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Abstract— This paper presents a new approach called Hierar-
chical Support Vector Machines (HSVM), to address multi-class
problems. The method solves a series of max-cut problems to
hierarchically and recursively partition the set of classes into
two-subsets, till pure leaf nodes that have only one class label,
are obtained. The SVM is applied at each internal node to
construct the discriminant function for a binary meta-class clas-
sifier. Because max-cut unsupervised decomposition uses distance
measures to investigate the natural class groupings, HSVM has a
fast and intuitive SVM training process that requires little tuning
and yields both high accuracy levels and good generalization.
The HSVM method was applied to Hyperion hyperspectral data
collected over the Okavango Delta of Botswana. Classification
accuracies and generalization capability are compared to those
achieved by the Best Basis Binary Hierarchical Classifier, a
Random Forest CART binary decision tree classifier and Binary
Hierarchical Support Vector Machines.

I. INTRODUCTION

Achieving both high classification accuracy and good gener-
alization when sample sizes are small relative to the dimension
of the input space continues to be a challenging problem,
specially when the size of the output space (number of classes)
is large. Previous studies of supervised methods show that a
complex classifier tends to overtrain in such situations while
a weak classifier is often inadequate for large output space
problems [1].

According to Occam’s razor, as classifiers become more and
more complex, the generalization error will eventually increase
because of over-training [2]. Ensemble methods can alleviate
this problem, particularly by reducing the model variance [3].
In particular, random forest classification, a combination of
bagging and random subspace method, achieves both high
classification accuracies and good generalization but is compu-
tationally costly due to the large (50-100) number of classifiers
required in the ensemble [4].

A new group of classifiers called Support Vector Machines
(SVM) seek to maximize margin between training samples and
the decision boundary [5]. Typically implemented as binary
classifiers, SVMs utilize nonlinear optimization and kernel
projection to find the optimal distance between two classes in
a new projection. Because they search for the best hyperplane

instead of the highest training accuracy, they tend not to
overtrain on a sample data set.

Although SVMs were originally designed for binary clas-
sification, several class decomposition approaches, including
pairwise, one-vs-all, and error correcting output codes (ECOC)
have been investigated for extending the SVM approach
to handle multi-class problems [6]. Even though one-vs-all
and ECOC decomposition methods can achieve high quality
classification results, using the associated class groups often
requires a complex SVM kernel, such as the RBF kernel,
to construct the decision boundary. This results in a time
consuming, tedious parameter tuning process. To mitigate this
problem, a new class decomposition framework is investigated
here. The main idea is to group the classes into two meta-
classes based on the natural affinities among the classes so
that the binary problem of separating these two meta-classes
is relatively easy. By recursively applying this approach to
the two subgroups, a binary hierarchical output space decom-
position is achieved. This approach was used in the Gener-
alized Associative Modular Learning System (GAMLS) [7],
a simulated annealing-based class decomposition algorithm
utilized by the Binary Hierarchical Classifier (BHC). Previous
studies have demonstrated that this framework has several
advantages for classification of remotely sensed data with
large output spaces: including 1) The order of the number of
binary classification problems reduces from O(C2) to O(C);
2) the impact of the small sample problem is mitigated; 3) the
framework provides a natural, intuitive structure [8]. When
an SVM is used to solve the binary classification problem
at each internal node of the BHC, classification accuracies
increased somewhat and generalization improved [9], [10].
However, the two ingredients of obtaining the hierarchical
class decomposition and using SVMs as binary classifiers,
were not integrated in a common “group distance” framework,
and tuning, which is critical to good performance of the SVM,
was time consuming.

The new method proposed in this paper provides an alter-
native to GAMLS for obtaining the hierarchical class decom-
position, and is based on a max-cut formulation to search the
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maximum total distance between two (meta)-class partitions.

II. METHODOLOGY

The Hierarchical Support Vector Machines (HSVM) method
is based on a max-cut hierarchical output space decomposition
algorithm and uses SVM as the based classifier at each internal
node to construct the decision boundary. SVM and the max-
cut problem, two main algorithms of the HSVM framework,
are well matched. The background for each method is first
presented, then their integration into the HSVM method is
presented in the reminder of this section.

