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Abstract 

A robotic system for object recognition is described that uses passive stereo vision and active 

exploratory tactile sensing The complementary nature of these sensing modalities allows the 

system to discover the underlying three dimensional structure of the objects to be recognized. 

This structure is embodied in rich, hierarchical, viewpoint independent 3-D models of the 

objects which include curved surfaces, concavities and holes. The vision processing provides 

sparse 3-D data about regions of interest that are then actively explored by the tactile sensor 

which is mounted on the end of a six degree of freedom manipulator. A robust, hierarchical 

procedure has been developed to integrate the visual and tactile data into accurate three 

dimensional surface and feature primitives. This integration of vision and touch provides 

geometric measures of the surfaces and features that .are used in a matching phase to find 

model objects that are consistent with the sensory data. t-.fethods for verification of the 

hypothesis are presented, including the sensing of visually occluded areas with the tactile sen

sor. A number of experiments have been pert"ormed using real sensors and real, noisy data to 

demonstrate the utility of these methods and the ability of such a system to recognize objects 

that would be difficult for a system using vision alone. 
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1. INTRODUCTION 

There is at present much work going on in the area of sensor design for robotics. Range 

finders, tactile sensors, force/torque sensors, and other sensors are actively being developed. 

The challenge to the robotic system builder is to incorporate these sensors into a system and 

to make use of the data provided by them. Much of the sensor related work in robotics has 

tried to use a single sensor to detennine the structure of objects in an environ

ment[I,4,8, 10, 13,20, 19,25,27]. This strategy seems unduly restrictive given the availability 

of mUltiple sensing devices. For robotic tasks such as object recognition, in which shape 

determination of 3-D objects is required, multiple sensors can be used in a complementary 

fashion to extract more infonnation, in a more reliable way, than a single sensor (e.g. machine 

vision) strategy [26, 18]. If vision sensing can be supplemented with other sensing informa

tion that directly measures shape, more robust and error free descriptions of object structure 

can result [2]. 

There are many important issues involved in sensor integration for robotics. Among 

these are establishing a framework to include new and different sensors; establishing commun

ication and control pathways between the various sensor subsystems; methods for dealing with 

noise, error and conflict in sensory data; and planning strategies for intelligent use of the sen

sors. This paper is an examination of these issues within the context of integrating vision and 

tactile sensing for the task of object recognition. Vision sensing was chosen because of its 

great promise as a robotic sensor and its use by humans in recognition tasks. Tactile sensing 

was chosen because it is a low cost robotic sensor that can directly sense the properties of 

objects we desire, their position and orientation, without regard to visual occlusion. It is a 

necessary component of any manipulation or assembly system and this paper motivates touch 

as a natural companion of yision for object recognition. 

The paradigm used in this work is model based object recognition in which one of a par

ticular set of known object models is chosen based upon sensory feedback. Figure 1 is an 

overview of the of the system. The system is divided into 6 main modules: Vision sensing, 

tactile sensing, sensor integration, matching, verification, and the model data base. The con

trol flow in the recognition cycle is as follows: 
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1. The vision system images the scene and analyzes all identifiable regions of interest. 

2. The tactile system explores each region identified from vision. 

3. The results of the tactile and visual sensing are integrated into surface and feature 

descriptions. 

4. Tne surface and feature descriptions are matched against the model data base. trying to 

invoke a model consistent with the sensory information. 

5. The invoked model is verified by further sensing to see if it is correct. 

The experimental hardware is shown in figure 2. The objects to be recognized are 

rigidly fixed to a worktable and imaged by a pair of CCD cameras. The tactile sensor is 

mounted on a 6 degree of freedom PUMA 560 manipulator that receives feedback from the 

tactile sensor and is further controlled by a host processor. The experimental object domain is 

common kitchen items; mugs, plates. bo\vls, pitchers. and utensils. The objects are planar as 

well as volumetric, contain holes and have concave and convex surfaces. These are fairly 

complex objects which test the modeling and recognition abilities of most existing systems. 

The objects are homogeneous in color, with no discernible textures. The lack of surface detail 

on these objects poses serious problems for many visual recognition systems, since there is a 

lack of potential features that can be used for matching and depth analysis. 

The remainder of this paper is organized as follows: Sections 2-7 describe the system's 

modules in detail and section 8 reports experiment.11 results from sensing and recognizing a 

number of real objects from the kitchen domaL1. 

2. ;\IODEL DATA BASE 

The model data base encodes the high level knowledge about the objects \vhich LS 

needed for recognition. The global structure of the objects which is encoded in the models is 

used to understand and place in context the low level sensing information. Objects are 

modeled as collections of surfaces, features and relations, organized into four distinct 

hierarchic levels. A hierarchic model allows us to do matching on many different levels, pro

viding support or inhibition for a match from lower and higher levels. The models are 

viewpoint independent and contain relational information that further constrains matches 

between sensed and model objects. Figure 3 shows the hierarchical model structure for a 

coffee mug, outlining the decomposition and structure of the models. 
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The top level of the hierarchy is composed of a list of all object nodes in the data base. 

