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Integrating yeast chemical genomics and mammalian

cell pathway analysis
Fu-lai Zhou1,2, Sheena C Li3, Yue Zhu1,2, Wan-jing Guo1,2, Li-jun Shao1,2, Justin Nelson4, Scott Simpkins4, De-hua Yang1, Qing Liu1,

Yoko Yashiroda3, Jin-biao Xu5, Yao-yue Fan5, Jian-min Yue5, Minoru Yoshida3,6,7, Tian Xia8, Chad L Myers4, Charles Boone3,9 and

Ming-wei Wang1,2

Chemical genomics has been applied extensively to evaluate small molecules that modulate biological processes in Saccharomyces

cerevisiae. Here, we use yeast as a surrogate system for studying compounds that are active against metazoan targets. Large-scale

chemical-genetic profiling of thousands of synthetic and natural compounds from the Chinese National Compound Library

identified those with high-confidence bioprocess target predictions. To discover compounds that have the potential to function like

therapeutic agents with known targets, we also analyzed a reference library of approved drugs. Previously uncharacterized

compounds with chemical-genetic profiles resembling existing drugs that modulate autophagy and Wnt/β-catenin signal

transduction were further examined in mammalian cells, and new modulators with specific modes of action were validated. This

analysis exploits yeast as a general platform for predicting compound bioactivity in mammalian cells.
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INTRODUCTION
The budding yeast, Saccharomyces cerevisiae, is a powerful model
organism for biological studies due to its genetic tractability and
ease of propagation [1]. Although human and yeast are distant
evolutionarily, essential genes and pathways are highly conserved
between these organisms. Indeed, when a total of 414 essential
yeast genes were replaced by their human orthologs, nearly half
(47%) could be successfully humanized [2]. Because of homo-
logous cell cycle, cell fate, and aging pathways, S. cerevisiae has
been directly used to discover therapeutic leads against a wide
variety of diseases, in both target-based and phenotypic-based
screens [3–6].
Yeast is an ideal model for global genetic analysis. Numerous

studies, including the analysis of haploid deletion mutants of
non-essential genes, haploinsufficiency profiling of essential
genes [7, 8], and the analysis of essential gene conditional alleles
[9, 10], have been carried out to explore single gene function.
More complex genetics can be examined through synthetic
genetic array (SGA) analysis, an automated technique for studying
genetic interactions on a large scale. A genetic interaction occurs
when the combination of different gene perturbations leads to an
unexpected phenotype, such as synthetic lethality, where two
viable mutations combine to generate a lethal or severely sick

double mutant phenotype [11, 12]. Genome-wide SGA analysis
generated a global genetic interaction map of budding yeast
based on genetic interaction profile similarity [13, 14]. The set of
genetic interactions for any given query gene comprise its
genetic interaction profile. Genes that belong to the same
biological pathway tend to share similar patterns of genetic
interactions, thus genetic interaction profiles provide a quantita-
tive description of every gene’s biological function. This allows
annotation of many genes to general bioprocesses, such
as DNA replication, RNA splicing, protein degradation, and
nuclear-cytoplasmic import, at an intermediate profile similarity
threshold, or to specific protein complexes and signaling path-
ways such as the proteasome, the vacuolar H+ ATPase, and the
protein kinase C pathway, at higher profile similarity thresholds.
Thus, the global genetic interaction map can be viewed as a
comprehensive map of cellular function [14].
Chemical genomics combines genetic resources, such as large-

scale mutant collections and chemical libraries to investigate the
potential association between compounds and cellular targets
[15–17]. Recently, we developed an unbiased, high-throughput,
chemical genomic screening platform to functionally characterize
bioactive compounds in a highly parallel assay [18]. To minimize
the amount of compound required for screening, our pipeline
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employs a diagnostic set of DNA-barcoded gene deletion
mutant yeast strains, each constructed in a drug-hypersensitive
genetic background. These mutants are pooled and grown
competitively in the presence of bioactive compounds. Strain-
specific DNA barcodes enable monitoring of strain abundance
within a pool and identification of chemical-genetic interactions.
A second set of barcodes unique to each compound treatment is
introduced by polymerase chain reaction (PCR), allowing highly
multiplexed experiments resolved using next-generation sequen-
cing (NGS) [18].
The present study explores the utility of yeast chemical-genetic

profiles for discovering small molecules with defined targets in
mammalian systems. From a primary analysis of 333,200
compounds from the Chinese National Compound Library (CNCL)
that contain small molecules from both synthetic and natural
sources, we identified 5360 compounds that inhibited yeast cell
growth and subjected this subset to a high-throughput
screening (HTS) campaign using our diagnostic chemical genomic
platform [18]. Ultimately, 1109 compounds with high-confidence
target predictions, associated with 17 major bioprocesses, were
identified, and their general cellular functions [18] annotated.
To integrate these bioprocess level target predictions with
mammalian cell pathways, the chemical-genetic profiles of these
compounds were compared to those of a reference library
consisting of 1898 approved drugs with known modes of action.
Two bioprocesses, namely autophagy, which is highly conserved
from yeast to humans [19] and the Wnt/β-catenin signaling
pathway, which is found only in higher eukaryotes, were chosen
to verify the predicted effects of CNCL compounds on mammalian
cells. Our results suggest that yeast-based chemical genomic
analysis provides a powerful and general approach for predicting
cellular targets in mammalian cells.

MATERIALS AND METHODS
Reagents
Benomyl, D-sorbitol, furazolidone, galactose, glucose, methyl
methanesulfonate (MMS), β-mercaptoethanol, and yeast extract
were purchased from Sigma (St. Louis, MO, USA). Peptone and
RNase A were bought from Sangon Biotech (Shanghai, China).
QIAcube HT kits were procured from QIAGEN (Duesseldorf,
Germany), Geneclean III kits and Zymolyase-100T from MP
Biomedicals (Irvine, CA, USA), Universal Hot Start High-Fidelity
PCR Master Mix from Biotool (Shanghai, China), Kapa Library
Quantification kits from KAPA Biosystems (Wilmington, MA,
USA), and Bortezomib from MedChem Express (Monmouth
Junction, NJ, USA).

