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Abstract—It is well known that requirements engineering plays a critical role in software quality. The use case approach is a
requirements elicitation technique commonly used in industrial applications. Software requirements are stated as a collection of use
cases, each of which is written in the user’s perspective and describes a specific flow of events in the system. The use case
approach offers several practical advantages in that use case requirements are relatively easy to describe, understand, and trace.
Unfortunately, there are a couple of major drawbacks. Since use cases are often stated in natural languages, they lack formal
syntax and semantics. Furthermore, it is difficult to analyze their global system behavior for completeness and consistency, partly
because use cases describe only partial behaviors and because interactions among them are rarely represented explicitly. In this
paper, we propose the Constraints-based Modular Petri Nets(CMPNs) approach as an effective way to formalize the informal
aspects of use cases. CMPNs, an extension of Place/Transition nets, allow the formal and incremental specification of requirements.
The major contributions of our paper, in addition to the formal definitions of CMPNs, are the development of: 1) a systematic
procedure to convert use cases stated in natural language to a CMPN model; and 2) a set of guidelines to find inconsistency and
incompleteness in CMPNs. We demonstrate an application of our approach using use cases developed for telecommunications
services.

Index Terms—Use cases, scenarios, requirements engineering, Petri nets, incremental specification, use case dependency
analysis, Petri nets slice.
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1 INTRODUCTION

HE importance of requirements engineering cannot be
overemphasized. As stated eloquently by Brooks [4],

“the hardest single part of building a software system is
deciding what to build. ¤ No other part of the work so
cripples the resulting system if done wrong. No other part
is more difficult to rectify later.” The ultimate goal of re-
quirements engineering is to produce a requirements speci-
fication that is correct, consistent, complete, unambiguous,
understandable, and traceable. To accomplish this goal, a
specifier incrementally builds up the specification through
iterative processes involving elicitation, specification, and
validation. In order to accurately reflect users’ real needs,
requirements engineering processes should ideally involve
the active participation of users.

A system must often support multiple users with diverse
needs and viewpoints. But, a given group of users is most
likely to be concerned about and state requirements only on
those specific behaviors that are of particular interest to it.
Although such groups of requirements might seemingly be
an independent collection of functionalities, they are rarely

truly independent in practice. Therefore, it is extremely im-
portant for the requirements engineering technique to sup-
port incremental specification of partial system behaviors
derived from multiple viewpoints and to enable verification
of consistency and completeness among the requirements.
Otherwise, the incremental and partial requirements elici-
tation process will surely fail.

The use case approach, originally proposed by Jacobson
et al. [16], [17] and based on the concept of scenarios,1 is
arguably one of the best known and most widely employed
requirements elicitation techniques in the industry. System
functionalities are stated as a collection of use cases, each of
which represents a specific flow of events. The use case ap-
proach offers several practical advantages. First, use cases
are easy to describe and understand. Second, they are
scalable, in that the behavior of a large and complex sys-
tem can be stated as a collection of independently and
incrementally developed use cases. Third, it is relatively
easy to provide requirements traceability throughout the
design and implementation.

Unfortunately, the use case approach exhibits several
shortcomings. First, use cases are often stated in natural
languages lacking in formal syntax and semantics. In addi-
tion to the risk of ambiguity, the type and rigor of the
analysis one may perform on informal requirements are
clearly limited. Second, there are currently no systematic
approaches to analyzing dependencies among use cases

1. Scenarios and use cases are used interchangeably throughout this paper.
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and to detecting flaws. To avoid costly fixes, to maximize
software reliability, and to improve productivity of software
development, incompleteness and inconsistency among use
cases must be resolved prior to advancing to the design
phase.

When developing formal notations for use cases, parti-
ality is appropriate. The notation chosen for use case ex-
pression must be flexible enough to allow incomplete speci-
fication about actions because users may understand the
required system behavior only partially. Yet the notation
must be formal enough to allow for the detection of incon-
sistencies among the partial information provided. Insensi-
tivity to change is also desirable. That is, when a new use
case is introduced, it must not unnecessarily or excessively
affect the existing use cases. Similarly, when an existing use
case is modified or dropped, the scope of modification
needs to be minimized. Otherwise, the incremental elicita-
tion of the requirements becomes impractical.