An object node corresponds to an instance of a single rigid object. Associated with this node 

is a list of all the components (subparts) and features (holes, cavities) of this object which 

make up the next level of the hierarchy. For gross shape classification. a bounding box 

volumetric description of the object is included. A complexity attribute is also included for 

each object. This is a measure of the number of features and components that comprise an 

object and it is used by the matching rules to distinguish competing matches. 

2.1. COMPONENTS 

The component nodes are the result of a functional and geometric decomposition of an 

object. The components of a coffee mug are the body of the mug, the bottom of the mug, and 

the handle. A teapot consists of a body, bottom, spout, handle and lid. Each component has 

an attribute list consisting of its bounding box, surface area, and priority. The priority field is 

an aid for recognition in which the components are ordered as to their likelihood of being 

sensed. High priorities are assigned large components or isolated components in space that 

protrude (handles, spouts). The protruding parts may show up as outliers from the vision 

analysis. Obscured components, such as a coffee mug bottom, when in a normal pose, are 

assigned lower priorities. If the object is in a regular pose, then certain parts of the object are 

more prominent which can aid the matching process. Each component node contains a list of 

one or more surfaces that make up this functional component and that constitute the next level 

of the hierarchy. 

The subdivision of an object by function as well as geometry is important. In some 

sense what determines a coffee mug is that it holds a hot liquid as well as having some fami

liar geometric shape. While no explicit attempt has been made here to exploit the semantic 

structure of objects, the model maintains a node level in the hierarchy should this be 

attempted. 
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Figure 2: Experimental Hardware. 

2.2. FEATURES 

Rock [23] has shown that features are important in recognition tasks for humans. The 

features modeled in the database are holes and cavities. Holes are modeled as right cylinders 

with constant arbitrary cross section occupying a negative volume. Holes can be thought of 

as having an approach axis which is perpendicular to the hole's planar cross section. Model

ing holes as a negative volumetric entity has implications in matching. Volumetric elements 

have an object centered coordinate system that contains an invariant set of orthogonal axes 

(inertial axes). If the sensors can discover these axes, a transfonnation between model and 

world coordinates is defined which is a requirement of viewpoint independent matching. 
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Figure 3: Hierarchical Object Model. 
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Each hole node contains a coordinate frame that defines the hole. This frame contains a 

set of orthogonal axes which are the basis vectors for the frame. The hole coordinate frame is 

defined by the homogeneous matrix H: 

PIx P 2x P3x Cx 

Ply P 2y P3y Cy 
H = P 1z P2z P3z Cz 

0 0 0 1 

PI is the axis of maximum inertia of the hole's planar cross section. 

P2 is the axis of minimum inertia of the hole's planar cross section. 

P3 is the normal to the hole's planar cross section. 

C is the centroid of the hole's planar cross section. 

Besides the coordinate frame, each feature has a set of moments of order 2 that are derived 

from the planar cross section of the feature's opening. 

Cavities are features that are similar to holes but may only be entered from one direction 

while holes can be entered from either end along their axis. An example is the cavity in the 

coffee mug where the liquid is poured. Cavities have the additional attribute of depth, which 

is the distance along the cavity's approach axis from the cavity'S opening to the surface 

below. 

2.3. SCRFACE LEVEL 

The surface level consists of surface nodes that embody the constituent surfaces of a 

component of the object. The object's components are decomposed by continuity constraints 

into a number of smooth, continuous surfaces. Each surface contains as attributes a list of 

bicubic patches that further subdivide it, bounding box, surface area, a flag indicating whether 

the surface is closed or not and a symbolic description of the surface as either planar, cylindr

ical or curved. For planar surfaces, a partial coordinate frame is described which consists of 

the centroid of the plane and the plane's outward facing unit normal vector. For a cylinder, 

the partial frame consists of the cylinder's axis. 
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2A. PATCH LEVEL 

The particular form of surface patch that is being used in this research is a bicubic patch 

known as a Coons' patch [7]. A Coons' patch P is a parametric surface that can be defined 

as 

3 3 

P(u,v) = L L Ai(u) Biv) Qij 
i=O ;=0 

where Ai and Bj are the blending functions of the patch and Qij are coefficients computed 

from patch data. These patches ha:,e been used extensively in computer graphics, computer 

aided design systems, and object modeling [29,22]. They possess a number of important 

features which make them desirable as a 3-D primitive for modeling and for synthesizing sur

faces from sensory data. They are interpolating patches constructed from spa.."Se sets of data 

defined on an arbitrary rectangular parametric mesh. They patches can be joined with C2 con

tinuity, to form axis independent, complex. composite curved surfaces and their analytic 

representation allows simple and efficient computation of surface patch attributes. The object 

domain contains many curved surfaces which are difficult or impossible to accurately model 

using polygonal networks or quadric surfaces. 

Each surface is represented by a grid of bicubic spline patches. Each patch contains its 

parametric description as well as an attribute list for the patch. Patch attributes include Sl!r

face area, mean normal vector [22], symbolic form (planar. cylindrical. curved) and bounding 

box. Patches constitute the lowest local matching level in the system. 

