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Abstract

A robotic system for object recognition is described that uses passive stereo vision and active
exploratory tactile sensing The complementary nature of these sensing modalities allows the
system to discover the underlying three dimensional structure of the objects to be recognized.
This structure is embodied in rich, hierarchical, viewpoint independent 3-D models of the
objects which include curved surfaces, concavities and holes. The vision processing provides
sparse 3-D data about regions of interest that are then actively explored by the tactile sensor
which is mounted on the end of a six degree of freedom manipulator. A robust, hierarchical
procedure has been developed to integrate the visual and tactile data into accurate three
dimensional surface and feature primitives. This integration of vision and touch provides
geometric measures of the surfaces and features that are used in a matching phase to find
model objects that are consistent with the sensory data. Methods for verification of the
hypothesis are presented, including the sensing of visually occluded areas with the tactile sen-
sor. A number of experiments have been performed using real sensors and real, noisy data to
demonstrate the utility of these methods and the ability of such a system to recognize objects

that would be difficult for a system using vision alone.
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1. INTRODUCTION

There is at present much work going on in the area of sensor design for robotics. Range
finders, tactile sensors, force/torque sensors, and other sensors are actively being developed.
The challenge to the robotic system builder is to incorporate these sensors into a system and
to make use of the data provided by them. Much of the sensor related work in robotics has
tried to use a single sensor to determine the structure of objects in an environ-
ment[1,4,8, 10, 13,20, 19, 25,27]. This strategy seems unduly restrictive given the availability
of multiple sensing devices. For robotic tasks such as object recognition, in which shape
determination of 3-D objects is required, multiple sensors can be used in a complementary
fashion to extract more information, in a more reliable way, than a single sensor (e.g. machine
vision) strategy [26, 18]. If vision sensing can be supplemented with other sensing informa-
tion that directly measures shape, more robust and error free descriptions of object structure

can result [2].

There are many important issues involved in sensor integration for robotics. Among
these are establishing a framework to include new and different sensors; establishing commun-
ication and control pathways between the various sensor sﬁbsystems: methods for dealing with
noise, error and conflict in sensory data; and planning strategies for intelligent use of the sen-
sors. This paper is an examination of these issues within the context of integrating vision and
tactile sensing for the task of object recognition. Vision sensing was chosen because of its
great promise as a robotic sensor and its use by humans in recognition tasks. Tactile sensing
was chosen because it is a low cost robotic sensor that can directly sense the properties of
objects we desire, their position and orientation, without regard to visual occlusion. It is a
necessary component of any manipulation or assembly system and this paper motivates touch

as a natural companion of vision for object recognition.

The paradigm used in this work is model based object recognition in which one of a par-
ticular set of known object models is chosen based upon sensory feedback. Figure 1 is an
overview of the of the system. The system is divided into 6 main modules: Vision sensing,
tactile sensing, sensor integration, matching, verification, and the model data base. The con-

trol flow in the recognition cycle is as follows:




1. The vision system images the scene and analyzes all identifiable regions of interest.

!\)

The tactile system explores each region identified from vision.

3. The results of the tactile and visual ssnsing are integrated into surface and feature
descriptions.

4. The surface and feature descriptions are matched against the model data base, oying to
invoke a model consistent with the sensory information.

n

The invoked model is verified by further sensing to see if it is correct.

The experimental hardware is shown in figure 2. The objects to be recognized are
rigidly fixed to a worktable and imaged by a pair of CCD cameras. The tactile sensor is
mounted on a 6 degree of freedom PUMA 560 manipulator that receives feedback from the
tactile sensor and is further controlled by a host processor. The experimental object domain is
common kitchen items; mugs, plates, bowls, pitchers, and utensils. The objects are planar as
well as volumetric, contain holes and have concave and convex surfaces. These are fairly
complex objects which test the modeling and recognition abilities of most existing systems.
The objects are homogeneous in color, with no discemible textures. The lack of surface detail
on these objects poses serious problems for many visual recognition systems, since there is a

lack of potential features that can be used for matching and depth analysis.

The remainder of this paper is organized as follows: Sections 2-7 describe the system’s
modules in detail and secton 8 reports experimental results from sensing and recognizing a

number of real objects from the kitchen domaix.

2. MODEL DATA BASE

The model data base encodes the high level knowledge about the objects which is
needed for recognition. The global structure of the objects which is encoded in the models is
used to understand and place in context the low level sensing information. Objects are
modeled as collections of surfaces, features and relations, organized into four distinct
hierarchic levels. A hierarchic model allows us to do matching on many different levels, pro-
viding support or inhibition for a match from lower and higher levels. The models are
viewpoint independent and contain relational information that further constrains matches
between sensed and model objects. Figure 3 shows the hierarchical model structure for a

coffee mug, outlining the decomposition and structure of the models.
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The top level of the hierarchy is composed of a list of all object nodes in the data base.
An object node corresponds to an instance of a single rigid object. Associated with this node
is a list of all the components (subparts) and features (holes, cavities) of this object which
make up the next level of the hierarchy. For gross shape classification, a bounding box
volumetric description of the object is included. A complexity attribute is also included for
each object. This is a measure of the number of features and components that comprise an

object and it is used by the matching rules to distinguish competing matches.