In this paper, we propose an approach to overcoming the
limitations of the use case approach, while preserving its
advantages, by proposing a formal syntax and semantics
for describing use cases. Our notation, referred to as Con-
straints2-based Modular Petri Nets (CMPNs), satisfies the
requirements for partiality and insensitivity to changes.
Our ultimate research goal is to develop systematic proce-
dures to enable the intuitive, yet formal and incremental,
description of requirements and to provide powerful analy-
sis techniques for detecting flaws in requirements as early
as possible in the development life cycle. Fig. 1 illustrates
our approach.

The rest of our paper is organized as follows: In Section 2,
we briefly review some of the earlier proposals made for
formalizing use cases and identify their shortcomings. In
Section 3, we justify a need for defining CMPNs by illus-
trating why existing Petri net formalisms, such as P/T nets
or colored Petri nets, are inadequate to accomplish our goal.

2. Use cases usually describe specific but partial event sequences that are
closely related. For a use case Ui, other use cases may be regarded as speci-
fying additional constraints under which Ui may take place.

We provide an informal and intuitive introduction to
CMPNs, as well as formal definitions and firing semantics.
Slicing is introduced as a means of conducting efficient and
compositional behavioral analysis of CMPNs. Section 4 de-
scribes a systematic procedure for converting use cases
stated in natural language to a CMPN, based on an ex-
tended form of action-condition table. In Section 5, the
analysis techniques for ensuring consistency and complete-
ness in a CMPN model are discussed. We demonstrate the
effectiveness of our approach by illustrating how incorrect
feature interactions among various telecommunications
services can be detected. Section 6 concludes our paper and
suggests promising topics for further research.

2 RELATED WORK

Several researchers have tried to formalize the informal
aspects of use cases. While earlier approaches focused pri-
marily on developing the formal semantics of use cases,
recent proposals have focused more on developing tech-
niques to integrate and perform analysis on a set of use
cases.

As an example of the former, Hsia et al. [12] used a BNF-
like grammar to formally describe use cases. A graphical
and tree-like representation, called the conceptual state ma-
chine, is used. This approach is effective when applied to a
small number of relatively simple use cases. Specification
based on multiple viewpoints can, in principle, be sup-
ported by developing a more complex grammar. However,
this is likely to be too cumbersome to be useful on indus-
trial applications where frequent changes to requirements
are expected to occur and where iterative and incremental
requirements elicitation techniques are needed.

Andersson and Bergstand [1] used Message Sequence
Charts (MSCs). MSCs are frequently used to state the re-
quirements for telecommunications software. The current
MSC standard, MSC’96 [15], provides several features
aimed at enhancing the expressiveness of individual MSCs.
Examples include constructs to specify the conditional, it-

Fig. 1. Overview of our approach.
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erative, or concurrent execution of MSC sections. Antici-
pated exceptions and required system responses can be
specified, too. An MSC-based approach has advantages
over the grammar-based approach in terms of scalability
and understandability.

Dano et al. [10] used tabular notations as well as Petri
nets as intermediate representations to derive the dynamic
behavioral specification for an object from use cases. One or
more tables corresponding to a use case are initially devel-
oped. These tables, which are combined into a Petri net, can
properly specify the dynamic behavior of an object. The
analysis techniques on interactions and dependencies
among several objects remain unsupported, which is true
for all of the previous approaches as well.

In contrast, several researchers have proposed analysis
techniques for a set of interacting use cases. Glinz [11] used
statecharts to represent use cases. The relationships among
use cases are represented using one of the following con-
structs: sequence, alternation, iteration, or concurrency. This
approach assumed a disjointedness among the use cases
and did not support overlapping scenarios where the same
event sequences appear in multiple use cases. That is, when
overlapping scenarios are later identified, existing use cases
(and, therefore, corresponding statecharts) have to be
modified to maintain the disjointedness. For example,
statecharts connected by a sequence relation may need to be
further decomposed into more detailed statecharts con-
nected by sequence as well as by alternation constructs, as
illustrated in Fig. 2. This approach does not satisfy the in-
sensitivity property unless all of the overlapping scenarios
are known in advance. This “forced” (and potentially un-
natural) modification of statecharts is not supportive of
traceability.

Other approaches used to analyze dependencies include
timed automata [28], finite state automata [23], and MSCs
[22]. They are adequate for describing use cases individu-
ally and can even analyze the interactions among a small
number of use cases. However, the larger the number of use
cases there are to analyze, the more difficult it becomes to
grasp and analyze the global system behaviors since the
brute-force approach of considering all possible combina-
tions quickly leads to the state explosion problem.