A. Support Vector Machines

The Support Vector Machine projects the input vectors into
a high dimensional feature space, then searches for the lin-
ear decision boundary that maximizes the minimum distance
between two class groups [11]. For a binary classification
problem with input space X and binary class labels Y : Y ∈
{−1, 1}.
Giving training samples

(y1, x1) , ...., (yl, xl) , yi ∈ {−1, 1} (1)

the goal of SVM is to search the optimal hyperplane

w · x + b = 0 (2)

with variables w and b that satisfy the following inequality.

yi (w · xi + b) ≥ 1 i = 1, ..., l. (3)

Defining the minimum distance between two class groups in
the new projection.

ρ (w, b) = min
{x:y=1}

x · w
|w| − max

{x:y=−1}
x · w
|w| (4)

From e.q. (3), min{x:y=1} x · w = 1 and max{x:y=−1} x · w =
−1. Substituting back into e.q. (4), yields

ρ (w0, b0) =
2

|w0| =
2√

w0 · w0

For a given training set w, b that maximizes ρ (w0, b0) solves
the following quadratic optimization problem:

min
w

1
2

w · w

s.t. yi (w · xi + b) ≥ 1 i = 1, ..., l. (5)

If the given training sample set is linear separable, the op-
timization problem (5) has feasible solutions. The optimal
solution w, and b forms the best hyperplane that maximizes
the margin between two different classes in the new projec-
tion. Because SVM search for the best separation hyperplane
instead of the highest training sample accuracy, they never
over-train on a sample data set. If the parameters are properly
selected, SVM typically produce both excellent classification
results and good generalization if parameters are properly se-
lected. Not every problem is guaranteed to be linear separable,
so a soft margin hyperplane SVM was developed to separate
the training set with a minimal number of errors [5]. The

associated optimization problem introduces some non-negative
variables ξi and becomes

min
w

1
2

w · w + CF

(
l∑

i=1

ξi

)

s.t. yi (w · xi + b) ≥ 1 − ξi i = 1, ..., l. (6)

where F (u) is a monotonic convex function, and C is a
user-defined penalty constant variable, optimization problem 6
allows class samples to move beyond the decision boundary,
while incurring a penalty cost CF (u). It has been show that
when a training sample is small, it is important to select an
appropriate C to mitigates the effect of outliers of the training
sample set.

The primary weaknesses of SVM are that they only solve bi-
nary classification problems and are computationally intensive
due to the training process. An output space decomposition
algorithm is required to extend SVM to solving multi-class
problems. Later experiments show that a natural decompo-
sition framework can speed up the SVM training process
and reduces time spending on parameters tuning. GAMLS
[9] provides one such approach, but could not be naturally
integrated with the SVM in the hierarchy building process.

B. Max-Cut Problem

In a max-cut problem, an undirected graph with nonnegative
edge weights is partitioned into two groups. The cuts between
these two groups have the maximum weight [12]. The max-
cut problem is an NP-hard nonlinear integer programming
problem. Define an undirected graph G = (N,E) where N
represents nodes, and E represents edges of the graph. wij ≥ 0
represents the weight of an edge linking nodes i and j. The
objective is to find the best binary partition that has the cut
δ(K∗) that K∗ ⊆ N and {ij ∈ E : i ∈ K∗, j /∈ K∗} that
has the maximum weight:

w(δ(K∗)) =
∑

ij∈δ(K∗)

wij . (7)

The graph is assumed to be complete by setting wij = 0 for
all non-edges ij.