2.5. RELATIONAL CONSTRAINTS 

One of the more powerful approaches to recognition is the ability to model relationships 

between object components and to successfully sense them. Relational consistency enforces a 

firm criteria that allows incorrect matches to be rejected. This is especially true when the 

relational criteria is based on three dimensional entities which exist in the physical scene as 

opposed to two dimensional projective relationships which vary with viewpoint. 

Each component contains a list of adjacent components, where adjacency is simple phy

sical adjacency between components. The features (holes and cavities) also contain a list of 
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the components that comprise their cross sectional boundary curves. Thus, a surface sensed 

near a hole will be related to it from low level sensing, and in a search for model consistency, 

this relationship should also hold in the model. 

At the surface level each surface contains a list of physically adjacent surfaces that can 

be used to constrain surface matching. These relations are all built by hand, as the geometric 

modeling system being used has no way of computing or understanding this relationship. The 

patch relations are implicit in the structure of the composite surface patch decomposition 

being used. Each patch's neighbors are directly available from an inspection of the composite 

surface's defining knot grid. 

The models have been created by a combination of hand and computer modeling tech

niques. Figure 4 shows the surfaces that were generated from modeling a plate, a pitcher and 

a coffee mug. The plate consists of one surface containing 25 patches. The pitcher is made 

from 24 patches on the handle and 18 on the body. The mug has 4 patches on the body and 

24 on the handle. 

3. VISION SENSING 

The vision processing described here is an attempt to take what is useful and reliable 

from machine vision and to supplement it with active, exploratory tactile sensing. There is no 

attempt to try to understand the full structure of an object from vision alone, but to use low 

and medium level vision processing to guide further tactile exploration, thereby invoking con

sistent hypotheses about the object to be recognized. The vision processing consists of two 

distinct phases. The first phase is a series of two dimensional vision routines that are per

formed on each of the camera images. The second phase is a stereo matching process that 

yields sparse depth measurements about the object. The output of these modules is combined 

with active exploratory tactile sensing to produce hypothesis about objects. 

Static images of a single object placed on a homogeneous black background are acquired 

from two CCD cameras which are calibrated with the robotic workspace. The lighting con

sists of the overhead fluorescent room lights and a quartz photographic lamp to provide 

enough illumination for the CCD elements. The Marr-Hildreth edge operator [16] is applied to 
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each of the images and zero-crossings of the convolved images are found. These zero

crossings define homogeneous regions in the image from which region contours are extracted. 

The matching phase uses the region contours as input. Isolated zero-crossings not on a 

contour are discarded, leaving sparse but stable contour match pixels. The matcher then 

attempts to match contour pixels using the constraints of scan line coherence and zero

crossing orientation and sign. The candidate match pixels are then correlated with regions of 

small window size centered on each candidate. Only those matches fulfilling the criterh 

above and having a correlation confidence l~vel above 95% are accepted as match points. 

The outcome of this matching phase is a sparse set of match points on the contours of regions 

isolated from vision. 

There are limitations to the amount and accurJcy of the data provided by the vision sys

tem. Stereo matching suffers from three main problems. The first is the inability of stereo to 

handle many candidate match points, such as is found in regularly textured objects. By using 

only sparse contour data the matcher becomes more accurate with few if any false matches. 

The second is the error due to quantization on a discrete pixel grid. For the camera geometry 

used here this can be 4 mm. The location of zero-crossings to subpixels reduces this error to 

2 mm. The last problem is the inability of stereo to match horizontally oriented zero

crossings. There is no basis for distinction bet\veen locally horizont:!.l matches in a small 

region. Zero-crossings whose orientation is more than 60° from vertical yield incorrect match 

results, and are not used by the matcher. 

The outcome of stereo matching for a set of digital irmges of a coffee mug is shown in 

figure 15. There is sparse 3-D depth data on the contours, containing no horizontal matches. 

This is clearly not enough data to try to recre:lte surfaces and understand the object's struc

ture. However, the data is accurate and reliable because it has been thinned and abstracted. 

It allows us to proceed to the next level of sensing with confidence, having sparse but accu

rate regions identified that can be used for further sensing. Attempts to drive the vision 

modules beyond this capability will invariably lead to a potentially serious error. The key 

idea is that less is more in the case of multiple sensing. We do not have to rely on this single 

modality for all our sensory inputs, only those it can reliably produce. The matches provided 



- 11 -

Figure 4: rvlodeled Surfaces. 



- 12 -

by the stereo algorithms are reliable because they are based on contour tokens as opposed to 

pixels. High confidence levels are established for the matches in order to reduce error. The 

sparse and conservative matches produced are sufficient to allow tactile sensing to funher 

explore the regions in space. 

~. TACTILE SEI"SING 

Tactile sensing is a relatively new and underutilized sensing modality [11]. Previous 

work in tactile sensing for recognition tasks has emphasised traditional pattern recognition 

paradigms on arrays of sensor data, similar to early machine vision work [13,20,.11,15]. 

:\-Iost sensing has been static in that the sensor is larger than the object and a single touch or 

. 'handprint" is used for recognition. Very little h:1s been done on dynamic sensing and 

integrating multiple touch frames into a single view of an object. 