3 CONSTRAINTS-BASED MODULAR PETRI NETS
(CMPNS)

3.1 Motivations
Petri nets have been used extensively and successfully in
various applications such as protocol or performance
analysis. The well-known strengths of Petri nets include
their visual and easily understandable representation, their
well-defined semantics, their ability to model concurrent
and asynchronous system behavior, the variety of mature
analysis techniques they offer (e.g., reachability, deadlock,
safety, invariant, etc.), and the availability of software tools
to assist modeling and analysis. Several extensions (e.g.,
time, probability, etc.) have been proposed to the basic for-
malism. Research trends in Petri nets include compositional
modeling and analysis [31] in which various subsystems
are modeled separately and behavioral analysis performed
collectively.

We strongly believe Petri nets to be well-suited to over-
coming the limitations caused by the informal aspects of
the use case approach. Use cases can be conceptually con-
sidered as a set of interacting and concurrently executing
threads, and if use cases can be transformed into a Petri
nets-based formalism, existing analysis techniques can be
readily applied to detect anomalies.

Unfortunately, both classical Petri nets, known as
place/transition nets (P/T nets) [27], and such high-level
Petri nets as colored Petri nets (CP-nets) [19] are inadequate
for our purpose. First, they do not provide adequate lan-
guage constructs supporting modular and incremental
specifications. Fig. 3 illustrates a P/T net model for the in-
teractions between basic call processing (BCP) and call for-
warding (CF) in a telecommunications model that will be
used throughout this paper. The prefixes o-, t-, and cf- indi-
cate activities involving originating, terminating, and for-
warding parties, respectively. This model, which is quite
simplistic compared to industrial applications, is not only
difficult to understand but also quite sensitive to changes.
Suppose that we wished to integrate another telecommuni-
cations service, say call waiting, with this model or that we
needed to replace an existing call forwarding service with
an enhanced version. In either case, the model would need
to be extensively modified. Second, it is difficult to perform
selective behavioral simulation tailored to satisfy the inter-

     (a)      (b)

Fig. 2. Handling overlapping scenarios in Glinz’s statecharts approach. (a) A sequential statechart. (b) Handling overlapping scenarios.
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ests of specific users. Third, traceability is poorly supported
since all use cases are blended into a global P/T net model.

High-level Petri nets significantly improve the expres-
siveness of P/T nets while providing the same level of
analytical capability. CP-nets [19], perhaps the most widely
used high-level Petri nets formalism in industry, have been
successfully used to model and analyze several systems,
such as the NORAD command center and an electronic
funds transfer system. As opposed to P/T nets, where all
tokens are of Boolean type, CP-net tokens can be of arbi-
trary color (type) and complexity. Because CP-net notations
are based on a functional programming language SML [29],
arc expressions allow concise specification of complex to-
ken manipulations.

To support modularity, CP-nets provide such features3 as
substitution transitions and fusion places. Substitution
transitions, a notational convenience designed to allow
modular representation of large and complex models, util-
ize the port concept. When a substitution transition is de-
clared, its input and output places are considered as ports.
The substitution transition is then further expanded on an-

3. Although a paper by Huber et al. [13] briefly introduces the concept of
fusion transition (also referred to as shared transition in our paper) as an-
other feature to support modularity, this feature is left undefined in Jen-
sen’s book on CP-nets [19] and remains unsupported by the Design/CPN
CASE tool [30]. Therefore, it seems fair to conclude that fusion transitions
are currently not part of CP-net formalism.

other page and additional (and internal) places and transi-
tions can be declared as needed. However, all “atomic”
transitions model events at the same level of abstraction,
although they may appear on different and hierarchically
organized pages.

Fusion places are used to avoid the clustering of too
many input and output arcs. Fusion places appearing on
different pages are considered the same and the firing se-
mantics of CP-nets are unaffected. While clearly useful in
improving the understandability of CP-net models, fusion
places alone, from the viewpoint of formalizing use cases,
are insufficient to overcome the weaknesses identified ear-
lier. For example, if we were to model use cases U1 through
U6 (see Fig. 9) in CP-nets, the Petri nets corresponding to
the first three use cases would have to be combined into
one because the transition o-routing would be common
among them.