Antibodies
The following antibodies were used: anti-LC3B (Sigma), anti-β-
tubulin (Proteintech, Rosemont, IL, USA), anti-β-actin, anti-GAPDH,
anti-β-catenin and anti-rabbit IgG (Cell Signaling Technology,
Danvers, MA, USA), as well as anti-VDAC1/porin (Abcam, Cam-
bridge, MA, USA).

Compound library
The 335 0988 synthetic and natural product-derived compounds
used in this study are stored at the Chinese National Compound
Library (CNCL), including 1898 commercially available medicines
approved by the Food and Drug Administration (FDA, USA). Their
structure diversity covers lactams, heterocycles, amides, secondary
amides, sulfonates, sulphonamides, etc. The compounds were of
high purity (>95%), checked randomly for quality control, and
solubilized in 100% DMSO prior to application.

High-throughput bioactivity screening
The pdr1Δ pdr3Δ snq2Δ drug-hypersensitive strain [18] (Y13206;
Supplementary Table 1) and the pool of 310 non-essential gene

deletion strains in the same drug-hypersensitive genetic back-
ground [18] (diagnostic set) were cultured in YPGal medium
(1% yeast extract, 2% peptone, 2% galactose) at 30 °C. All
the compounds were dissolved in DMSO from a stock concentra-
tion of 2 mM. Positive controls included benomyl, bortezomib,
and furazolidone (dissolved in DMSO from a stock solution of
10mg/mL), as well as methyl methanesulfonate (MMS; dissolved
in DMSO from a stock solution of 50mg/mL).
For bioactivity screening, hypersensitive yeast cells were seeded

onto 96-well plates at a density of 9.3 × 104 cells per well by
Multidrop Combi (ThermoFisher Scientific, Rockford, IL, USA) and
1 μL compound was added to each well using Freedom EVO
platform (TECAN, Männedorf, Switzerland; 80 compounds were
screened in each plate). After 24-h incubation at 30 °C, OD600

values were measured by an EnSpire Multimode Plate Reader
(PerkinElmer, Boston, MA, USA) to evaluate cell viability. Com-
pounds showing 45%–75% growth inhibition compared to DMSO
were selected for chemical-genetic screening using the diagnostic
set [18].

High-throughput chemical-genetic screening
Yeast culture conditions were the same as described above. A
total of 5520 initial bioactive hits were screened for chemical-
genetic profiles against the diagnostic set of pooled yeast strains
distributed in 96-well plates (each well containing 4.65 × 105/mL
cells, 196 μL YPGal medium, and 2 μL compound). OD600

was measured after 24 h followed by additional 24-h incubation
at 30 °C. The plates were then centrifuged at 1300× g for 4 min
before adding 125 μL zymolyase dissolved in 1 M D-sorbitol (final
concentration: 0.5 mg/mL) with 11.5 μM β-mercaptoethanol. The
samples were incubated for 1 h at 37 °C, centrifuged again at
2272× g for 5 min and processed using the QIAamp 96 DNA kit.
Genomic DNA extraction was performed with an automated high-
throughput nucleic acid purification robot, QIAcube HT (QIAGEN).
Strain-specific DNA barcodes were amplified using multiplex

primers and a communal U2 primer [18]. PCR conditions were set
as follows: 3 min at 95 °C for initial denaturation, 30 cycles of 15 s
at 95 °C, 15 s at 60 °C, 20 s at 72 °C, and a final extension time of
5 min at 72 °C. PCR products were purified from 2% agarose gels
by the Geneclean III kit, quantified using Kapa qPCR kit and
sequenced with Hiseq 2500 at WuXi AppTec (Shanghai, China).

Data processing and target prediction
The relative abundances of barcoded mutants after compound
treatment were quantified using amplicon sequencing. Chemical-
genetic interaction z-scores for enrichment or depletion in the
presence of the compound relative to the DMSO control were
generated from sequencing data using the BEAN-counter software
pipeline (https://www.github.com/csbio/BEAN-counter) [18, 20].
The screens were performed in four batches: each batch was
processed independently using BEAN-counter. Prior to combining
into the final dataset, the first singular value decomposition (SVD)
component was removed from each of the four individual
datasets to remove batch effects that were not reflective of true
signal.
Genetic interaction information was obtained from the global S.

cerevisiae genetic interaction dataset [14], which was derived from
quantitative growth observations of non-essential, double mutant
strains described previously [13, 14]. Perturbed biological pro-
cesses (a subset of 1309 terms from the GO biological process
ontology) [21] were predicted from chemical-genetic interaction
profiles using the CG-TARGET software pipeline [22]. CG-TARGET
leverages the similarity between chemical-genetic interaction
profiles and the genetic interaction profiles of their target genes
or proteins to predict the biological processes that are perturbed
by compounds. It also uses experimental control and randomly
re-sampled chemical-genetic interaction profiles to inform its
statistical analyses and estimate the false discovery rate (FDR) of
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each prediction. Predictions with a FDR ≤ 25% were considered to
be of high-confidence, with the associated compounds consid-
ered high-confidence compounds. Biological process terms were
mapped to the set of 17 functional neighborhoods identified by
spatial analysis of functional enrichment (SAFE) of the global yeast
genetic interaction network [14].

