
METHODS
published: 17 December 2015
doi: 10.3389/fninf.2015.00029

Frontiers in Neuroinformatics | www.frontiersin.org 1 December 2015 | Volume 9 | Article 29

Edited by:

Andrew P. Davison,

Centre National de la Recherche

Scientifique, France

Reviewed by:

Xin Wang,

The Salk Institute for Biological

Studies, USA

Oliver Schmitt,

University of Rostock, Germany

*Correspondence:

Christian Nowke

nowke@vr.rwth-aachen.de

Received: 04 September 2015

Accepted: 26 November 2015

Published: 17 December 2015

Citation:

Nowke C, Zielasko D, Weyers B,

Peyser A, Hentschel B and Kuhlen TW

(2015) Integrating Visualizations into

Modeling NEST Simulations.

Front. Neuroinform. 9:29.

doi: 10.3389/fninf.2015.00029

Integrating Visualizations into
Modeling NEST Simulations

Christian Nowke 1*, Daniel Zielasko 1, Benjamin Weyers 1, Alexander Peyser 2,

Bernd Hentschel 1 and Torsten W. Kuhlen 1

1 Visual Computing Institute, RWTH Aachen University, Jülich Aachen Research Alliance - High-Performance Computing,

Aachen, Germany, 2 Simulation Lab Neuroscience - Bernstein Facility for Simulation and Database Technology, Institute for

Advanced Simulation, Jülich Aachen Research Alliance, Forschungszentrum Jülich GmbH, Jülich, Germany

Modeling large-scale spiking neural networks showing realistic biological behavior in

their dynamics is a complex and tedious task. Since these networks consist of millions

of interconnected neurons, their simulation produces an immense amount of data. In

recent years it has become possible to simulate even larger networks. However, solutions

to assist researchers in understanding the simulation’s complex emergent behavior by

means of visualization are still lacking. While developing tools to partially fill this gap,

we encountered the challenge to integrate these tools easily into the neuroscientists’

daily workflow. To understand what makes this so challenging, we looked into the

workflows of our collaborators and analyzed how they use the visualizations to solve

their daily problems. We identified two major issues: first, the analysis process can

rapidly change focus which requires to switch the visualization tool that assists in the

current problem domain. Second, because of the heterogeneous data that results from

simulations, researchers want to relate data to investigate these effectively. Since a

monolithic application model, processing and visualizing all data modalities and reflecting

all combinations of possible workflows in a holistic way, is most likely impossible to

develop and to maintain, a software architecture that offers specialized visualization

tools that run simultaneously and can be linked together to reflect the current workflow,

is a more feasible approach. To this end, we have developed a software architecture

that allows neuroscientists to integrate visualization tools more closely into the modeling

tasks. In addition, it forms the basis for semantic linking of different visualizations to reflect

the current workflow. In this paper, we present this architecture and substantiate the

usefulness of our approach by common use cases we encountered in our collaborative

work.

Keywords: interactive visualization, spiking neural network modeling, workflow integration, data management,

coordinated and multiple views

1. INTRODUCTION

In recent years, advances in simulation technology and computing power have made simulation
of large-scale spiking neural networks feasible. These simulations produce an immense amount
of data that needs to be analyzed by researchers in order to validate the simulated models. In
order to assist the analysis process of simulation output, computational neuroscience resorts to
interactive visualization methods to leverage humans’ abilities for pattern recognition, intuition,

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org/Neuroinformatics/editorialboard
http://www.frontiersin.org/Neuroinformatics/editorialboard
http://www.frontiersin.org/Neuroinformatics/editorialboard
http://www.frontiersin.org/Neuroinformatics/editorialboard
http://dx.doi.org/10.3389/fninf.2015.00029
http://crossmark.crossref.org/dialog/?doi=10.3389/fninf.2015.00029&domain=pdf&date_stamp=2015-12-17
http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive
https://creativecommons.org/licenses/by/4.0/
mailto:nowke@vr.rwth-aachen.de
http://dx.doi.org/10.3389/fninf.2015.00029
http://journal.frontiersin.org/article/10.3389/fninf.2015.00029/abstract
http://loop.frontiersin.org/people/268211/overview
http://loop.frontiersin.org/people/272899/overview
http://loop.frontiersin.org/people/279286/overview
http://loop.frontiersin.org/people/222839/overview
http://loop.frontiersin.org/people/276037/overview
http://loop.frontiersin.org/people/141832/overview

Nowke et al. Integrating Visualizations into Modeling NEST Simulations

and creativity. However, neural simulations produce a
multitude of data modalities, e.g., spike trains, connectivity
data, and derived metrics, on multiple scales, to only name
a few. Therefore, a successful visualization will have to
provide integration of these modalities into a unifying
solution embedded into the workflow of modeling neural
simulations.

One way to address this challenge is the use of the coordinated
multiple views (CMVs) paradigm (cf. North and Shneiderman,
1997; Wang Baldonado et al., 2000). CMV systems have
successfully been used to uncover complex relationships in data
by enabling users to relate different data modalities and scales (cf.
Ryu et al., 2003), thereby assisting researchers in context switches,
comparative tasks, and supplementary analysis techniques. To
relate these different data modalities, coordination between
views, especially linking, is required. Linking refers to the idea of
connecting different views in such a way that, if the user interacts
with one view, this will affect all other views in the same semantic
way—e.g., selecting an entity in one view will also highlight all
occurrences of the same entity in all other views. However, this
approach requires, on the one hand, coherent access to data so
that all views display the same data model, and, on the other, a
synchronization mechanism for shared data entities across views
(i.e., selections).

In order to develop a software architecture that applies the
CMV paradigm on data resulting from neural simulations, we
first observe the researchers’ workflow of modeling simulations,
the resulting data modalities, and relationships between these
artifacts. Subsequently, we derive requirements for a system
that enables coupling of multiple visualizations. Collecting
these requirements necessitates an interdisciplinary approach
between computational neuroscientists and visualization experts.
To this end, meetings were conducted in which we presented
the progress of our development and collected feedback, new
requirements, or new visualization designs for new hypothesis
about the data. A key observation from this process is a highly
volatile analysis workflow of modeling neural systems resulting
from ever changing hypotheses about the simulated data. Hence,
an architecture must provide access and processing of data to
meet this flexibility.

The main contribution of this paper is a software
infrastructure that provides a concept to access simulation
data for further processing and visualization purposes which has
been driven by a close cooperation between neuroscientists and
visualization experts. It provides synchronization capabilities
between various visualizations which can be used in dynamic
workflows and can be embedded into the work environment
of the scientists in order to access, modify, and process stored
data artifacts conveniently. Moreover, it forms the basis
for an architecture enabling semantical linking of multiple
visualizations, based on the current workflows and intents of
its users, in the future. We demonstrate the applicability of this
approach by presenting use cases which deploy the proposed
system.

In the following paragraphs, we will first introduce related
work focusing on CMVs. Following this, we present existing
integrations of visualizations for data analysis.