The max-cut problem can be represented using an integer
quadratic programming formulation with decision variables X :
xi ∈ {1,−1}. ∀i ∈ N . To represent a cut δ(K); xi = 1 iff i ∈
K. If ij ∈ δ(K), xixj = −1. Thus:

w(δ(K)) =
1
2

∑
i<j

wij (1 − xixj) (8)

and the resulting max-cut integer quadratic problem is:

max w(δ(K))
s.t. xi ∈ {+1,−1}, i ∈ N (9)

Because this integer quadratic problem is NP-hard, the
combination of the feasible solutions grows exponentially
as the number of N increases. Goemans and Williamson
proposed that the original max-cut problem can be relaxed into
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Fig. 1. Typical HSVM hierarchical structure

a constrained quadratic problem and be solved using a semi-
definite programming [13]. The interior point method extended
by Nesterov and Nemirovskii [14] provides a computationally
efficient method for solving the semi-definite problem. The
relaxed max-cut problem solved using SDP achieves optimal
or near optimal results and has an expected value of 87.7% of
the optimal max-cut [13].

C. Hierarchical Support Vector Machines

GAMLS treats each meta-class partition as a multivariate
normal distribution with group mean vector µ and covariance
matrix Σ, and seeks the best binary partitioning in terms of the
maximum separability obtained through a Fisher projection.
Thus the statistical distance used is df = (µ1 − µ2) · Σ−1

pooled

in the Fisher projection. Previous studies showed that if
SVMs are used instead for the binary classification problems,
classification accuracies and generalization improved but the
training process slows down dramatically [9], [10]. In order
to speed up the process by investigating the impact of natural
class grouping in combination with the SVM base classifier,
the proposed max-cut hierarchical output space decomposition
method searches the maximum total distance between the two
class partitions instead of a single projected distance df . The
original class samples are treated as an undirected graph G
where node ni represents class i and the non-negative weight:

wij =
1
2

∑
∀x

(
fi(x) log

fi(x)
fj(x)

+ fj(x) log
fj(x)
fi(x)

)
(10)

is the average Kullback-Leibler distance [15] between the
density function of class i and class j. The new HSVM
approach solves this max-cut problem to achieve the required
unsupervised class decomposition at each node of the binary
hierarchical structure. The original output space is hierarchi-
cally decomposed into pure leaf nodes that have only one
class label at each node (see Fig. 1). Since this max-cut
unsupervised decomposition uses total pairwise distance mea-
sures to investigate the natural class grouping, the hierarchical
structure results in a fast and intuitive SVM training process
that requires little tuning and yields both high accuracy levels
and good generalization.

TABLE I

BOTSWANA TEST DATA: ACCURACY (STD. DEV.)

Training % BB-BHC RF-CART BH-SVM HSVM
15% 89.9(1.36) 86.6(1.34) 92.3(1.15) 90.7(2.49)
30% 91.8(1.75) 89.5(1.29) 93.8(2.23) 93.2(1.07)
50% 92.9(0.73) 91.1(1.32) 96.2(0.75) 94.1(0.97)
75% 94.0(0.69) 92.0(1.34) 96.6(0.95) 95.1(0.63)

The new algorithm is applied to Hyperion hyperspectral data
collected over the Okavango Delta of Botswana. Classification
accuracies and generalization capability are compared to those
achieved by the Best Basis Hierarchical Classifier [8], the
Random Forest CART binary decision tree classifier [16] and
Binary Hierarchical Support Vector Machines (BH-SVM) [9].

III. RESULTS

The NASA EO-1 satellite acquired a sequence of data over
the Okavango Delta, Botswana in 2001-2003. The Hyperion
sensor on EO-1 acquires data at 30m2 pixel resolution over a
7.7 km strip in 242 bands covering the 400-2500 nm portion of
the spectrum in 10 nm windows. Preprocessing of the data was
performed by the UT Center for Space Research to mitigate the
effects of bad detectors, inter-detector miscalibration, and in-
termittent anomalies. Uncalibrated and noisy bands that cover
water absorption features were removed, and the remaining
145 bands were included as candidate features: [10-55, 82-
97, 102-119, 134-164, 187-220]. The data analyzed in this
study, acquired May 31, 2001, consist of observations from 14
identified classes representing the land cover types in seasonal
swamps, occasional swamps, and drier woodlands located in
the distal portion of the Delta.

