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Abstract. The problem of object detection and recognition is a notori-
ously difficult one, and one that has been the focus of much work in the
computer vision and robotics communities. Most work has concentrated
on systems that operate purely on visual inputs (i.e., images) and largely
ignores other sensor modalities. However, despite the great progress made
down this track, the goal of high accuracy object detection for robotic plat-
forms in cluttered real-world environments remains elusive.

Instead of relying on information from the image alone, we present a method
that exploits the multiple sensor modalities available on a robotic platform.
In particular, our method augments a 2-d object detector with 3-d infor-
mation from a depth sensor to produce a “multi-modal object detector.”
We demonstrate our method on a working robotic system and evaluate its
performance on a number of common household/office objects.

1 Introduction

Endowing autonomous robots with the ability to perceive objects in their environ-
ment is a notoriously difficult problem in computer vision. One standard solution
is to equip the robot with a video camera and run state-of-the-art, image-based ob-
ject detection algorithms on each frame. However, there are a number of difficulties
with this approach.

Simply finding each object—Ilet alone classifying it—is a non-trivial task in clut-
tered real-world environments. Many state-of-the-art object detectors combine the
process of object detection (localization) and object recognition (e.g., the sliding-
window approach), and only compute features local to the region being considered.
While this approach works well for uncluttered scenes with well-framed objects, it
fails when applied to real-world images as seen by an autonomous robot.!

An autonomous robot needs to operate in a world of small, occluded objects
that are often ill-framed. Many visual percepts will not have been encountered
before, and portions of the scene may contain confusing or conflicting visual cues
when taken out of context. It has been shown that contextual information greatly
improves the performance of vision-based object detectors especially when the ob-
jects of interest are small [2-4]. However, even when this information is taken into
account, the context extracted from image features is inherently 2-dimensional and
can be unreliable in natural scenes with significant clutter.

I The best performing methods in recent PASCAL Visual Object Classes Challenge [1] (which
contains images of difficult natural scenes) achieved less than 50% average precision for most
object classes.
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Fig. 1. Our robotic platform, hardware specifications, and data flow: a sparse point cloud
is reconstructed in software by knowing the relative pose between the pan/tilt unit and the
video camera, and correcting for robot motion using odometry. The depth of every pixel
is then inferred, and features from the 2-d image and the 3-d point cloud are combined
by our probabilistic object detectors.

Exacerbating the above difficulties are the real-time processing constraints im-
posed by robotic applications. This, in general, requires that the vision system be
simple, and, in particular, rules out the option of going to higher resolution unless
a sophisticated attentional mechanism is employed.

The shortcomings of image-based object detection can be addressed on a robotic
platform by exploiting the multiple sensor modalities available to the robot rather
than relying on a single monocular or stereo-vision sensor mode. Since the robotic
system is situated in its environment it can directly measure features that would
help detection instead of inferring these quantities from 2-d image cues. For exam-
ple, measuring temperature can help in the detection of people, and finding large
supporting surfaces can help locate small objects. With the availability of cheaper
and easier-to-use sensors, such as infrared cameras and lasers, it makes sense to
leverage these different sensor modalities for vision.

In this paper, we propose to augment state-of-the-art robotic visual systems
with input from a laser depth scanner and to combine the 2-d and 3-d sensor
modalities to enhance object detection in cluttered real-world environments. We
fuse the depth and visual data so that, for each pixel in the robot’s field-of-view, we
have color/intensity, depth (location in 3-d space), and surface normal information.
This allows us to directly extract contextual cues (such as height above the ground)
and 3-d features (such as object size). Figure 2 depicts these features for a simple
office scene.