Chemical-genetic profile correlation analysis
To identify potential hits with pharmacological significance, we
calculated the similarity between the chemical-genetic profiles of
approved drugs (with known modes of action) and bioactive
compounds (with high-confidence process predictions). Chemical-
genetic profiles of compounds comprising the 1109 high-
confidence set (HCS) were compared to that of 77 derived from
the approved drug library. Similarity between any two profiles was
calculated using Pearson correlation coefficient and ranked from
highest similarity (1.0) to lowest similarity (−1.0).
To assess the shared targets of FH535, a known inhibitor of the

Wnt/β catenin signaling pathway [23], and 3305-2 G4 (also known
as drupacine, an alkaloid isolated from Cephalotaxus fortunei), a
pseudo-compound chemical-genetic profile was generated from
the profiles of the two compounds. This new profile was
generated by element-wise multiplication of the mean of the
two profiles with a weight vector derived from the agreement of
interactions across the two profiles. Specifically, the weight for
each chemical-genetic interaction was calculated as the product
of the corresponding interactions in the two compounds’ profiles,
with negative resulting values (i.e., sign disagreements) set to zero.
This weight emphasizes chemical-genetic interactions that agree
between the two compound profiles to produce a quantitative
pseudo-compound profile that is composed of the consensus
interactions. Direct targets were predicted by utilizing this profile
to calculate a genetic interaction normalized cosine score
between the pseudo-compound chemical-genetic interaction
profile and potential genetic interaction profile targets. This
methodology utilizes the same approach used for finding
molecular targets with chemical-genetic interaction profiling
[18, 22]. To assess the significance of the gene target predictions
for the FH535/3305-2 G4 pseudo-compound profile, two sets of
pseudo-compound chemical-genetic interaction profiles were
generated and a genetic interaction normalized cosine score
was calculated using the procedure described above: (1) FH535
with each of the CNCL compounds that had a high-confidence
bioprocess target prediction, and (2) 3305-2 G4 with the same set
of compounds. These cosine scores were used to assess the
significance of the shared targets between FH535 and 3305-2 G4.
We calculated a z-score for the FH535/3305-2 G4 pseudo-
compound chemical-genetic interaction profile compared to a
background distribution consisting of the two sets above. The
minimum of the two z-scores generated from the two sets for
each potential target was taken as a conservative estimate of the
significance of the gene target prediction.

Cell culture
HEK293 cells were purchased from American Type Culture
Collection (ATCC, Manassas, VA, USA). HeLa and HepG2 cells were
generous gifts from Dr. Jian Ding (Shanghai Institute of Materia
Medica, Chinese Academy of Sciences). HEK293 and HepG2 cells
were cultured in Dulbecco’s modified Eagle’s medium (DMEM, Life
Technologies, Carlsbad, CA, USA) supplemented with 10% fetal
bovine serum (FBS; Gibco, Grand Island, NY, USA) and 1%
penicillin/streptomycin (Invitrogen, Carlsbad, CA, USA). HeLa cells
were cultured in RPMI-1640 medium (Life Technologies) with 10%
FBS and 1% penicillin/streptomycin. They were incubated in a
humidified chamber with 5% CO2 at 37 °C. To generate a cell line
stably expressing GFP-LC3, the plasmid (Addgene, Cambridge, MA,
USA) was transfected into HEK293 cells with Lipofectamine
2000 reagent (Invitrogen) according to the manufacturer’s

introductions. Transfectants were selected by puromycin (Life
Technologies) and GFP-positive cell lines were assessed by
fluorescence microscopy.

Fluorescence microscopy
HEK293 cells stably expressing GFP-LC3 were seeded onto glass
cover slips pretreated with poly-D-lysine (Sigma). After culturing
for 24 h to reach 50%–70% confluence, the cells were treated with
compounds in fresh medium for 24 h to enable efficient
autophagosome (GFP-LC3 puncta) formation. This was followed
by three-time wash of the slips with PBS, fixation of the cells with
4% paraformaldehyde for 15min at room temperature and
another three washes in PBS. Nuclei were counterstained with
Hoechst 33258 (Sigma) for 5 min (three washes in PBS thereafter)
and fluorescent images obtained using a TCS-SP8 STED confocal
microscope (Leica, Wetzlar, Germany).

Western blotting
Cells were harvested after treatment and lysed in RIPA (Sigma)
buffer supplemented with Protease Inhibitor Cocktail (Sigma). The
whole cell lysate of each sample was separated by electrophoresis
on Tricine-SDS-PAGE gels and transferred to a PVDF membrane
(Millipore, MA, USA). The membrane was blocked by 5% non-fat
milk in Tris buffered saline/Tween-20 (TBST, EpiZyme, Shanghai,
China) and incubated with primary antibodies at 4 °C overnight.
The secondary antibodies were used at a concentration of
1:10 000 and incubated at room temperature for 1 h. The protein
bands were visualized using the SuperSignal West Dura Extended
Duration Substrate (ThermoFisher Scientific). Quantification of the
Western blot bands was achieved using the software Image J
(National Institutes of Health, Bethesda, MA, USA) and the
quantitative data presented were obtained from at least three
independent experiments.

Transmission electron microscopy
HEK293 cells were scraped from dishes gently and immediately
fixed with 2.5% glutaraldehyde in 0.1 M sodium cacodylate buffer,
pH 7.4. After five washes with PBS for 15min, the samples were
post-fixed in 1% osmium tetroxide dehydrated in ethanol and
acetone, and embedded in epon. They were then sliced and
examined with an FEI Tecnai 12 transmission electron microscope
(Hillsboro, OR, USA) operated at 120 kV.

Cell cycle
HeLa cells were seeded at a density of 1 × 105 per well onto
24-well plates and treated with compounds for 18 h. They were
digested by trypsin and collected by centrifugation. The pellets
were washed with PBS and fixed with 70% (v/v) ethanol at 4 °C
overnight. The cells were centrifuged at 188× g for 5 min to
discard the supernatant. The pellets were washed twice with PBS
and resuspended in 100 μL propidium iodide (PI) working buffer
containing 0.2% Triton X-100, 100 mg/mL RNase A and 50 μg/mL
PI in PBS for 30 min at 4 °C in the dark. After incubation,
fluorescence intensity was measured with a Novocyte flow
cytometer with the Novoexpress software (ACEA Biosciences,
San Diego, CA, USA).

Reporter assay
The T-cell factor/lymphoid enhancer factor 1 (TCF/LEF1) response
motif sequences were cloned into pGM-Lu plasmid ahead of the
minimal TA promoter and luciferase reporter gene (Yeasen,
Shanghai, China). Plasmids were transfected into HepG2 cells
using Lipofectamine 2000 reagent (Invitrogen) following manu-
facturer’s instructions. The cells were seeded onto 96-well plates
24 h after transfection and waited for 1 h to allow their adhesion
to the plate bottom. After adding compounds (20 μM), they were
left at 37 °C for 24 h followed by incubation with Steady-Glo
reagent (Promega, Irvine, CA, USA) for 10 min at room
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temperature. Luminescence signals were measured by an EnVision
plate reader (PerkinElmer).