CMVs is a visualization technique intended to support
exploratory data analysis (cf. Roberts, 2007). The overall idea
is to offer interaction with different representations of the
same data, while emphasize different details to understand
the data. The challenge within utilizing this approach is the
coordination of views, because coordination depends on the
inter-related information underlying the visual analysis task
which in turn is domain-specific. In addition, users often need
unforeseen combinations of coordination that depend heavily
on the data to explore. To this end, Weaver (2004) introduces
Improvise, a system which allows the user to build multiple
coordinated views interactively by means of shared-object
coordination. In addition, Improvise provides an expression-
based visual abstraction language that enables users to describe
the relationships of their data to allow a fine-grained control of
coordination mechanisms between them. However, Improvise is
restricted to the visual representation of relational data, which
does not cover all heterogeneous data produced in modeling
neural systems. North and Shneiderman (2000) approach the
problem in their tool Snaptogether by providing a user interface
where a formal description of related data items is specified
by the user. This makes it possible to enrich visualizations by
additional views without programming abilities. Moreover, they
provided an API for extending the framework with additional
views. However, similar to Improvise, the introduced framework
is built around relational data. Boukhelifa and Rodgers (2003)
describe a model and software system called CViews for multiple
views which formalizes coordination concepts. The model is
designed to be generic without any bias toward navigation
concepts, requirements on data modalities, and communication
paradigms used to synchronize data between views. However,
our work, while borrowing some of these ideas, focuses foremost
on establishing a synchronization paradigm for simulation data
and visualization entities rather addressing a complete abstract
approach as presented by the authors. Nevertheless, it forms
a basis for future concepts driven by a description of the
coordination’s semantic.

Sousa and Aguiar (2014) describe the simulation environment
NeuralSyns, which enables neuroscientists to build, simulate,
and visualize large spiking neural networks in a holistic
way supporting methods of visual programming. NeuralSyns
provides a graphical user interface called NetBuilder to support
network construction, which in turn generates output that
can subsequently be processed by the simulation engine. A
drivingmotivation is to build and parameterize complex network
structures without manually handcrafting model descriptions.
In contrast to our work, they focus not on the integration of
visualization into the computational neuroscientists’ workflow,
who, in our opinion, are not favoring the replacement of scripting
models to using a graphical user interface.

Schmitt and Eipert (2012) presents neuroVIISAS, a generic
platform for the integration of data modalities required for
the analysis and simulation of biologically realistic neural
systems. Furthermore, it allows for the generation of network
descriptions tailored to the NEST simulation engine (cf. Gewaltig
and Diesmann, 2007). In addition, it provides data analysis
capabilities that assist researchers in the exploration of neural

Frontiers in Neuroinformatics | www.frontiersin.org 2 December 2015 | Volume 9 | Article 29

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Nowke et al. Integrating Visualizations into Modeling NEST Simulations

dynamics. However, neuroVIISAS does not focus on a tight
integration of its use into existing workflows. In contrast to
this work, it does not provide a concept for visualization of
data while simulations are performed nor a mechanism when
a concrete analysis question raises the need for a specifically
tailored visualization which then needs to be integrated with
existing tools.

Arsiwalla et al. (2015) present BrainX3, a large-scale
simulation system for brain activity with real-time interaction. It
builds upon the iqr neural simulator and allows for the real-time
analysis of network dynamics while simulation is performed.
Moreover, it enables users to influence the simulation by inducing
activity to network nodes or disconnecting entire brain regions.
Albeit the system is specifically tailored to the presented use
case it offers an interfacing mechanism to MATLAB for analysis
of simulation data. However, the scope of this paper addresses
coupling of individual visualizations in order to fit the researchers
need in different workflows.

This paper is structured as follows: Section 2.1 describes our
users’ objectives in modeling simulations, followed by a workflow
description of this process in Section 2.2. Section 2.3 is devoted
to the requirement analysis where we derive requirements for
an architecture based on our observations of the workflow in
the previous section. Next, in Section 2.4 we will present the
proposed architecture. Section 3 will present results in form of
visualizations that utilize this architecture along a use case and
present a discussion. Finally, we end this paper with a short
conclusion and an outlook on future work.

2. MATERIALS AND METHODS

In order to derive requirements for a software architecture
enabling researchers to integrate visualizations into their
workflow of modeling neural simulations, we must first
understand how the modeling process is performed. To this
end, we asked domain experts to elaborate on their research
objectives and workflow steps in the development process of
a simulation model. These discussions were oriented along a
specific model (the macaque visual cortex), but the described
objectives and the workflow have been formulated by the experts
in a much broader manner. Thus, we believe these objectives
share wider applicability in modeling spiking neural networks.
While the research objectives have significant impact on the
analysis workflow, the analysis itself can have an impact on the
modeling process as well. Therefore, requirements for the aimed
architecture supporting these workflows are influenced by both,
as depicted in Figure 1.

2.1. Research Objectives
A simulation of spiking neural networks is based on a
mathematical model which forms a basis for studying effects of
its behavior, e.g., its dynamics, structure, and size. Modeling is
always performed with certain objectives in mind. In order to
provide a more concrete example of the modeling process, we
oriented these objectives along a neural network for the macaque
visual cortex (cf. Schmidt et al., 2014) simulated in NEST.
Five objectives were identified:

FIGURE 1 | Depiction of the relationships between research objectives,

the workflow and the requirements for a software architecture

enabling integration of visualizations into the modeling process. The

research objectives and workflow influence each other. Requirements are

derived from both, the objectives as well as the workflow.

Formulate a consistent model definition (O1)—Derive
a consistent definition of a model based on anatomical
and electro-physiological data. This data is gathered from
publications and databases in order to achieve simulation results
in accordance to biological findings, e.g., Stephan et al. (2001),
Binzegger et al. (2004), and Markov et al. (2011) to only name
a few.

Systematical parameter study (O2)—Systematically study the
impact of parameters on the dynamics of the model and modify
the connectivity within reasonable bounds to reach a stable
ground state, close to biological findings, which constitute the
verification baseline (cf. Schuecker et al., 2015).

Investigate emergent behavior (O3)—Investigate mechanisms
underlying differences in firing rates across populations and
oscillations emerging through interactions between areas.

Integrating scales (O4)—Bridge the gap between large-scale
models where each area is represented by a simple dynamical
system and detailed spiking models of local cortical networks.

Research scaling behavior (O5)—Study effects of scaling the
amount of neurons in the model up to realistic sizes of biological
systems.

To ensure a systematical approach to investigate these objectives,
a workflow is established to incrementally improve the model.
The next section will outline these principle steps in more detail.