Shared transitions are often used when introducing
modularity to Petri nets [9], [7], [8], [6]. In this approach, the
subsystems are modeled separately and assumed to operate
independently and concurrently unless their activities are
synchronized at shared transitions. Fig. 4 illustrates how
shared transitions are used to model the behavior of the
originating and receiving parties during call connection.
The line becomes busy on the receiving side as soon as
routing is completed but prior to the generation of the first

Fig. 3. P/T net for basic call processing and call forwarding.
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ring. This status is indicated by having a token in the place
busy. Suppose that we chose to introduce another use case
Ubusy specifying what to do with a busy line. The model
corresponding to Ubusy would need to reference the status of
the place busy. If only transitions can be shared, one of the
following approaches must be taken:

•� Combine all the Petri nets corresponding to use cases
which must share system variables. The combined
model can become quite complex, and traceability is
poorly supported.

•� Further decompose existing models so that the places
corresponding to shared system variables appear to-
gether on the same, but separate, model fragment.
This approach is undesirable since a Petri net corre-
sponding to a use case may end up being scattered on
multiple pages. This approach is also quite sensitive
to changes.Suppose that we were later told to drop
the use case Ubusy that had previously forced a rather
unnatural decomposition of the model. The model
fragments might need to be combined again, and fre-
quent use case changes could easily result in a chaotic
requirements engineering process. Since requirements
rarely remain frozen in practice, it is obvious that
shared transitions alone are inadequate.

Another trend in Petri nets research is to introduce ob-
ject-oriented concepts. Examples include PROTOB [3],
LOOPN [20], and PAM [2]. The required behavior of each
object is modeled in a separate Petri net, and additional
constructs are used to describe the relationships among the
objects. Unfortunately, objects and use cases capture re-
quirements at different levels of abstraction and often state
requirements based on different viewpoints. That is, an ob-
ject is likely to have several use cases associated with it. A
use case specification, on the other hand, may include the
interaction of several objects. Furthermore, message passing
among objects does not naturally represent the sharing of

system status values or synchronization of events among
use cases.

Critical examination of various proposals on Petri net
formalisms reveals that they are inadequate to formalizing
the informal aspects of the use case approach and to satis-
fying such properties as partiality and insensitivity to
changes. CMPNs, our proposed extension to P/T nets, are
designed to bridge such gaps.

3.2 CMPNs: Definitions
Constraints-based Modular Petri nets (CMPNs) consist of a
set of constraint nets Cn. A constraint net, modeling an in-
dividual use case, consists of internal structures as well as
an external interface. CMPNs are structured on a two-level
hierarchy to naturally reflect the organization of the re-
quirements specification stated as a collection of use cases.
It is true that the requirements for extremely large and
complex systems may require a use case organization of
more than two levels of hierarchy. For example, use cases
corresponding to each subsystem might be grouped sepa-
rately. However, such grouping is designed to improve un-
derstandability and maintainability and has no direct im-
pact on behavioral analysis.

The internal structures of a constraint net are the same as
those of a P/T net, and the external interface specifies its
name. Shared places and transitions4 can be considered
parts of the external interface. However, they can be auto-
matically identified and, therefore, need not be declared
explicitly and redundantly. Fig. 5 is an example of CMPNs
which consist of six constraint nets.

DEFINITION 1. For a character set S, a constraint net is a 6-tuple
Cn = (P, T, F, W, L, M0), where

4. Shading is applied in our paper to visually highlight shared places and
transitions.

   

  (a) (b)

Fig. 4. A transition sharing model. (a) Originating party. (b) Receiving party.
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•� P, T, F, and W are a set of places, transitions, arcs, and
weights associated with arcs, respectively, whose defini-
tions are the same as the ones for standard P/T nets [27],

•� L : P < T � S+ is a label function that associates a dis-
tinct label taken from strings (S+) with each place and
transition of P and T, and

•� M0 : P � Nat is the initial marking.

It should be noted that labels associated with a con-
straint net, if explicitly specified, are required to be distinct.

DEFINITION 2. Let C i nni
= 1KJ L  be a set of constraint nets,

Node be a set of all the places and transitions in

C P Tn ii

n
ii

n

i = =
∪�� ��1 1U U . R(x, y), the equivalence relation

in Node indicating that x and y have the same label, is de-
fined as follows:

R(x, y) ¢ L(x) = L(y).