Statistical analysis for biological experiments
All biological data were analyzed by GraphPad Prism 7 (San Diego,
CA, USA) and the results were presented as means ± SEM.
Generally, all biological experiments were carried out with n ≥ 3
replicates and the significance was determined using a two-tailed
Student’s t-test. P < 0.01 was considered statistically significant.

RESULTS
Functional annotation of bioactive compounds by correlation
analysis of chemical-genetic profiles with the global yeast genetic
interaction network
Of 333 200 synthetic and natural CNCL compounds screened for
bioactivity against yeast, 5360 (1.6%) were selected for further
chemical-genetic screening based on their ability to inhibit cell
growth by more than 20% at a concentration of 20 μM (Fig. 1a).
Bioactive CNCL compounds were screened against a diagnostic
pool of 310 non-essential deletion mutants that were representa-
tive of all major biological processes in S. cerevisiae [18].
A compound-gene pair shows a chemical-genetic interaction if

compound treatment causes a relative depletion or accumulation
of the corresponding barcoded mutant in pooled growth (Fig. 1b).
The set of chemical-genetic interactions for a given compound is
referred to as a chemical-genetic interaction profile [24].
Importantly, negative genetic interactions, in which two loss-of-
function mutations combine to lead to a more extreme fitness
defect than expected, are analogous to negative chemical-genetic
interactions because a loss-of-function mutation in a specific gene
models the effect of a compound which inhibits the gene’s
product (Fig. 1c). Hence, to annotate the major cellular function of
a bioactive compound, we compare the chemical-genetic inter-
action profile of that compound to the compendium of genetic
interaction profiles for all yeast genes [14]. Based on Gene
Ontology (GO) annotations [21] of the genes that share highly
similar profiles with a compound, high-confidence target biopro-
cess predictions can be inferred (Fig. 1c).
Among the screened bioactive compounds, 1109 (21%) were

identified to have high-confidence bioprocess target predictions
(Fig. 1c). A similar chemical-genetic analysis was carried out using
an approved drug library (Selleck Chemicals, Houston, USA), in
which all compounds were previously linked to characterized
targets in human cells. The approved drug library is relatively small
but had 77 (48%; out of 160 initial hits) high-confidence

Fig. 1 Yeast chemical-genetic screening pipeline. a Bioactivity screening in a drug-hypersensitive yeast strain (pdr1pdr3snq2, Y13206) was
conducted for the Chinese National Compound Library (333 200 compounds), and an approved drug library (1898 compounds). b Bioactive
compounds that inhibited growth from 45% to 75% compared to the vehicle-only control were screened against a diagnostic set of 310 DNA-
barcoded yeast gene deletion mutants. Mutants were grown in a pooled format, treated with each compound, and harvested. Genomic DNA
was extracted from each pool and experiment-specific tags and mutant-specific barcodes were amplified by PCR. The relative abundance of
each gene mutant after compound treatment was quantified by NGS of the PCR amplicons. From this, chemical-genetic profiles for each
compound were constructed, with a compound and gene sharing a chemical-genetic interaction if the relative abundance of the gene
mutant was significantly reduced after compound treatment. c The chemical-genetic profile of a compound (dashed-line box) was compared
to the compendium of synthetic lethal genetic interaction profiles in yeast. A compound was mapped onto the genetic interaction network at
the position of the gene with the most similar genetic interaction profile from the compound’s top target bioprocess prediction (yellow circle).
In this example, the compound’s top target process prediction is glycosylation. The chemical-genetic interaction profiles of 1109 CNCL
compounds with high-confidence target bioprocess predictions were compared to the profiles of 77 approved drugs with high-confidence
target predictions. Unknown compounds that shared high profile similarity with approved drugs were identified for validation
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bioprocess target predictions, a more than two-fold higher
prediction rate than that of the bioactive CNCL compounds.
Compounds with high-confidence bioprocess target predictions

from both the CNCL and approved drug libraries were mapped
onto the global genetic interaction network (Fig. 2). This network
contains 17 gene clusters corresponding to distinct bioprocesses
(Fig. 2a). By placing each compound at the gene node with the
most similar genetic interaction profile within the compound’s top
predicted biological process target, we constructed the chemical-
genetic networks for the CNCL and the approved drug library
(Fig. 2b, Supplementary Tables 2 and 3). The colored nodes shown
on these networks correspond to the top predicted gene targets
for each compound tested, many of which fall into a specific
bioprocess region, as defined by the global genetic interaction
network (Fig. 2, dashed outlines). Specific compounds from the
CNCL library that were experimentally validated (see below) are
highlighted in the network (Fig. 2b, Chinese National Compound
Library). Supplementary Tables 2 and 3 list the high-confidence
target GO process and direct gene target predictions for the
approved drugs and CNCL compounds, respectively.
Selected drugs from the approved drug library map to different

parts of the network (Fig. 2b, Approved Drug Library). In
particular, drugs that target highly conserved complexes and
pathways map to the expected bioprocesses. For instance,
idarubicin, a chemotherapeutic agent that binds to DNA and
interferes with DNA unwinding by topoisomerase II during
replication [25], is positioned within the “DNA replication and
repair” bioprocess. CEP-18770 (delanzomib), an inhibitor of the
chymotrypsin-like activity of the proteasome [26], is located in the
“Protein degradation” bioprocess and it has RPT6, which encodes
a proteasome subunit, as its top predicted gene target. Other
drugs with similar known modes of action map to the same yeast
bioprocess and have the same predicted direct target gene.
For example, triapine inhibits ribonucleotide reductase, while
5-fluorouracil (5-FU) suppresses thymidylate synthase. Both
effectively deplete dNTP levels required for DNA and RNA
synthesis. The genes encoding these targets have pleiotropic
genetic interaction profiles and thus, do not localize to a distinct
bioprocess cluster on the global genetic network. Nonetheless,
triapine and 5-FU are mapped to the same predicted gene target