Our method consists of a number of stages which can easily be pipelined for
real-time processing on a robotic platform. (See Figure 1 for a schematic of our
dataflow). First, using super-resolution techniques, we combine frames from a video
camera with a low resolution, or sparse, point cloud generated from a laser scanner
to produce a high resolution, or dense, point cloud in the video camera’s frame
of reference. Next, we apply a sliding-window object detector at multiple image
scales: for each location ((z,y)-position and scale) in the image, we compute local
2-d patch features and corresponding 3-d contextual features. The patch features
are provided as input to a trained boosted classifier which, like standard image-only
object detectors, estimates the probability of an object being at the location given
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(a) Image of scene  (b) Height above ground  (c) Surface normal (d) Object size

Fig. 2. Example 3-d feature responses for a window size of 40 x 40 pixels (approximately
the size of the coffee mug in this scene). Light areas indicate stronger feature values. For
example, the surface normal feature can be used for identifying supporting surfaces such
as the table with horizontal support or the walls with vertical support.

just the image features. Finally, we apply a learned logistic classifier for each object
to a feature vector comprising this image-only probability and the computed 3-d
features. A distinct advantage of this approach is that the image-only classifier can
be trained using standard state-of-the-art techniques (and on large datasets) while
our “multi-modal” classifier still takes advantage of 3-d contextual information.
We demonstrate our method on a number of small household/office objects
in natural environments. Importantly, we show that by fusing information from
the depth sensor we are able to significantly improve object detection rates over
state-of-the-art image-only techniques in cluttered real-world environments.

2 Background and related work

Sliding-window object detection is a popular technique for identifying and local-
izing objects in an image. The method has been very successfully applied to face
detection [5] and can be highly efficient when combined with a cascade of boosted
ensembles (CoBE) classifier and simple Haar-wavelet features [6]. However, Haar-
wavelet-like features tend to perform poorly on other object classes, and researchers
have developed other, more sophisticated discriminative features (e.g., histogram
of oriented gradients [7], biologically inspired (visual cortex) features [8], or patch-
based features [9]) at the cost of processing speed. When applied to multiple object
classes, features can be shared amongst the detectors, thereby amortizing the cost
of feature extraction [10].

A number of researchers have shown that context can significantly improve ob-
ject detection accuracy, especially when the objects are small [2,3,9,11,4]. How-
ever, little work has focused on 3-d context. Notable exceptions are the innovative
works of Hoiem et al. [4] and Leibe et al. [12] who infer the camera location and
scene geometry from a single 2-d image or stereo video stream, respectively. These
works reconstruct rough geometry of street scenes (pedestrians and cars) and can-
not, for example, be used for estimating 3-d features of small objects. Instead of
trying to infer 3-d structure, we propose to measure it directly using a laser.

Some novel works use 3-d point clouds from depth sensors for detecting ob-
jects. Nuchter et al. [13] use separate reflectance and depth information from a
single sensor to detect known objects. Other works focus on discovering geometric
primitives [14], or detecting large novel objects but without recognition [15]. Unlike
these works, we detect and recognize small objects from sparse depth information
in real-time.
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3 Sensor fusion and scene representation

In this section, we describe how we process the raw data from the robot’s sensors
(Figure 1) into a representation that unifies the modalities of the camera and the
sparse depth sensor. In particular, we describe how the sparse laser measurements
are used to infer depth at the (much higher) spatial resolution of the camera.

Ideally we would like to measure the depth (and surface normal) at every pixel
in the image so that we can make use of 3-d geometric cues in our object detector.
Unfortunately, the laser range scanner does not support the same resolution as the
video camera.? Thus we need to resort to super-resolution techniques in order to
infer the depth at every pixel. The resulting high resolution depthmap can then
be used to estimate surface normals. State-of-the-art methods for super-resolution
include MAP inference on a pairwise Markov random field (MRF) [16,17] and
bilateral filtering [18], and are based on the intuition that depth discontinuities
usually coincide with color discontinuities in the image.