2.1. COMPONENTS

The component nodes are the result of a functional and geometric decomposition of an
object. The components of a coffee mug are the body of the mug, the bottom of the mug, and
the handle. A teapot consists of a body, bottom, spout, handle and lid. Each component has
an attribute list consisting of its bounding box, surface area, and priority. The priority field is
an aid for recognition in which the components are ordered as to their likelihood of being
sensed. High priorities are assigned large components or isolated components in space that
protrude (handles, spouts). The protruding parts may show up as outliers from the vision
analysis. Obscured components, such as a coffee mug bottom, when in a normal pose, are
assigned lower priorities. If the object is in a regular pose, then certain parts of the object are
more prominent which can aid the matching process. Each component node contains a list of
one or more surfaces that make up this functional component and that constitute the next level

of the hierarchy.

The subdivision of an object by function as well as geometry is important. In some
sense what determines a coffee mug is that it. holds a hot liquid as well as having some fami-
liar geometric shape. While no explicit attempt has been made here to exploit the semantic
structure of objects, the model maintains a node level in the hierarchy should this be

attempted.
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Figure 1: System Overview.




Figure 2: Experimental Hardware.

2.2. FEATURES

Rock [23] has shown that features are important in recognition tasks for humans. The
features modeled in the database are holes and cavities. Holes are modeled as right cylinders
with constant arbitrary cross section occupying a negative volume. Holes can be thought of
as having an approach axis which is perpendicular to the hole’s planar cross section. Model-
ing holes as a negative volumetric entity has implications in matching. Volumetric elements
have an object centered coordinate system that contains an invariant set of orthogonal axes
(inertial axes). If the sensors can discover these axes, a transformation between model and

world coordinates is defined which is a requirement of viewpoint independent matching.
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Each hole node contains a coordinate frame that defines the hole. This frame contains a
set of orthogonal axes which are the basis vectors for the frame. The hole coordinate frame is
defined by the homogeneous matrix H:

Plx Ph P3x Cx
Ply sz P3y C

y

H =
PIZP22P3ZCZ
0O 0 0 1

P, is the axis of maximum inertia of the hole’s planar cross section.
P, is the axis of minimum inertia of the hole’s planar cross section.
P; is the normal to the hole’s planar cross section.

C is the centroid of the hole’s planar cross section.

Besides the coordinate frame, each feature has a set of moments of order 2 that are derived

from the planar cross section of the feature’s opening.

Cavities are features that are similar to holes but may only be entered from one direction
while holes can be entered from either end along their axis. An example is the cavity in the
coffee mug where the liquid is poured. Cavities have the additional attribute of depth, which
is the distance along the cavity’s approach axis from the cavity’s opening to the surface

below.

2.3. SURFACE LEVEL

The surface level consists of surface nodes that embody the constituent surfaces of a
component of the object. The object’s components are decomposed by continuity constraints
into a number of smooth, continuous surfaces. Each surface contains as attributes a list of
bicubic patches that further subdivide it, bounding box, surface area, a flag indicating whether
the surface is closed or not and a symbolic description of the surface as either planar, cylindr-
ical or curved. For planar surfaces, a partial coordinate frame is described which consists of
the centroid of the plane and the plane’s outward facing unit normal vector. For a cylinder,

the partial frame consists of the cylinder’s axis.



2.4. PATCH LEVEL

The particular form of surface patch that is being used in this research is a bicubic patch
known as a Coons’ patch {7]. A Coons’ patch P is a parametric surface that can be defined
as

303
P(uy) = ,=Zo %’)Ai(u) Bl(v) Q‘-j
where A; and B; are the blending functions of the patch and Qy are coefficients computed
from patch data. These ivatches have been used extensively in computer graphics, computer
aided design systems, and object modeling [29,22]. They possess a number of important
features which make them desirable as a 3-D primitive for modeling and for synthesizing sur-
faces from sensory data. They are interpolating patches constructed from sparse sets of data
defined on an arbitrary rectangular parametric mesh. They patches can be joined with C? con-
tinuity, to form axis independent, complex. composite curved surfaces and their analytic
representation allows simple and efficient computation of surface patch awributes. The object
domain contains many curved surfaces which are difficult or impossible to accurately model

using polygonal networks or quadric surfaces.

Each surface is represented by a grid of bicubic spline patches. Each patch contains its
parametnic description as well as an attribute list for the patch. Patch atuributes include sur-
face area, mean normal vector [22], symbolic form (planar. cylindrical. curved) and bounding

box. Patches constitute the lowest local matching level in the system.