2.2. Workflow Analysis
To understand the modeling process of researchers in
investigating the outlined objectives, we observed four
elementary steps while modeling a neural system. Since our
collaborators use NEST, we restrict the scope of this description
to the workflow resulting from this choice. These elementary
steps consist of: first defining the simulation model; second,
the execution of the simulation; third, post-processing output
resulting from the simulation, and finally exploratory analysis
of resulting data artifacts (cf. Figure 2). These elementary steps
directly relate to the aforementioned research objectives. The
following paragraph will outline these steps:

Frontiers in Neuroinformatics | www.frontiersin.org 3 December 2015 | Volume 9 | Article 29

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Nowke et al. Integrating Visualizations into Modeling NEST Simulations

FIGURE 2 | Depiction of the four elementary workflow steps. Arrows

indicate influences on a particular workflow step to another one. After the

model definition (W1) is concluded simulation (W2) is performed. Next,

simulation artifacts are post-processed (W3) and passed to the analysis step

(W4). Analysis influences the post-processing step whenever, e.g., a new

statistical measure is needed to assess system behavior. Analysis also effects

the model definition, e.g., to converge the model to biological findings.

Definition of a model (W1)—A definition of a neural system is
encoded in a NEST script and possibly referencing additional
resources. This description is either written in SLI, the native
simulation language interpreter, or PyNEST (cf. Eppler et al.,
2009; Zaytsev and Morrison, 2014), or PyNN (cf. Davison
et al., 2009). For parameter studies, multiple model definitions
encoding the parameter details are used and subsequently
simulated in order to detect change of dynamics in the model
(O2). Revising model parameters include, e.g., defining synaptic
strengths, the relative strength of inhibitory compared to
excitatory synapses, the connectivity of neurons, and stimuli
to a subset of neurons to induce activity to the network. This
task is mainly limited by the turnaround time of a simulation
run. Additionally, recording devices are attached to the network
model in order to record data from the simulation. These devices
can be, e.g., spike detectors, which monitor sets of neurons
for spiking activity, or voltmeters, recording voltage traces of
neurons. The output of attached recording devices form the raw
data for investigating the mechanism governing the behavior
of the system, e.g., the firing of populations or oscillations in
activity between these (O3).

Simulation of the model (W2)—When a first model definition
has been completed, it is, depending on the computational
complexity of the neural system, either simulated directly on
the researcher’s computer or submitted to a high performance
computing machine. Reproducibility is ensured by storing the
simulation model as well as all its resources in Sumatra (cf.
Davison, 2012). Subsequently, the simulation run is performed.

Post-process simulation output (W3)—Once simulation is
completed, aggregation of recorded data begins. Due to the
distributed nature of NEST computing the model, simulation
output is usually scattered over multiple files. This necessitates
merging of simulation output as a first post-processing step
in order to derive statistical measures quantifying network
behavior. These measures will later on be used to conduct
parameter studies (O2) with the overall aim to converge to a
consistent model definition (O1). However, the produced post-
processing data artifacts are highly dependent on the specific

simulation model and the current research questions under
investigation. In our example, we focus on a multi-area model
where our collaborators also include connectivity information
of the network on multiple scales. The model consists of areas,
where each area is composed of populations, which on their part
are formed of a set of distinct neurons. To calculate statistical
measures over populations and areas, this mapping information
is required in order to assign neurons to populations and areas.
These measures then provide means to investigate the underlying
dynamics of populations and areas (O3). For instance, statistical
measures of interest are activity between areas in unit time,mean
firing rate of populations and areas, or correlations of spiking
neurons. In addition to derived data, storing raw simulation
output, e.g., spike trains of individual neurons, provide further
data artifacts that can be used for visual data exploration.

Analysis (W4)—Last, the final step in the workflow applies
analysis to the recorded spiking activity, derived statistical
measures, and topology information in order to analyze the
model’s behavior (O1, O4, O5). Our proposed architecture
is primarily targeting at supporting the analysis process, in
particular O2 and O3. Data analysis in this context is a highly
volatile process and thereby cannot strictly be mapped to specific
instructions that have to be performed in a particular order.
This significantly affects a software architecture insofar that it
has to be highly flexible in regard to changes in this analysis
workflow phase. In fact, due to the sheer unlimited number of
combinations of analysis questions, a “one-tool-fits-them-all”
approach is most likely a futile development effort. Therefore,
a tool ecosystem allowing analysts to link specific visualizations
together according to the workflow needs, thus effectively
applying the CMV paradigm, is one of the central ideas proposed
in this paper.

The described workflow is of iterative nature but not strictly
bound to follow each presented step in the same order. Finally,
following these observations we conduct a requirement analysis,
which we will discuss in detail in the next section.

2.3. Requirement Analysis
In order to augment the previously described workflow by a
software architecture, we derive its requirements essentially
from two pillars. On the one hand, we look into the analysis
workflow and research objectives with a focus on data modalities
resulting from simulations in W2, derived measures from W3,
and existing methods of exploratory data analysis from stepW4.
On the other hand, visualizations, as data consumers, impose
certain requirements, e.g., access patterns on data structures,
due to their interactivity and real-time rendering capabilities.
Based on these, we deduce on requirements for an integration
framework. Integration in this context means to bring together
post-processing (W3) and analysis as part of one workflow (W4).
In order to support visual analysis, simulation output and its
derived statistical measures need to be accessible to visualization
applications. In addition, exploratory visual analysis and its
specific objectives under investigation often demand specific
tools that focus on the particular data sets and scientific

Frontiers in Neuroinformatics | www.frontiersin.org 4 December 2015 | Volume 9 | Article 29

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Nowke et al. Integrating Visualizations into Modeling NEST Simulations

question to extract relevant insight. This leads to custom-tailored
visualizations that should be embedded in the workflow and can
operate as a tool on their own. Nonetheless, scientific questions
are not investigated in isolation. Therefore, researchers should be
able to link each of these tools together, forming tool chains, in
order to meet the current analysis workflow. Thus, an integration
framework must make it possible first and foremost, to access,
inject, and modify simulation artifacts resulting from W1, W2,
andW3. In addition, this data management functionality should
directly be integrated into the modeling environment for ease
of use and user acceptance, bearing little to no overhead to
the modeling effort. On top, it must provide capabilities to
link visualizations, which implies clear interface definitions
for each visualization component as well as a communication
infrastructure to transport data. The integration of the modeling
environment aims at a convenient way to setup, configure and
drive visualizations within the work environment already used
for post-processing data. In the next paragraphs, we will present
requirements and a solution capturing the needed functionality.

Data storage (R1)—An appropriate storage concept needs
to capture simulation output, aggregated from W2, model
parameters, model-topology, if available, from step W1 and
further statistically derived quantities computed from W3 in
order to support O1, O2, and O3. Ideally, several instances of
simulation results can be deposited to allow for, e.g., parameter
comparison of the neural systems’ behavior or investigate
the scaling behavior between downsized neuron models and
biologically realistic ones (O2, O4, and O5). Simulation
output should be loadable from several sources, i.e., a running
simulation, a file stored on disk, or directly injected within the
modeling environment. In addition, the storage concept has to
be flexible and not tied to a particular simulation model. On top,
it has to handle visualization specific data artifacts, e.g., geometry
used for rendering, color tables, or configuration settings for
view management.