Touch is different from vision in that is an active. exploratory sensing modality. Active 

touch sensing provides accurate and robust shape information but it extracts its price for this 

information by demanding powerful control of the medium that makes it difficult to use. Blind 

groping on a surface with a tactile sensor is a poor and inefficient way of understanding three 

dimensional structure. Touch needs to be guided to be useful. and the vision data can provide 

guidance to an active touch sensor. 

The experimental tactile sensor used in this research was developed at L.A.A.S in 

Toulouse, France (figure 5). It consists of a rigid plastic core covered with 133 conducting 

surfaces that is roughly the size and shape of a human index finger. The geometry of the sen

sor is an octagonal cylinder of length 228 nun. and radius 20 mm. On each of the eight sides 

of the cylinder there are 16 equally spaced conducting surfaces. The tip of the sensor con

tains one conducting surface, and there are four ocher sensors located on alternate tapered 

sides leading to the tip. The conducting surfaces are covered by a conductive elastomeric 

foam. The sensor is connected to a AID converter that outputs the readings on all sensors in 

an eight bit gray value and the entire array of sensors may be read in a few milliseconds. 

The organization of tactile sensing is on three distinct hardware and software levels 

(figure 6). The highest level consists of programs on a V AX host that provide high level 
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Figure 5: Tactile Sensor. 

control information about the regions in space that are to be explored with the sensor. Algo

rithms have been developed to explore the regions isolated from the vision processing and 

determine if they are surfaces, holes or cavities. Once a region is identified by tactile sensing, 

it can be further explored by tactile surface following algorithms that report contact points on 

surfaces and boundary contours of holes and cavities to the controlling host process. These 

contacts can be integrated with the 3-D contours from vision to build robust surface and 

feature descriptions. The intermediate level consists of programs written in VAL-II [28] that 

run on the PUMA and move the robotic arm based upon feedback from the tactile sensor. 

The intermediate level receives region exploration parameters via the VAL-II's host control 

mechanism which then allows it invoke a surface exploration, hole exploration or cavity 

exploration procedure. These procedures use the feedback from the tactile sensor contacts to 

control arm motion along the exploration path determined by the high level host control. The 

intermediate level communicates with the low level sensor system via commands that set 

thresholds for contacts, requests contact interrupts and requests gray level outputs from 
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arbitrary subsets of the sensor's elements. The low level system is implemented on a micro

processor that samples, digitizes, conditions and localizes the data coming from the tactile 

sensor, interrupting the intennediate level if a contact of a certain nature occurs. 

The classification of a region isolated by the vision system into surface hole or cavity is 

perfonned by an intennediate level tactile exploration program. This program controls the 

motion of the robotic arm and wrist mounted tactile sensor as it explores the region. The pro

gram needs as input an approach vector towards the region which establishes the sensor's 

orientation. The vector is computed by calculating the least square plane p[sq with unit nor

mal N[sq from the matched 3D stereo points that fonn the contour of the region. N[sq then 

becomes the approach vector for the sensor. The arm control routines will orient the arm so 

that the tactile sensor's long axis is aligned with Nlsq , pointing in the direction of the region's 

centroid as determined from the vision processing. 

The ann is then moved along the sensor's long axis until contact with a surface or it 

moves beyond plane p[sq' implying the presence of a hole or a cavity. If the sensor is able to 

travel its full length beyond Plsq without contact, then a hole has been found. If it travels 

beyond a specified cavity threshold TCQV before contact, then it is a cavity. If the region is a 

surface, a surface exploration program will trace the surface. If it is a hole or cavity, a boun

dary curve will be traced. The output of these exploration programs will be integrated with 

the 3-D vision data to fonn surface and feature primitives (described below) that are used in 

the matching phase. 

5. SENSOR L~TEGRATION 

Once the tactile system has classified as visually detected region as a surface or a 

feature, integration procedures are invoked to further sense and quantify the region, allowing 

the fonnation of 3-D primitives that can be used by the matching phase. 
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5.1. BLlLDL':G SVRFACE DESCRIPTIONS 

The integration of vision and touch data for a sensed surface is done by building a 

Coons' patch description of the surface. 1l1e sparse 3-D contours from vision fonn the initial 

patch grid and the description is refined by tactile sensing in the interior of the region. Level 

o surfaces are surfaces comprised of a singl:: surface patch. The information needed to com

pute a level 0 surface is a 2 x 2 rectangular knot set consisting of points on the surface boun

dary, the tangents in each of the parametric directions at the knots and the twist vectors (cross 

derivatives) at the knots (figure 7). The knot ;Joints should be chosen at points of high curva

ture on the boundary curve and need to be spaced unifonnly in each of the pararr.etric direc

tions. Tne algorithm for choosing points of high curvature on a contour is a modification of 

an algorithm originally proposed by Johnston and Rosenfeld [24]. This algorithm analyzes 

the boundary contour's curvature at different scales. choosing local maxima along the contour. 

The knot points are then chosen by maximurr. curvature and distance along the boundary con

tour in order to preserve equal parametric length for opposite boundary curves. 