Ten randomly sampled partitions of the training data were
sub-sampled such that 75% of the original data were used for
training and 25% for testing. In order to investigate the impact
of the quantity of training data on classifier performance, these
training data were then sub-sampled to obtain ten samples
comprised of 50%, 30%, and 15% of the original training
data. All classifiers were evaluated using the ten test samples
composed of 25% of the original training data. Because the
training and test data are spatially collocated, an extended test
set was also acquired and used to evaluate the generalization
of these classifiers to another area. Note that this extended data
may have substantially different characteristics as it is taken
from a geographically separate location. Its purpose here is to
investigate the capability of the various methods for extending
results obtained from one area to other areas that are not so
spatially correlated. Hereafter, these data are referred to as the
test and extended test data, respectively.

Experiments were performed using Best Basis BHC (BB-
BHC), Random Forest CART (RF-CART), binary hierarchical
SVM (BH-SVM), and the proposed HSVM. Average classi-
fication accuracies for test data for the 10 experiments con-
ducted with each classifier are list in Table I. The overall trend
shows that classification accuracies increase as the percentage
of training sample increases for all four classifiers. BB-BHC,
BH-SVM and HSVM all perform well at 15% sampling
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TABLE II

BOTSWANA EXTENDED TEST DATA: ACCURACY (STD. DEV.)

Training % BB-BHC RF-CART BH-SVM HSVM
15% 66.1(3.07) 67.2(1.73) 70.4(2.49) 69.3(5.06)
30% 63.8(1.87) 68.6(1.73) 70.9(1.88) 70.4(2.17)
50% 63.4(2.33) 70.2(0.84) 72.1(2.06) 70.8(1.32)
75% 63.7(1.33) 70.4(1.26) 71.6(1.41) 70.3(0.97)

rate, which means they mitigate the impact of small sample
problem. The HSVM method produces quality classification
accuracies among these classifiers on test data, while BH-
SVM did slightly better. Classification accuracies on extended
test set are presented in Table II. The results show that while
the BB-BHC performs well on the test samples, it does not
generalize so well on new area. Because RF-CART uses a
random forest ensemble method to increase the diversity of
classifiers, it performs well on the extended test set. HSVM
produced either the best or the same classification results as
BH-SVM on the extended test set.

As stated in section II-C, since HSVM uses distance mea-
sures to exploit the natural class groupings, the hierarchical
structure results in a fast and intuitive SVM training process
that requires little tuning. Unlike ECOC decomposition [10]
or our previous hierarchical decomposition attempt [9], that
require the RBF kernel and tedious tuning to separate un-
natural grouping, HSVM uses a linear kernel to search for
the best linear decision boundary in each internal node of
the hierarchical structure. For a Botswana experiment that
has 1619 samples, 14 classes and 145 feature spaces, using a
3GHz Pentium 4 CPU, HSVM finished training and testing in
20 seconds, while BH-SVM took 4800 seconds [9]. Previous
study shows that for the same experiment, BB-BHC required
115 seconds and RF-CART took 480 seconds[4].

IV. CONCLUSION

A new Hierarchical Support Vector Machines (HSVM)
approach that utilizes a tree structure framework and solves
a series of max-cut problems to perform the unsupervised
class decomposition has been developed. SVM classifier is
applied at each internal node to construct the best discriminant
function of a binary meta-class problem.

In this paper, HSVM was evaluated using a series of
experiments. HSVM consistently provided good classification
results on both test and extended test samples in experiments
conducted using 4 different sampling rates and 10 different
random samples for each sampling rate. The new HSVM
achieves both high classification accuracy and good general-
ization when sample sizes are small relative to the dimension
of the input space and the output space is large.

The HSVM uses distance measures to investigate the nat-
ural class grouping and results in an efficient classifier that
requires little tuning. The method extends original binary SVM
classifier to a fast and multi-classes classifier. The HSVM
framework also provides a natural, and intuitive structure.
Further study can utilize this hierarchical structure to evaluate

possible stopping criteria for mixed-class samples and knowl-
edge transfer problem that applies a classification model to a
new area that has a few or no training samples available.
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