Data access (R2)—Data aggregated in a system that meets
R1 needs to be accessed by several consumers synchronously.
In particular, mechanisms to access data within the modeling
environment has to be provided. Visualizations need means
to retrieve data to effectively assist in step W4. Because the
architecture should allow for visualizations to run on remote
systems, data communication over a network needs to be
provided. However, since consumers cannot know a priori which
data is stored, yet are aware of the data artifacts they process and
operate on, an interface to query content from the storage needs
to be provided.

Data modification (R3)—Modifications on data artifacts
resulting from W1 to W3 need to be performed at runtime
by multiple sources, e.g., a running simulation, the modeling
environment, or interactive visualizations. In addition, when
changes of data occur, means of notifying consumers operating
on this data must be provided in order to ensure distribution of
data is consistent. On top, when data artifacts associated with a
statistical measure are changed, re-computation of this measure
should be triggered.

Statistical measures (R4)—Statistical measures of simulation
results are one of the main means to analyze model behavior
and are the central point of investigation in W4. However,
these measures and their investigation are highly variable in
regards to modification and are added or removed depending
on analysis need. Therefore, an architecture ideally includes the
computation of statistical measures, with the aim of partially
substituting manual triggering computation of these thus
assisting in W3. Statistical measures have to be recomputed
whenever their parameters or implementation changes or
the underlying simulation results are updated. In addition,
their implementation should ideally be carried out in the
modeling environment to allow for rapid prototyping. This
leads to more flexibility in adding new measures and empowers
researchers to implement these on demand. However, if their
evaluation is computationally expensive, the architecture
should support exchanging their implementation with more
efficient ones.

Interaction between views (R5)—Visualizations are tailored
to display a subset of heterogeneous data in W4 to reveal
relationships which leads to a multitude of distinct views. On
top, there might be interesting relationships depicted in distinct
views. In order to reveal these relationships, linking of views is
required so that interaction is shared between them. Therefore,
synchronization of user interaction is required.

Controlling views (R6)—While analyzing simulations (W4),
views have to be managed. This includes instantiating views,
configuring their input and output data, and controlling their
individual properties, e.g., to directly jump to a specific point in
the simulation, start or stop playback, or reload an updated data
set. Moreover, researchers should be able to do so conveniently
within the modeling environment.

Based on this requirement acquisition, we introduce an
architecture which implements and fulfills the presented
requirements in the following section.

2.4. Architecture
Our proposed design centers around three distinct components,
as seen in Figure 3, namely data sources, data management, and
data consumers. Each component can exist in isolation. However,
communication between components explicitly requires the
use of an interface which connects individual instances of
components together. A special case is the communication of
individual views as instances of the data consumer component
which directly communicate states between each other.

2.4.1. Data Sources and Data Management
Data sources can be, e.g., the output of recording devices
from NEST, experimental data, or a running simulation writing
output consecutively per time step. The data management
component serves as a data sink for sources to place data into
storage in accordance to R1. It encapsulates data artifacts from
workflow steps W1, W2, and W3. In addition, globally shared
data for consumers, e.g., geometry used for rendering, can be
deposited. In order to store data a source delivers its content

Frontiers in Neuroinformatics | www.frontiersin.org 5 December 2015 | Volume 9 | Article 29

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Nowke et al. Integrating Visualizations into Modeling NEST Simulations

FIGURE 3 | Depiction of the architecture’s design: data sources push raw data to the data management where it is being pre-processed and stored.

The data management acts as single point of access for data consumers and embeds the modeling environment. Multiple consumers, i.e., views can retrieve data

from the data management. Consumers share interactions by means of peer-to-peer connections.

by interfacing the data storage. Consumers query data elements
using this interface thus the data management provides a single
point of access (R2). As a side effect, this enables consumers to
act as data transformers processing and subsequently publishing
data to the data management.

Modification of content is realized by interfacing the data
management (R3). Here, only a distinction between whether the
modified content should replace a data entity or being appended
to the already stored one is necessary. Consider the case where
a simulation consecutively ships spike trains per time step to
the data management. If the data management can only replace
existing spike trains with new ones, this will require all data
sources (in this case a NEST simulation) to internally aggregate
all previously computed data to ship these consistently, which
is unfeasible. By additionally exposing the data management
interface to the modeling environment, modelers are able to
directly change data in W4. Likewise, it eliminates the need to
dump simulation output to disk for interfacing visualizations.
In order to conveniently populate the data storage, a data
source loading simulation output from an HDF5 container
(cf. Folk et al., 1999) and forwarding all content has been
implemented.

Whenever data is pushed to the data management it can,
depending on the data entity received, trigger a processing task.
This way, a processing task like the re-computation of a statistical
measure can be triggered (R4). For instance, whenever spike
trains for a neuron population are received computation of
the mean firing rate is triggered. Moreover, implementation of
measures can be carried out in the modeling environment (R4).

In addition to a processing task, notification of change is
published to all consumers. Consumers can therefore decide to
query for new content or to handle change of data differently.
Considering that users can, at any point in time, interact with
views it is highly undesirable to reload data thus interrupting
analysis. In this case, reloading of data can be postponed until
interaction is concluded. Additionally, if a visualization is acting

as a data source, data acquisition can be skipped since the change
is caused by itself and no reload is required.

2.4.2. Data Consumers
Data consumers constitute the last component of this
architecture. Consumers are standalone applications, specifically
tailored to a particular analysis task. In order to retrieve
data consumers connect to the data management component
interface (R2). Then, requests for data are sent to the data
management where they are internally looked up for availability.
If available, the data management emits a response containing
the data to the requester. Otherwise, an empty respond is
forwarded indicating that the request could not be handled. In
accordance to R3, consumers can change the storage model by
acting as a data source. A benefit of decoupling data management
from consumers is the preservation of customizations performed
in views and the elimination of restarting them. Whenever data
is changed, the user’s perspective on the data is unchanged,
therefore requiring no interaction to reestablish a previous state.

2.4.3. Data Synchronization
The proposed architecture distinguishes between two data
distribution semantics over a network. The first one is a simple
bidirectional communication channel implementing a request-
reply pattern (cf. Hohpe and Woolf, 2004) and is solely used
for transferring large data chunks between communication
partners. The entire data management interface is realized using
this distribution semantic. The second distribution semantic
implements a slot concept, which effectively allows for an
event-driven architecture (cf. Michelson, 2006) and is used
for light-weight communication, as needed for transferring
interaction states between consumers. A slot is an asynchronous
unidirectional communication channel, which is strongly typed
to an event it operates on. A concrete slot is either publishing
events or a subscriber to events. Subscribers can be connected
to one or multiple publishing slots. Conceptually, connected

Frontiers in Neuroinformatics | www.frontiersin.org 6 December 2015 | Volume 9 | Article 29

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Nowke et al. Integrating Visualizations into Modeling NEST Simulations

slots describe a distributed data-flow network (cf. Abram and
Treinish, 1995). Slots can be created within the modeling
environment or in native application code. In addition, the
architecture allows to dynamically reconfigure slot connections at
runtime.