The tangent vectors in each of the parametric directions must also be calculated. The 

contour of the region contains a series of three dimensional data points obtained from stereo 

matching that define four boundary curves on the surface. These curves are approximated by 

a leJst square cubic polynomial parametrized by arc length \vh:ch is then differenti;l[ed and 

scaled to yield tangent vector values at the knots. 

The twist vectors are more difficult to estimate. If the parametric directions on the sur

face are along the lines of curvature of the surface, then there is no twist in the surface and 

the twist vectors are zero. In practice, these vectors can be set to zero with minor effects on 

the surface. This assumes that the parametrization of the surface has been chosen wisely. 

with corner knot points chosen at places of h:gh curvature or discontinuity along the boundary 

and spaced unifonnly in both parametric directions. 

A level 0 surface is built from vision data only and is not an accurate description of the 

underlying surface since it lacks infonnation about the interior of the surface. The tangents 

which are estimated from stereo match points are inaccurate along contours that are horizontal 

due to the lack of stereo match points. Figure 7 describes the method of building higher level 
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surfaces. A level 1 surface is formed by adding tactile traces across the single surface patch 

defined in level 0, and a level 2 surface is formed by adding tactile traces to each of the 4 

patches defined by level 1 creating a new surface with 16 patches. This method is hierarchi

cal, allowing surfaces of arbitrary level to be computed. The only restriction is that the new 

composite surface is globally computed. 

The traces begin at the point of surface contact found in the initial exploration of the 

region found from vision processing. The sensor then traces in the direction of the midpoints 

of the level 0 boundary curves, using the surface contacts from the tactile sensor to control 

the robot arm motion. 

The movement vector 1'vl along the surface is determined by: 

3 

M = "\\1. G· ~, , 
i=l 

Wi are the weights for each of the vectors G i . 

G l is the unit vector in the direction of the boundary curve midpoint 

G2 is the unit vector formed from the previous two contact points. 

G3 is the unit vector that preserves equal parameterization. 

G 1 is needed to make progress towards the boundary edge. We will want to make pro

gress towards the boundary at each movement step. However, with concave and convex sur

faces, cycles can occur as the trace progresses. G2 is used to maintain a path's direction. 

Once we start moving in a certain direction we do not want to stray too far too fast from that 

path. This vector is an "inertia" vector helping the sensor stay on a steady course. G3 is 

needed to keep the parameterization of the surface patches uniform, and this vector moves the 

trace in the direction to preserve equal parameterization. This vector is the unit resultant of 

the vectors from the present contact point on the surface to the endpoints of the boundary 

curve that the trace is approaching. 

The points reported during these traces are combined into cubic least square polynomial 

curves that are differentiated and scaled to calculate the tangential information needed at the 

boundaries. The boundary curves tangents computed from vision data are updated to include 
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the new tactile information, which fills in areas that lack horizontal detail from the stereo pro-

cess. 

Figure 8 shows the level one surface that results from active tactile sensing of the front 

surface region of a pitcher. The surfaces are accurate and built from sparse amounts of data. 

The analytic nature of these surfaces allows stable and accurate symbolic descriptions based 

upon the surfaces Gaussian curvature to be computed, classifying these surfaces as planar, 

cylindrical or curved. 

t
' ~ 

"'" t- ~ 

Figure 8: Digital Image and Levell Surface of a Pitcher. 

It is important to note that the vision processes are supplying the justification for build

ing smooth curvature continuous surfaces from a region. If the region were not a smooth sur

face, then zero-crossings would have appeared inside the region, precluding the assumption of 

smoothness. The lack of zero-crossings, or the "no news is good news" criteria established 

by Grirnson [9] supports this method and in fact is the reason it succeeds in interpolating the 

surfaces well. 
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5.2. BUILDL'\G FEATURE DESCRIPTIONS 

If the region exploring algorithm detennines that the region is a hole or cavity. a 

different tactile tracing routine is used to detennine the boundary curve of the feature. The 

algorithm begins by moving the sensor just beyond the least square plane p/sq of a region's 

contour points, aligned with N1sq' It then proceeds to move in a direction perpendicular to 

~/sq until it contacts a surface. Once the surface is contacted, the sensor moves along the 

bounding surface staying perpendicular to ~[Sq' recording the contact points until it reaches 

the starting point of the trace. 

This can be a noisy procedure as many of the tactile sensor's contacts become activated 

in a small tight area such as the hole in the handle of a coffee mug. The spatial resolution of 

the sensor contacts also contributes to this phenomena. Tne data is not continuous. but is a 

set of ordered contact points that need to be smoothed and this is done by approximating the 

series of linked contour points with a periodic spline curve which matches derivatives at the 

endpoints. Figure 17 shows the smoothed boundary curve created from sensing the hole in 

the coffee mug. This boundary can then be used to compute cross sectional area and 

moments for matching against the model data base of objects. 