2.5. RELATIONAL CONSTRAINTS

One of the more powerful approaches to recognition is the ability to model relationships
between object components and to successfully sense them. Relational consistency enforces a
firm criteria that allows incorrect matches to be rejected. This is especially true when the
relational criteria is based on three dimensional entities which exist in the physical scene as

opposed to two dimensional projective relationships which vary with viewpoint.

Each component contains a list of adjacent components, where adjacency is simple phy-

sical adjacency between components. The features (holes and cavities) also contain a list of
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the components that comprise their cross sectional boundary curves. Thus, a surface sensed
near a hole will be related to it from low level sensing, and in a search for model consistency,

this relationship should also hold in the model.

At the surface level each surface contains a list of physically adjacent surfaces that can
be used to constrain surface matching. These relations are all built by hand, as the geometric
modeling system being used has no way of computing or understanding this relationship. The
patch relations are implicit in the structure of the composite surface patch decomposition
being used. Each patch’s neighbors are directly available from an inspection of the composite

surface’s defining knot grid.

The models have been created by a combination of hand and computer modeling tech-
niques. Figure 4 shows the surfaces that were generated from modeling a plate, a pitcher and
a coffee mug. The plate consists of one surface containing 25 patches. The pitcher is made
from 24 patches on the handle and 18 on the body. The mug has 4 patches on the body and
24 on the handle.

3. VISION SENSING

The vision processing described here is an attempt to take what is useful and reliable
from machine vision and to supplement it with active, exploratory tactile sensing. There is no
attempt to try to understand the full structure of an object from vision alone, but to use low
and medium level vision processing to guide further tactile exploration, thereby invoking con-
sistent hypotheses about the object to be recognized. The vision processing consists of two
distinct phases. The first phase is a series of two dimensional vision routines that are per-
formed on each of the camera images. The second phase is a stereo matching process that
yields sparse depth measurements about the object. The output of these modules is combined

with active exploratory tactile sensing to produce hypothesis about objects.

Static images of a single object placed on a homogeneous black background are acquired
from two CCD cameras which are calibrated with the robotic workspace. The lighting con-
sists of the overhead fluorescent room lights and a quartz photographic lamp to provide

enough illumination for the CCD elements. The Marr-Hildreth edge operator [16] is applied to
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each of the images and zero-crossings of the convolved images are found. These zero-

crossings define homogeneous regions in the image from which region contours are extracted.

The matching phase uses the region contours as input. Isolated zero-crossings not on a
contour are discarded, leaving sparse but stable contour match pixels. The matcher then
attempts to match contour pixels using the constraints of scan line coherence and zero-
crossing orientation and sign. The candidate match pixels are then correlated with regions of
small window size centered on each candidate. Only those matches fulfilling the criteria
above and having a correlation confidence l2vel above 95% are accepted as match points.
The outcome of this matching phase is a sparse set of match points on the contours of regions

isolated from vision.

There are limitations to the amount and accuracy of the data provided by the vision sys-
tem. Stereo matching suffers from three main problems. The first is the inability of stereo to
handle many candidate match points, such as is found in regularly textured objects. By using
only sparse contour data the matcher becomes more accurate with few if any false matches.
The second is the error due to quantization on a discrete pixel grid. For the camera geomemy
used here this can be 4 mm. The location of zero-crossings to subpixels reduces this error to
2 mm. The last problem is the inability of stereo to match horizomally oriented zero-
crossings. There is no basis for distinction between locally horizontal matches in a small
region. Zero-crossings whose orientation is more than 60° from vertical yield incorrect match

results, and are not used by the matcher.

The outcome of stereo matching for a set of digital images of a coffee mug is shown in
figure 15. There is sparse 3-D depth data on the contours, containing no horizontal matches.
This is clearly nor enough data to try to recreate surfaces and understand the object’s struc-
ture. However, the data is accurate and reliable because it has been thinned and abstracted.
[t allows us to proceed to the next level of sensing with confidence, having sparse but accu-
rate regions identified that can be used for further sensing. Attempts to drive the vision
modules beyond this capability will invariably lead to a potentially serious error. The key
idea is that less is more in the case of multiple sensing. We do not have to rely on this single

modality for all our sensory inputs, only those it can reliably produce. The matches provided
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Figure 4: Modeled Surfaces.
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by the stereo algorithms are reliable because they are based on contour tokens as opposed to
pixels. High confidence levels are established for the matches in order to reduce error. The
sparse and conservative matches produced are sufficient to allow tactile sensing to further

explore the regions in space.

4. TACTILE SENSING

Tactile sensing is a reladvely new and underutilized sensing modality [11]. Previous
work in tactile sensing for recognition tasks has emphasised traditional pattern recognition
paradigms on arrays of sensor data, similar to early machine vision work [13,20,21,15].
Most sensing has been static in that the sensor is larger than the object and a single touch or
“handprint’’ is used for recognition. Very little has been done on dynamic sensing and

integrating multiple touch frames into a single view of an object.

