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There is growing interest in bioeconomic models as tools for understanding pathways of fishery behaviour in order to assess the impact of alter-
native policies on natural resources. A model system is presented that combines stochastic age-structured population dynamics with complex
fisheries economics. Explicitly, the economic response of fleet segments to changes in stock development is analysed by applying observed
values and stochastic recruitment. The optimization of net profits determines the fishing effort and the investment and disinvestment behaviour
of fleet segments, which, in turn, affect the level of catch rates and discards. This tool was applied to the North Sea saithe fishery, where ICES re-
evaluated the existing EU–Norway management plan, focusing on biological reference points only. Two scenarios were tested with alternative
harvest control rules and then contrasted with one unregulated scenario with no quotas and driven by optimizing the net profit of the whole
fleet. The model showed the success of both harvest control rules in rebuilding the stock and the associated costs to the fleets in terms of
maximal 21% reduction in net profits, 21% reduction in crew wages and 11% reduction in fleet size in the midterm (2007–2015). In the long
term (2022), successful stock recovery coincided with net profits almost equalling that of the unrestricted fishery. The model is highly sensitive
to the parameter values but can be used strategically, providing a qualitative understanding of the anticipated relative changes.

Keywords: bioeconomic modelling, fishery management, gadoid species, impact assessment.

Introduction
Population dynamics of fish stocks in the North Sea are estimated
based on short- and long-term prediction models that are often
parameterized with data derived from surveys and commercial
catch data (ICES, 2012a). This analysis is conducted by working
groups of the International Council for the Exploration of the Sea
(ICES) and the Scientific, Technical and Economic Committee for
Fisheries (STECF). The model outputs form the basis for scientific
management advice in the framework of the European Common
Fisheries Policy (CFP). Although understanding and anticipating
fisher response to changes in biological, economic and regulatory
conditions in fisheries is critical in designing management plans
that will sustain resources and fishing activities (Béné et al., 2001),

the advice given by ICES is mainly based on operational assessment
models that do not account for fisheries economics (ICES, 2012a).
Ideally these models would include short- and long-term fleet dy-
namics, such as effort distribution and entry–exit behaviours, as
they influence the fishing mortality. Fleet dynamics are driven by
revenue that depends on fish prices and variable costs (such as
fuel cost) and greatly influence short-term effort distribution
between fisheries. In addition, the profit of a fleet segment will
affect the investment or disinvestment behaviour and thus the long-
term development of the targeted fish stocks. The fishery system
comprises a dynamic interplay between the biological and economic
parts of the system. When trying to understand a fishery, it is essen-
tial to take account of biological and economic pressures.
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Unfortunately, existing bioeconomic models often focus on
either the biological component or the economics and hence
capture only some of the relevant feedbacks. For instance, the
model developed by Da Rocha et al. (2010), which was applied to
evaluating recovery plans, assumed costs to be a source of uncer-
tainty and fleet size (the number of vessels participating in the
fishery) to be constant. Similarly, Pelletier et al. (2009) developed
the “ISIS-Fish Model” to evaluate the bioeconomic sustainability
of multispecies, multifleet fisheries under a range of policy
options but did not include the age-structure of the populations
and the entry or exit of vessels. In another model developed by
Poos et al. (2010), marketable fish was represented as a homoge-
neous group, whereas, in real fisheries, the marketable catch consists
of several size classes that may differ in value and directly affect eco-
nomic performance and the related fleet dynamic consequences.
Moreover, Naqib and Stollery (1982) developed a bioeconomic
model of multicohort fisheries but included neither the distribution
of effort over years nor any stock–recruitment relationship. The
latter is crucial, as recruitment is likely to decline, or fail, if stock
size is reduced too far (Shepherd, 1982). They did not consider
any type of investment or disinvestment behaviour, which is
important as this can indirectly influence fishing mortality. To
ensure the sustainability of fisheries, maintain incomes, and
preserve regional communities that depend on fishing, it is crucial
to understand both biological and economic mechanisms linking
fish stocks and fisheries as comprehensively as possible (Stephenson
and Lane, 1995).

This study combines stochastic age-structured population dy-
namics of the stock with a detailed representation of the economy
of fleets into one model. Specifically, the model integrates essential
aspects of those two components and includes both the economics
of fleet segments in terms of fish and fuel prices, fixed and variable
costs, and fleet adjustments, as well as the biology of the fish stock in
terms of individual growth, maturity, variable recruitment, spawn-
ing stock biomass (SSB) and instantaneous mortality rates. The ap-
proach is based on a bioeconomic optimization and simulation
model called “FishRent” (originally developed during the EU-funded
project “Renumeration of Spawning Stock Biomass” by Salz et al.,
2011). Compared with the models mentioned previously, the
basic version of FishRent is an advanced model from the economic
point of view because it includes prices, costs, and fisher behaviour,
in terms of investment, disinvestment and fishing effort distribution
between fleet segments for a long period of time (Salz et al., 2011).
This basic version of FishRent was extended by replacing the
Schaefer model (Schaefer, 1957), which was a simple deterministic
stock growth production function, with a dynamic age-structured
population model that accounts for stochasticity in the stock–re-
cruitment relationship. The model was applied to the North Sea
saithe fishery, where ICES re-evaluated the current management
plan in 2012.

Material and methods
The North Sea saithe fishery
Saithe (Pollachius virens) is of major economic importance for
North Sea fisheries, with annual landings values of around 15
million Euros (Anderson and Guillen, 2009). It is targeted by
Norwegian, French, German, British, Danish and, to a small
extent, Swedish trawlers (ICES, 2012a). There is an EU–Norway
long-term management plan for North Sea saithe. This plan
involves a Harvest Control Rule (HCR) based on annual Total

Allowable Catches (TACs), and reference points. Blim is a reference
point for SSB, below which there is a high probability that recruit-
ment is impaired (Lassen and Medley, 2001; ICES, 2010). Bpa is
the precautionary reference point for SSB, below which the stock
would be regarded as potentially overfished (Lassen and Medley,
2001; ICES, 2010). Ftar is the target fishing mortality for age class
3–6 (Lassen and Medley, 2001; ICES, 2010). In the long-term man-
agement plan for North Sea saithe Ftar is set to 0.1 (Ftar−low) when
SSB is estimated to be below the minimum level of 106 000
t (Blim) (ICES, 2013). Usually the fishing mortality is �0.4, therefore
an Ftar of 0.1 is a large reduction to allow SSB to recover. Where SSB
is above 200 000 t (Bpa), the parties have agreed to restrict fishing
on the basis of a TAC consistent with a target fishing mortality of
0.3 (Ftar−up) (ICES, 2013). In the case where SSB is estimated to be
between Bpa and Blim the target fishing mortality rate (Ftar−mid) is
calculated as:

Ftar−mid = Ftar−up − (Ftar−up − Ftar−low) ×
(B pa − SSB)
(B pa − Blim ) (1)

Another element of the plan is that the annual TAC should not
vary by more than 15% (ICES, 2013). Although there exists a long-
term management plan, SSB of saithe has declined in the last few
years and is currently close to Btrigger (ICES, 2012a), which is
inside the Maximum Sustainable Yield (MSY) framework of
ICES. Btrigger is the value of SSB that triggers specific management
actions in order to avoid a further decline of the stock in regions
with increased probability of a stock collapse (ICES, 2012a).
Besides the declining SSB values, saithe has exhibited lower
growth rates and recruitment has been below average since 2006
(ICES, 2012a). These factors, when taken together, indicate a
decline in stock productivity. This questions the sustainability of
the HCR with its target fishing mortalities and constrained change
of TACs (the restriction on the maximum interannual change of
TACs allowed) used in the management plan for North Sea saithe
(ICES, 2012b). At the moment, the annual TAC is not allowed to
vary by more than 15%. Only if it is considered to be appropriate
can the parties agree to abolish the constraint on TAC change
(ICES, 2012b). At the moment, Bpa is used as the reference point
that triggers a decrease in the annual TAC by more than 15%.
ICES re-evaluated the management plan in 2012 using a standard
Management Strategy Evaluation (MSE) approach (ICES, 2012b).
However, there has never been an impact assessment for the plan
that takes into account fisher behaviour or the economic perform-
ance of the fleet under different management plan options and scen-
arios. The model presented here was developed for such a purpose,
as it integrates the biological component, fisher behaviour and the
economics of fleet segments. The model was successfully applied
to the North Sea saithe fishery to evaluate whether Blim or Bpa is a
more appropriate reference point for an annual TAC adjustment
by more than 15%.

Scenarios
Simulations of an unregulated case, which represents a fishery
without quotas only driven by optimizing the net profits of the
whole fleet, were contrasted with two alternative HCRs (see
Table 1), where the current HCR of North Sea saithe was modelled
with the two reference points (Blim and Bpa) referred to as HCRBlim

and HCRBpa. The unregulated case facilitated the assessment of po-
tential economic costs and benefits that may occur due to the
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implementation of one of the HCR options. The first HCR option
includes a 15% constraint on the annual TAC change if SSB is at
or above Blim. Such an option might stabilize catches, as the
TAC cannot vary by more than 15%, unless SSB drops below Blim

(106 000 tons). The other HCR option includes a 15% constraint
on the annual TAC change if SSB is at or above Bpa in order to
account for uncertainties and to ensure that the probability of a
stock collapse is low (ICES, 2010). This option might facilitate a
more immediate response to stock development, especially when
SSB is declining below Bpa (200 000 tons), but could lead to less
interannual stability in fishing opportunities. Target fishing mortal-
ity rates of both HCRs were modelled according to the long-term
management plan for North Sea saithe (Lassen and Medley, 2001;
ICES, 2010).

Settings
The model was run for a period of 16 years (2007–2022). For the
years 2007–2009, low recruitment values as observed in the official
assessment from 2012 (ICES, 2012a) were used. For the following
years, recruitment was predicted based on stochastic simulations
applying a Beverton and Holt stock–recruitment relationship
(Figure 1). This kind of stochasticity was added to the originally de-
terministic model, because recruitment failure is an important
driver of the North Sea saithe fishery right now. The model
accounted for six fleet segments covering vessels from Denmark,
England, France and Germany that fished North Sea saithe either
as the main target species or an important bycatch species.
According to the Data Collection Framework (DCF), fleet segments
were classified by vessel length and predominant gear type
(European Commission, 2010). The calibration of the model was
based on average biological and economic data for the period
2005–2007 (Anderson and Guillen, 2009; ICES, 2012a).

Model description
The presented modelling approach is based on a bioeconomic opti-
mization and simulation model called “FishRent” (Salz et al., 2011).
It is a dynamic feedback model with annual time-steps, including in-
dependent procedures for the stock development (e.g. growth, re-
cruitment and mortality), the catch, the effort distribution, and
the investment behaviour. The economic performance of individual
fleet segments can be compared with each other over a long period of
time (e.g. 50 years). The model is composed of six submodules
(Figure 2). It is a model of a fishery system that focuses on the eco-
nomic drivers, among which the profit earned by the fleet segments
is the main driver. Profit depends on the amount of landed fish,
prices for the landed fish, the costs of fishing, and on the interest
rate for capital invested in the fleet. It is presumed that effort in real-
istic settings responds to economic incentives. In particular, it is

assumed that fleet segments seek to maximize their profits by
setting an optimal level of fishing effort, which in turn affects the
commercial fish stock. Each year, the applied CONOPT solver
[for the detailed description of the CONOPT algorithm see Drud
(1991)] finds the optimum levels of fishing effort for each fleet
segment (within the historical minimum and maximum values of
fishing effort) that maximize the total net profit of the fleet. Based
on the calculated profits from the two years prior to a particular
year, the model determines the level of investment or disinvestment
in the fleet [for details see Behaviour submodule or (Salz et al.,
2011)]. Given that free access in the fisheries is allowed, any fleet
segment that is highly profitable will become bigger, and hence
the profit of the individual vessels would dissipate in the long
term. The idea of fishers responding to economic incentives with
effort allocation is supported by several studies (Bockstael and
Opaluch, 1983; Robinson and Pascoe, 1997; Dorn, 1998). For in-
stance, Bockstael and Opaluch (1983) provide empirical documen-
tation showing that fishers adjust their effort in response to changes
in expected returns. In the model, management constraint activities
affect the stock and control the fishery. Simulations of changes in
stock biology (e.g. changes in stock productivity), fisheries econom-
ics (e.g. changing fuel costs) and/or policy (e.g. alternative manage-
ment strategies) can be conducted using the model. A full
description of the basic version of the model can be found in Salz
et al. (2011). The list of parameters and their estimation can be
found in the Supplementary data.

