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shading offers hope of dense depth measurements; how-
ever, it has to contend with the spatially varying albedo
of the surface of the optic disk. Fortunately, we can con-
trol the lighting and positions of the stereo pair of cam-
eras. Section 2 describes how we can exploit this degree
of freedom to apply a technique akin to homomorphic
filtering to separate the contribution of albedo and re-
flectance map. This provides an estimate of a component
of the gradient V' z of the disk surface, and after integra-
tion, an estimate of the topography of the disk. The
gradient components are noisy, so Section 3 describes
how we regularise them using a weak prior model of the
structure of the disk.

We report progress on a system to monitor the develop-

ment of glaucoma by measuring the topography of the

optic disk. The need for an accurate method for do-

ing this using passive vision is explained. Sparse depth

measurements from stereo matching of blood vessels pro-

vide insufficient constraint for reconstructing the surface

of the optic disk. Shape-from-shading has to contend

with a spatially-varying albedo. We show how a partic-

ular arrangement of fundus cameras allows us to apply

a technique akin to homomorphic filtering to recover es-

timates of dz/dx that can be smoothed by appropriate

regularisation. Stereo is integrated with this photomet-

ric stereo depth estimates. Examples of an artificial ob-

ject and optic disk surface reconstructions are presented.

This paper reports progress on a system to aid physicians
monitor the development of glaucoma, a complex of eye
diseases that annually cause blindness in an estimated
50,000 people in the United States, with similar figures
for Europe. In most cases, blindness could be prevented
if patients were treated at an early stage; in practice this
would require automated analysis and monitoring.

The next section summarises some basic facts about
glaucoma. The bottom line is that measuring and moni-
toring changes in the topography of a structure called the
optic disk is key to assisting in the diagnosis and treat-
ment of glaucoma. The challenge for computer vision is
that the optic disk is small, at a relatively large distance
from any imager external to the eye, the albedo of the
disk varies spatially, there is a sparse network of blood
vessels, and there is considerable variation in the shape
and size of healthy disks. As the next section explains,
ophthalmologists often take stereo pairs of photographs
to enable them to view the cup and 3D shape of the op-
tic disk. Stereo matching of the blood vessels shown in
Figure 1 is relatively straightforward, and is discussed
in Section 4. The need for accurate depth measure-
ments mean that excessive smoothing cannot be toler-
ated; but current edge-based photogrammetric methods
suffice. Sparse depth measurements from stereo match-
ing of blood vessels provide insufficient constraint for re-
liable accurate reconstruction of the surface of the optic
disk, which is mostly smoothly shaded. Shape-from-

Section 5 reports work on integrating the sparse stereo
and dense photometric stereo estimates. Finally, Sec-
tion 6 presents results using the system we have devel-
oped.

1 MEDICAL BACKGROUND

Glaucoma refers to a complex of diseases that have in
common an increase in intraocular pressure. This eleva-
tion of pressure causes excavation of the optic disk, which
leads to loss of the visual field and eventually blindness
may result.

The optic disk composed of the anterior termination of
the optic nerve. It is located an average of 3.42 ± 0.34
mm from the fovea; the disk itself has an average hori-
zontal diameter of 1.75±0.19 mm and an average vertical
diameter of 1.86 ±0.21 mm. (The average diameter of an
eye ball is approximately 23-25mm). The internal disk
surface is not in general flat. Almost all eyes have some
form of cup or physiological excavation of the disk.

Observation of the optic disk is fundamental to the man-
agement of any patient suspected of glaucoma. In a glau-
comatous eye, the deformation of the optic nerve head
causes the death of the nerve fibres or the ganglion cells.
It is thought that cupping occurs before nerve damage,
so that it is vital to monitor the topography of the optic
nerve head in the ocular hypertensive patient if glaucoma
is to be detected early. Since the size of the optic nerve
head is governed by many physiological factors, absolute
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measurements are not much use for diagnosis. To differ-
entiate the pathological from the physiological features,
the patient's eyes are examined periodically, usually ev-
ery six months. If on successive examinations, there are
changes in the size of the cup or the color, the pallor,
the disease is diagnosed. In order to record and com-
pare the changes, ophthalmologists take photographs of
the fundus and make measurements on parameters such
as the cup/disk ratio, the rim area, etc. In addition,
stereoscopic photographs allow them to assess and com-
pare the depth of the cup as well as the 3D shape of the
optic disk.

The fundus images we used were taken by the Zeiss fun-
dus camera with the Allen stereo separator. The sep-
arator is a rotating glass piece and stereo photographs
were taken with the separator at two different positions.
The illumination source comes from the camera, and the
Allen separator also changes the effective direction of the
source. The photographs were digitized by a CCD cam-
era.