Touch is different from vision in that is an active. exploratory sensing modality. Active
touch sensing provides accurate and robust shape information but it extracts its price for this
information by demanding powerful control of the medium that makes it difficult to use. Blind
groping on a surface with a tactile sensor is a poor and inefficient way of undersianding three
dimensional structure. Touch needs to be guided to be useful, and the vision data can provide '

guidance to an active touch sensor.

The experimental tactlle sensor used in this research was developed at L.A.A.S in
Toulouse, France (figure 5). It consists of a rigid plastic core covered with 133 conducting
surfaces that is roughly the size and shape of a human index finger. The geometry of the sen-
sor is an octagonal cylinder of length 228 mm. and radius 20 mm. On each of the eight sides
of the cylinder there are 16 equally spaced conducting surfaces. The tip of the sensor con-
tains one conducting surface, and there are four other sensors located on alternate tapered
sides leading to the tip. The conducting surfaces are covered by a conductive elastomeric
foam. The sensor is connected to a A/D converter that outputs the readings on all sensors in

an eight bit gray value and the entre array of sensors may be read in a few milliseconds.

The organization of tactile sensing is on three distinct hardware and software levels

(figure 6). The highest level consists of programs on a VAX host that provide high level



Figure 5: Tactile Sensor.

control information about the regions in space that are to be explored with the sensor. Algo-
rithms have been developed to explore the regions isolated from the vision processing and
determine if they are surfaces, holes or cavities. Once a region is identified by tactile sensing,
it can be further explored by tactile surface following algorithms that report contact points on
surfaces and boundary contours of holes and cavities to the controlling host process. These
contacts can be integrated with the 3-D contours from vision to build robust surface and
feature descriptions. The intermediate level consists of programs written in VAL-II [28] that
run on the PUMA and move the robotic arm based upon feedback from the tactile sensor.
The intermediate level receives region exploration parameters via the VAL-II's host control
mechanism which then allows it invoke a surface exploration, hole exploration or cavity
exploration procedure. These procedures use the feedback from the tactile sensor contacts to
control arm motion along the exploration path determined by the high level host control. The
intermediate level communicates with the low level sensor system via commands that set

thresholds for contacts, requests contact interrupts and requests gray level outputs from
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arbitrary subsets of the sensor’s elements. The low level system is implemented on a micro-
processor that samples, digitizes, conditions and localizes the data coming from the tactile

sensor, interrupting the intermediate level if a contact of a certain nature occurs.

The classification of a region isolated by the vision system into surface hole or cavity is
performed by an intermediate level tactile exploration program. This program controls the
motion of the robotic arm and wrist mounted tactile sensor as it explores the region. The pro-
gram needs as input an approach vector towards the region which establishes the sensor’s
orientation. The vector is computed by calculating the least square plane P, with unit nor-
mal Ny, from the matched 3D stereo points that form the contour of the region. N, then
becomes the approach vector for the sensor. The arm control routines will orient the arm so
that the tactile sensor’s long axis is aligned with Nisq. pointing in the direction of the region’s

centroid as determined from the vision processing.

The arm is then moved along the sensor’s long axis until contact with a surface or it
moves beyond plane Py, implying the presence of a hole or a cavity. If the sensor is able to
travel its full length beyond P, without contact, then a hole has been found. If it travels
beyond a specified cavity threshold T,,, before contact, then it is a cavity. If the region is a
surface, a surface exploration program will trace the surface. If it is a hole or cavity, a boun-
dary curve will be traced. The output of these exploration programs will be integrated with
the 3-D vision data to form surface and feature primitives (described below) that are used in

the matching phase.

5. SENSOR INTEGRATION

Once the tactile system has classified as visually detected region as a surface or a
feature, integration procedures are invoked to further sense and quantify the region, allowing

the formation of 3-D primitives that can be used by the matching phase.
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5.1, BUILDING SURFACE DESCRIPTIONS

The integration of vision and touch data for a sensed surface is done by building a
Coons’ patch description of the surface. The sparse 3-D contours from vision form the initial
patch grid and the description is refined by tactile sensing in the interior of the region. Level
O surfaces are surfaces comprised of a single surface patch. The information nezded to com-
pute a level O surface is a 2 x 2 rectangular knot set consisting of points on the surface boun-
dary, the tangents in each of the parametric directions at the knots and the twist vectors (cross
derivatives) at the knots (figure 7). The knot points should be chosen at points of high curva-
ture on the boundary curve and need to be spaced uniformly in each of the parametric direc-
tions. The algorithm for choosing points of high curvature on a contour is a modification of
an algorithm originally proposed by Johnston and Rosenfeld [24]. This eilgorithm analyzes
the boundary contour’s curvature at different scales. choosing local maxima along the contour.
The knot points are then chosen by maximum curvature and distance along the boundary con-

tour in order to preserve equal parametric length for opposite boundary curves.