Biological submodule
The Biological Submodule calculates the annual population dynam-
ics of the stock. Individual fish grow according to the von Bertalanffy
weight-at-age function (von Bertalanffy, 1938). For the case study,
the parameters used in this function were estimated directly from
weight-at-age data of the North Sea saithe stock (ICES, 2010).
Once a year, stochastic recruitment (the number of age class 3 fish
at the beginning of the year) was calculated via a Beverton and
Holt stock–recruitment function (Beverton and Holt, 1957),
which showed the best fit to stock recruitment data from 1967–
2012 (ICES, 2013).

Rt =
a × SSBt

c + SSBt
× e(D×CV−0.5×CV2), (2)

with SSB as the overall SSB for saithe at the peak of the spawning
period. The parameters a (a ¼ 190.9) and c (c ¼ 76.3) are species-
specific and were estimated via the non-linear least-squares ap-
proach with data of the North Sea saithe stock (ICES, 2010, 2013).
D is a standard normal deviation and CV is the coefficient of vari-
ation (CV ¼ standard deviation/mean), estimated based on histor-
ical stock sizes at age 3 from 1967–2012 (ICES, 2013). Each time the
stochastic recruitment model is employed, 1000 stochastic itera-
tions are run and median recruitment and SSB values are taken
for further calculations. This means that for each time-step, i.e.
year, 1000 random iterations from the probability distribution in
the stock–recruitment function are run. At the end of each year,
all fish of ith age are moved to the next age class. All fish older
than the maximum age are accumulated in the last age class (plus
group at age 10). The catch calculated via a standard Cobb–
Douglas production function (see Interface submodule) is used for
Pope’s approximate solution to the Baranov equation (Pope,

Table 1. Scenario description.

Scenario Description

Unrestricted
fishery

Neither a TAC nor a target fishing mortality rate was
applied. Exclusively driven by maximizing net
profits of the fishery

HCR Blim Considering the target fishing mortality rate, and a
15% constraint for annual TAC adjustments if SSB
is at or above Blim

HCR Bpa Considering the target fishing mortality rate, and a
15% constraint for annual TAC adjustments if SSB
is at or above Bpa
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Figure 1. Predicted number of recruits of age 3 for the modelling period. From 2007–2009, observed recruitment values were used. From 2010
onwards, median recruitment values (solid lines) with 5 and 95% intervals (dotted lines) based on 1000 iterations are shown. Upper graph:
unrestricted fishery; middle graph: HCRBlim; lower graph: HCRBpa.
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1972) to calculate the number of individuals of ith age at time t,:

Nt,i = Nt−1,i−1e−Mi −
∑

j
Ct−1,i−1,j

si,j

( )
e
−

Mi

2
,

(3)

where Nt,i is the number of fish of ith age at time t, Ct,i,j is the catch
in numbers of ith age and jth fleet segment at timet and Si,j is the
catch share for ith age and jth fleet segment (constant over time).
The catch share serves to estimate the total catch of a species consid-
ering the catches of non-modelled fleet segments. Mi is the instant-
aneous natural mortality rate for ith age. The estimated number of
individuals is then used in Equation 4 to calculate the age-specific
instantaneous fishing mortality:

Ft,i = − ln
Nt,i

Nt−1,i−1

( )
− Mi. (4)

Pope’s approximation can be used in the Virtual Population
Analysis (VPA) to avoid numerical estimation procedures.
Moreover, as long as total mortality is below 1, it has been proven
that Pope’s approximation works well, leading to very small relative
errors (MacCall, 1986; Lassen and Medley, 2001).

Policy submodule
The Baranov function (Baranov, 1918), including the target fishing
mortality rate, is used in the Policy Submodule to determine the
TAC for the next year. In particular, the Baranov model is referred
to as a catch model, as it provides a catch estimate that is compared
with a certain percentage (tst) of the TAC from the previous year
(e.g. 85% of the TAC, if the TAC change constraint was 15%)
(Equation 5). If this catch estimate is below or above the certain
TAC level, the TAC for the following year is decreased (Equation
5a) or increased (Equation 5b), respectively, within the maximum
allowed annual change. This maximum allowed annual change of
the TAC is 15%, unless SSB drops below the reference point of
HCRBlim or HCRBpa, in which case the TAC can be changed by
more than 15%. If none of the two options is true the TAC for the
following year is calculated based on the Baranov catch model
alone (Equation 5c). The TAC was calculated for the saithe fishery
in the North Sea and Skagerrak if:

∑
i TSBt,i ×

Ft,i

Ftart−1

( )
× Ftart

Zt,i
× (1 − e−Zt,i )

⎡
⎢⎢⎣

⎤
⎥⎥⎦

, (1 − tst) × TACt−1 (5)

TACt = (1 − tst) × TACt−1, (5a)

Figure 2. Conceptual model design with arrows that explain the interaction between the six submodules (age-structured population dynamics,
policy, interface, economy, behaviour and price submodules).
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or if:

∑
i

TSBt,i ×

Ft,i

Ftart−1

( )
× Ftart

Zt,i
× (1 − e−Zt,i )

⎡
⎢⎢⎣

⎤
⎥⎥⎦

. (1 − tst) × TACt−1

TACt = (1 + tst) × TACt−1 (5b)

or:

TACt =
∑

i

TSBt,i ×

Ft,i

Ftart−1

( )
× Ftart

Zt,i
× (1 − e−Zt,i )

⎡
⎢⎢⎣

⎤
⎥⎥⎦, (5c)

where TSBt,i is the total stock biomass of ith age at time t calculated
as the product of number of individuals and mean weight-at-age.
Zt,i is the instantaneous total mortality rate calculated as the sum
of instantaneous fishing and natural mortality rate.