Linking user interactions between consumers (R5) is realized
by directly coupling views by means of a collection of slots. To
this end, consumers centrally announce, at their instantiation,
functionality they expose via slots. A central slot manager collects
all slots currently registered in the system (cf. Figure 4). A
linking operation between views is then realized by connecting
a subscribing slot of a view to a publishing one of another.
Since multiple subscribers can be connected to one publisher,
multiple views can be synchronized to, e.g., a selection published
by one view. Nonetheless, linking views this way assumes that
all consumers share the same understanding (i.e., semantic)
of how to interpret the content of an event. Currently, the
architecture only allows for connecting slots of the same event
type, and the implementation of views must adhere explicitly to
the same interpretation. Explicitly in this context means that a
view developer needs to be aware of this restriction and there
is no way the system can enforce the same interpretation of an
event. There are two possible solutions to enforce this restriction.
First, the semantic of an event can be defined to be the type of
an event. However, this leads to an explosion of events because
even if two events encode the same data structure, they need to
be made artificially distinct in order to carry semantics. Second,
a more elegant approach, is based on semantic modeling of
events. Here, an event is associated with a concept described in
an ontology (cf. Wang et al., 2004). Based on this ontology, a
semantic reasoner can be used to provide appropriate concepts
that can be related. If two concepts are related the system can

instantiate additional slots that transform the content of events to
the desired one. On top, concept transformations can be encoded
as part of the ontology, thus allowing for a flexible integration of
views without introducing new events.

Controlling views (R6) is realized by exposing slots to
the modeling environment in order to connect to views of
interest and emit events. Moreover, manual reconfiguration of
the data-flow network can be carried out within the modeling
environment thus configuring all visualizations conveniently to
the current needs in the workflow.

The core architecture is implemented in C++ and is
supporting Linux and Windows operating systems. Slot
functionality is exposed by providing Python language bindings.
This allows for interfacing with any Python based modeling
environment and enables development of consumers in either
native C++ or Python.

3. RESULTS

In this section we present views which utilize the architecture
presented in the preceding section. To evaluate the system and to
show its applicability, we present it on the basis of the workflow
introduced in Section 2.2 with a neural model developed by our
collaborators (cf. Schmidt et al., 2014). We assume that workflow
step W1, W2 are concluded and outline the analysis task by
introducing four views that operate on the simulation artifacts.
Finally, we elaborate on the process of integrating a new view for
the analysis tasks into the architecture. Each presented view is a
standalone application that is wired via slots in such way to reflect
the presented use case. However, they can also be used in different
analysis scenarios.

FIGURE 4 | The SlotManager is the central registration endpoint for all slots. It lists all components that registered a slot, shows their name and type and

allows for connecting them by double-clicking on their list entry. When a user reconfigures a slot, a control message is emitted that informs the slot to rebind itself to a

given address.

Frontiers in Neuroinformatics | www.frontiersin.org 7 December 2015 | Volume 9 | Article 29

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Nowke et al. Integrating Visualizations into Modeling NEST Simulations

3.1. Model Development
In our collaborators work, model development is conducted
with a combination of SLI for model definition and Python
as modeling environment which is primarily used in W3 and
W4. To access data for exploratory analysis in W4 the data
management component is instantiated as part of W3 in the
modeling environment. In this scenario, we will focus on
introducing the data explorer view that enables the inspection
of simulation artifacts. Next, we describe the control view
allowing for the simultaneous exploration of mean firing rates
of the simulation model. Following this, we shift focus to
the comparison view which is linked to user input in the
data explorer view and assists in the comparison of individual
metrics of simulated areas. Consecutively, we present a use case
where a simulation script is instrumented in order to visualize

spike trains in the raster plot view while the simulation is still
running.

3.2. Data Explorer View
In order to explore simulation results stored within the data
management component the data explorer view is started. This
allows for a quick overview if data was successfully transferred
and measures correctly applied. The data explorer view presents
the content of the data management as a 2D graphical user
interface in several windows (cf. Figure 5). First, it presents a list
of all simulated brain areas in the model. Here, colors can be
assigned to each area which are used in the control view, which
will be discussed later, for depictions associated with each brain
area. The user can double-click on each area and the mean firing
rate as a function plot over time is shown in a separate window.

FIGURE 5 | Depiction of the data explorer view. This view provides several windows the user can interact with. The area browser (top left) lists all brain areas from

the simulation model. A color can be assigned, which is later on used by the control view for area depictions. When the user double-clicks on an area name, the

corresponding mean firing rate of this area is displayed as a function plot over time (see area rate plot window) which depicts the difference of spikes per time. The

time control window (bottom left) provides a slider to navigate in time, which is also synced with the control view, to allow for convenient navigation in time of the

simulation run. The spike browser window lists areas and the name of populations (inhibitory populations are marked in text labels as “I,” excitatory ones “E”

respectively) neuron firing statistics. When the user clicks on an area, the raster plot for this area is shown (top right) where red depicts inhibitory populations and blue

excitatory ones. The update window (bottom right) allows to manually emit notifications for views to sync data. Data depicted originates from Schmidt et al. (2014).

Frontiers in Neuroinformatics | www.frontiersin.org 8 December 2015 | Volume 9 | Article 29

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Nowke et al. Integrating Visualizations into Modeling NEST Simulations

Furthermore, the user can perform multiple selections of areas
in this list for comparison in a special view. Second, a spike
browser window lists all populations of each area with associated
neuron statistics. These include the spike train of the most active
neuron and the total number of spikes per population and area.
By double-clicking on a population or area, its corresponding
raster plot is displayed respectively. Additionally, a time control
window presents a slider to conveniently navigate in simulation
time which is synchronized with the control view in accordance
to R6. Third, an update window provides a button to manually
trigger notifications to views to sync data.

3.3. Control View
After a quick validation of stored model content, the researcher
shifts focus to get an overview of the neural system’s behavior
over the entire simulation run. Instead of comparing mean
firing rates of all areas individually by using the data explorer
view’s plotting window, the control view is started. The control
view provides 3D renderings of all areas using geometry data
which relates to the neural model (cf. Figure 6). It provides
the advantage of depicting all areas at once and shows their
time-varying activity by means of color-coding the geometry of
each area. The simulation model of our collaborators studies
the macaque visual cortex therefore geometry data of the cortex
is used. Since the control view is a data consumer it first
retrieves geometry data from the data management and queries
mean firing rates of areas, populations, the simulation duration
and finally spike trains for visualization purposes. Its primary
intent is to visualize network behavior to assist in verifying
model correctness by making it possible to quickly assess if the

simulation run yielded a network in a realistic low-activity state
over the entire simulation duration. The control view supports
different display systems such as a CAVE or a standard 2D
desktop system. However, if no such system is available to the
researcher, atlas selection of brain areas can be performed in
the data explorer view by connecting its selection slot as data
source to additional consumers. Depending on whether a realistic
low-activity state can be observed, further analysis takes place.