The tangent vectors in each of the parametric directions must also be calculated. The
contour of the region contains a series of three dimensional data points obtained from stereo
matching that define four boundary curves on the surface. These curves are approximated by
a least square cubic polynomial parametrized by arc length which is then differentiated and
scaled to yield tangent vector values at the knots.

The twist vectors are more difficult to estimate. If the parametric directions on the sur-
face are along the lines of curvature of the surface, then there is no twist in the surface and
the twist vectors are zero. In practice, these vectors can be set to zero with minor effects on
the surface. This assumes that the parametrization of the surface has been chosen wisely,
with corner knot points chosen at places of high curvature or discontinuity along the boundary

and spaced uniformly in both parametric directions.

A level O surface is built from vision data only and is not an accurate description of the
underlying surface since it lacks information about the interior of the surface. The tangents
which are estimated from stereo match points are inaccurate along contours that are horizontal

due to the lack of stereo match points. Figure 7 describes the method of building higher level



- 17 -

surfaces. A level 1 surface is formed by adding tactile traces across the single surface patch
defined in level 0, and a level 2 surface is formed by adding tactile traces to each of the 4
patches defined by level 1 creating a new surface with 16 patches. This method is hierarchi-
cal, allowing surfaces of arbitrary level to be computed. The only restriction is that the new

composite surface is globally computed.

The traces begin at the point of surface contact found in the initial exploration of the
region found from vision processing. The sensor then traces in the direction of the midpoints
of the level 0 boundary curves, using the surface contacts from the tactile sensor to control

the robot arm motion.

The movement vector M along the surface is determined by:

3
M = Yw; G
i=1

w; are the weights for each of the vectors G;.
G is the unit vector in the direction of the boundary curve midpoint.
G, is the unit vector formed from the previous two contact points.

G5 is the unit vector that preserves equal parameterization.

G, is needed to make progress towards the boundary edge. We will want to make pro-
gress towards the boundary at each movement step. However, with concave and convex sur-
faces, cycles can occur as the trace progresses. G, is used to maintain a path’s direction.
Once we start moving in a certain direction we do not want to stray too far too fast from that
path. This vector is an ‘‘inertia’’ vector helping the sensor stay on a steady course. Gj is
needed to keep the parameterization of the surface patches uniform, and this vector moves the
trace in the direction to preserve equal parameterization. This vector is the unit resultant of
the vectors from the present contact point on the surface to the endpoints of the boundary
curve that the trace is approaching.

The points reported during these traces are combined into cubic least square polynomial

curves that are differentiated and scaled to calculate the tangential information needed at the

boundaries. The boundary curves tangents computed from vision data are updated to include
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the new tactile information, which fills in areas that lack horizontal detail from the stereo pro-

CECSs.

Figure 8 shows the level one surface that results from active tactile sensing of the front
surface region of a pitcher. The surfaces are accurate and built from sparse amounts of data.
The analytic nature of these surfaces allows stable and accurate symbolic descriptions based

upon the surfaces Gaussian curvature to be computed, classifying these surfaces as planar,

cylindrical or curved.

Figure 8: Digital Image and Level 1 Surface of a Pitcher.

It is important to note that the vision processes are supplying the justification for build-
ing smooth curvature continuous surfaces from a region. If the region were not a smooth sur-
face, then zero-crossings would have appeared inside the region, precluding the assumption of
smoothness. The lack of zero-crossings, or the ‘‘no news is good news’’ criteria established
by Grimson [9] supports this method and in fact is the reason it succeeds in interpolating the

surfaces well.



- 20 -

3.2. BUILDING FEATURE DESCRIPTIONS

If the region exploring algorithm determines that the region is a hole or cavity, a
different tactile tracing routine is used to determine the boundary curve of the feature. The
algorithm begins by moving the sensor just beyond the least square plane Py, of a region’s
contour points, aligned with Ny, It then proceeds to move in a direction perpendicular to
Nj5, untl it contacts a surface. Once the surface is contacted, the sensor moves along the
bounding surface staying perpendicular to Ny, recording the contact points until it reaches

the starting point of the trace.

This can be a noisy procedure as many of the tactile sensor’s contacts become activated
in a small tight area such as the hole in the handle of a coffez mug. The spatial resolution of
the sensor contacts also contributes to this phenomena. The data is not contipuous. but is a
set of ordered contact points that need to be smoothed and this is done by approximating the
series of linked contour points with a periodic spline curve which matches derivatives at the
endpoints. Figure 17 shows the smoothed boundary curve created from sensing the hole in
the coffee mug. This boundary can then be used to compute cross sectional area and

moments for matching against the model data base of objects.