Our method is similar to the MRF model of Diebel and Thrun [16].> How-
ever, instead of encoding a preference for fronto-parallel planes (implicit in their
formulation) we allow for arbitrarily sloped planar surfaces. Thus our method can
be thought of as reconstructing a first-order approximation to each surface rather
than a zeroth-order one. We also use a robust Huber penalty instead of the more
commonly used /5 penalty.* A quantitative comparison measuring mean-square re-
construction error on a hold-out set of points showed that, on average, our model
performed better than that of Diebel and Thrun [16] on our office scenes—details
omitted due to space constraints.

Concretely, let the image pixel intensities be {z; ; | (,7) € I}, the laser depth
measurements be {z; ; | (4,5) € L} and the reconstructed/inferred depth for every
pixel be {y; ; | (4,j) € T} where 7 indexes the image pixels and £ C 7 indexes the
laser measurements (projected onto the image plane). Two MRF potential functions
are defined—the first penalizes discrepancy between measured and reconstructed
depths, while the second encodes a preference for smoothness:

ii(y,z) = h(yij — 2i3;A) (1)
Vi (x,y) = wi;h(2yi 5 — Yij-1 — Yij+15A)
+ w?jh(2yi,j —Yi-1,j — Yit1,55 N (2)

where h(x; A) is the Huber penalty function, and w}; = exp{—cl|z; j—1 — zij+1)?}
and w}y = exp{—c||x;_1,; —xiy1,;]|*} are weighting factors indicating how unwilling
we are to allow smoothing to occur across vertical and horizontal edges in the image
as in [16].

2 The video camera on our robot has a base resolution of 0.1° and can optically zoom down to
0.01°. On the other hand, modern (full scene scanning) depth sensors, such as the SwissRanger
SR-3000, only have a resolution of approximately 0.5°.

3 Note that in their setup the camera and laser were axis-aligned and the scene imaged by
rotating through 360°. Thus they did not have to deal with calibration issues between the two
sensors nor occlusions.

4 The Huber penalty function, h(z; \) = 22 for =\ < < X and A\(2|z| — \) otherwise, is convex
and thus we can still find the MAP solution exactly.
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Fig. 3. Results from our super-resolution | Fig. 4. 3-d views of (a) the sparse point
MRF on a typical office scene (a). Shown | cloud from laser scanlines, (b) reconstructed
are (b) initial interpolated depth esti- | (dense) point cloud, and (c) reconstructed
mates; and (c) final depth estimates at | surface normals (color represents normal di-
convergence (526 iterations). rection).

We can now define our super-resolution MRF as

p(y | sz) =

exp —k Z Qsij — Z g/ij (3)

n(x,2) o 4
i,j)EL (i,J)€T

where k specifies the trade-off between measurement reconstruction and smooth-

ness, and 7(x,z) is the normalization constant (partition function).

We initialize our depth estimates y by first projecting measured depths into the
camera plane and performing quadratic interpolation to obtain an initial depth esti-
mate at every pixel. We then find the MAP solution by minimizing k Z(i,j)eﬁ D+
Z(i,j)el’ ¥, ; using the L-BFGS algorithm [19]. The process is illustrated in Figure 3.
Optimization is fairly quick, taking less than 10 seconds on a 320 x 240 image. Most
of the progress towards the optimal solution is made in the first few iterations and
high quality depth estimates can still be obtained by stopping early. Furthermore,
in a robotic application where data is continuously being streamed, the algorithm
can be initialized from the previous frame (with motion compensation) resulting
in much faster convergence.

Once we have the high resolution depthmap we reconstruct the location of each
pixel in 3-d space (relative to the camera’s reference frame) {X; ; € R?® | (i,j) € T}
by projecting a ray through the camera plane at each pixel location (i,j) and
scaling by the inferred depth. We also infer point normals, {f; ; € R3 | (i,5) €
7, ||f; ]| = 1}, from the local neighborhood around each point.”> Figure 4 shows
sample results from our super-resolution procedure. The tuple (z; ;, Xi’j, nij) € R7
forms the basis of our 3-d scene representation.

