x{yk k2
� �

in Eq. (2). The SVM parameters

were selected in such a way that they gave the best accuracy in the

10-fold cross validation. A schematic illustration of the second-

layer SVM is shown in Figure S1.

Feature selection. The number of first-layer SVM models

whose output is used in the second-layer SVM models mainly

determines the computation time and the workload of the two-

layer SVM methods. Therefore, in order to practically realize

comprehensive protein-chemical interaction predictions, fewer

first-layer models achieving high prediction accuracy are given

preference.

We applied the recursive feature elimination (RFE) method [28]

in order to determine the first-layer SVM models used to construct

the second-layer SVM model. Details are shown in Text S1 and

Figure S3.

Negative data design. We followed and modified the

method described in Wang et al., 2006 [29] for the design of

negative data leading to the reduction of the number of false

positives. First, negative seeds were selected on the basis of the

distances between positive samples and unspecified samples, or

between all combinations of proteins and chemical compounds in

the dataset other than positives. Second, the negative samples were

extended sequentially according to the four expansion rules min,

mlt, mle and max by using the outputs of the prediction model

constructed from positive samples and tentative negative samples

as follows,

N min: Top L samples in the ascending order of pi, iMU-N

N max: Top L samples in the descending order of pi, iMU-N

N mle: Top L samples in the descending order of pi, iMU-N s.t.

pi#0.5

N mlt: Top L samples in the descending order of pi, iMU-N s.t.

pi,0.5

where N was a set of tentative negative samples, U was a set of

all the possible combination of combinations of proteins and

chemical compounds in the dataset except positive samples, and pi

was a probabilistic output of SVM. More details are provided in

Text S1.

Experimental verification
Materials. Unless otherwise specified, all solvents and

reagents were obtained from commercial suppliers.

In the plasmid preparation, pTriAR, a construct in which

Androgen receptor (AR) cDNA is subcloned into the pTriEX-3

Neo vector, was provided by Taiho Pharmaceutical.

In the in vitro binding assay, dihydrotestosterone (DHT),

flutamide, nilutamide, spironolactone and cortexolone were

purchased from Sigma. Testosterone and bicalutamide were

purchased from Wako Pure Chemical Industries. ZINC

04369595, MDPI 944, MDPI 1011, NSC 6129, MDPI 10314,

3-epiuzarigenin, ZINC 04026296, methandriol, vitamin D3,

ZINC 03849821, P712100 and fluanisone were purchased from

Namiki Shoji.

Preparation of MBP-ARC (Maltose Binding Protein

tagged Androgen Receptor C-termini). The gene sequences

corresponding to the ligand-binding domain (609th a.a.–919th

a.a.) of androgen receptor C-termini (ARC) were subcloned into

pMALc-2x vector digested with HindIII and BamHI, and the

maltose binding protein-fusion androgen receptor C-termini

(MBP-ARC) was expressed in E. coli DH5a, and purified on

amylose resin (BioLabs). Details are provided in Text S1.

Here, it is reported that an in vitro binding assay with ARC

produced almost the same results as that with whole-length AR [30].

The in vitro binding assay - hydroxyapatite

method. 50 mg/ml MBP-ARC, 2 nM [3H]-DHT, and the

indicated amount of test compounds were incubated for three

hours. Then, the radioactivity of [3H]-DHT bound to MBP-ARC

was measured with a scintillation counter. Details are provided in

Text S1.

The concentration of the test compound to [3H]-DHT in which

the measured radioactivity corresponded to 50% of that measured

without the test compounds was regarded as IC50 of the test

compound.

Feedback strategy
Given Np positive and Nn negative samples in known data and

Mp positives and Mn negatives in additional or feedback data, a

straightforward strategy for the integration of additional data into

statistical training, such as SVM, is to train a statistical model

based on a dataset consisting of Np+Mp positives and Nn+Mn

negatives. When the two-layer SVM strategy is applied, another

strategy of feedback and supplement involves the utilization of an

additional model based on additional data. In this strategy, the

second-layer SVM is trained on the basis of Np+Mp positives and

Nn+Mn negatives, and a sample si in the second layer is represented

as follows,

si~ w|pa
i ,p1

i , . . . pk
i

� �
:

Here, pa
i is an output of the additional model trained on the basis

of Mp positives and Mn negatives. p
j
i is an output of the first-layer

SVM model j, and w is a weighting factor.

Docking analysis
AutoDock 4 [3] was applied to the human androgen receptor

ligand-binding domain (PDB code; 2AM9 [31]) and tested

compounds whose 3D structure was generated by Obgen in the

Open Babel package ver.2.2.0 [32] or CORINA [33]. The

conditions of AutoDock followed Jenwitheesuk and Samudrala,

2005 [34]. ARG752 of 2AM9, which was considered important

for the binding of androgens by the human androgen receptor

[31], was set to a flexible residue in AutoDock.
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Figure S1 Schematic illustration of the two-layer SVM system.
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