NOP2, which is required for processing ribosomal RNA, a finding
that presumably reflects the similar role of these compounds in
RNA-based cytotoxicity [27].
The functional signatures of each compound library can be

visualized by plotting the fraction of compounds in a library that
are annotated to a particular biological process, compared to the
fraction of gene profiles in the genetic interaction background set
that are annotated to the same process. For the CNCL high-
confidence predictions, bioprocesses related to vesicle trafficking,
glycosylation, and the metabolism were overrepresented, while
bioprocesses related to mitosis, chromatin organization, mRNA
processing, and DNA repair were strikingly underrepresented
compared to a background distribution based on yeast gene
annotations (Supplementary Fig. 1). The distribution is similar to
those of other large libraries we have previously screened using
this method, such as the RIKEN Natural Product Depository and
the NIH Structural Diversity Set [18]. In contrast, the approved
drug library has a more significant representation in a number of
these bioprocesses, which, in part, reflects an enrichment for
drugs such as idarubicin and mocetinostat (MGCD0103), which are
anti-cancer agents that target highly conserved bioprocesses, such
as DNA repair, mitosis, and epigenetic mechanisms of gene
regulation [25, 28] (Supplementary Fig. 1).

Correlating chemical-genetic profiles to predict compound mode-
of-action
Chemical-genetic profiles can also be compared directly to one
another in order to identify molecules with similar modes of
action. This has been shown to work for known drugs with direct
yeast targets, such as concanamycin A and cerulenin [29]. While
this approach is powerful, it has not been explored extensively for
drugs whose primary target is absent in yeast. Comparing the
chemical-genetic interaction profiles of CNCL compounds that
satisfied our high-confidence cut-off to those of the approved
drug library (Fig. 1c), we found that 861 (78%) CNCL compounds in
the high-confidence prediction set (1109 hits) shared a similar
chemical-genetic interaction profile (Pearson correlation coeffi-
cient (PCC) > 0.2588, corresponding to the top 5% of all pairs of
chemical-genetic profiles tested, Supplementary Table 4) with at
least one of 66 (86%) of the approved drugs from the high-

Fig. 2 Chemical-genetic networks for the Chinese National Compound Library and a library of approved drugs. a The global yeast genetic
interaction network. Colored nodes represent genes. Genes with highly similar genetic interaction profiles are in close proximity, while genes
with dissimilar profiles are distant. The network is annotated using Spatial Analysis of Functional Enrichment (SAFE), resulting in 17 general
bioprocess annotations for different regions of the network (colored outlines). Genes that were not annotated to a SAFE category are not
shown. b The chemical-genetic networks for compounds from the Chinese National Compound Library (middle network) and approved drugs
(right network) with high-confidence target predictions. Colored nodes represent compounds whose top predicted gene targets can be
mapped to any general bioprocess defined by SAFE. The colored outlines are the regions of the genetic interaction network that correspond
to the 17 bioprocesses. Each node/compound is placed on the map at the position of the gene within the compound’s top predicted target
process whose genetic interaction profile is the most similar to the chemical-genetic interaction profile of the compound. Compounds with
positive validation results are highlighted in the CNCL network (big circles with black outlines). CD0296-G005 and WNN1716-H005 (white
nodes) were validated to modulate autophagy, but do not belong to any SAFE bioprocess, even though they have high-confidence target GO
process predictions. Other compounds with high-confidence target GO process predictions that do not map to any of the 17 SAFE
bioprocesses are not shown
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confidence prediction set (77 hits, Fig. 3). For more detailed
analysis, we selected CNCL compounds that showed highly
correlated chemical-genetic profiles with trifluoperazine [30] or
wortmannin [31], which affect autophagy. In fact, 11 out of the 38
CNCL chemical-genetic profiles that passed the PCC threshold
(>0.2588) were among the most similar to the autophagy
compound profiles relative to possible tested pairs of chemical-
genetic profiles (top ~0.4%, PCC > 0.5, Fig. 3). In addition, we also
examined FH535, a compound that targets the Wnt/β-catenin
signaling pathway [23], which is not found in yeast, and selected
18 CNCL compounds with chemical-genetic profiles that exhibited
strong overlap with the Wnt compound profile (top ~4% of overall
distribution, PCC ranging between 0.28 and 0.42, Fig. 3).

Pathway validation
Autophagy. Autophagy generally refers to macroautophagy, an
evolutionarily conserved cellular process with a key role in
maintaining intracellular homeostasis, and is induced by stress
conditions such as nutrient starvation or drug treatment [32, 33].
The initiation of autophagy includes phagophore formation,
followed by expansion into an autophagosome and fusion
between autophagosomes with lysosomes, causing degradation
of intracellular components [33]. In total, 38 CNCL compounds
with profiles resembling that of either trifluoperazine or

wortmannin were selected for further validation (Fig. 4 and
Supplementary Fig. 3). LC3 (microtubule-associated protein 1 light
chain 3) is a widely used autophagy marker; the number of GFP-
LC3 puncta increases either when autophagy is induced or when
autolysosome fusion is blocked [33]. We found that 37% (14 of 38)
of compounds predicted to target autophagy exhibited increased
GFP-LC3 puncta at similar levels to rapamycin, the canonical
inhibitor of mTORC and an activator of autophagy (Fig. 4a, b)
[33, 34]. Since autophagy is a dynamic process, observing
autophagic flux is required to confirm the action exerted by the
compounds in question. During autophagy induction, cytoplasmic
LC3-I is converted into LC3-II by conjugation with phosphatidyl-
serine, and this initiates the formation and lengthening of
autophagosomes [32]. As a result, LC3-II levels increase with more
autophagosome formation [32, 33]. We examined LC3-II protein
levels, focusing on three compounds (CD0345-E003, CD0354-
A010, and WNN0090-F002, Fig. 4c, d) as representatives, and
found that all three increased LC3-II in a time-dependent manner.
We then tested the remaining 11 compounds with a 24-h
treatment scheme, and the results showed that they all
significantly increased the LC3-II protein levels (Fig. 4e), indicating
that all 14 compounds were capable of modulating autophagy.
Furthermore, we observed autophagic vacuoles [34], including
autophagosomes (or initial autophagic vacuoles, AVi) and