3.4. Comparison View
For comparison tasks of neural activity, analysis shifts focus to
individual areas and their populations. To this end, the modeler
starts the comparison view. This view enables researchers to
focus on only a subset of areas (cf. Figure 7). The modeler
selects areas of interest in the data explorer view, but could in
principle connect to any consumer exposing selection events
via slots, which are then displayed as 3D renderings in the
comparison view. In addition, panels appear for the selected areas
respectively, which depict neuron activity as a raster plot, mean
firing rate of individual populations encoded as a moving bar
chart, and the connectivity of populations, which is displayed
by means of a connectivity matrix. To compare time varying
data a slider is provided to navigate in simulation time which
is synchronized to the data explorer’s time slider. On top, the
researcher can point to an area in this view which is then put next
to the previous selections in order to conveniently compare them.
In this analysis scenario, the modeler is not satisfied with the
mean filter used to calculate firing rates. Therefore, the researcher
decides to change the convolution kernel within the modeling
environment (R4) and computes new mean firing rates for all

FIGURE 6 | A user in a CAVE inspects a simulation run using the control view. Annotations tied to brain areas help to relate brain areas to geometry. Areas are

color-coded with regards to their current mean firing rate. 2D panels (background) show statistical measures. System control is realized using extended pie menus (cf.

Gebhardt et al., 2013); data depicted originates from Schmidt et al. (2014).

Frontiers in Neuroinformatics | www.frontiersin.org 9 December 2015 | Volume 9 | Article 29

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Nowke et al. Integrating Visualizations into Modeling NEST Simulations

FIGURE 7 | The comparison view allows users to compare multiple brain areas in a single 3D view. Selections performed in the data explorer view are

synced to a 3D rendering of all areas. By pointing with an input device a selection in 3D on an area is performed, which allows to inspect raster plots of neuron activity,

the mean firing rate, the connectivity of populations, and the individual firing rates of its populations next to each other. A slider (bottom right) provides the means to

navigate in time. Depicted data originates from Schmidt et al. (2014).

areas. Thereafter, she passes the results to the data management
which automatically notifies the control view and comparison
view to retrieve the new data. Since the view on data is preserved,
analysis continues without the need to perform the selection task
of areas again.

3.5. Raster Plot View
While analyzing the simulation results, the researcher sees the
need to change the model definition. Therefore, a new simulation
run is required. However, this time, for a quick hypothesis
validation, she is only interested in the spike trains of a particular
area in the model and instruments its spike detector. Instead of
writing spike trains to disk, she defines a slot which sends all spike
events from recording devices of the current time step directly
to the data management. Consequently, the spike detector’s
recordings are redirected to the new slot. While performing
simulation, she starts the interactive raster plot view, which
shows all spike trains currently stored for this area in the data
management and updates whenever the simulation produces new
data. On top, she is able to pause and continue the solver via slots.

3.6. Integrating an LFP View
In the previous paragraph, we have focused on the integration of
visualizations into the workflow. However, the presented system
offers a variety of additional views which are discussed in more
detailed in Nowke et al. (2013). We will now focus on the process
to integrate a newly developed view into the system when an
analysis question changes. For this reason, we consider a case
where local field potential (LFP) measurements for the macaque
visual cortex are available from an ife experiment where it is of

FIGURE 8 | The LFP view relates experimental LFP measurements to

the location of their recording in 3D space. In addition, the recorded

signals of electrodes are shown in a matrix arrangement, color-coded by their

current potential.

interest how LFP signals propagate along the cortex surface where
measurements were obtained.

The LFP view visualizes electro-physiological sum-potentials
of neural activity. Signals are recorded extracellular and
subsequently low-pass filtered to exclude the direct recording
of single action potentials. A 10 × 10 array of micro-electrodes
registering LFP signals of the visual cortex while a monkey
performs a visual task is used (cf. Ito et al., 2013). One objective
of this study is the investigation of correlation between eye-
movement and LFP signals. Therefore, this view offers a 10× 10
color-encoded matrix (cf. Figure 8). Each square represents the
filtered output of an individual electrode where color encodes the

Frontiers in Neuroinformatics | www.frontiersin.org 10 December 2015 | Volume 9 | Article 29

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Nowke et al. Integrating Visualizations into Modeling NEST Simulations

phase of the LFP signal in the interval [0, 2π] according to a color
lookup table. LFP signals are time-varying data, thus the matrix
displays changes in color over time. To assure perceptibility of
changes in the signal the recording speed is reduced by orders
of magnitudes. The 2D matrix is mapped to the 3D surface of
the brain and relates to the array’s position from the in vivo
recordings.

In order to integrate the LFP view into the architecture,
first the data management must be extended to include LFP
signal data. Second, a new slot event containing the LFP signal
data has to be provided and serialization of its data has to be
implemented. Nonetheless, the brain geometry is reused from
the control view and therefore can directly be queried from the
data management. Centralization of LFP data provides a benefit
whenever new measurements are made available. Although
necessitating the adaption of the data management. In the future,
simulations will compute LFP signals. In this setup, the LFP view
provides a probe to interactively select a region of interest to be
visualized comparable to in vivo experiments. When comparing
the experimental data to simulation results, it might be useful
to synchronize the camera position and orientation to, e.g., the
control view. For this purpose, two new slots are added to the
visualization LFP view. The first slot will subscribe to camera
transformation updates in order to synchronize the view. The
second slot will publish changes of the camera whenever the
user interacts within the visualization. Both slots will then be
connected.

4. DISCUSSION

The focus of the presented architecture is 2-fold: on the one
hand is the need to rapidly add new views for exploratory data
analysis while on the other hand, a closer integration of visual
data analysis into the workflow of modeling neural systems
is of concern. The proposed approach embeds visualizations
directly into the workflow which has been demonstrated along
a scenario of use cases. One of its benefits is the direct control
over simulation artifacts within the modeling environment.
This simplifies assembling simulation artifacts for visualization
purposes (W3) and avoids tedious interruptions in the analysis
workflow. Additionally, it enables development and integration

of new visualizations into rapidly changing analysis workflows
by exposing functionality via slots. This mechanism allows
visualizations to form tool chains depending on the analysis
needs and reconfiguring these at runtime. The key benefit of
this architecture is its extensibility and interoperability between
consumers that can focus on performing a particular analysis
task and be reused by other researchers or consumers in different
workflow scenarios. Additionally, it enables data sharing between
consumers and offers a mechanism to automatically synchronize
changes in data to consumers thus preserving customizations of
views, e.g., the user’s perspective on the scene. In comparison
to the workflow without the presented method, researchers
previously had first to assemble visualization artifacts and dump
these to disk in a custom data format. Following this, the
particular visualization had to be started and configured, e.g.,
navigating within the data set. Whenever data changed this
process had to be redone. Moreover, individual visualizations
had no means to communicate, e.g., selection states, therefore
requiring these operations to be performed repeatedly for
all visualizations to relate data artifacts. Without exposing
mechanisms to control views within the modeling environment
it was previously impossible to script common analysis tasks, e.g.,
navigating to a specific simulation time step to study parameter
influences. Table 1 presents previously introduced methods and
provides a comparison over selected criteria to our method.

