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ABSTRACT

Speech enhancement in the time-frequency domain is often performed
by estimating a multiplicative mask to extract clean speech. However,
most neural network-based methods perform point estimation, i.e.,
their output consists of a single mask. In this paper, we study the
benefits of modeling uncertainty in neural network-based speech
enhancement. For this, our neural network is trained to map a noisy
spectrogram to the Wiener filter and its associated variance, which
quantifies uncertainty, based on the maximum a posteriori (MAP)
inference of spectral coefficients. By estimating the distribution instead
of the point estimate, one can model the uncertainty associated with
each estimate. We further propose to use the estimated Wiener filter
and its uncertainty to build an approximate MAP (A-MAP) estimator of
spectral magnitudes, which in turn is combined with the MAP inference
of spectral coefficients to form a hybrid loss function to jointly reinforce
the estimation. Experimental results on different datasets show that the
proposed method can not only capture the uncertainty associated with
the estimated filters, but also yield a higher enhancement performance
over comparable models that do not take uncertainty into account.

Index Terms— Speech enhancement, uncertainty estimation,
Wiener filter, Bayesian estimator, deep neural network

1. INTRODUCTION

Single-channel speech enhancement algorithms typically operate in the
short-time Fourier transform (STFT) domain [1]–[3]. The Gaussian
statistical model in the STFT domain has been shown to be effective [1],
[4]. Given the assumption that the complex-valued speech and noise
coefficients are uncorrelated and Gaussian-distributed with zero mean,
various estimators have been derived, such as the Wiener filter and
the short-time spectral amplitude (STSA) estimator [1], [4], [5]. The
Wiener filter, which is optimal in the minimum mean squared error
(MMSE) sense, requires estimation of speech and noise variances. This
can be achieved by various signal processing estimators with varying
degrees of success for different signal characteristics [1], [2], [6]–[11].

Recently, deep neural networks (DNNs) have been successfully
applied to speech enhancement and regularly show an improved per-
formance over classical methods [10]–[13]. Among the DNN-based
approaches relevant to this work are deep generative models (e.g.,
variational autoencoder) and supervised masking approaches. Gener-
ative models estimate the clean speech distribution and subsequently
combine it with a separate noise model to construct a point estimate
of a noise-removing mask (Wiener filter) [10], [11]. In contrast, typical
supervised learning approaches are trained on pairs of noisy and clean
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speech samples and directly estimate a time-frequency mask that aims
at reducing noise interference with minimal speech distortion given
a noisy mixture, using a suitable loss function (e.g., mean squared er-
ror (MSE)) [12], [13]. However, the supervised approaches often learn
the mapping between noisy and clean speech blindly and output a single
point estimate without guarantee or measure of its accuracy. In this
work we focus on adding an uncertainty measure to a supervised method
by estimating the speech posterior distribution, instead of only its mean.
Note that while this is conceptually related to the generative approach,
in this case we do not estimate the clean speech prior distribution, but
rather the posterior distribution of clean speech given a noisy mixture.

Uncertainty modeling based on neural networks has been actively
studied in e.g., computer vision [14]. Inspired by this, here we propose
a hybrid loss function to capture uncertainty associated with the esti-
mated Wiener filter in the neural network-based speech enhancement
algorithm, as depicted in Fig. 1. More specifically, we propose to train
a neural network to predict the Wiener filter and its variance, which
quantifies the uncertainty, based on the maximum a posteriori (MAP)
inference of complex spectral coefficients, such that full Gaussian poste-
rior distribution can be estimated. To regularize the variance estimation,
we build an approximate MAP (A-MAP) estimator of spectral magni-
tudes using the estimated Wiener filter and uncertainty, which is in turn
used together with the MAP inference of spectral coefficients to form a
hybrid loss function. Experimental results show the effectiveness of the
proposed approach in capturing uncertainty. Furthermore, the A-MAP
estimator based on the estimated Wiener filter and its associated un-
certainty results in improved speech enhancement performance.