Interface submodule
The Interface Submodule links the submodules together. In this sub-
module the levels of catch and effort are determined and enter into the
Economic Submodule and into the Biological Submodule. The effort
level in terms of fishing days isbased on maximizing the sum of the net
profits of the modelled fleet segments with a fixed quota allocation to
each fleet segment mimicking the relative stability. The level of fishing
effort that maximizes the overall profit under the given quota is used
in a standard Cobb–Douglas production function to calculate the
catch. The Cobb–Douglas production function is chosen to calculate
the catch because it assumes a bi-non-linear relationship between the
two inputs (fishing effort and total stock biomass) and the produced
catch. In particular, two exponents (alpha and beta) are used as
scaling factors for fishing effort and total stock biomass (Table A1).
This is in contrast to the common assumption that fishing mortality
is directly proportional to effort and that yield is proportional to stock
size (Eide et al., 2003). It is assumed that modelled fleet segments have
a perfect knowledge of potential catch rates. As the catch in the model
is estimated from the effort applied in the Cobb–Douglas production
function, it is not necessarily equal to the quota. As long as the total
catch of a species is less than the quota, the whole catch can be
landed. When the total catch exceeds the quota, only the quota is
landed and the catch above the quota is discarded.

Price submodule
Technically fish prices per age are included in the model but no
further investigation was performed, as saithe fish prices do not sig-
nificantly vary between age classes (Table A2). Fuel prices are fixed
over time and were set at 60 Euro cents per litre.

Economic submodule
In the Economic Submodule, gross revenues for each fleet segment
are calculated considering the landings value of the modelled species
and also the landings value that comes from catches of other not ex-
plicitly modelled species (Equation A1, Table A1–A3 in the
Supplementary data). Landings are the difference between catch
and discard, whereas discard consists of over-quota catch and
catch of undersized species (defined as a fixed proportion of the

total catch). Net profit of a fleet segment is calculated as the gross
revenue minus all economic costs (fuel costs, variable costs, crew
costs, capital costs and fixed costs). The total net profit of all fleet
segments is then maximized as described in Model description. In
the model there is a differentiation between fixed and variable
costs. Fixed costs include vessels costs (such as administrative
costs, insurance and maintenance costs) and are directly propor-
tional to the number of vessels, while variable costs are dynamic
and are associated with variations in fishing effort. In the North
Sea saithe fishery, crew costs are determined as a percentage of the
difference between revenues and fuel costs. In the model, crew
costs are calculated in the same way. Independently from the mod-
elling approach, crew costs were used to estimate the average wage of
a crew member. Hereby, the predicted crew costs were divided by the
predicted number of vessels in a fleet segment. Consistent with the
real saithe fishery, the calculated skipper wage is 8% of the predicted
crew costs per vessel, the steersman’s wage is 5%, and the wages for
the rest of the crew (on average three members) is 4% per person.
The estimated wages of the three crew members is particularly rele-
vant, as it provides insights into the social effects of both HCR
options. It is, in general, difficult to compare fishers’ wages with
wages in other sectors. So crew wages here were compared with
two values: (i) the German gross unemployment benefit, serving
as an indicator for the minimum wage that a skipper has to pay to
a crew member, (ii) the average wage of a German crew member
on a fishing vessel, assuming that a crew member would switch to
another fishery/vessel if his wage is below that average wage
(Federal Statistical Office, 2012/2013). Fuel costs vary directly
with effort (Equation A2, Tables A1 and A3). They represent the
most relevant cost item in fishing activities for most European
fleets especially since a recent significant increase in the price of
fuel has been one of the most critical factors for the profitability of
fishing activities (Prellezo et al., 2012). Capital costs involving de-
preciation and interest payments are defined as a fixed share of the
number of vessels.

Behaviour submodule
The economic response of the fleet is modelled through a dynamic
investment and disinvestment function (number of vessels), which
evaluates the change in the fleet capacity given the economic
outcome of the fishery two years ago (Equation 6). In reality, the in-
vestment/disinvestment function is based on future expectation,
but because of the lack of information, past evidence (in terms of
profitability) is used in the model. Thereby, the break-even-revenue
(BERt,j) is an important variable (Equation A3). It considers reven-
ues and costs (with salary to the skipper/owner of the vessel inclu-
ded in the crew costs), and provides the value of gross revenue, where
net profit is zero. It is assumed that the fleet changes, i.e. investment
and disinvestment take place, proportionately to the relation be-
tween the break-even-revenues and the realized revenues. In par-
ticular, at the end of each year the number of vessels (FLEt,j) in jth
fleet segment is adjusted in terms of exit (Equation 6a) or entry
(Equation 6b) of vessels depending on whether gross revenues (Rt,j)
fall short of (unprofitable fishery) or exceed (profitable fishery) break-
even-revenues of two years before.

This leads in some years to quite substantial changes in the
number of vessels in a fleet segment, as vessels from other fleet seg-
ments may enter the fishery. However, it is recognized that the
inertia of the system (e.g. licensing, knowledge of skippers) does not
allow such full flexibility. Consequently, parameters have been intro-
duced to limit the fluctuation in investment and disinvestment
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(change in the number of vessels). In particular, a maximum per-
centage of 10% in disinvestment (dmax

j ) and a maximum change
of 5% in investment (imax

j ) is applied (Equation 6). As these two
limits are different, it creates asymmetric investment and disinvest-
ment behaviour. To avoid a continuous growth of fleet size while
vessels in the fleet segments have a low activity, the days-at-sea of
a fleet segment (DASt,j) have to achieve a certain minimum level
of days-at-sea per vessel (dasmin

j ) before the fleet size can be
expanded (Equation 6b, Table A3). This minimum level is based
on the historical average level of days-at-sea for the modelled fleet
segments.

If BERt−2,j . Rt−2,j,

Invt,j = MAX

dmax
j × FLEt−1,j,

Rt−1,j − BERt−1,j

Rt−1,j
× FLEt−1,j

⎡
⎣

⎤
⎦. (6a)

If BERt−2,j ≤ Rt−2,j and DASt−1,j , dasmin
j ,

Invt,j = MIN

imax
j × FLEt−1,j,

Rt−1,j − BERt−1,j

Rt−1,j
× FLEt−1,j

⎡
⎣

⎤
⎦, (6b)

where Invt,j is the number of vessels that are entering (Equation 6a)
or leaving (Equation 6b) the fleet/fishery.