We presented a use case where linking user selections to
different views is required (R5) as presented in Sections 3.2
and 3.4. While a concept to systematically formalize user
interaction and its transformations to views is difficult to realize,
the architecture forms a basis for advanced semantic linking
concepts in the future. One key step toward a realization is a
semantic description of simulation artifacts. Next, operations
and user intents on these need to be formalized. Based on
this description, the system can present a choice of suitable
candidates of views which operate on a simulation artifact
and fulfill the user’s analysis intent. Moreover, by exposing
functionality of consumers via slots combined with semantic
descriptions thereof analysis intents can be matched against
these to extract a collection of consumers that chained together
reflect the desired workflow. In addition, based on the semantic
description of functionality and required interaction to operate

TABLE 1 | Comparison of related methods with respect to capabilities: a green checkmark indicates whether a method supports a listed capability and a

red cross indicates its absent.

Remote visualization Extensibility Non-relational data Workflow integration 3D Visualization Streaming capabilities

Improvise × X × × × ×

SnapTogether × X × × × ×

CViews × × - × × ×

NeuralSyns - × X X X ×

NeuroVIISAS - × X × X ×

BrainX3 - × X X X X

Our X X X X X X

Entries with a blue dash could not be determined from literature. Categories include remote visualization which we define as the possibility to run a view in a network setup. Extensibility

we define as the possibility to add views without changing the source code. Non-relational data refers to the capability of handling heterogeneous data. Workflow integration means to

control consumers within the modeling environment. 3D visualization allows for 3D rendering of spatial data and streaming capabilities indicate whether the method is known to stream

data from solvers.

Frontiers in Neuroinformatics | www.frontiersin.org 11 December 2015 | Volume 9 | Article 29

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Nowke et al. Integrating Visualizations into Modeling NEST Simulations

views, transformations can be inferred. For instance, given a user
selection of a spike train in a raster plot view propagated via
a slot to a consumer operating on populations and there exists
a relation between the concept of a spike train to the concept
of a population, the system could automatically instantiate a
transformer. The transformer consists of two slots where the first
accepts a spike train and maps its input via a transformation
encoded as part of the concept to its second slot. Then, the system
can automatically reconfigure the data-flow to interconnect the
transformer between the raster plot view and the consumer
accepting a selection of populations. This approach allows for
flexible scaling of simulation artifacts and interactions whenever
new consumers are added. Thus, the presented architecture
and its associated visualizations represent a potential solution
for a coordinated multiple views framework assisting visual
analysis tasks while modeling neural networks in computational
neuroscience.

A current drawback of the architecture’s implementation is
the need to copy stored data entities to send them over a
network regardless of consumers running on the same machine.
However, using techniques like interprocess communication and
shared memory tables, optimization strategies for this case are
possible to implement as future work. The communication
mechanisms provided by slots is currently explicit; meaning that
the presented system cannot restrict users to connect, by mistake,
slots which do not share the same interpretation of events.
Nevertheless, the system allows for the development, integration
and adaption of visualizations to the rapidly changing analysis
workflows and can be improved to steer clear of its current
limitations. A major benefit of exposing functionality by slots
and providing language bindings to the modeling environment
is an API allowing researchers to integrate their own analysis
tools in Python or C++ and reusing already integrated ones. A
video demonstrating the architecture is included as part of the
supplementary material.

5. CONCLUSION AND FUTURE WORK

In this paper we have presented overall objectives for modeling
neural system simulations and inspected a resulting workflow.
From this starting point we have inferred requirements
for an architecture supporting the analysis process with
interactive visualization techniques and have presented an
architecture covering these requirements. In addition, we have
demonstrated its applicability along a use case and showed
where interactive visualizations can assist in modeling neural
simulations. Moreover, we have described the integration of a
new visualization into the system when analysis shifts focus.
Finally, we have presented a discussion elaborating on the
benefits of our approach and hinted at further development with
regard to semantic linking of views.

As future work we would like to couple NEST more tightly
to this integration approach by implementing recording device
proxies which can directly act as data sources for the data
management component. This would allow for the inspection
of network behavior while the simulation is still computed. To
readily investigate the impact of parameter changes, we would
like to develop visualization methods focusing on comparing
two or more simulation runs by, e.g., computing difference
signals, highlighting changes in connectivity within the model,
and assist in the evaluation of firing behavior of populations
and areas. Moreover, we are interested in exploring further
use cases evaluating the architectures applicability and present
visualizations more thoroughly tied to a concrete neuroscientific
workflow. Finally, we would like to develop methods to
semantically describe the input and interaction techniques of
views in order to allow for a flexible integration and user
controlled coupling between them. This would allow for a simple
integration and reuse of views depending on the rapidly changing
workflow.

AUTHOR CONTRIBUTIONS

CN: Conceived and implemented the described architecture and
has written all major parts of the article. DZ: Contributed the
LFP-View and has written the paragraph about it in the paper.
BW, BH, and DZ: Substantial revised the article, contributed to
the ideas presented in the article and supported the definition
of the scientific methods. TK: Revised the article and presented
valuable input to the manuscript. AP: contributed to the
underlying spike streaming concept for NEST simulations.

ACKNOWLEDGMENTS

The authors would like to acknowledge the support by
the Excellence Initiative of the German federal and state
governments, the Jülich Aachen Research Alliance—High-
Performance Computing and the Helmholtz portfolio theme
“Supercomputing and Modeling for the Human Brain.” In
addition, we would like to thank all people contributing to
this work from the Institute of Neuroscience and Medicine
(INM-6) and Institute for Advanced Simulations (IAS-6) at
the Forschungszentrum Jülich. The research leading to these
results has received funding from the European Union Seventh
Framework Programme (FP7/2007-2013) under grant agreement
n◦ 604102 (HBP).

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: http://journal.frontiersin.org/article/10.3389/fninf.
2015.00029

Frontiers in Neuroinformatics | www.frontiersin.org 12 December 2015 | Volume 9 | Article 29

http://journal.frontiersin.org/article/10.3389/fninf.2015.00029
http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Nowke et al. Integrating Visualizations into Modeling NEST Simulations

REFERENCES

Abram, G., and Treinish, L. (1995). “An extended data-flow architecture

for data analysis and visualization,” in Proceedings of the 6th

Conference on Visualization’95 (Washington, DC: IEEE Computer

Society).

Arsiwalla, X. D., Zucca, R., Betella, A., Martinez, E., Dalmazzo, D., Omedas, P.,

et al. (2015). Network dynamics with brainx3: a large-scale simulation of the

human brain network with real-time interaction. Front. Neuroinform. 9:02. doi:

10.3389/fninf.2015.00002

Binzegger, T., Douglas, R. J., and Martin, K. A. C. (2004). A quantitative map

of the circuit of cat primary visual cortex. J. Neurosci. 24, 8441–8453. doi:

10.1523/JNEUROSCI.1400-04.2004

Boukhelifa, N., and Rodgers, P. J. (2003). A model and software system for

coordinated and multiple views in exploratory visualization. Inform. Vis. 2,

258–269. doi: 10.1057/palgrave.ivs.9500057

Davison, A. (2012). Automated capture of experiment context for easier

reproducibility in computational research. Comput. Sci. Eng. 14, 48–56. doi:

10.1109/MCSE.2012.41

Davison, A. P., Brüderle, D., Eppler, J., Kremkow, J., Muller, E., Pecevski, D., et al.