As noted in the Introduction, the bottom line is that
measuring and monitoring changes in the topography of
the optic disk is key to assisting in the diagnosis and
treatment of glaucoma. The challenge for computer vi-
sion is that the optic disk is small (1.8 mm diameter), at
a distance of at least 25 mm from any imager, the albedo
of the disk varies spatially, there is a sparse latticework
of blood vessels, and there is considerable variation in
healthy disks.

2 PHOTOMETRIC STEREO

Shape from shading relates the shape z(x, y) of an im-
aged surface (or its gradient) to image irradiance (grey
level shading). Typically, image irradiance is propor-
tional to scene radiance, which depends upon the sur-
face albedo a(x,y), the energy Es of the scene irra-
diance, and the reflectance function R(p(x, y), q(x, y)),
where p(x, y) = dz/dx and q(x, y) — dz/dy. Shape from
shading from a single image is underconstrained [8].

The majority of shape from shading algorithms re-
quire all the factors listed above to be known or well-
controlled. For example, the surface reflectance function
R is usually assumed to be Lambertian; the albedo is
assumed constant over the surface; the light source po-
sition and intensity must be known; and shadowing and
mutual illumination are not allowed. In the case of op-
tic disk images, the albedo most definitely is not con-
stant, though the assumption of Lambertian reflectance
appears to be quite reasonable. No direct evidence is
available to support this hypothesis, particularly as liv-
ing tissue has different reflectance characteristics than
dead tissue (available pathologically). However, in our

previous work on cataract [7], a light source was focussed
on the optic disk and used to reflect and diffuse the light
so that the lens is illuminated from behind. The polari-
sation characteristics of the lens and fundus images ex-
ploited in that work strongly suggest that the reflectance
of the cup is approximately Lambertian.

If the brightness incident on the optic disk (scene irradi-
ance) /, and the direction of illumination n, are known,
there remain three unknowns: the surface normal n(x, y)
and the albedo. Assuming Lambertian reflectance, we
have

I(x, y) - a(x,y)Is(ns • n(x,y))

Inspired by photometric stereo [8, 15], we consider tak-
ing two images, from different vantage points nSl =
\Ps, 1s,]T • Then:

h(x,y) = a{x,y)I$1
[(1

I2(x,y) = a(x,y)I,9
[(1 + p2 + g2)(l + p2

2 + q?7)]?

We now choose to place the cameras symmetrically
(about a cyclopean centre), oriented in the x — z plane
and to illuminate the scene with equal energy light
sources: that is,

qSl = qS2 — 0, and

Psi = —Ps2 = Ps, and

/., = Is2 = I

Then the equations simplify to:
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Only p(x,y) is recovered by this method, but it is suffi-
cient to estimate depth by integration:

z(x, yi) - zo(xo, y{) + / p(x, yi)dx

(for i = 0,...,N)

Our photometric stereo technique provides no informa-
tion about q of the surface gradient, therefore surface
reconstruction is not possible without the knowledge of
z0 in each profile. This is supplied by binocular stereo
results which is described in Section 4. We find that
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this technique gives good, though noisy, estimates for
the horizontal component p of the surface gradient; but
we should be aware of the errors associated with the
technique:

1. The photometric stereo technique requires exact
correspondence of each point in the images. To
define a point in a region where the brightness is
varying slowly and to match it with its conjugate
pair in the other image is extremely difficult. In
the special camera system we are designing, a sin-
gle camera with two illumination sources are used,
the correspondence problem is then trivial. For the
moment, however, the fundus images are binocu-
lar pairs instead of photometric stereo pairs. The
matching problem is solved by matching edges (un-
wanted edges are removed by hand), measuring the
disparity, and using linear approximation to esti-
mate the disparity of the image points between
edges. The error may not be as large as it seems
since the brightness changes slowly in general, and
in places where it changes rapidly, matching is usu-
ally assisted by edge points.

2. Even when the illumination directions of the cam-
eras are known accurately, the effective illumination
direction will be changed by the optics of the eye.
This produces incorrect scaling of the depth profiles.

3. To calculate depth, the gradient of each point has to
be integrated; but this also integrates up the error.
Next section describes a method which will smooth
out most of the random noise.

4. The surface of the retina is modelled as a Lamber-
tian reflector, and though we argued above that this
appears to be a good approximation, it is not known
for certain.

5. We assume that the scene irradiance Is is equal
for both images. It is difficult to ensure that two
light source intensities are equal. However, standard
techniques for normalising image brightness appear
to cope well with this problem.