Results
Simulation results
Stock development
Both HCRs, with either a TAC change constraint of 15% if SSB was at
or above Blim or a 15% TAC change constraint if SSB was at or above
Bpa, enabled a successful recovery of the stock (Figure 3). In 2015, the
probability of SSB being above Bpa was 30% for HCRBlim and 60% for
HCRBpa. The probability was higher for HCRBpa because the TAC was
reduced by more than 15% when SSB dropped below 200 000 tons,
allowing for a faster response to the declining stock. Since SSB
dropped below Bpa in 2012, but never below Blim, the TAC was
reduced by more than 15% only for HCRBpa (Figure 3). For the un-
regulated case, SSB reached Blim in 2020, implying a high probability
of a stock collapse (Figure 3). In long-term simulations (2022) the
probability of SSB being above Bpa was 80% for HCRBlim, and 50%
for HCRBpa. The probability was higher for the HCRBlim scenario
where the TAC was increased gradually during the rebuilding phase
of the stock. For HCRBpa the TAC was increased by more than 15%
while the stock was still recovering (Figures 3 and 4). As the model
accounts for overquota catch, discarding behaviour of the modelled
fleet segments could be investigated. In particular, catches often
exceeded the quota when the TAC was reduced or when the stock
size was high (Figures 3 and 5). However, both SSB and catches
decreased sharply over 2007–2013, and a slight stabilization and in-
crease occurred after 2013 (Figures 3 and 5). Catches of the unrestrict-
ed fishery decreased during the low recruitment period (Figure 5).
After 2009 they were more or less stable among years (Figure 5).

Costs and benefits
Integrating the economic component into the model made it pos-
sible to estimate the associated costs of implementing the alternative
HCRs. In midterm (2007–2015) these costs included 17–21%
lower net profits for the fleet but also 12–21% lower crew costs,

and 9–11% smaller fleet sizes than for an unrestricted fishery
(Figure 5). Benefits included 42–46% higher SSB values (Figure 5).
More importantly, in the long-term simulations (2022) the successful
stock recovery coincided with the net profits being 5% lower for
HCRBlim and 1% higher for HCRBpa than the net profits of an unre-
stricted fishery (Figure 6). Although net profits of the alternative
HCRs were almost equal to those of an unrestricted fishery, the
stock was likely to collapse under an unrestricted fishery in the long
term (2022) (Figure 3). Crew wages were increased from mid to long-
term, but were still 6–16% lower than that of an unrestricted fishery
(Figure 6). Fleet sizewas still9–11% lower than that of anunrestricted
fishery (Figure 6).

Crew wages
Crew costs were determined as a certain percentage of the difference
between revenues and fuel costs (corresponding to the real calcula-
tion used in the saithe fishery), and were used independently of the
modelling approach to estimate the average wage of a crew member
per month. Estimated individual monthly crew wages were 780 Euro
(HCRBlim) and 848 Euro (HCRBpa) above the German gross un-
employment benefit, which served as an indicator of the minimum
wage that an owner has to pay to a crew member each month
(Table 2). Over the long term, the estimated monthly crew wages
were 814 Euro for HCRBlim and 882 Euro for HCRBpa above the
German gross unemployment benefit (Table 2). Even though esti-
mated monthly crew wages were reduced in midterm due to the al-
ternative HCRs, they were still 300 Euro for HCRBlim and 500 Euro
for HCRBpa above the mean wage of a German crew member on a
fishing vessel (Table 2). In the long term, the estimated monthly
crew wages were 400 Euro (HCRBlim) and 600 Euro (HCRBpa)
above the mean wage of a crew member working in the fishing
sector (Table 2).

Sensitivity of the model
The percentage deviation from base case values (values of the scen-
arios discussed above, Table 1), both of profits and SSB by varying
parameter values, was evaluated. Even if the standard variation of re-
cruitment was halved or doubled or the fuel cost halved or doubled,
both HCRs were successful in rebuilding the stock and SBB did not
drop below Blim (high risk of a stock collapse) in any of the con-
ducted iterations. These results indicate that not only was the
model robust, but the tested HCRs were also robust (Table 3).
However, when the standard variation of recruitment was set to
five times the base case values, it overwhelmed the density-
dependence portion of the model, and both HCRs had little effect
on stock rebuilding. Doubling of the fuel costs was actually benefi-
cial for stock recovery because this led to a significantly stronger re-
duction in effort and fleet size. The model was highly sensitive
towards the effort and total stock biomass scaling factors (the expo-
nents of fishing effort and total stock biomass in the Cobb–Douglas
production function), especially when those were set to 0.1—then
profits were around 100% lower than the base case values and SSB
estimates were more than 100% higher (Table 3).

Discussion
The model presented here is an extension of the bioeconomic model
called FishRent (Salz et al., 2011). The initial FishRent model
represents a complex economic model with simplified biology,
where the fish population is described by a single variable, inter-
preted as the biomass of the population. The deterministic stock
growth production function is mostly used in economic models
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(Clark, 1976; Clark and Kirkwood, 1979; Goh, 1979; Charles, 1983;
McKelvey, 1985; Cohen, 1987; SEC, 2004). In these models, over-
fishing occurs by definition if the biomass falls below the MSY.

However, these models are not able to disentangle the effect of
whether fishing may reduce the production of young fish (recruit-
ment overfishing) or may remove most of the older fish, reducing

Figure 3. Median SSB values (black solid line) with 5 and 95% intervals (dotted lines) based on 1000 iterations. The two reference points Bpa and Blim

(grey lines) are shown. Upper graph: unrestricted fishery, middle graph: HCRBlim, lower graph: HCRBpa.
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Figure 4. Catches (grey lines) and quotas (black lines) for the modelled segments. Results are shown for simulations of the unrestricted fishery,
HCRBlim and HCRBpa.
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the average age and size of remaining fish (growth overfishing). In
this study, the catch age composition, the growth of individuals
and the estimation of recruitment are fully integrated with the dy-
namics of multiple fleet segments. These extensions allow the new
model system presented here now to indicate whether recruitment
or growth is a case of biological overfishing. The importance of
such a feature is recognized by researchers worldwide, and hence
more and more cohort models are being applied in bioeconomic
studies (e.g. Sumaila, 1998; Tahvonen, 2010; Skonhoft et al., 2012;
Quaas et al., 2013).