6. MATCHING

The low level vision and tactile algorithms provide a set of three dimensional surface
and feature primitives that are used by the matching routines to determine what the object is
and its orientation. The matching routines try to find an object in the model data base that is
consistent with the surface and feature information discovered by the sensors. The intent is to
invoke a uniquely consistent model from the three dimensional surface and feature primitives
discovered. If more than one consistent object is found in the data base, a probabilistic meas-
ure is used to order the interpretations. Once a consistent interpretation is found, a
verification procedure is begun. This requires the matcher to calculate a transformation from
the model coordinate system to the sensed world coordinate system. This transformation is
then used to verify the model by reasoning about the slots in the model data base that are not

filled. The initial choice of a model is made easier by the three dimensional nature of the
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primitives, allowing matching of higher level attributes rather than sets of confusing and noise
filled point data. The rules used for invoking a model are such that no a priori choice of
features or surfaces is needed; all the structural parts of the model are candidates for match-
ing. The object recognition system has no way of knowing what features or surfaces will be
sensed from a particular viewpoint. It must be able to invoke a model based upon any

identifiable part of the model [3].

The matching phase is the most difficult of all the modules since it requires the system
to do high level reasoning about objects and their structure based upon incomplete and partial
sensor information. The approach taken here is to develop a rule based system that will allow
experimentation and modification of sensing strategies. Some of the rules and strategies
implemented are discussed below and development of new rules and strategies are a focus of

our current work.

Model instantiation is done by first pruning the space of object models that are not con-
sistent with two global criteria, physical size and gross shape. All objects in the model data
base consistent with these criteria are then further matched according to feature and surface

attributes as determined by the integration of vision and touch sensing.

One of the benefits of using active tactile exbloration is that physical size constraints can
be used for global discrimination. Nevatia and Binford [17] and Brooks [6] have shown the
utility of using physical size constraints in recognition tasks. The tactile sensor can be moved
into the workspace to trace the global outline of the object to determine its bounding box.
This procedure also puts coarse bounds on the location of the object which can be used by the
verification procedures later. Gross shape is able to prune based upon number of features
discovered and whether surfaces are classified as planar, cylindrical or curved based upon the
Gaussian curvature of the sensed surface [12]). Sensed surfaces constrain the set of consistent
bbject models less tightly because the sensors discover patches of possibly larger surfaces (the
aperture problem). A curved surface in the model may have cylindrical regions, which may
be sensed as a cylindrical partial patch. Therefore, gross shape discrimination must be conser-

vative in matching curved surfaces.



Feature attributes are used as a discrimination tool to invoke a consistent model. The
constant cross section of the feature can be used to define a set of moments that can be used
to match the cross section with a sensed feature. Moment matching was first described by Hu
[14) who described a set of seven moment irvariants involving moments of up to third order.
At the instantiation level the moment Mgy, which measures the area of the planar cross sec-
tion, and the second order moments My, + M,y are matched between the sensed and model
systems. The latter measure is scaled to reflect the difference in Mgy when it is matched. In

the case of cavities, the depth atmibute is also used as a maiching criteria.

Surface matching tries to match on two attributes. area and type of surface. The sensor
1s not capable of sensing accurately parts of the mocel with fine structurs such as the handle
of the mug. The area criteria effectively culls out small fearure matching and leaves the sk
of larger shape comrespondence. The set of possible consistent interpretations is restricted
further by maintaining relational consistency between the sensed regions and the model nodes.
The relational constraint used is adjacency. If two sensed regions in space are physically

adjacent, then the model nodes that these regions match with must also be adjacent.

7. VERIFICATION

Verification can be viewed as slot filling, where the instantiated model’s nodes are either
filled, representing a sensed match, or unfilled. Verification then becomes a process of rea-
soning about unfilled slots. Once a model is instantizted. a transformation between model
coordinates and sensed world coordinates must be computed. This transformation will allow
the knowledge embedded in the model coordinate frame to be used in the sensed world frame.
By tansforming model surfaces and features to the sensed world frames, verification of
unrecognized slots in the model can proceed since their assumed location is now computable
with this transformation. This knowledge enables the sensors to explore regions that were not
seen in the initial sensing and to explore visually occluded areas with tactile sensing. The
transformation may be computed with feature information or surface information. In some

cases, a partial transformation may be computed that will allow further verification sensing.
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7.1. MATCHING FEATURE FRAMES

Each feature in the data base is associated with an object centered coordinate frame.
Once the models and their frames are developed, mappings from one feature frame to another
are readily computable. Figure 9 shows the frames C,, and H,, which are object centered
frames defined for a coffee mug’s cavity and a hole in the model coordinate system. The

relative transform between the hole frame and the cavity frame R, can be defined as:
Cm = Hm : Rhcm

Rhc = H,_nltcm

m
Similarly, the transformation from modeled cavity to modeled hole R, is:
Repn = Co 1 H,,

Because these are relative frames, discovering one of the model frames in the sensed coordi-
nate space will define the other feature in the sensed coordinate space. Assuming we know
the match between the hole in sensed world coordinates with frame H; and the model hole

with frame H,, then the cavity in sensed world coordinates is defined by frame C:
CS = H_‘. . Rhcm

The determination of the new feature frame in sensed world coordinates is important to the
verification process. If an unfilled feature slot is seen, then the feature’s frame in sensed
coordinates is available through the relative frame mapping. The frame for a feature defines
the axis of the hole or cavity in sensed world coordinates which is then used as an approach

vector to sense the unseen feature even if it is occluded.