2. SIGNAL MODEL

We consider the speech enhancement problem in the single microphone
case with additive noise. The noisy signal x can be transformed into
the time-frequency domain using the STFT:

Xft=Sft+Nft, (1)

where Xft, Sft, and Nft are complex noisy speech coefficients, com-
plex clean speech coefficients, and complex noise coefficients, respec-
tively. The frequency and frame indices are given by f ∈{1,2,···,F}
and t∈{1,2,···,T}, where F denotes the number of frequency bins,
and T represents the number of time frames. Furthermore, we assume
a Gaussian statistical model, where the speech and noise coefficients
are uncorrelated and follow a circularly symmetric complex Gaussian
distribution with zero mean, i.e.,

Sft∼NC(0,σ
2
s,ft), Nft∼NC(0,σ

2
n,ft), (2)

where σ2
s,ft and σ2

n,ft represent the variances of speech and noise,
respectively. The likelihood p(Xft|Sft) follows a complex Gaussian
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Fig. 1. Block diagram of the neural network-based uncertainty estimation. The neural network is trained according to the proposed hybrid loss
function.

distribution with mean Sft and variance σ2
n,ft, given by

p(Xft|Sft)=
1

πσ2
n,ft

exp

(
−|Xft−Sft|

2

σ2
n,ft

)
. (3)

Given the speech prior in (2) and the likelihood in (3), we can apply
Bayes’ theorem to find the speech posterior distribution, which is
complex Gaussian of the form

p(Sft|Xft)=
1

πλft
exp

(
−
|Sft−WWF

ft Xft|2

λft

)
, (4)

where WWF
ft =

σ2
s,ft

σ2
s,ft

+σ2
n,ft

is the Wiener filter and λft=
σ2
s,ftσ

2
n,ft

σ2
s,ft

+σ2
n,ft

is the posterior’s variance [1]. The MMSE and MAP estimators
of Sft under this model are both given by the Wiener filter [1]:
S̃ft=W

WF
ft Xft. It is known that the expectation of MMSE estimation

error is closely related to the posterior variance [15], and under the
assumption of complex Gaussian distribution it corresponds directly
to the variance, i.e.,

E{|Sft−S̃ft|2}=
∫∫
|Sft−S̃ft|2p(Sft|Xft)p(Xft)dSftdXft

=

∫
λftp(Xft)dXft=λft.

(5)

The variance λft can be interpreted as a measure of uncertainty
associated with the MMSE estimator [1]. In the following sections λft
will be referred to as the (estimation) uncertainty.

3. DEEP UNCERTAINTY ESTIMATION

The Wiener filter can be computed for a given noisy signal by estima-
tion of σ2

s,ft and σ2
n,ft using traditional signal processing techniques.

It is, however, also possible to directly estimate WWF
ft using a DNN.

Furthermore, if optimization is based on the posterior (4), besides
WWF
ft also the uncertainty λft can be estimated as previously proposed

in the computer vision domain [14]. Taking the negative logarithm
(which does not affect the optimization problem due to monotonicity)
and averaging over the time-frequency plane results in the following
minimization problem:

W̃WF
ft ,λ̃ft=

argmin
WWF

ft
,λft

1

FT

∑
f,t

log(λft)+
|Sft−WWF

ft Xft|2

λft︸ ︷︷ ︸
Lp(S|X)

, (6)

where W̃ft, λ̃ft denote estimates of the Wiener filter and its uncer-
tainty. If we assume a constant uncertainty for all time-frequency bins,
i.e., λft=λ∗, and refrain from explicitly optimizing for λ∗, Lp(S|X)

degenerates into the well known MSE loss

LMSE =
1

FT

∑
f,t

|Sft−WWF
ft Xft|2, (7)

which is widely used in DNN-based regression tasks, including speech
enhancement [12], [16]. In this work we depart from the assumption
of constant uncertainty. Instead, we propose to include uncertainty
estimation as an additional task by training a DNN with the full
negative log-posterior Lp(S|X).