Biological models are useful for short-term predictions (e.g. one
year ahead, single species TAC) (Beverton and Holt, 1957; Hilborn

and Walters, 1992), but when trying to understand long-term
impacts of management regulations, biological, economic and
social processes need to be considered (Brander, 2003). As
opposed to other models (Ganguly and Chaudhuri, 1995;
Marchal, 1997; Garza-Gil, 1998; Pelletier et al., 2009; Da Rocha
et al., 2010; Poos et al., 2010), this model combines the economic
processes such as price setting, fleet, effort and cost dynamics with
a detailed age-structured population model that includes recruit-
ment dynamics. This model can investigate fishers’ response to
alternative management regulations along with the stock develop-
ment and market conditions (e.g. fuel prices and fish market
prices). Being able to perform such an impact assessment is
crucial for the performance of fisheries management, especially in
the EU when a new management measure or regulation is proposed
(SEC, 2009).

Recruitment
An important feature of the extended model is that it is possible to
account for the risks of a management failure through a stochastic
stock–recruitment relationship. In particular, the developed
model provides estimates of the risk of SSB falling below Blim, the
probability of SSB being above Bpa, and the time needed to reach
the target fishing mortality rate. These indicators are the same as
those used by ICES (2012b) when re-evaluating the HCR options.
However, the modelling approach presented here differs from the
one used in the evaluation process of ICES (2012b), as it includes
the fisher behaviour and economic performance of multiple fleet
segments. In the presented model, recruitment was forced for
certain years, using observed values for certain years to investigate
the response of the fleet. Results showed that SSB started to
decline and even dropped below Bpa when the given low number
of recruits of age 3 attained older age classes in subsequent years.
The simulated HCRBpa was favourable in the midterm, as it
allowed a fast reaction to that stock decline. However the simulated
HCRBpa led to only a 50% probability of SSB being above the precau-
tionary reference point in the long term. This was due to the fact that
TAC was increased by more than 15% when SSB was still below Bpa.
On the other hand, simulations with the HCRBlim did not allow such
a strong catch reduction due to its 15% constraint at a lower level of
SSB (Blim). However, the HCRBlim did allow the stock to recover to a
significantly higher level above the precautionary reference point
(Bpa), because the TAC increase was constrained within 15%. This
in turn resulted in an 80% probability of SSB being above Bpa in
the long term. A combination where the TAC is allowed to be
reduced by more than 15% if SSB is falling below Bpa, but allowing
then only a 15% increase in the TAC when the stock is recovering,
would probably be the best solution in terms of stock conservation.
This option may be difficult to accept by fishers due to its high eco-
nomic costs in terms (20% lower net profits) and a potential further
reduction of fleet size. In contrast to the present study, ICES (2012b)
provided only biological indicators. They used stochastic recruit-
ment for the whole modelling period, but the parameter values of
the stock–recruitment relationship are not documented. As SSB
for both HCRs remained above Bpa for the whole modelling
period, it is likely that ICES used higher mean recruitment levels.
In ICES simulations, SSB remained above Bpa, and hence the
annual TAC adjustment was always kept within the 15%.
Consequently, the performance of both HCRs was identical in
ICES (2012b), and therefore in contrast to this study.

Figure 5. Changes (%) in median SSB values and for the whole fleet in
net profit, crew wages and fleet size (number of vessels) relative to the
unrestricted fishery. Diagrams show midterm (2015) changes for
simulations of HCRBlim (black) and HCRBpa (grey).

Figure 6. Changes (%) in median SSB values and for the whole fleet in
net profit, crew wages and fleet size (number of vessels) relative to the
unrestricted fishery scenario. Diagrams show long-term (2022) changes
for simulations of HCRBlim (black) and HCRBpa (grey).

Table 2. Mean gross crew wages (Euro/month) determined by the
model, assuming five crew members per vessel.

Scenario Time line
Mean crew
wage

Unemployment
benefit

German mean
crew wage

HCRBlim midterm 2300 1520 2000
long term 2400 1586 2000

HCRBpa midterm 2500 1652 2000
long term 2600 1718 2000

Gross unemployment benefit wages (Euro/month) were based on crew wages
of the previous year and estimated by applying the calculation process from
the German Federal Employment Agency. The mean gross wages (Euro/
month) of a German crew member on a fishing vessel was derived from
Statistisches Bundesamt (2012/2013).
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Fleet dynamics
In the presented model the catch of the species in each year depends on
the dynamics of the fleet segments. For the unrestricted fishery scen-
ario, catches declined during the low recruitment period, but
remained more or less stable afterwards. First, the relative stable
catch after the low recruitment period was due to the lack of any regu-
lation that would have forced a reduction in catches. Second, the initial
condition of fishing effort is of importance. For example, initially the
modelled fleet segments exhibited low effort, and hence there was
neither an investment nor a disinvestment, because fishing was still
profitable (although profits were decreasing among the modelled
years). As a result, the fleet size remained exactly the initial size in
the unrestricted fishery scenario. For HCR simulations, fleet size
and effort in terms of days at sea were reduced when profit decreased.
This in turn resulted in a lower fishing pressure on the stock and was
beneficial for the stock recovery. In the long term (2022), the successful
stock recovery for both HCR options coincided with increased net
profits. For an unrestricted fishery the risk of a stock collapse was
high. In contrast, ICES (2012b) ignored fleet dynamics completely.
ICES (2012b) estimated the yields by assuming a constantfishing mor-
tality, and hence predicted higher yields and a higher risk of SSB falling
below Blim in the long term. This overestimation of fishing mortality
indicates the need of a bioeconomic assessment approach, where the
feedback works in both directions, i.e. takes into account the fact
that the stock development influences the fleet economy, but also
that the fleet economy will influence stock development.