Fig. 3 Distribution of profile correlation values between 1109 HCS compounds and 77 approved drugs. a Distribution of all correlation values
between 1109 high-confidence compounds and 77 high-confidence approved drugs based on chemical-genetic profile similarity. The dashed
line delineates the top 5% cut-off for correlation values (PCC > 0.2588) in the distribution. The Pearson correlation values of compounds that
were selected for the autophagy validation are marked as red bars, while blue bars mark the correlation values of compounds selected for Wnt
pathway validation. b Top: The Pearson correlation values between Wnt pathway-linked compounds and FH535, a known Wnt pathway
inhibitor. Compounds with positive validation results, either from a luciferase assay to assess inhibition of gene expression from the TCF/LEF1
promoter, or from a Western blot assay to assess β-catenin expression levels, are marked. Treatment with 3305-G4, a novel natural product,
inhibited TCF/LEF1 promoter activity and also led to reduced β-catenin expression. Bottom: The Pearson correlation values between
autophagy pathway-linked compounds and either trifluoperazine or wortmannin, two compounds which are known to activate or inhibit
autophagy, respectively. Compounds with positive validation results, either by microscopy-based assays to measure GFP-LC3 puncta and
observe autophagic vacuoles, or a Western blot analysis to determine LC3-II levels, are marked. CD0345-E003, CD0354-A010, and WNN0090-
F002 were bioactive hits in all assays
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Fig. 4 Functional validation of high-confidence predicted compounds in autophagy pathway. a HEK293 cells stably expressing GFP-LC3 were
treated with DMSO, rapamycin (200 nM) and compounds (10 μM; 5 μM for WNN1716-H005 due to cytotoxicity) from the predicted set,
respectively. GFP-LC3 puncta formation was monitored with confocal microscopy and representative fluorescent images of cells
counterstained with Hoechst (nuclei) are shown. Scale bar, 10 μm. In the high-confidence predicted set, CD0345-E003, CD0354-A010, and
WNN0090-F002 are representative active compounds which induced GFP-LC3 puncta formation, while CD0274-E005 is an inert compound.
b Comparison of the autophagy-related phenotype induced by 38 predicted compounds based on the quantification of GFP-LC3 puncta.
Green fluorescent spots represent autophagosomes (n > 50 cells per sample). Data shown are means ± SEM of three independent
experiments. c HEK293 cells were treated with CD0345-E003, CD0354-A010 and WNN0090-F002 (10 μM) for 6, 12, 24, and 48 h. LC3-II and
β-actin levels were assessed by Western blotting. Densitometric values were quantified and normalized to the control which was set to 1.0.
Data shown are means ± SEM of three independent experiments. d Chemical structures of rapamycin, CD0345-E003, CD0354-A010, and
WNN0090-F002. e HEK293 cells were treated with 11 other predicted compounds (10 μM; 5 μM for WNN1716-H005 due to cytotoxicity) for
24 h, LC3-II and β-actin levels were assessed by Western blotting. Densitometric values were quantified and normalized to the control which
was set to 1.0. Data shown are means ± SEM of three independent experiments. f Comparison of the autophagy-related phenotype induced
by 26 random compounds based on the quantification of GFP-LC3 puncta (n > 50 cells per sample). Data shown are means ± SEM of three
independent experiments. Statistical significance was determined with a two-tailed Student’s t-test; *P < 0.01 and **P < 0.001
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degradative autophagic vacuoles (Avd), in human HEK293 cells
treated with CD0345-E003, CD0354-A010 and WNN0090-F002
using transmission electron microscopy (Supplementary Fig. 4).
As a negative control, we selected compounds with high-

confidence bioprocess target predictions that did not overlap with
autophagy-related pathways, excluding compounds with struc-
tures that resemble those predicted to modulate autophagy. None
of 26 control compounds induced GFP-LC3 puncta formation
(Fig. 4f and Supplementary Fig. 5). Furthermore, the mean PCC
value for the chemical-genetic profiles of the 14 compounds with
autophagic activity was 0.568, which was higher than that of
complete set of 38 predicted compounds (0.456), suggesting that
chemical-genetic profile similarity has a positive impact on
experimental validation: for the autophagy bioprocess, a com-
pound with a higher correlation score is more likely to be
validated biologically.
Mapping the validated compounds linked to autophagy onto

the CNCL chemical-genetic interaction network, we observed
compounds with distinct validation phenotypes segregating into
two groups. Two compounds (WNN0090-F002 and CD0345-E003)
that had positive LC3 fluorescence microscopy, Western blot and
transmission electron microscopy results mapped to the DNA
replication/repair and mitosis/chromosome segregation biopro-
cesses in the network (Fig. 2b). Recently, it has been shown that
agents causing different types of DNA damage can lead to
targeted autophagy by activating the yeast Mec1/ATR, Tel1/ATM,
and Rad53/CHEK2 kinase cascade [35]. However, the majority of
the compounds (CD0295-C003, CD0296-D002, CD0296-H004,
CD0296-H007, CD0338-F007, CD0447-G005, WNN0040-A007, and
WNN0159-G002), validated by fluorescence microscopy and
Western blotting, were linked to genes in the vesicular traffic
bioprocess (Fig. 2b), which plays a major role in numerous aspects
of autophagy [36]. The bioprocess predictions for these com-
pounds included “ATP hydrolysis coupled proton transport” and
“vacuolar acidification”, relating to the lysosomal H+ ATPase,
whose activity is required for proper autophagic flux [36]. Taken
together, these data show that our yeast chemical-genetic
profiling platform provides a powerful approach for predicting
compounds that modulate autophagy in human cells.