It has been previously shown that modeling uncertainty by mini-
mizing Lp(S|X) results in improvement over baselines that do not take
uncertainty into account in computer vision tasks [14]. However, in
preliminary experiments we have observed that directly using (6) as
loss function results in reduced estimation performance for the Wiener
filter and is prone to overfitting. To overcome this problem, we propose
an additional regularization of the loss function by incorporating the
estimated uncertainty into clean speech estimation as described next.

4. JOINT ENHANCEMENT
AND UNCERTAINTY ESTIMATION

Besides estimation of the Wiener filter and its uncertainty, we propose
to also incorporate a subsequent speech enhancement task that explicitly
uses both into the training procedure. The speech enhancement task
provides additional coupling between the DNN outputs (Wiener filter
and uncertainty). In this manner, the DNN is guided towards estimation
of uncertainty values that are relevant to the speech enhancement task,
as well as enhanced estimation of the Wiener filter.

If we consider complex coefficients with symmetric posterior (4),
the MAP and MMSE estimators both result directly in the Wiener
filter WWF

ft and do not require an uncertainty estimate. However, this
changes if we consider spectral magnitude estimation. The magnitude
posterior p(|Sft| |Xft), found by integrating the phase out of (4),
follows a Rician distribution [5]

p(|Sft||Xft)=

2|Sft|
λft

exp

(
−
|Sft|2+(WWF

ft )
2|Xft|2

λft

)
I0

(
2|Xft||Sft|WWF

ft

λft

)
,

(8)

where I0 (·) is the modified zeroth-order Bessel function of the first
kind.



In order to compute the MAP estimate for the spectral magnitude,
one needs to find the mode of the Rician distribution, which is difficult
to do analytically. However, one may approximate it with a simple
closed-form expression [5]:

|Ŝft|≈WA-MAP
ft |Xft|

=

1

2
WWF
ft +

√(
1

2
WWF
ft

)2

+
λft

4|Xft|2

|Xft|, (9)

where |Ŝft| is an estimate of the clean spectral magnitude |Sft| using
the A-MAP estimator of spectral magnitudes WA-MAP

ft . It can be seen
that the estimatorWA-MAP

ft makes use of both the Wiener filterWWF
ft and

the associated uncertainty λft. An estimate of the time-domain clean
speech signal, denoted as ŝ, is then obtained by combining the estimated
magnitude |Ŝft| with the noisy phase, followed by the inverse STFT
(iSTFT). The estimated time-domain signal is then used to compute the
negative scale-invariant signal-to-distortion ratio (SI-SDR) metric [17]:

LSI-SDR =−10log10
(
||αs||2

||αs−ŝ||2

)
, α=

ŝT s

||s||2 , (10)

which is in turn used as an additional term in the loss function that
forces the speech estimate (computed with WA-MAP

ft ) to be similar to
the clean target s.

Finally, we propose to combine the SI-SDR loss LSI-SDR with
the negative log-posterior Lp(S|X) given in (6), and train the neural
network using a hybrid loss

L=βLp(S|X)+(1−β)LSI-SDR, (11)

with the weighting factor β∈ [0,1] as the hyperparameter. By explicitly
using the estimated uncertainty for the speech enhancement task, the
hybrid loss guides both mean and variance estimation to improve
speech enhancement performance. An overview of this approach is
depicted in Fig. 1.

5. EXPERIMENTAL SETTING

5.1. Dataset

For training we use the Deep Noise Suppression (DNS) Challenge
dataset [18], which includes a large amount of synthesized noisy and
clean speech pairs. We randomly sample a subset of 100 hours with
signal-to-noise ratios (SNRs) uniformly distributed between -5 dB and
20 dB. The data are randomly split into training and validation sets
(80% and 20% respectively).