6. i\lATCHr\G 

The low level vision and tactile algorithms provide a set of three dimensional surface 

and feature primitives that are used by the matching routines to determine what the object is 

and its orientation. The matching routines try to find an object in the model data base that is 

consistent with the surface and feature information discovered by the sensors. The intent is to 

invoke a uniquely consistent model from the three dimensional surface and feature primitives 

discovered. If more than one consistent object is found in the data base, a probabilistic meas

ure is used to order the interpretations. Once a consistent interpretation is found, a 

verification procedure is begun. This requires the matcher to calculate a transfonnation from 

the model coordinate system to the sensed world coordinate system. This transfonnation is 

then used to verify the model by reasoning about the slots in the model data base that are not 

filled. The initial choice of a model is made easier by the three dimensional nature of the 
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primitives, allowing matching of higher level attributes rather than sets of confusing and noise 

filled point data. The rules used for invoking a model are such that no a priori choice of 

features or surfaces is needed; all the structural parts of t.'1e model are candidates for match

ing. The object recognition system has no way of knowing what features or surfaces will be 

sensed from a particular viewpoint. It must be able to invoke a model based upon any 

identifiable part of the model [3]. 

The matching phase is the most difficult of all the modules since it requires the system 

to do high level reasoning about objects and their structure based upon incomplete and partial 

sensor information. The approach taken here is to develop a rule based system that will allow 

experimentation and modification of sensing strategies. Some of the rules and strategies 

implemented are discussed below and development of new rules and strategies are a focus of 

our current work. 

Model instantiation is done by first pruning the space of object models that are not con

sistent with two global criteria, physical size and gross shape. All objects in the model data 

base consistent with these criteria are then further matched according to feature and surface 

attributes as determined by the integration of vision and touch sensing. 

One of the benefits of using active tactile exploration is that physical size constraints can 

be used for global discrimination. Nevatia and Binford [17] and Brooks [6] have shown the 

utility of using physical size constraints in recognition tasks. The tactile sensor can be moved 

into the workspace to trace the global outline of the object to determine its bounding box. 

This procedure also puts coarse bounds on the location of the object which can be used by the 

verification procedures later. Gross shape is able to prune based upon number of features 

discovered and whether surfaces are classified as planar, cylindrical or curved based upon the 

Gaussian curvature of the sensed surface [12]. Sensed surfaces constrain the set of consistent 

object models less tightly because the sensors discover patches of possibly larger surfaces (the 

aperture problem). A curved surface in the model may have cylindrical regions, which may 

be sensed as a cylindrical partial patch. Therefore, gross shape discrimination must be conser

vative in matching curved surfaces. 
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Feature attributes are used as a discrimination tool to invoke a consistent model. The 

constant cross section of the feature can be used to define a set of moments that can be used 

to match the cross section with a sensed feature. ~Ioment matching was filst described by Hu 

[14] who described a set of seven moment ir.variants involving moments of up to third order. 

At the instantiation level the moment 1\400, which measures the area of the planar cross sec

tion. and the second order moments lvl02 + iH20 are matched between the sensed and model 

systems. The latter measure is scaled to reflect the difference in Moo when it is matched. In 

the case of cavities, the depth attribute is also used as a matching criteria. 

Surface matching tries to match on two attributes. area and type of surface. The sensor 

is not capable of sensing accurately parts of the moce! with fine structure such as the handle 

of the mug. The area criteria effectively culls out small fearure matching and leaves the task 

of brger shape correspondence. The set of possible consistent interpretations is restricted 

funher by maintaining relational consistency between the sensed regions and the model nodes. 

The relational constraint used is adj3.cency. If two sensed regions in space are physically 

adjacent, then the model nodes that these regions match with must also be adjacent. 

7. VERIFICATIO~ 

Verification can be viewed as slot filling. where the instantiated model"s nodes are either 

filled, representing a sensed match. or unfilled. Verification then becomes a process of rea

soning about unfilled slots. Once a model is instantiated. a transform3.tion between model 

coordinates and sensed world coordinates must be computed. This transformation will allow 

the knowledge embedded in the model coordinate frame to be used in the sensed world frame. 

By transfonning model surfaces and features to the sensed world frames, verification of 

unrecognized slots in the model can proceed since their assumed location is now computable 

with this transformation. This knowledge enables the sensors to explore regions that were not 

seen in the initial sensing and to explore visually occluded areas with tactile sensing. The 

transformation may be computed with feature information or surface information. In some 

cases. a partial transformation may be computed that will allow further verification sensing. 
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7.1. MATCHING FEATURE FRAl\lES 

Each feature in the data base is associated with an object centered coordinate frame. 

Once the models and their frames are developed, mappings from one feature frame to another 

are readily computable. Figure 9 shows the frames em and Hm which are object centered 

frames defined for a coffee mug's cavity and a hole in the model coordinate system. The 

relative transform between the hole frame and the cavity frame Rhem can be defined as: 

Cm = Hm: Rhem 

R = u-l. C hem fl m · m 

Similarly, the transformation from modeled cavity to modeled hole Rchm is: 

Because these are relative frames, discovering one of the model frames in the sensed coordi

nate space will define the other feature in the sensed coordinate space. Assuming we know 

the match between the hole in sensed world coordinates with frame Hs and the model hole 

with frame Hm then the cavity in sensed world coordinates is defined by frame Cs: 

The determination of the new feature frame in sensed world coordinates is important to the 

verification process. If an unfilled feature slot is seen, then the feature's frame in sensed 

coordinates is available through the relative frame mapping. The frame for a feature defines 

the axis of the hole or cavity in sensed world coordinates which is then used as an approach 

vector to sense the unseen feature even if it is occluded. 