6. The surface of the cup is concave, so mutual illumi-
nation occurs. Forsyth [5] have shown that ignor-
ing mutual illumination leads to underestimation of
depth. It has been found that the extent of mutual
illumination is related to the albedo. If the surface
reflectivity is large, the mutual illumination effect is
large; but if the albedo is low, the mutual illumina-
tion effect is low. The albedo cannot be changed,
but is a function of the wavelength of illumination.
Since the retinal surface is red and yellow in colour,
green colour light is a good candidate for illumina-
tion since the reflectivity of green light is low and
green light can increase the contrast between the
optic disk and blood vessels.

3 REGULARISATION

The technique described in the previous section gives
good, though noisy, estimates of the surface gradient
component p(x,y). To smooth the estimates we apply
regularisation, that is, generalised least squares. The
simplest approach is to minimise:

JJ(V -p)2 + \(pl+P
2

y)dxdy

where V{x,y) is the initial estimate computed by the
technique outlined above, and where A is a non-negative
weighting constant. We find that if A is assumed con-
stant, the surface is smoothed too severely, especially
near the edge of the optic cup where the surface curva-
ture is large. Instead, we suppose that X(x, y) is a func-
tion which is allowed to vary spatially and we minimise
p(x,y) and \(x,y) simultaneously. That is, we minimise:

where, A(x,y) is a prior estimate of X(x,y). One pos-
sible prior estimate is an idealised model such as that
shown in Figure 2f(top). In practice, we compute the
approximation to the ideal as a function of the gradient
W (Figure 2f bottom) which we find gives good results.
The Euler-Lagrange equations are then:

F — — F — — F
p dx v= 8y p

that is:

(V - p) + AV2p + \xpx = 0

(Pi + Pi) + 27(A - A) - 2pV2A = 0

The corresponding finite difference iterative scheme is:

( . 1 1 i . y. U i i

li controls the smoothness of the function A, and j pre-
vents A deviates from its prior estimate. There is no
strict rule to choose /x and 7; their choices depend on
the type of surface and how noisy the images are. For
fundus images, surface discontinuities are not common,
thus A should not vary too rapidly and /i is usually cho-
sen to be large. The images we obtained at present are
noisy, the prior estimate of A based on these noisy images
are therefore not very accurate and 7 is usually chosen
to be small. Experiments have been done and it is found
that the result is not very sensitive to a large range of fi
and y.
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4 BINOCULAR STEREO INTEGRATION OF DEPTH
ESTIMATES

Many approaches to stereo vision have been developed,
including grey level correlation matching and edge-based
stereo. Each technique has advantages and disadvan-
tages, its efficacy depending upon the application. The
optic nerve head is essentially featureless apart from
blood vessels and the edge of the optic disk. Since the
shading usually varies slowly over large areas of the cup,
much of which has a slowly varying gradient, grey level
correlation is inappropriate. We choose to use the edge-
based stereo algorithm PMF [12], so that matches are
confined to blood vessels and the edge of the optic disk.

Initially we used the Canny edge detector to determine
the set of edges for stereo matching. There are a number
of problems with this. First, the scale of the Gaussian
smoothing filter trades localisation for signal-to-noise.
The poor localisation that results in a "clean" edge map
is inappropriate for an (essentially photogrammetric) ap-
plication such as ours in which depth accuracy is crucial.
Second, the Canny edge detector fails to detect junctions
reliably, usually leaving them unconnected. Instead, we
use the morphological edge detector developed by Noble
[11]. It does not require the smoothing step, thus avoid-
ing the problems with the Canny edge detector. The
output is clean, the position of the edges more accurate,
and junctions are preserved. This is important for edge-
based stereo since it reduces the chances of mismatch
and also helps to provides accurate depth measurement.

To get the best view of the fundus, the optical axes of the
fundus cameras are pointed at, and focussed on, the op-
tic nerve head, so are not parallel. (Although the Allen
stereo separator gives effectively parallel camera axes,
the beam is bended by the optics of the eye.) This ar-
rangement maximises stereo separation to give maximum
depth sensitivity. However, the stereo images need to
be rectified to facilitate matching. Rectification is done
crudely at present since the camera system was designed
for monocular viewing and due to the movement of the
eye during the image acquisition process, the camera is
therefore impossible to calibrate. We use the registration
process developed by Hanna [7] in his work on monitor-
ing the development of cataract. Matching vectors are
computed between the edges, and the stereo pair are then
rotated and translated accordingly. This yields epipolars
that are approximately parallel and horizontal.

Result of using PMF are shown in Figure Id. As ex-
pected, depth measurements are sparse and are only
available along the edges of blood vessels and on the edge
of the optic disk. Since the camera is not calibrated at
present, disparity is relative rather than absolute, so the
depth computed is not accurate. This will be achieved
by a CCD stereo imaging system we have designed.