4 Multi-modal object detection

In this section, we describe how we use the unified scene representation of Sec-
tion 3 and a sliding-window approach to perform multi-modal object detection.
Specifically, we discuss 2-d and 3-d feature extraction, and describe our method for
combining them into a single probabilistic model.

5 Here we compute the SVD of the 3 x 3 covariance matrix of points Xi/j/ near to the point

in question Xij and take the surface normal estimate 7;; to be the direction of the singular
vector corresponding to the smallest singular value. We resolve ambiguity in the sense of the
normal vector by taking the solution that points towards the camera.
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4.1 Image-only object detectors

Sliding-window object detection is a simple yet effective approach to simultaneous
localization and recognition of objects in images. The approach involves scanning
the image with a fixed-size rectangular window and applying a classifier to the sub-
image defined by the window. The classifier extracts image features from within the
window (sub-image) and returns the probability that the window (tightly) bounds a
particular object. The process is repeated on successively scaled copies of the image
so that objects can be detected at any size. The (x, y)-location of the window and
scale o of the image implicitly defines the bounding box, or set of pixels, belonging
to the candidate object B(z,y,0) = {(i,j)} C I.

Our image features are similar to Torralba et al. [10] (and other works by the
same author). Here a dictionary of image patches is constructed at training time
by randomly selecting small patches from a set of training images. Associated with
each patch is a spatial mask over which the patch response is valid. The mask is
derived by taking a small rectangular region around the patch’s original (image) lo-
cation (see Figure 5(d)). In addition to patches taken from the (intensity) image, we
also extract patches from the edge-filtered (gradient) image.® Thus our dictionary
is comprised of the triplet of patch, spatial mask, and image operator (intensity or
gradient). Figure 5 shows example training images and a patch dictionary.

We scan the image at multiple locations and scales. The response for feature f
at location (z,y) and scale o is given by v/ (z,y,0) = max,, |Tf(Z,) ® gs| where
7, is the image at scale o, Tf(-) is the image transform associated with feature f
(intensity or gradient), g is the image patch, wy is the spatial mask, and ® is the
normalized cross-correlation operator.

Given the dictionary of patch features and a set of training images we learn
a gentle-boost classifier [20] over two-split decision stumps for each object class.
At run time, we apply the boosted classifier to each candidate location (z,y) and
scale o to obtain the probability (based on image features alone) of that location
containing the given object, P'™¢(o | 2,y, o). We then use the log-odds ratio

Pimage(o ‘ x,, 0.)
L= Pa(0 | 7,9, 0)

(4)

de(x’yaU) = log (

as a feature in our multi-modal object detector.

Note that these detectors do not make explicit use of any 3-d information and
therefore can be trained and evaluated using standard state-of-the-art techniques.
Briefly, we use 100-200 positive and 20,000 negative training examples for each
object class. The positive examples were downloaded from the web or manually
collected using a digital camera. The negative examples were collected by randomly
snipping rectangles from a five-minute video sequence. All examples were scaled to
32 pixels for the smaller dimension. (See Figure 5.)

We construct our patch dictionary by randomly selecting 10 (intensity and
gradient) patches from each positive training sample. The patches vary in size
from 4 x 4 to 16 x 16 pixels, and we fix the spatial mask wy to 7 x 7. We then
train the object detectors in two stages for improved efficiency: first we select 2,000

6 We convolve the intensity image with 3 x 3 Sobel kernels to obtain horizontal and vertical
gradient images Gp(z,y) and Gy (x,y). The edge-filtered image is then given by the gradient

magnitude Z°°(z,y) = /Gp(z,y)% + Go(z,y)%.
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(a) Example training images (c) Gradient image (d) Example dictionary entries

Fig. 5. Example positive and negative training examples for the “mug” class are shown
in (a). An example dictionary for the class “mug” is shown in (d). Adjacent columns
represent patch gy and spatial mask wy for each dictionary entry. White in the spatial
mask indicates size of patch, and gray boundary indicates valid response area.

negative training examples at random and train a boosted classifier for 50 rounds;
next, we trim our patch dictionary to remove all patches not used by this classifier;
finally, we retrain using all 20,000 negative training examples to obtain our final
image-only object detectors. The resulting patch dictionary typically contains 50—
75 entries compared to the 500 entries used in [10].