Feature frames may be only partially defined as is the case with rotationally symmetric 

features such as a circular cavity or hole. The approach axis of these features is well defined, 

but the principal axes of inertia of the cross sectional opening are not. However, the frame 

matching technique discussed above can still determine within this rotational parameter the 

new sensed frame. An example of this is given in section 8, where the tactile sensor is able 

to sense a visually occluded hole. 
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Figure 9: Relative Feature Frames. 

7.1.1. l\lATCHING SURFACE FRA;\lES 

Matching of surfaces is more difficult because a unique surface frame is not as easily 

sensed as a feature frame. Planar and cylindrical surfaces have one well defined frame vector 

which is the plane's nonnal and the cylinder's axis. Curved surfaces in general do not have 

any such natural embedded frame. In the case of planar and cylindrical surfaces, the one axis 

which is defined will allow defining the transfonnation up to a rotational parameter about that 

axis and a translation. In the case of the plane. the plane' s centroid is also computable and 

this will supply the translational component of the t:r.lnsfonnation. This can be used in con

junction with other feature and surface matches to constrain the sensed frame. 

The analytic nature of the surfaces created from vision and touch allows computation of 

differential geometry measures such as lines of curvature. principal directions. and Gaussian 

curvature. Brady, Ponce, Asada and Yuille [5] have suggested that certain lines of curvature 

that are planar might be significant in tenns of recognizing structure. For example, the only 

planar lines of curvature on an ellipsoid are the lines fonned by the intersection of the sym

metry planes with the surface. Discovery of lines such as these is feasible with the represen

tation used, and may lead to more robust recognition methods for curved surfaces. 
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8. EXPERIMENTAL RESULTS 

This section details the experiments that were conducted to test out the approaches 

developed in the previous sections. The experiments show that integrating vision and touch is 

a viable method for recognition, particularly when compared to standard vision processing. 

The experiments reported have been run using real objects and real noisy sensors. In addi

tion, the tactile sensor being used is relatively crude in terms of spatial resolution compared to 

newer devices. Despite these shortcomings, the approaches to matching discussed previously 

work well in a number of important cases. The implementation of the matcher consists of a 

set of PROLOG goals that match sensed regions with model nodes. The model data base is 

implemented as a set of PROLOG facts that are indexed in a hierarchical manner. The data 

base consists of eight kitchen objects: pitcher, mug, spoon, teapot, plate, bowl, drinking cup. 

pot. Four of these objects (pitcher, mug, plate, bowl) were used in experiments to test the 

matcher and its ability to correctly identify the objects. The main intent of these experiments 

is to show 1) the utility of the methods presented and 2) the ability of touch and vision to 

succeed in situations that vision alone would find difficult. 

The first experiment tried to recognize a planar salad plate. The digital images and 

stereo matches are shown in figure 10. The images yielded few feature points that could be 

matched to determine depth as expected with a smooth homogeneous surface. The stereo 

matcher was only accurate in matching zero-crossings up to 65° from vertical, yielding sparse 

and incomplete depth infonnation. An image such as this would pose large problems for a 

vision system alone; the data is too sparse to support a consistent visual hypothesis. The 

region analysis revealed only a single region to be explored which was the central area of the 

plate. The tactile system explored the plate and built the surface description shown in figure 

11 by integrating the touch and vision data into a level one surface description. The surface 

was sampled at small intervals in parameter space calculating the Gaussian curvature and 

confinning its planar nature. Figure 12 shows the computed surface nonnals on the plate, ver

ifying its planar appearance. 

The normal of the least square plane fitted to the surface was the estimate for the orien

tation of the object No other orientation parameters were available since the plate was 
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symmetric about the surface normal. The sensed plate's estimated surface normal was within 

6 ° of the actual plate orientation on the table. 

8.1. EXPERn'IE;'I.'T 2 

The second object imaged was a cereal bowl. The digital images and stereo matches are 

shown in figure 13. The images are similar to the plate in experiment 1. The only depth cues 

are monocular, where small shading gradients exist but which elude the zero-crossing edge 

detector. This is an excellent example of the discriminatory power when tactile sensing is 

added to vision. The region analysis yields one region to explore with the tactile sensor. 

Upon exploration, a level one surface of the bowl \vas computed and is shown in figure 1-1.. 

The tactile sensor did not find a surface until it had passed 40 mm. beyond the plane of the 

region's contour determined from vision. This prompted a cavity trace in addition to the sur

face trace. 

The matcher tried to match the surface and the cavity \vith an object in the database. 

The combination of the curved surface and cavity (with measured feature moments and depth) 

was sufficient to invoke the correct model. The estimate of the object" s orientation in space 

was the angular difference between the actual cavity axis and the sensed axis which was 

approximately 5 o. 

The initial visual data for experiments I and 2 were almost identical. Only by using 

touch sensing did the surface's depth become apparent The discovery of a cavity allowed the 

system to discriminate between two potential surface matches. The combination of surface 

and feature information reduces the likelihood of multiple consistent models being found. 