Evaluation was performed on the synthetic test set without rever-
beration from DNS Challenge. Noisy signals are generated by mixing
clean speech signals from [19] with noise clips sampled from 12 noise
categories [18], with SNRs uniformly drawn from 0 dB to 25 dB.
To examine performance across different datasets, we additionally
synthesized another test dataset using clean speech signals from the
si et 05 subset of the WSJ0 [20] dataset and four types of noise sig-
nals from CHiME [21] (cafe, street, pedestrian, and bus)
with SNRs randomly sampled from {-10 dB, -5 dB, 0 dB, 5 dB, 10 dB}.
A few samples are dropped due to the clipping effect in the mixing
processing, and finally, this results in a test dataset of 623 files.

5.2. Baselines

To evaluate the effectiveness of modeling uncertainty in neural network-
based speech enhancement, we consider training the same neural
network using standard cost functions, i.e., the MSE defined as LMSE

in (7) and the SI-SDR defined as LSI-SDR in (10). They are represented
by MSE and SI-SDR in Table 1 and Fig. 3.
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Fig. 2. Example of estimation uncertainty captured by the proposed
method on the DNS test dataset, shown in (e). The proposed method al-
lows estimating clean speech by either using the estimated Wiener filter
or applying the A-MAP estimator that incorporates both the estimated
Wiener filter and the associated uncertainty, and the resulting estimates
are shown in (c) and (f), denoted by WF and A-MAP, respectively. The
estimation error of Wiener filtering in (d) is computed between the
estimated magnitudes (c) and clean magnitudes (b), indicating over- or
under-estimation of speech magnitudes.

5.3. Hyperparameters

All audio signals are sampled at 16 kHz and transformed into the
time-frequency domain using the STFT with a 32 ms Hann window
and 50% overlap.

For a fair comparison, we used the separator of Conv-TasNet [22]
that has a temporal convolution network (TCN) architecture. It has
been shown to be effective in modeling temporal correlations. We used
the causal version of the implementation and default hyperparameters
provided by the authors1 without performing a hyperparameter search.
Note that for our model performing uncertainty estimation, the output
layer is split into two heads that predict both the Wiener filter and the
uncertainty. We applied the sigmoid activation function to the estimated
mask, while using the log-exp technique to constrain the uncertainty
output to be greater than 0, i.e., the network outputs the logarithm of
the variance, which is then recovered by the exponential term in the loss
function. All neural networks were trained for 50 epochs with a batch

1https://github.com/naplab/Conv-TasNet

https://github.com/naplab/Conv-TasNet
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Fig. 3. Performance improvement obtained on the synthetic dataset using clean speech from WSJ0 and noise signals from CHiME. POLQAi
denotes POLQA improvement relative to noisy mixtures. The same definition applies to ESTOIi and SI-SDRi. The marker denotes the mean value
over all utterances and the vertical bar indicates the 95%-confidence interval.

POLQA ESTOI SI-SDR (dB)
Noisy 2.30 ± 0.10 0.81 ± 0.02 9.07 ± 0.89

SI-SDR 2.93 ± 0.11 0.88 ± 0.01 15.99 ± 0.75
MSE 2.88 ± 0.10 0.88 ± 0.01 16.05 ± 0.71

Proposed WF 3.00 ± 0.11 0.88 ± 0.01 16.39 ± 0.73
Proposed A-MAP 3.06 ± 0.10 0.89 ± 0.01 16.42 ± 0.73

Table 1. Average performance over all utterances of the DNS non-
reverberant synthetic test dataset in terms of POLQA, ESTOI, and SI-
SDR. Values are given in mean± confidence interval (95% confidence).

size 16, the maximum norm of gradients was set to 5, and the parameters
were optimized using the Adam optimizer [23] with a learning rate
of 0.001. We halved the learning rate if the validation loss did not
decrease for 3 consecutive epochs. To prevent overfitting, training was
stopped if the validation loss failed to decrease within 10 consecutive
epochs. The weighting factor β is set to 0.01, chosen empirically.