An equivalence class of x P Ti ii

n
∈ ∪�� ��= 2 7

1U  modulo R is

defined as follows:

$ ,x y Node x y R= ∈ ∈1 6= B .

This definition declares that places and transitions
whose labels appear more than once are considered shared
and that they should be treated as one.

DEFINITION 3. A Constraints-based Modular Petri net is defined

as a set of constraint nets, M C i nN ni
= = 1KJ L  satis-

fying the following conditions:

   

    (a)     (b) (c)

  

  (d)      (e) (f)

Fig. 5. CMPNs for receiving functions of the BCP. (a) Cn1, (b) Cn2, (c) Cn3, (d) Cn4, (e) Cn5, (f) Cn6.
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•� Pi, Ti, Fi, and Wi should be disjoint for all the Cni
,

•� The same label should not be used for both places and
transitions:

∀ ∀ ∃ ∈ ∃ ∈ =C C p P t T such that L p L tn n i j i ji j
, , / , / 1 6 0 5 ,

•� Wi should be consistently defined in Cni
 as follows:

∀ ∈ ∀ ′ ′ ∈

′ ∈ ′ ∈ ⇒ = ′ ′

p t F p t F such that

p p and t t W p t W p t

i j

i j

, , ,

$ $ , , ,

1 6 1 6
1 6 1 6

•� The initial markings for shared places should be the
same:

∀ ∀ ∈ ∀ ∈

= ⇒ =

C p P p P

L p L p M p M p

n i i j j

i i j j i j

i

i j

, , ,

.2 7 4 9 2 7 4 90 0

In the above CMPNs definition, both places and transi-
tions may be shared. Our definition assumes that places
and transitions whose labels appear in two or more con-
straint nets are shared. It also requires that weights associ-
ated with shared arcs, as well as the initial placement of
tokens for shared places, be the same.

Whenever a new use case is added, its behavior is mod-
eled separately, thus providing superior traceability when
compared to other approaches. In such cases, the existing
CMPN structure remains the same although some of places
and transitions may become shared to accurately reflect the
dependencies between the existing use cases and the newly
introduced use case. In some cases, shared places may need
to be added.

DEFINITION 4. Let M C i nN ni
= = 1KJ L  be a CMPN, then

•� L Lg ii

n
=

=1U  is the global label function,

•� M Mg i

n

i
=

= 01U  is the global marking, and

•� Wg is the global weight function, ∀ ∈ ∪
=

x y P Ti ii

n
, 2 7

1U ,

W x y

W x y if x y F such that x x and y y
otherwise

g

i i

$ , $

, , , $ $

, .

1 6
1 6 1 6

=

′ ′ ∃ ′ ′ ∈ ′ ∈ ′ ∈%&'0
In a given constraint net Cni

, the decision on whether or

not a shared transition ts is locally enabled can be made

without having to consult other constraint nets in which ts

occurs. If all the preconditions needed for the transition
t in a constraint net to occur are met [27], it is said to be
M-enabled.

DEFINITION 5. Let M C j nN nj
= = 1KJ L  be a CMPN model. In

a constraint net Cnj
,

•� An internal transition t T ti j i∈ =$ 14 9  is Mg-enabled

iff ti is M-enabled.

•� A shared transition t T ts j s∈ >$ 14 9 is Mg-enabled iff

∀Cnk
 such that Lj(ts) = Lk(t�), t� is M-enabled in Cnk

.

If an internal transition ti is M-enabled in Cni
, it is also

enabled in the global marking, since ti appears in no other

constraint nets. On the other hand, a shared transition ts is
enabled only when it is enabled in all the constraint nets in

which the label of ts appears. For example, take the global
marking shown in Fig. 5 as the current marking:

M M M M M M Mg1 1 2 3 4 5 6= ∪ ∪ ∪ ∪ ∪ , where

M1
5 = (A, not-CF, not-busy), M2 = (A), M3 = (A),

M4 = (not-CF), M5 = (A), and M6 = (not-busy).

The enabled transitions are subscribe-cf and t-ringing,
where the former is an internal transition and the latter is
shared. When firing an internal transition ti, the token
movements are not necessarily limited to the constraint net
in which ti occurs. The transition ti may either deposit or
consume tokens to or from the shared place ps. Since the ps
appearing on different constraint nets is actually the same
place, token manipulations caused by ti need to be reflected
to other constraint nets as well so that consistency in global
markings is maintained. For example, when the internal
transition subscribe-cf is fired, the updated global marking
Mg2 is defined as follows:

M M M M M M Mg2 1 2 3 4 5 6= ∪ ∪ ∪ ∪ ∪ , where

M1 = (A, not-busy), M2 = (A), M3 = (A),

M4 = (CF), M5 = (A, CF), and M6 = (not-busy).