Feature frames may be only partially defined as is the case with rotationally symmetric
features such as a circular cavity or hole. The approach axis of these features is well defined,
but the principal axes of inertia of the cross sectional opening are not. However, the frame
matching technique discussed above can still determine within this rotational parameter the
new sensed frame. An example of this is given in section 8, where the tactile sensor is able

to sense a visually occluded hole.




Figure 9: Relative Feature Frames.

7.1.1. MATCHING SURFACE FRAMES

Matching of surfaces is more difficult because a unique surface frame is not as easily
sensed as a feature frame. Planar and cylindrical surfaces have one well defined frame vector
which is the plane’s normall and the cylinder’s axis. Curved surfaces in general do not have
any such natural embedded frame. In the case of planar and cylindrical surfaces, the one axis
which is defined will allow defining the wransformation up to a rotational parameter about that
axis and a translation. In the case of the plane, the plane’s centroid is also computable and
this will supply the translational component of the transformation. This can be used in con-

junction with other feature and surface matches to constrain the sensed frame.

The analytic nature of the surfaces created from vision and touch allows computation of
differential geometry measures such as lines of curvature, principal directions. and Gaussian
curvature. Brady, Ponce, Asada and Yuille [5] have suggested that certain lines of curvature
that are planar might be significant in terms of recognizing structure. For example, the only
planar lines of curvature on an ellipsoid are the lines formed by the intersection of the sym-
metry planes with the surface. Discovery of lines such as these is feasible with the represen-

tation used, and may lead to more robust recognition methods for curved surfaces.
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8. EXPERIMENTAL RESULTS

This section details the experiments that were conducted to test out the approaches
developed in the previous sections. The experiments show that integrating vision and touch is
a viable method for recognition, particularly when compared to standard vision processing.
The experiments reported have been run using real objects and real noisy sensors. In addi-
tion, the tactile sensor being used is relatively crude in terms of spatial resolution compared to
newer devices. Despite these shortcomings, the approaches to matching discussed previously
work well in a number of important cases. The implementation of the matcher consists of a
set of PROLOG goals that match sensed regions with model nodes. The model data base is
implemented as a set of PROLOG facts that are indexed in a hierarchical manner. The data
base consists of eight kitchen objects: pitcher, mug, spoon, teapot, plate, bowl, drinking cup.
pot. Four of these objects (pitcher, mug, plate, bowl) were used in experiments to test the
matcher and its ability to correctly identify the objects. The main intent of these experiments
is to show 1) the utility of the methods presented and 2) the ability of touch and vision to

succeed in situations that vision alone would find difficult.

The first experiment tried to recognize a planar salad plate. The digital images and
stereo matches are shown in figure 10. The images yielded few feature points that could be
matched to determine depth as expected with a smooth homogeneous surface. The stereo
matcher was only accurate in matching zero-crossings up to 65° from vertical, yielding sparse
and incomplete depth information. An image such as this would pose large problems for a
vision system alone; the data is too sparse to support a consistent visual hypothesis. The
region analysis revealed only a single region to be explored which was the central area of the
plate. The tactile system explored the plate and built the surface description shown in figure
11 by integrating the touch and vision data into a level one surface description. The surface
was sampled at small intervals in parameter space calculating the Gaussian curvature and
confirming its planar nature. Figure 12 shows the computed surface normals on the plate, ver-
ifying its planar appearance.

The normal of the least square plane fitted to the surface was the estimate for the orien-

tation of the object. No other orientation parameters were available since the plate was
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symmetric about the surface normal. The sensed plate’s estimated surface normal was within

6 ° of the actual plate orientation on the table.

S.1. EXPERIMENT 2

The second object imaged was a cereal bowl. The digital images‘and stereo matches are
shown in figure 13. The images are similar to the plate in experiment 1. The only depth cues
are rnonoculaf, where small shading gradients exist but which elude the zero-crossing edge
detector. This is an excellent example of the discriminatory power when tactile sensing is
added to vision. The region analysis yields one region to explore with the tactile sensor.
Upon exploration, a level one surface of the bowl was computed and is shown in figure 14.
The tactile sensor did not find a surface until it had passed 40 mm. beyond the plane of the
region’s contour determined from vision. This prompted a cavity trace in addition to the sur-

face trace.

The matcher tried to match the surface and the cavity with an object in the database.
The combination of the curved surface and cavity (with measured feature moments and depth)
was sufficient to invoke the correct model. The estimate of the object’s orientation in space
was the angular difference between the actual cavity axis and the sensed axis which was

approximately 5 °.