Discards
In general not all vessels in the European fishing fleets are fishing at
their maximum performance, as they are limited by the amount of

allocated days-at-sea, and quotas often do limit the quantity of fish
being caught (Hoff and Frost, 2008). Moreover, the use of TACs
represents a way to control the outputs (yield) of a fishery but
does not allow direct regulation of the level of input (e.g. fishing
effort) (Holden, 1994). A reduction in TAC without equivalent re-
duction in inputs results in an imbalance between catches of the
fleet and the TAC. This problem was reflected by the model when
the TAC estimate was reduced, and overquota catch predicted as
inputs in terms of fishing effort and fleet size were still too high.
These outcomes are supported by other examples where fishers con-
tinued to fish and discarded marketable fish (overquota discarding)
(Daan, 1997; Pascoe, 1997; Rijnsdorp et al., 2007; Hamon et al.,
2007). Furthermore, until the implementation of the new CFP, it
is legal and mandatory to discard undersized fish and overquota
catches within the EU (Holden, 1994), which leads to catches
above the TAC as fishers are incentivized to maximize the value of
their catch. This incentive was incorporated in the model where
fleet segments were assumed to maximize the total net profit (reven-
ues minus costs). In particular, discards were predicted when they
resulted in a higher total net profit due the age-specific fish prices.
Thus, in other fisheries than the saithe fishery, where fish prices
differ considerably between age classes this discarding behaviour
might be stronger. Moreover, most European fleet segments
harvest several species, each equipped with individual quotas that
are often exhausted at different rates (Jákupsstovu et al., 2007).
This is also happening in the North Sea saithe fishery. In particular,
the EU fleets targeting North Sea saithe have fallen under the effort
regime of the cod recovery plan since 2009 (ICES, 2013). In particu-
lar, if their cod catch exceeds 1.5% of the total catch the days-at-sea
will be restricted. Thus, when reducing the quota of North Sea cod,
discarding of North Sea cod might occur, as the quota of saithe has

Table 3. Results of the sensitivity analysis, shown as deviations (%) from base case values of profit and SSB for the midterm (2015)
and long term (2022).

Parameter Values Scenario

Profit SSB

2015 2022 2015 2022

Recruitment 0.5 × std. variation unrestricted fishery 28 29 6 10
HCRBlim 29 28 12 14
HCRBpa 28 27 15 12

2 × std. variation unrestricted fishery 25 219 24 30
HCRBlim 22 215 2 15
HCRBpa 24 215 9 19

Fuel costs (FuC) 0.5 × FuC unrestricted fishery 24 25 28 213
HCRBlim 268 215 4 5
HCRBpa 250 210 5 2

2 × FuC unrestricted fishery 217 215 7 15
HCRBlim 238 214 12 37
HCRBpa 250 210 15 25

Effort scaling factor alpha 0.1 unrestricted fishery 2120 2198 140 194
0.1 HCRBlim 2160 2195 100 300
0.1 HCRBpa 2190 2190 150 200
1 unrestricted fishery 225 254 223 26
1 HCRBlim 10 22 210 15
1 HCRBpa 16 25 220 20

Biomass scaling factor beta 0.1 unrestricted fishery 2120 2160 217 27
0.1 HCRBlim 2101 2135 70 230
0.1 HCRBpa 2115 2190 100 200
1 unrestricted fishery 23 17 223 26
1 HCRBlim 12 15 16 34
1 HCRBpa 15 13 25 17

Positive percentages mean that the value when varying the parameter is higher than the base case value, and vice versa.
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still not been filled. As in general this model is able to mimic this dis-
carding behaviour when including the dynamics of the North Sea
cod stock and the fleets targeting that stock, it might be an interest-
ing aspect for future investigations.

Economic costs
In reality, crew members will compare their income to the next-best
alternative. In the present study the average monthly wage of a crew
member on a German fishing vessel (Federal Statistical Office, 2012/
2013) was used for comparison. In particular, it was assumed that
crew members in the modelled saithe fishery stay in that fishery if
their income is still above that average wage. Estimated monthly
crew wages were reduced in the mid and long term, but for both
tested HCR options they were still higher than the average
monthly salary of a crew member on a German fishing vessel.
Therefore, it is likely that under the given circumstances crew
members stay in that fishery. However, simulations may represent
the best case, and in reality crew wages may sometimes be below
the average wage of the fishing sector, because fishers may not
always act in a way that maximizes their total net profits due to a
lack of knowledge about potential catch rates, traditions, weather
condition or accessibility of a region (Hilborn and Kennedy, 1992;
Prince and Hilborn, 1998; Swain and Wade, 2003; Salas and
Gaertner, 2004). Moreover, in the German saithe fishery a crew
member’s income is around 4% of the difference between revenues
and fuel costs. However, the skipper has the right to change that per-
centage depending on how efficient and hardworking he thinks each
crew member has been. Thus crew wages can vary according to the
individual and create competition between crew members. In most
fisheries, the crew is rewarded by such a lay system (the crew is paid
with a share of revenue less costs), rather than a fixed wage. Those
uncertain wages, and the fact that fishing is a hazardous occupation,
make it difficult to compare the wages from fisheries with wages in
other sectors. For these reasons the average wage of a German crew
member might be the best way to represent the opportunity cost of
labour.

Another reason why the average wage of a crew member working
on a German fishing vessel might be more suitable than a reference
wage from another sector is that crew members may switch to
another fishery/vessel rather than to another sector, as they tend
to have skills that are specific to the fishing sector. In Germany espe-
cially, it is difficult and time-consuming to acquire the qualification
required to work on a fishing trawler. There are no studies that could
be used for comparative purpose or as reference in terms of mod-
elled crew salaries. At present, social indicators such as employment
are mostly ignored in simulation models that investigate the effects
of alternative management strategies (Pelletier and Laurec, 1992;
Marchal, 1997). Other factors, such as fuel cost, significantly influ-
enced the effort level. For instance, doubling the fuel costs (see
Table 3) reduced the effort and was beneficial for stock recovery.
This highlights the importance of fuel costs and the potential risks
of an unsustainable fishery with fuel subsidies, because it encourages
the maintenance of fishing effort even when stock levels decline
(Sumaila et al., 2006; Tidd et al., 2011).