(2009). Pynn: a common interface for neuronal network simulators. Front.

Neuroinform. 2:11. doi: 10.3389/neuro.11.011.2008

Eppler, J. M., Helias, M., Muller, E., Diesmann, M., and Gewaltig, M.-O. (2009).

Pynest: a convenient interface to the nest simulator. Front. Neuroinform. 2:12.

doi: 10.3389/neuro.11.012.2008

Folk, M., Cheng, A., and Yates, K. (1999). “HDF5: a file format and I/O library for

high performance computing applications,” in Proceedings of SC’99 (Portland,

OR).

Gebhardt, S., Pick, S., Leithold, F., Hentschel, B., and Kuhlen, T. (2013). Extended

pie menus for immersive virtual environments. IEEE Trans. Vis. Comput.

Graph. 19, 644–651. doi: 10.1109/TVCG.2013.31

Gewaltig, M.-O., and Diesmann, M. (2007). Nest (neural simulation tool).

Scholarpedia 2:1430. doi: 10.4249/scholarpedia.1430

Hohpe, G., and Woolf, B. (2004). Enterprise Integration Patterns: Designing,

Building, and Deploying Messaging Solutions. Boston, MA: Addison-Wesley

Longman Publishing Co., Inc.

Ito, J., Maldonado, P., and Grün, S. (2013). Cross-frequency interaction of the

eye-movement related lfp signals in v1 of freely viewing monkeys. Front. Syst.

Neurosci. 7:1. doi: 10.3389/fnsys.2013.00001

Markov, N. T., Misery, P., Falchier, A., Lamy, C., Vezoli, J., Quilodran, R., et al.

(2011). Weight consistency specifies regularities of macaque cortical networks.

Cereb. Cortex 21, 1254–1272. doi: 10.1093/cercor/bhq201

Michelson, B.M. (2006). Event-Driven Architecture Overview. Boston,MA: Patricia

Seybold Group. doi: 10.1571/bda2-2-06cc

North, C., and Shneiderman, B. (1997). A Taxonomy of Multiple Window

Coordination. College Park, MD: Institute for Systems Research.

North, C., and Shneiderman, B. (2000). “Snap-together visualization: a user

interface for coordinating visualizations via relational schemata,” in Proceedings

of the Working Conference on Advanced Visual Interfaces, AVI ’00 (New York,

NY: ACM), 128–135.

Nowke, C., Schmidt, M., Albada, S. J. V., Eppler, J. M., Bakker, R., Diesmann, M.,

et al. (2013). “VisNEST interactive analysis of neural activity data,” in IEEE

Symposium on Biological Data Visualization (BioVis) (Atlanta, GA), 65–72. doi:

10.1109/BioVis.2013.6664348

Roberts, J. C. (2007). “State of the art: coordinated & multiple views in exploratory

visualization,” in Fifth International Conference on Coordinated and Multiple

Views in Exploratory Visualization (CMV 2007) (Washington, DC), 61–71. doi:

10.1109/CMV.2007.20

Ryu, Y. S., Yost, B., Convertino, G., Chen, J., and North, C. (2003).

Exploring cognitive strategies for integrating multiple-view visualizations.

Proc. Hum. Fact. Ergonom. Soc. Annu. Meet. 47, 591–595. doi:

10.1177/154193120304700371

Schmidt, M., Bakker, R., Diesmann, M., and van Albada, S. (2014). “A spiking

multi-area network model of macaque visual cortex,” in Annual Meeting of the

SfN (Osaka: Computational and Systems Neuroscience).

Schmitt, O., and Eipert, P. (2012). NeuroVIISAS: approaching multiscale

simulation of the rat connectome. Neuroinformatics 10, 243–267. doi:

10.1007/s12021-012-9141-6

Schuecker, J., Schmidt, M., van Albada, S., Diesmann, M., and Helias, M.

(2015). Fundamental activity constraints lead to specific interpretations of the

connectome. arXiv:1509.03162.

Sousa, M., and Aguiar, P. (2014). Building, simulating and visualizing large

spiking neural networks with NeuralSyns. Neurocomputing 123, 372–380. doi:

10.1016/j.neucom.2013.07.034

Stephan, K. E., Kamper, L., Bozkurt, A., Burns, G. A., Young, M. P., and Kötter, R.

(2001). Advanced database methodology for the collation of connectivity data

on the macaque brain (cocomac). Philos. Trans. R. Soc. Lond. B Biol. Sci. 356,

1159–1186. doi: 10.1098/rstb.2001.0908

Wang, X. H., Zhang, D. Q., Gu, T., and Pung, H. K. (2004). “Ontology based

context modeling and reasoning using owl,” in Pervasive Computing and

Communications Workshops, 2004. Proceedings of the Second IEEE Annual

Conference on (Washington, DC: IEEE Computer Society), 18–22.

Wang Baldonado, M. Q., Woodruff, A., and Kuchinsky, A. (2000). “Guidelines

for using multiple views in information visualization,” in Proceedings of the

Working Conference on Advanced Visual Interfaces - AVI ’00 (New York, NY),

110–119.

Weaver, C. (2004). “Building highly-coordinated visualizations in improvise,” in

IEEE Symposium on Information Visualization (Austin, TX: IEEE Computer

Society), 159–166.

Zaytsev, Y. V., and Morrison, A. (2014). Cynest: a maintainable cython-

based interface for the nest simulator. Front. Neuroinform. 8:23. doi:

10.3389/fninf.2014.00023

Conflict of Interest Statement: The authors declare that the research was

conducted in the absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Copyright © 2015 Nowke, Zielasko, Weyers, Peyser, Hentschel and Kuhlen. This

is an open-access article distributed under the terms of the Creative Commons

Attribution License (CC BY). The use, distribution or reproduction in other forums

is permitted, provided the original author(s) or licensor are credited and that the

original publication in this journal is cited, in accordance with accepted academic

practice. No use, distribution or reproduction is permitted which does not comply

with these terms.

Frontiers in Neuroinformatics | www.frontiersin.org 13 December 2015 | Volume 9 | Article 29

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

	Integrating Visualizations into Modeling NEST Simulations
	1. Introduction
	2. Materials and Methods
	2.1. Research Objectives
	2.2. Workflow Analysis
	2.3. Requirement Analysis
	2.4. Architecture
	2.4.1. Data Sources and Data Management
	2.4.2. Data Consumers
	2.4.3. Data Synchronization

	3. Results
	3.1. Model Development
	3.2. Data Explorer View
	3.3. Control View
	3.4. Comparison View
	3.5. Raster Plot View
	3.6. Integrating an LFP View

	4. Discussion
	5. Conclusion and Future Work
	Author Contributions
	Acknowledgments
	Supplementary Material
	References