4.2 3-d features

For each candidate location (x,y) and image scale o, we compute 3-d features
by taking the bounding rectangle implicitly defined by the location and scale
B(z,y,0) = {(i,j)} € Z and conceptually projecting that region into the scene
as shown in Figure 6. We shrink the set of points enclosed by the bounding box by
removing the (4, j) corresponding to points X; ; that lie in the outer 5% (in either
the x-, y-, or z-directions) of the points in B. This removes outliers and most back-
ground points. The resulting shrunken set of points B’ is then used for computing
the features.

Let {X;; € R3| (i,4) € I} be the location of each pixel in 3-d space (relative
to the camera’s frame of reference), and let {fn; ; € R3 | (i,5) € Z,||n; ;|| = 1} be
the estimated surface normal vector for each pixel. The centroid and covariance of
the points in B’ are

1
ux = |B’|

1 A .
1B Z (Xij —px)( Xy —ux)" (5)
(i,7)eB’

Z Xi,j and EX ==
(i,5)eB’

where |B’| is the number of points in B’. A similar computation gives pu,, and X,
the mean and covariance over surface normal vectors.

We now enumerate the object attributes and contextual cues captured by our
3-d features and provide some insight into why they are useful for improving object
detection. Implementation details for how we capture each attribute/contextual cue
as a vector-value feature are also described.

Height above ground. Many objects are located at consistent heights above
the floor. For example, computer monitors are often found on desks which are
a standard height above the floor; door handles are placed at a relatively fixed
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Fig. 6. Illustration of a candi-
date object location in the im-
age plane being projected into
3-d space.

location on the door where most people find it comfortable to reach; and wall
clocks are placed high enough so that they can be seen above other objects in the
room. Since we calibrate the point cloud xz-plane to coincide with the floor, our
height above ground feature is simply

eight-above-groun 2
ghetsttabovegrond — 4 () (6)

where % indicates the y-component of ux.

Distance from robot. Objects farther from the robot are harder to see, not
only because of their diminished size but also because of lighting effects and depth
measurement inaccuracy. Although the probability of an object does not depend
its distance from the robot, knowing this distance allows our model to compensate
for the influence the above effects have on other features (e.g., the 2-d detectors):

fdistance—from—robot _ [/};{ (M‘Zx)2 ] T (7)

where (1% indicates the z-component of px.

Surface variation and orientation. Most objects have significant surface
variation and extend above their supporting surface. Obvious exceptions are flat
objects, such as LCD monitors, which appear as a single plane in the 3-d point
cloud and so are distinguished by their lack of surface variation. We compute the
following vector-valued features to capture these attributes:

Y
surf-var Zg(y surf-orientation Fn Y\2
f = Y o 4 yEz | o f = 1- (g’n) (8)
2y (13)

where Y'x and Y, are the covariance matrices defined above.

Object dimensions. One of the most defining attributes of an object is its
size. Knowing this information allows a significant number of false candidates to
be rejected. The width, height, and (projected) area of the object can be estimated
by considering the projection of the bounding rectangle into 3-d space:

width T . e
= max X!, — min X . 9
/ (i.es 7 (Gjes ©)
height _ jpav XY — min XY, 10
f (i.jeB " e " (10)
farea _ fwidth % fheight (11)

where ij and X’ly ; denote the x- and y-components of Xm-, respectively. Our
feature vector also includes the square of these terms. A measure of object depth
is already captured by our surface variation feature and so is not repeated here.

The above features are assembled into a single 17-dimensional descriptor f34
which captures the 3-d attributes of a possible object.
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4.3 Multi-modal object detectors

Our multi-modal object detectors are simple binary logistic classifiers based on
the 2-d and 3-d features, f24 and 34, defined above. Note that, although this is
a simple representation, the inclusion of squared terms for many of the features
allows us to learn rich decision boundaries.