Two independent depth measurements are available from
photometric stereo and edge-based stereo. The depth
map from photometric stereo is dense, but is subject to
the errors enumerated in Section 2. On the other hand,
the depth estimates from edge-based stereo are sparse
but (relatively) accurate (and can be expected to be suf-
ficiently accurate once the imaging system is available).
A more accurate reconstruction of the fundus surface can
be achieved if the two measurements are combined. The
question to be addressed is: how?

A popular approach Grimson, Terzopoulos, Blake and
Zisserman is to formulate a suitable physical analogy,
minimising the corresponding energy equation. In this
vein, suppose that we are given a thin elastic plate, whose
unstressed (initial) shape is that determined by the dense
depth estimates given by photometric stereo. This sur-
face is to deform such that the corresponding surface
points conform to the depths given by binocular stereo.
More precisely,

(x, y, z) - • (x, y, z) = (x, y, z + f(x, y, z))

subject to (x,y,z) = (x, y, zbinocuIar), V(x,y) G C

where

C = {(x,y) | there is a binocular stereo depth

measurement at the point (x,y)}

We next suppose that the deformation energy is propor-
tional to the integral of the quadratic variation [6]:

d2U 2 d2U 2 d2U 2 d2U 2 d2U 2

dx2 dy2 dz2 dxdy dxdz

d
2
u,

The aim is to find the functional U(x, y, z) that min-
imises the quadratic variation subject to the constraint
of conforming to the stereo data. The Euler-Lagrange
equation for the quadratic variation is the biharmonic
equation:

V4U = 0

U = | r | is a solution to the biharmonic equation.
Suppose that U is any such solution, Bookstein [3] has
recently pointed out that:

= a0

n

axx + ayy + a2z +

>iU(\Pi-(x,y,z)\)

also satisfies the biharmonic equation, where P; denotes
the set of depth measurements from binocular stereo and
u>i are scalars. The initial (linear) part of the expression
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for g defines an affine transform whose quadratic varia-
tion is zero; that is, it contributes nothing to the energy
expression. The affine transform allows the initial sur-
face defined by the photometric stereo depth estimates to
be translated and rotated before deforming it in depth.

6 EXAMPLES

Two examples are shown. The first experiment uses a
pair of fundus stereo photographs, captured by a Zeiss
fundus camera. Photometric stereo and binocular stereo
results are shown in Figure lc and 2d respectively. The
photometric stereo result is not as good as that of the
second experiment due to the fact that the fundus images
used are binocular stereo pair and the matching method
described in Section 2 is used to solve the correspondence
problem. Cross-sections of the two set of results near the
center of the optic cup are shown in Figure le, with the
result of integration superimposed.

The second experiment was set up using a half ten-
nis ball sit on a piece of cardboard, under relatively
well-controlled photometric stereo illumination condi-
tion. The raw images, the output from photometric
stereo, and the surface reconstructed are shown in Fig-
ure 2a, b, c, d respectively. A cross-section of the gradi-
ent map is also shown (Figure 2e) and the result of the
regularisation smoothing is superimposed. The idealised
A and its approximation are shown in Figure 2f. Finally,
the surface reconstructed is displayed in Figure 2g.

CONCLUSIONS AND FUR-
THER WORK

We are currently performing a small clinical assessment
of our technique. We hope to compare results using
our technique with those obtained for the same eyes
(ours) using the Rodenstock Analyzer. As was noted
in Section 2 and 4, the accuracy of our technique will
be increased substantially once we have constructed the
stereo-pair of fundus cameras that we have designed. A
number of technical improvements to our current work
are foreshadowed. First, we expect to replace the finite
difference scheme developed in Section 3 with a corre-
sponding finite element scheme. Second, we propose to
investigate the integrability constraint of Horn Brooks
and Chellappa that estimates z(x,y) directly instead of
the two-step scheme presented here in which p(x,y) is
first estimated, then regularised, and finally integrated.
Finally, we expect to develop further our work on in-
tegrating binocular stereo and photometric stereo esti-
mates to allow for errors in the binocular stereo depth
measurements.
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Figure 2: a) and b) show the photometric stereo pair of a
half tennis ball sit on a piece of cardboard under illumi-
nation from the left and right respectively. The gradient
map c) is computed from the gray level images by photo-
metric stereo. After filtering by the regularisation tech-
nique, the surface of the scene d) can be reconstructed
from the smoothed gradient map. e) shows cross-section
of the gradient map before and after smoothing. Note
the rapid changes in gradient at the edges of the ten-
nis ball are preserved, f) shows the idealised model for
A (top) and its approximation (bottom) of the regular-
isation smoothing method, g) shows the surface of the
scene reconstructed.
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