8.2. EXPERThfENT 3 

The third experiment imaged a coffee mug. In this image the hole, cavity, handle and 

body of the mug were all visible. The digital images and the stereo matches are shown in 

figure 15. The region analysis yielded 4 separate regions to explore. The first region 

explored was the cavity. The second region explored is the mug's main body for which a 

surface patch was built and is shown in figure 16. This surface patch is a level one patch 
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built from vision and touch and very closely approximates the cylindrical surface of the mug. 

The analysis of the patch's Gaussian curvature classified the patch as a cylinder. 

The hole was found after the region exploration algorithm penetrated the region d;efined 

from vision processing and did not contact a surface. The hole was traced by the tactile sen

sor and the smoothed boundary curve shown in figure 17 was computed from the contact 

points on the holes boundary. 

The matcher was presented with an abundance of sensed region infonnation to try to 

instantiate a model. The cylindrical surface that was computed matched a number of objects 

in the database (pot, coffee mug, drinking glass) as did the cavity (drinking glass, coffee 

mug). The hole was not found in the drinking glass (an identical object in the database to the 

mug but without a hole or a handle) but matched with the coffee mug, yielding a unique 

choice of object. The cylindrical surface axis and the cavity axis are parallel in the model 

and the agreement between these two axes and the actual orientation was quite close « 5 0). 

The handle of the mug is too small and fine for the sensor to adequately build a patch 

description. It can be verified as a surface with the sensor, but attempts at building a patch 

description failed due to the sensor's much larger size. This experiment shows the many 

ways an object can be recognized. Holes, cavities and surfaces are all able to be used to both 

recognize and correctly identify orientation parameters for the objects. This is important in 

that certain viewing angles may present a confusing region that cannot be sensed accurately. 

However, if one of the regions is able to be sensed accurately, then a partial match can be 

established leading to later recognition. 

8.3. EXPERIMENT 4 

In this experiment, the coffee mug was imaged with the handle occluded. The objects in 

the data base that will match with these two regions (body surface and cavity) are the drink

ing glass without a handle and a mug with a handle. From this visual angle there is no way 

that the two objects can be distinguished. The instantiation module will pick both objects to 

be verified. 
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Figure 10: Digital Images and Stereo Matches, Plate. 
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Figure 11: Level 1 Surface, Plate. 

Figure 12: Sensed Surface Normals, Plate. 

It can be determined that the object is a mug by verifying the occluded hole. If it is a 

mug, the hole lies in the occluded area which is shown in figure 18. The bounds on this 

volume are known from the vision and touch sensing that has already been performed. The 

handle can be located by knowing the relative feature frames between the sensed cavity and 

the hole. The cavity, however, does not possess a unique frame; it is rotationally symmetric, 

leaving a degree of freedom in its internal frame which is the rotation about its approach axis. 
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Figure 13: Digital Images and Stereo i\latches, Bowl. 
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Figure 14: Levell Surface, Bowl. 

This degree of freedom can be exploited to reason about the location of the hole. The fixing 

of the cavity's approach axis in space means that the hole centroid is confined to lie in a cir

cle centered at the cavity and swept out about the cavity's axis. Computing this circle gives a 

set of three dimensional points which represent possible locations of the hole's centroid. 

Intersecting this circle with the known occluded volume yields a possible set of locations of 

the hole. Each of these locations is associated with a particular fixing of the rotationally 

symmetric axes about the cavity's axis. The approach is to fix the cavity's rotationally sym

metric axes at an angle of rotation that is midway between the angles that bring the hole into 

occlusion and bring it out Once this is defined, it yields an approach axis for the hole which 

the tactile sensor can then use to probe the hole. In the experiment, the hole was found this 

way, rejecting the drinking glass match and accepting the mug match. Figure 19 shows the 

sensor searching for and finding the hole in the visually occluded area. 

This last experiment shows the power of this approach to object recognition. Multiple 

sensors were used synergistically to invoke a possible set of objects. High level reasoning 

about the object's structure that is encoded in three dimensional models allowed further 

verification sensing to successfully discriminate between the objects. The knowledge about 

the three dimensional world (the occluded volume) and the object's geometry (which is 

encoded in the model) can be used to perform active sensing in occluded areas. 
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Figure 15: Digital Images and Stereo l\latches, Coffee Mug. 



Figure 16: Levell Surface, Coffee Mug. 

Figure 17: i\todeled and Sensed Coffee l\lug Handle Hole. 

9. SUl\IMARY 

This research has attempted to improve robotic performance in a real noisy object 

domain by integrating mUltiple sensors. The use of multiple sensors has provided more robust 

and accurate sensory data that can be combined into three dimensional primitives that facili

tate matching and an understanding of the underlying structure of the objects. The ability to 

sense actively demands higher levels of control than with passive sensors, including the ability 

to reason at a high level about object structure. This reasoning capability needs to be further 



- 34 -

developed and is a natural extension of this work. allowing tasks beyond recognition to be 

attempted in a multi-sensor environment 
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Figure 18: Occluded Volume of Coffee ~Iug. 

Figure 19: Tactile Trace of Occluded Hole. 
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