The probability for an object o existing at location (x,y) and scale o in the
image plane can be written as

Plo|z,y,0) = q (05> + 03,1 + Opias) (12)

where ¢(s) = Hi,s is the logistic function and @ = {634, 024, Opias } are the learned
parameters of the model. The parameters 024 and 634 trade-off between 2d and 3d
features while the bias term 6},;,s models the prior prevalence of the object.

We learn one multi-modal model per object class on data (images and corre-
sponding point clouds) collected from static scenes. We do this rather than using
video sequences to avoid the introduction of bias during training and evaluation
due to the high correlation between consecutive video frames. The images are anno-
tated with a bounding box and class label for each object of interest. We construct
a training set by first running the image-only object detectors over each image,
keeping all detections with a probability above 0.001. Any detection overlapping
by more than 50% with a groundtruth annotation is used as a positive example
while all other detections are used as negative examples. If for any groundtruth
annotation there was no overlapping detection, we further run the image-only ob-
ject detector on the bounding box for that annotation and add it to our positive
examples. Finally, for each training example, we extract the 3-d features as detailed
above and learn the parameters 8 of our logistic classifier using Netwon’s method
so as to maximize the log-likelihood of the training set. We use {5 regularization
to prevent over-fitting, with weight chosen by cross-validation on the training set.

5 Experimental results

We collected 420 static images and corresponding sparse point clouds of cluttered
scenes. The scenes contained a number of small objects (coffee mugs, disposable
cups, monitors, wall clocks, door handles, and ski boots) which we would like to
detect, as well as distractors (see Figure 7). A number of the scenes were ex-
tremely challenging and the authors even had trouble identifying objects in some
images during groundtruth labeling because of image resolution. We performed k-
fold cross-validation and report the aggregate performance over the hold-out sets.
On each fold we learned the model parameters and regularization weight using the
training set. The data in the hold-out set was only used for testing.

We evaluate our performance by comparing against image-only object detec-
tion. Figure 8 shows precision-recall curves for our learned object detectors. The
multi-modal detectors (solid red curve) are consistently superior to the image-only
detectors (dashed blue curve).

In general, 3-d features significantly help, especially when strong features such as
size and location overcome large intra-class appearance variation (door handles and
ski boots) or lack of discriminating visual features (computer monitors). The cup
class performs badly for both detectors primarily due to its lack of distinguishing



10 M2SFA2 2008: Workshop on Multi-camera and Multi-modal Sensor Fusion

(a) Original scene (b) Super-res. depth (c) Image-only det. (d) Multi-sensor det.

[ mug || cup || monitor |[ clock || handle || skiboot |

Fig. 7. Representative scenes showing our results from multi-modal object detectors com-
pared against image-only detectors. (Best viewed in color.)

features at small scale. We found a large number of false-positive cups coming from
other small objects such as coffee mugs. This suggests that a model which considers
the location of other objects may improve accuracy for such classes.

In order to understand the contribution that each of our features makes to im-
proving object detection, we evaluated the performance of the image-only detector
augmented with each 3-d feature separately (see Table 9). Here we compare perfor-
mance by measuring the maximum Fj-score. As expected, object dimensions and
height above the ground are the strongest individual features.

Finally, to gain an intuition for where our method works, we provide some
representative results in Figure 7. The first row shows that our multiple sensors help
when objects are partially occluded. Here the monitor is detected even though the
left edge is not visible. With some visual features missing, the image-only detector
cannot conclude the existence of the monitor. The second row shows how knowing
object size can be used to reject the false-positive disposable cup despite the strong
visual resemblance. In this scene our method also successfully detects one of the
two door handles. The last two rows show how image-only detectors are easily
confused by significant clutter or textured backgrounds. Interestingly, the multi-
modal detector incorrectly labels some trash as a coffee mug (bottom of the third
scene). A patch on the whiteboard that resembles a door handle is also mistakenly
labeled by our detector in the last scene.
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(a) Mug (b) Cup (c) Monitor (d) Clock