6. RESULTS AND DISCUSSION

6.1. Analysis of uncertainty estimation

In Fig. 2, we use an audio example from the DNS test dataset to
illustrate the uncertainty captured by the proposed method, and all plots
are shown in decibel (dB) scale. Applying the estimated Wiener filter
to the noisy coefficients yields an estimate of the clean speech, denoted
as WF shown in Fig. 2 (c). To measure the prediction error, we can
compute the absolute values of the difference between the estimated
magnitudes, i.e., WF, and reference magnitudes given in Fig. 2 (b),
which indicates over- or under-estimation of speech magnitudes, shown
in Fig. 2 (d). It is observed that the model produces large errors when
speech is heavily corrupted by noise, as can be seen by comparing the
marking regions (green boxes) of the noisy mixture shown in Fig. 2 (a)
and the prediction error of Fig. 2 (d). By comparing error in Fig. 2 (d)
and uncertainty in Fig. 2 (e), the estimator generally associates large
uncertainty with large prediction errors, while giving low uncertainty
to accurate estimates, e.g., the first 3 seconds. This shows that the
model produces uncertainty measurements that are closely related to
estimation errors. In our proposed method with uncertainty estimation,
we can use not only the estimated Wiener filter, but also the estimated
A-MAP mask that incorporates both the estimated uncertainty and
Wiener filter, as given in (9). This estimate is denoted as A-MAP in
Fig. 2 (f). We observe that the A-MAP estimate causes less speech
distortion compared with the WF estimate, as can be seen, e.g., from

the marking regions of WF and A-MAP.

6.2. Performance Evaluation

In Table 1, we present average evaluation results of our method on the
DNS synthetic test set in terms of SI-SDR measured in dB, extended
short-time objective intelligibility (ESTOI) [24], and perceptual objec-
tive listening quality analysis (POLQA)2 [25]. We observe that mod-
eling uncertainty yields improvement over the baselines, where the pro-
posed WF outperforms the baselines in terms of POLQA and SI-SDR,
and a larger improvement can be observed between the baselines and
the proposed A-MAP. This shows that it is advantageous to model un-
certainty within the model instead of directly estimating optimal points.

In Fig. 3, we present speech enhancement results in terms of mean
improvement of POLQA, ESTOI, and SI-SDR. For this evaluation we
used another unseen test dataset based on speech from WSJ0 and noise
from CHiME. It shows that our proposed approach performs better in
terms of speech quality given by higher POLQA values without dete-
riorating ESTOI (with an exception at SNR of −10 dB) and SI-SDR,
which again demonstrates the benefit of modeling uncertainty. We also
observe that larger improvement over the baselines is achieved at high
SNRs, which may be explained by the fact that, at high SNRs, speech
quality (and thus POLQA) is mainly affected by speech distortions,
while at low SNRs the main factor is residual noise.

7. CONCLUSION

Based on the common complex Gaussian model of speech and noise
signals, we proposed to augment the existing neural network archi-
tecture with an additional uncertainty estimation task. Specifically,
we proposed simultaneous estimation of the Wiener filter and the
associated uncertainty to capture the full speech posterior distribu-
tion. Furthermore, we proposed using the estimated Wiener filter
and uncertainty to produce an A-MAP estimate of the clean spectral
magnitude. Eventually, we combined uncertainty estimation and speech
enhancement by the proposed hybrid loss function. We showed that
the approach can capture uncertainty and lead to improved speech
enhancement performance across different speech and noise datasets.
For future work, it would be interesting to integrate the uncertainty
estimation into multi-modal learning systems, which may rely more
on other modalities when audio modality raises high uncertainty.

2We would like to thank J. Berger and Rohde&Schwarz SwissQual AG
for their support with POLQA.
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