It should be noted that the configuration of Cn1
 was

changed from (A, not-busy, not-CF) to (A, not-busy) although
no transitions in Cn1

 were fired. The firing of a shared tran-

sition is similarly carried out. For example, the next global
marking Mg3

 reached after firing t-ringing, given the cur-

rent global marking Mg1
, is defined as follows:

M M M M M M Mg3 1 2 3 4 5 6= ∪ ∪ ∪ ∪ ∪ , where

M1 = (not-CF, busy, B), M2 = (B), M3 = (busy),

M4 = (not-CF), M5 = (), and M6 = (busy).

The firing semantics of CMPNs can be formally defined
as follows:

DEFINITION 6. Let M C i nN ni
= = 1KJ L  be a CMPN model.

An Mg-enabled transition t ¶ Ti yields new markings ′Mj

in all the Cnj
 and ′Mg  as follows:

•� ∀ ∈
=

p Pjj

n

1U ,

5. Markings for constraint nets are defined as functions. For example,
mathematically correct representation of M1 would be {(idle, 0), (A, 1), (not-
CF, 1), (busy, 0), (B, 0), (Talk, 0), (not-busy, 1)}. However, we use a simplified
notation, (A, not-CF, not-busy), to enhance readability by listing only the
labels for the places containing tokens.
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′ =

− ∈ −

+ ∈ −

− + ∈ ∩

%

&
KKK

'
KKK

M p

M p W p t iff L p t t

M p W t p iff L p t t

M p W p t W t p iff L p t t

M p otherwise

j

j g g

j g g

j g g g

j

1 6
1 6 3 8 1 6 4 9
1 6 3 8 1 6 4 9
1 6 3 8 3 8 1 6
1 6

$ , $ ,

$, $ ,

$ , $ $, $ ,

, ,

o o

o o

o o

•� ′ = ′
=

M p M pg jj

n
( ) ( )

1U .

In the definition given above, ot and to represent the label
sets of pre- and post-places globally related to the transition t,
respectively. For example, in Fig. 5, ot-ringing = {A, not-busy,
not-CF} and t-ringingo = {busy, B, not-CF}.

The reachability analysis of CMPNs is straightforward
and can be easily automated. A brute-force approach is to
combine all the constraint nets, to generate an equivalent
P/T net based on the concept of observational equivalence

[25], and to apply known analysis techniques. This ap-
proach, though feasible, is clearly undesirable because of
state explosion.

The operational semantics of CMPNs do not provide the
ability to perform a compositional analysis directly on
CMPNs due to the use of shared places. In order to over-
come such a limitation and to reduce the complexity associ-
ated with behavioral analysis, we propose utilizing the con-
cept of Petri net slices. CMPN slices are defined as a re-
stricted CMPN in which place sharing does not occur. Ref-
erence [21] describes a slicing algorithm. Intuitively stated,
the algorithm first computes a set of places (e.g., {CF, not-
CF}, {busy, not-busy}, etc.) in which the number of tokens
does not change during the transition firings. This concept
is known as the S-invariants [27]. The slices are computed
by selecting those elements in the set containing the least

         

(a) (b)

(c)

Fig. 6. Minimal CMPN slices for the CMPN model shown in Fig. 5. (a) Slice 1. (b) Slice 2. (c) Slice 3.
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number of places until all the places in the CMPNs are cov-
ered, if possible.

Fig. 6 illustrates the results of applying the slicing algo-
rithm to the BCP CMPN shown previously in Fig. 5. For
example, slice 1, containing two places CF and not-CF, is
initially computed along with the transitions connected to
their places by input and output arcs. Slice 2, containing
two places, is obtained next. It should be noted that transi-
tion sharing is allowed in the CMPN slices, as indicated by
the appearance of the transition t-ringing in both slices.

4 USE CASE INTEGRATION BASED ON CMPNS

Use cases are generally stated in natural languages and
need to be converted to CMPNs. In this section, we propose
a systematic procedure for performing such a conversion.
Fig. 7 illustrates the procedure, which involves the use of
action-condition tables. This conversion process cannot be
completely automated and interactions between users and
domain experts will still be needed.