The initial visual data for experiments | and 2 were almost identical. Only by using
touch sensing did the surface’s depth become apparent. The discovery of a cavity allowed the
system to discriminate between two potential surface matches. The combination of surface

and feature information reduces the likelihood of multiple consistent models being found.

3.2. EXPERIMENT 3

The third experiment imaged a coffee mug. In this image the hole, cavity, handle and
body of the mug were all visible. The digital images and the stereo matches are shown in
figure 15. The region analysis yielded 4 separate regions to explore. The first region
explored was the cavity. The second region explored is the mug's main body for which a

surface patch was built and is shown in figure 16. This surface patch is a level one patch
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built from vision and touch and very closely approximates the cylindrical surface of the mug.

The analysis of the patch’s Gaussian curvature classified the patch as a cylinder.

The hole was found after the region exploration algorithm penetrated the region defined
from vision processing and did not contact a surface. The hole was traced by the tactile sen-
sor and the smoothed boundary curve shown in figure 17 was computed from the contact

points on the holes boundary.

The matcher was presented with an abundance of sensed region information to try to
instantiate a model. The cylindrical surface that was computed matched a number of objects
in the database (pot, coffee mug, drinking glass) as did the cavity (drinking glass, coffee
mug). The hole was not found in the drinking glass (an identical object in the database to the
mug but without a hole or a handle) but matched with the coffee mug, yielding a unique
choice of object. The cylindrical surface axis and the cavity axis are parallel in the model

and the agreement between these two axes and the actual orientation was quite close (< 5 °).

The handle of the mug is too small and fine for the sensor to adequately build a patch
description. It can be verified as a surface with the sensor, but attempts at building a paich
description failed due to the sensor’s much larger size. This experiment shows the many
ways an object can be recognized. Holes, cavities and surfaces are all able to be used to both
recognize and correctly identify orientation parameters for the objects. This is important in
that certain viewing angles may present a confusing region that cannot be sensed accurately.
However, if one of the regions is able to be sensed accurately, then a partial match can be

established leading to later recognition.

8.3. EXPERIMENT 4

In this experiment, the coffee mug was imaged with the handle occluded. The objects in
the data base that will match with these two regions (body surface and cavity) are the drink-
ing glass without a handle and a mug with a handle. From this visual angle there is no way
that the two objects can be distinguished. The instantiation module will pick both objects to

be verified.
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Figure 11: Level 1 Surface, Plate.
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Figure 12: Sensed Surface Normals, Plate.

It can be determined that the object is a mug by verifying the occluded hole. If it is a
mug, the hole lies in the occluded area which is shown in figure 18. The bounds on this
volume are known from the vision and touch sensing that has already been performed. The
handle can be located by knowing the relative feature frames between the sensed cavity and
the hole. The cavity, however, does not possess a unique frame; it is rotationally symmetric,

leaving a degree of freedom in its internal frame which is the rotation about its approach axis.
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Figure 13: Digital Images and Stereo Matches, Bowl.
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Figure 14: Level 1 Surface, Bowl.

This degree of freedom can be exploited to reason about the location of the hole. The fixing
of the cavity’s approach axis in space means that the hole centroid is confined to lie in a cir-
cle centered at the cavity and swept out about the cavity’s axis. Computing this circle gives a
set of three dimensional points which represent possible locations of the hole’s centroid.
Intersecting this circle with the known occluded volume yields a possible set of locations of
the hole. Each of these locations is associated with a particular fixing of the rotationally
symmetric axes about fhc cavity’s axis. The approach is to fix the cavity’s rotationally sym-
metric axes at an angle of rotation that is midway between the angles that bring the hole into
occlusion and bring it out. Once this is defined, it yields an approach axis for the hole which
the tactile sensor can then use to probe the hole. In the experiment, the hole was found this
way, rejecting the drinking glass match and accepting the mug match. Figure 19 shows the

sensor searching for and finding the hole in the visually occluded area.

This last experiment shows the power of this approach to object recognition. Multiple
sensors were used synergistically to invoke a possible set of objects. High level reasoning
about the object’s structure that is encoded in three dimensional models allowed further
verification sensing to successfully discriminate between the objects. The knowledge about
the three dimensional world (the occluded volume) and the object’s geometry (which is

encoded in the model) can be used to perform active sensing in occluded areas.
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Figure 16: Level 1 Surface, Coffee Mug.

Figure 17: Modeled and Sensed Coffee Mug Handle Hole.

9. SUMMARY
This research has attempted to improve robotic performance in a real noisy object

domain by integrating multiple sensors. The use of multiple sensors has provided more robust
and accurate sensory data that can be combined into three dimensional primitives that facili-
tate matching and an understanding of the underlying structure of the objects. The ability to
sense actively demands higher levels of control than with passive sensors, including the ability

to reason at a high level about object structure. This reasoning capability needs to be further



developed and is a natural extension of this work. allowing tasks beyond recognition to be

attempted in a multi-sensor environment.
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