Investment behaviour
Unlike in many other models, where capacity is kept constant (e.g.
Ulrich et al., 2002), the capacity in the model presented here is
subject to change by the use of an investment/disinvestment func-
tion. For instance, compared with the unrestricted fishery where
fleet size remained constant, it was reduced by 9% for HCRBlim

and by 11% for HCRBpa when the quota was reduced in response
to the decline of SSB below Bpa. In reality, the number of vessels of
the considered fleet segments declined in recent years (Anderson
et al., 2012). However, this decline was considerably lower than
the predicted reduction. The maximization process of the model
predicted stronger reduction in fleet size, indicating that the real
saithe fishery could be more profitable by further reducing the
number of vessels. Thereby, the model presented here might be
more suitable to explain a situation where switching of vessels
from one fishery to another can occur, instead of investments in
new vessels or scrapping of existing vessels. One underlying assump-
tion of the investment function is that capital costs are constant per
vessel, which may be unrealistic, as a new vessel will have higher
capital costs. In reality, when a vessel is taken out of the fishery it
can be sold (providing money), it can be scrapped (which may
even cost money), or it might switch to another fishery, which is
the case that is mimicked by the model. Tidd et al. (2011) demon-
strated that for the English North Sea beam trawl fleet, vessel age,
vessel length, stock status, fuel cost, the availability of decommis-
sioning grants, fleet size, and the revenues from target species are sig-
nificant factors in determining fisher decision-making. Factors such
as the vessel age, vessel length, and the availability of decommission-
ing grants are not included in the model, which may explain why the
predicted fleet size was lower than the observed number of vessels.
Moreover, in the presented model, the behaviour is modelled on
fleet segment level, but most likely there is a considerable individual
variability in fishing success among vessels (Hilborn and Ledbetter,
1985; Smith and McKelvey, 1986; Thorlindsson, 1988). Thus, the in-
vestment function used in the presented model could be further ela-
borated if this individual variability could be taken into account, e.g.
by classifying vessels by certain characteristics (such as catch success
derived from logbooks). However, for the saithe fishery there is no
detailed information about the behaviour of fishers with regard to
investment or switching between fisheries. This lack of economic
detail is quite general, and apart from Bjørndal and Conrad
(1987), there is generally little empirical data on investments
within fisheries. Because of the lack of detailed information, fisher
behaviour is often modelled as either simplistic (Horwood et al.,
1998; Apostolaki et al., 2002) or based on case-specific assumptions
(Holland, 2000). Nevertheless, including the investment and dis-
investment behaviour in the present model clearly demonstrated
its importance with regard to the stock development. In particular,
when the associated costs of the introduced HCR options made the
fishery less profitable, fleet size was reduced, lowering the fishing
pressure on the stock and allowing the stock to recover.

The link between biology and economy
In the presented model, the link between biology and economy is
implemented via the Cobb–Douglas production function. For this
function a bi-non-linear relationship is assumed between the two
inputs, fishing effort and total stock biomass, and the produced
catch. This is different to Ulrich et al. (2002), where total fishing mor-
tality is a linear function of effort in terms of sea days. However, using
a non-linear relationship between effort and fishing mortality might
be more realistic because it takes intoaccount the possibilityof crowd-
ing. In turn, crowding makes extra trips less efficient, resulting in a
flattened fishing mortality rate. Gillis (2003) describes crowding as
a direct interference between vessels that reduces their efficiency,
e.g. when a trawler and its gear are blocking the way of another
trawler. The effect of crowding was also described by Rijnsdorp
et al. (2000), who showed that the catch rates of Dutch beam trawlers
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increased by 10% when the vessel density decreased by 25%.
Moreover, in Ulrich et al. (2002) the model tended to overestimate
the level of effort employed, as it does not account for the economic
costs. As a result the quota was fully fished. In reality, fishers stop
fishing once the marginal cost of fishing exceeds the marginal value
of the catch, even if the TAC remains unfilled. The presented model
considers the costs of fishing, and therefore the catches of the mod-
elled fleet segments can be below the quota. However, this was
predicted only for the first two modelling years, when the quota
started to be reduced (Figure 4).

The non-linear relationship between stock and catch might also
be appropriate, as mobile species such as saithe can concentrate in
restricted areas due to food availability or spawning events. The
assumed value for the stock exponent was set at 0.4, and hence
well below 1. This implies that the density of the stock at the
fishing ground does not increase proportionally when total stock
biomass increases (Eide et al., 2003). This may apply to North Sea
saithe, as Casini et al. (2005) found that the population of North
Sea saithe appeared to aggregate at low levels of total stock
biomass and disperse at high levels of total stock biomass. The sen-
sitivity analysis has shown that the model is highly sensitive to the
actual values used as exponents for effort and total stock biomass.
Since profit and SSB were highly varying when changing the
values of those parameters, the values used as exponents must be
determined carefully. In particular, catches and total fishing mortal-
ity were around 10–13% higher when both exponents were set to
one, compared with the values used here of 0.6 and 0.4 for effort
and the total stock biomass, respectively. Thus, depending on the
values used for those exponents, the produced management
advice may differ. Frost et al. (2009) highlighted the importance
of the values for the two exponents in the Cobb–Douglas function
and found that they significantly influence the catch and the fishing
costs (being a function of effort). However, in the simulations pre-
sented here the values for the exponents were identical between the
unrestricted fishery scenario and the two HCR scenarios, and hence
it was possible to compare the performance of different strategies/
scenarios investigated with one another.

Conclusion
The modelling approach presented here is a step forward in the de-
velopment of models for fisheries management towards including
the effect of fleet behaviour on the stock, and the effect of stock
abundance on the overall performance of the fleet. The main contri-
bution is that the model has a level of detail in both the economic and
biological component. On the one hand, modelled economic vari-
ables (e.g. fish and fuel prices, variable and fixed costs, effort distri-
bution and capital investment) affect fishing mortality through
modifications in the fishing behaviour, which in turn affects stock
size. On the other hand, modelled biological variables such as vari-
able recruitment and its effect on stock size also influence fishing
mortality, fishing effort and hence fishing behaviour. This is differ-
ent from most other models that first evaluate the stock develop-
ment independent from the fleet dynamics, and second evaluate
various economic indicators at the end of each year as a function
of the biological catches, but without these economic factors
feeding back into the biological development in the next year
(SEC, 2004). In our case study it was possible to show that both
Blim and Bpa are suitable reference points to provide guidance in de-
ciding whether an annual TAC should be increased or decreased by
more than 15%. Moreover, it was demonstrated that both reference
points are important and should be used in combination when

decreasing (Bpa) and increasing (Blim) the annual TAC by more
than 15%. Thus, the modelling approach is not only a step
forward, but the results are relevant to policy in the current re-
evaluation process of the HCR for North Sea saithe.

Supplementary data
Supplementary data is available at ICES Journal of Marine Science
online. It includes a list of all parameters used in the model, their
values and estimation methods and/or literature source.
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