Wnt/β-catenin pathway. We also examined the effect of
compounds that had profile similarities with FH535, a known
inhibitor of the Wnt/β-catenin pathway, in human cells [23].
FH535 suppresses β-catenin/TCF-mediated transcription and
exhibits anti-proliferative effects in various cancer cell lines.
Although this pathway is not present in yeast [37], we found
that chemical-genetic profiles associated with 18 CNCL com-
pounds were significantly correlated with the chemical-genetic
profile of FH535 (Fig. 3). Wnt/β-catenin signaling is an important
pathway that influences cell differentiation, proliferation and
fate [37, 38]. β-catenin activity in this pathway can be grouped
into two processes: accumulation and nuclear transposition. The
former is linked with phosphorylation, while the latter results in
the formation of the β-catenin-TCF/LEF1 complex, which
activates transcription of downstream genes. Based on this, we
conducted a reporter gene assay to investigate the effects of
predicted compounds on β-catenin downstream transcription
controlled by β-catenin-TCF/LEF1 complex [39], and Western
blot analysis to determine compound effects on β-catenin
accumulation and phosphorylation mediated by glycogen
synthase kinase (GSK) [40].
For the first assay, we used cells with the TCF/LEF1 promoter

element linked to the luciferase reporter gene, and measured
luciferase activity after compound treatment. Like FH535, which
decreased luciferase activity by 72.08% after 24-h treatment at
20 μM, luminescence intensity was reduced by CD0450-A007
(39.61%), 3215-1 A11 (61.64%), and 3305-2 G4 (53.08%),
respectively (Fig. 5a), suggesting that these compounds

inhibited transcription from Wnt/β-catenin signaling responsive
elements (TCF/LEF1). We also studied the effects of these
compounds on the expression level of β-catenin. While there
was no significant difference between CD0450-A007 and 3215-1
A11 and the DMSO control, 3305-2 G4 treatment clearly
decreased β-catenin expression, consistent with reduced luci-
ferase activity in the TCF/LEF1 reporter assay (Fig. 5b). Dose-
response experiments for luciferase activity demonstrated that
3305-2 G4 and FH535 had a similar IC50 (7.44 μM vs. 7.43 μM,
Fig. 5c), a finding that was further supported by Western blot
analysis (Fig. 5d). Thus, both FH535 and 3305-2 G4 altered the
expression of active β-catenin. For negative controls, the effects
of 24 random compounds were examined similarly, and while
two compounds displayed FH535-like inhibition in the luciferase
assay, namely CD0203-G006 (68.69%) and CD0251-G005
(71.75%, Fig. 5e), none of the random compounds exhibited
any impact on β-catenin expression (Fig. 5f).
3305-2 G4 is a known alkaloid called drupacine [41] (Fig. 5c),

isolated from Cephalotaxus fortunei, whose structure was
identified by spectroscopic data analysis [42]. 3305-2 G4
mapped to “mRNA processing” (Fig. 2b), while FH535 mapped
to “glycosylation, protein folding and targeting, cell wall
biogenesis” bioprocesses (Fig. 2b). However, a closer examina-
tion of high-confidence target process predictions for these
compounds showed that FH535 and 3305-2 G4 share a common
process prediction, “Response to acidic pH” (Supplementary
Table 5). The top driver genes for this target prediction are BCK1
and SLT2, which encode MAPKKK and MAPK of the protein
kinase C signaling pathway in yeast that controls cell wall
integrity [43]. Though the Wnt pathway, the human target for
FH535, is not present in yeast, it is possible that FH535 and 3305-
2 G4 both act on a conserved pathway that is relevant to Wnt
signaling mechanism.
To further assess the shared targets of FH535 and 3305-2 G4, a

“pseudo-compound” chemical-genetic profile was calculated as
a weighted mean profile of the two compounds, which
accentuates large chemical-genetic interaction scores that are
common between FH535 and 3305-2 G4. The mean chemical-
genetic profile of FH535 and 3305-2 G4 was weighted by an
element-wise product between the two compounds. Direct
targets were predicted for this pseudo-compound profile, using
the same process applied to calculate direct targets for real
compounds. Among the top gene targets calculated for the
merged FH535/3305-2 G4 chemical-genetic profile were CDC73
(top 5th out of 4625 ranked genes, Supplementary Table 6) and
MRK1 [18] (top 6th out of 4625 ranked genes, Supplementary
Table 6). CDC73 is a component of the PAF1 complex which
binds to and modulates the activity of RNA polymerases I and II,
and is required for gene expression, histone modification, and
telomere maintenance [44]. Its human homolog, parafibromin, is
a tumor suppressor linked to parathyroid, renal, and uterine
cancers [45]. Parafibromin and other components of the PAF1
complex are required for the nuclear transduction of the Wnt
signal, and bind directly to the C-terminal portion of β-catenin
to control the activity of Wnt target genes [46]. MRK1 is one of
four GSK-3 homologs in yeast, and activates Msn2-dependent
transcription of stress responsive genes that function in protein
degradataion [47]. GSK-3 is a key enzyme in Wnt signaling, and
phosphorylates β-catenin leading to its subsequent degradation
[48]. In spite of the Wnt pathway itself being absent in yeast, the
merged chemical-genetic profiles of FH535 and 3305-2 G4 were
capable of predicting direct gene targets which are highly
conserved and are important players in Wnt signal transduction.

DISCUSSION
Mode-of-action discovery for novel compounds is a well-
recognized rate-limiting factor for rational drug development.
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Chemical-genetic profiling in yeast identifies target pathways in
an unbiased manner and has proven to be amenable to HTS
campaigns, though the utility of this method in finding
compounds that impinge on metazoan pathways, especially those
that are absent from yeast but found in higher organisms, remains
relatively unexplored. The present analysis annotates a complex
library of small molecules employing a diagnostic chemical
genomic pipeline [18]. We used a comprehensive database of
yeast genetics interactions [14] as a key for interpreting the
chemical-genetic profiles and linking the predicted compounds to
general target bioprocesses. Indeed, when 16 compounds
predicted to target the tubulin cytoskeleton assembly pathway
were evaluated using techniques such as cell cycle analysis, two of
them were successfully validated to disrupt tubulin function in
HeLa cells (Supplementary Fig. 2). Importantly, we also developed
a dataset of chemical-genetic profiles for approved drugs with
known modes of action, and applied it to identify new hits whose
chemical-genetic profiles are highly similar to those of known

drugs with well-established pharmacology in metazoans. Notably,
we have shown that matching the chemical-genetic profiles of hits
from HTS campaigns to those of known drugs allows the
identification of compounds with targeted activity in mammalian
cell pathways.
As proof of concept, several drugs with highly conserved

cellular targets have chemical-genetic target gene and process
predictions that are consistent with their known modes of action.
Idarubicin, delanzomib, and mocetinostat act on diverse cellular
targets (topoisomerase II, proteasome, and histone deacetylase,
respectively), and these compounds were accurately linked to
their target pathways and bioprocesses in yeast, namely, DNA
replication and repair, proteasome/protein degradation, and
mRNA processing (Fig. 2b).
Correlation analysis of chemical-genetic profiles, which com-

pared approved drugs and CNCL compounds, was effective in
linking novel compounds to autophagy, a highly conserved
pathway from yeast to human, and the Wnt/β-catenin signaling