(f) Ski boot

Fig. 8. Precision-recall curves for commonly found household/office objects. Results from
2-d object detectors shown in dashed blue; results from 3-d augmented detectors shown in
solid red. Scores are computed by first applying non-maximal neighborhood suppression
to remove overlapping detections. A true-positive is counted if any detection overlaps with
our hand-labeled groundtruth by more than 50%. Any detection that does not overlap
with a groundtruth object (of the correct class) is considered a false-positive.

Detectors Mug Cup Monitor Clock Handle Ski boot
image-only 0.707 0.594 0.645 0.776 0.506 0.594
w/ height 0.737 (0.03) |0.619 (0.03) [0.755 (0.11) [0.760 (-0.02)[0.708 (0.20) [0.676 (0.08)
w/ distance 0.715 (0.01) |0.600 (0.01) |0.673 (0.03) [0.847 (0.07) [0.477 (-0.03)|0.616 (0.02)
w/ surface var. |0.753 (0.05) |0.608 (0.01) |0.695 (0.05) [0.796 (0.02) |0.563 (0.06) |0.537 (-0.06)
w/ obj. dim. 0.735 (0.03) |0.609 (0.02) |0.714 (0.07) [0.874 (0.10)|0.605 (0.10) [0.763 (0.17)
laser (3d) onlyf 0.206 (-0.50)|0.241 (-0.35)[0.582 (-0.06) |0.835 (0.06) |0.229 (-0.28)|0.294 (-0.30)
multi-modal (all)|0.768 (0.06)|0.650 (0.06)|0.821 (0.176)|0.865 (0.09) |0.760 (0.25)|0.879 (0.29)

Fig. 9. Comparison of maximum F}-score for image-only detectors augmented with in-
dividual 3-d features. The delta over image-only detectors is given in parentheses. The
3-d only results () are provided for comparison and are calculated for the same set of
candidate rectangles returned by the image-only detector (but the log-odds ratio feature
is not used).

6 Discussion

In this paper we proposed a multi-modal object detector for robots situated in their
environments. We showed how robots can exploit 3-d data from a low resolution
depth sensor—the most common mode of robotic perception after optical sensing—
by combining it with 2-d image data for robotic object detection in real-world
environments. Our main contributions were two-fold. First, we showed how super-
resolution techniques allow us to obtain a high resolution scene representation
consisting of pixel intensities, 3-d locations, and surface normals. Second, we showed
how 3-d features and contextual cues derived from this scene representation can
be combined with a state-of-the-art 2-d object detector to significantly improve
detection accuracy. Importantly, our method works with any 2-d object detector.

Our experimental results showed that the multi-modal detector improves over
a baseline 2-d detector for common household/office objects. The improvement
is most striking for objects which lack distinguishing features or those with high
intra-class variance. Object size and location (height above the ground) are the
strongest 3-d features, both of which are easily derived from our multi-sensor scene
representation. An exciting avenue for further work is the exploration of more
sophisticated 3-d features while still restricting ourselves to real-time depth sensors
which are inherently low resolution.

Our architecture also fits well with the needs of real-time robotics. The data
processing pipeline allows for multi-threading and can be scaled up to an arbitrary
number of object detectors. The slowest operation is the extraction of the patch-
response features used by our 2-d detectors (taking 10-20s per frame per object
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class). Performance can be improved by pruning parts of the scene based on 3-d
cues (such as size or surface variation) which are quick to compute.

Vision-only object detection systems are plagued by a number of difficulties
in real-world scenes, e.g., lighting, texture, occlusion, etc. Many of these difficul-
ties can be overcome by augmenting visual perception with complementary sensor
modalities (e.g., depth and infrared) using the methods described in this paper,
providing a step towards robust object detection for autonomous robots.
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