Fig. 5 Functional validation of high-confidence predicted compounds in Wnt/β-catenin signaling pathway. a Three out of eighteen
compounds induced luminescence signal changes in HepG2 cells transiently transfected with a luciferase reporter gene under the control of
TCF/LEF1 response element. Luciferase activity was determined after compound exposure for 24 h. Data shown are means ± SEM of four
independent experiments. b 3305-2 G4 and FH535 decreased β-catenin expression in HepG2 cells. Quantitative densitometric analysis of
Western blotting from three independent experiments and the data shown are means ± SEM. c Dose-response curves of luminescence signal
induced by 3305-2 G4 and FH535. Data shown are means ± SEM of three independent experiments. d Compound 3305-2 G4 decreased β-
catenin expression in a dose-dependent manner in HepG2 cells. Quantitative densitometric analysis of Western blotting from three
independent experiments and data shown are means ± SEM. e Two out of twenty-four random set compounds induced luminescence signal
changes in HepG2 cells. Data shown are means ± SEM of three independent experiments. f None of the compounds decreased β-catenin
expression in HepG2 cells. Quantitative densitometric analysis of Western blotting from five independent experiments and data shown are
means ± SEM. Statistical significance was determined with a two-tailed Student’s t-test; *P < 0.01 and **P < 0.001

Integrating yeast chemical genomics and mammalian cell pathway analysis

FL Zhou et al.

1253

Acta Pharmacologica Sinica (2019) 40:1245 – 1255



pathway, which is not present in yeast. The autophagy-linked
compounds generally had higher PCC values (~0.8) than that of
the Wnt-linked compounds (~0.35). The difference in distribution
of these values likely reflects the high degree of conservation
between autophagy mediators in yeast and metazoans. Thus, this
guilt-by-association analysis may be particularly powerful for
finding compounds that work in essential, highly conserved
biological pathways.
One distinct advantage of this approach is the ability to group

compounds into functional categories that may reflect their
mode-of-action in cells. A striking observation was the segregation
of the autophagy-linked compounds into two regions of the
chemical-genetic interaction network: the “vesicular traffic”
bioprocess for a majority of the compounds that were only
validated by puncta formation as viewed by fluorescence
microscopy and a general measurement of LC3-II expression by
Western blotting, and the “DNA replication and repair” and
“nuclear-cytoplasmic transport” parts of the network for com-
pounds that had positive validation results for the more rigorous
assays to assess autophagic activity (transmission electron
microscopy and a LC3-II expression time course). The functional
segregation of these validated hits may reflect commonalities in
mode-of-action that would not have been apparent from an assay
that focuses on a single phenotypic outcome such as autophagic
vesicle formation.
Interestingly, the autophagy-modulating compounds can all be

described as cationic amphiphilic drugs (CADs) with common
physiochemical properties. CADs have a hydrophobic ring
structure and a hydrophilic side chain with a charged cationic
amine group, and comprise a diverse array of various substance
classes such as antiarrhythmics and antipsychotics [49]. It has
been recently shown that high concentrations of CADs after long
exposure times tend to localize at autophagosomal compartments
[50]. Accumulation of the tested CADs into the autophagosome
may, at least in part, explain the observed modulation of
autophagy by these compounds.
We also identified compounds that act on the Wnt/β-catenin

signaling pathway, which is completely absent in yeast, pointing
to the possibility of using yeast chemical-genetic profile similarity
as a way to link compounds to drugs that may not have conserved
yeast targets. Notably, FH535 and 3305-2 G4 map to separate
parts of the chemical-genetic interaction network: “Glycosylation,
protein folding, and cell wall biogenesis” for the former and
“mRNA processing” for the latter (Fig. 2). This suggests that these
compounds have distinct functional consequences in yeast,
though there is significant overlap in their chemical-genetic
profiles, leading to a PCC value of ~0.35 (P= 1.05 × 10−8).
Interestingly, by merging the chemical-genetic profiles of FH535
and 3305-2 G4 and weighting the interaction scores to emphasize
the overlap between their profiles, we predicted direct target
yeast genes (CDC73 and MRK1) whose human homologs are key
players in Wnt signaling pathway which either bind to β-catenin
directly to activate expression of target genes upon transduction
of the signal into the nucleus (parafibromin, homolog of CDC73),
or stimulate cytoplasmic degradation of β-catenin by phosphor-
ylation (GSK-3, homolog of MRK1). Furthermore, 3305-2 G4 is a
known natural compound (drupacine) that is capable of suppres-
sing cancer cell growth in vitro [51]. Whether this effect is related
to Wnt/β-catenin signaling pathway remains to be explored.
Orthologous phenotypes have been previously used for systema-
tic discovery of non-obvious human disease models [52], and our
study provides a framework for identifying orthologous chemical-
genetic gene targets in yeast for compounds that act on
therapeutically relevant non-conserved pathways in humans.
In conclusion, our findings demonstrate that compounds with

target bioprocess predictions identified in an unbiased yeast-
based chemical-genetic system can be validated in mammalian
cells. These target predictions can be derived directly for highly

conserved cell functions, or they can be inferred from chemical-
genetic profiles of therapeutics with known modes of action. This
general approach shows great promise for utilizing yeast
chemical-genetic profiling for identifying pathway-specific drug
leads towards a wide variety of human diseases.
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