This procedure is illustrated using six use cases dealing
with basic call processing (BCP) in telecommunications
software:

•� Caller

•� U1 = (off hook; dial number; routing; wait for
response; call connected; on hook) /* normal
conversation */

•� U2 = (off hook; dial number; routing; wait for re-
sponse; on hook) /* no one answers */

•� U3 = (off hook; dial number; routing; other party is
busy; on hook) /* line is busy */

•� Callee

•� U4 = (call arriving; phone ringing; off hook; on
hook) /* normal receiving */

•� U5 = (call arriving; phone ringing; the ringing
stops) /* abandoned call */

•� U6 = (call arriving; send busy signal) /* busy
handling */

Step 1: Fill out the action-condition table. Tabular nota-
tions have been previously used to annotate use cases
[26].6 A sequence of actions included in the use case is
specified. To improve understandability, it is customary
to assign each table a name and to provide an informal
description. Table 1 is an example of the action-condition
table corresponding to the use case U4. In our notation,
columns to specify pre- and post-conditions associated
with actions are added.

Step 2: Clarify event names. Action names initially given
in the use case description may need to be changed. For
example, different users may use different terms to indi-
cate the same action. Similarly, the same name might
have been mistakenly used to refer to distinct actions.
For example, action on hook in U1 occurs when a call is
successfully completed. On the other hand, action on
hook in U2 occurs when the caller hangs up before re-
sponse. Although both actions represent the same physi-
cal movement, they occur in different situations and
must be treated as such. Last, if action names are
stated at different levels of abstraction, they need to

6. Since use case dependency analysis involves both users and domain
experts, it is beneficial to adopt notations both groups are familiar with.

Fig. 7. Use cases sonversion to CMPNs and analysis.
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be modified. Otherwise, it would be difficult to perform
meaningful dependency analysis. Table 2 shows the ac-
tion-condition table of U4 after clarifying the event
names.

Step 3: Identify pre- and post-conditions. Actions speci-
fied in use cases are carried out only when a specific set
of conditions is satisfied. The identification of pre- and
post-conditions proceeds in two steps. First, users iden-
tify relevant state variables7 and specify preconditions
for use cases as a predicate involving the state variables.
For example, in U6, although not stated explicitly, the
line must be busy for U6 to occur. Second, post-
conditions are specified by examining the effects each
use case has on the set of known state variables. See Ta-
ble 3 for an example.

Step 4: Convert action-condition tables to CMPNs. Each
action-condition table is converted to a constraint net.
Since use cases are considered concurrent units of sys-
tem’s functionalities, each has its own control thread.
Fig. 8a shows a constraint net converted from Table 3.

7. It should be noted that global variables are assumed to be of the Boolean
type in this paper to simplify analysis and that such restrictions can be
relaxed.

Events occurring in multiple use cases, identified in Step 2,
are declared as shared transitions. Examples include
transitions t-routing and t-ringing, as shown in Fig. 8a
and 8b.

When converting each use case to a constraint net,
output places connected to a shared transition may need
to be shared if any of the following conditions holds:

•� Successor events are the same. This case occurs
when multiple use cases share a common sequence
of events as shown in the transitions t-routing and
t-ringing appearing in Fig. 8. Since the intermediate
states, A1 and A2 in Fig. 8a and 8b, respectively, are
apparently the same, they are converted to a
shared place with the name Arrival (see Fig. 8c
and 8d).

•� Distinct successor events occur, but they occur se-
lectively. This case occurs if the domain experts re-
alize that the two use cases need to be executed in
a mutually exclusive manner as is the case for the
transitions t-activate and t-abandon shown in Fig. 8a
and 8b, respectively. In order to preserve the exe-
cuting threads of selective use cases, not only the
immediate predecessor places (Ring4 and Ring5 in
our example) but also the initial places (Start4 and

TABLE 1
AN ACTION-CONDITION TABLE FOR NORMAL CALL RECEIVING

Name : call receiving : U4

Informal Description:
When a call arrives, a user picks up the phone,
engages in a conversation, and finally hangs up.

Actions Event Names Preconditions Postconditions
call arriving

phone ringing
off hook
on hook

TABLE 2
AN ACTION-CONDITION TABLE FOR NORMAL CALL RECEIVING

Name : call receiving: U4

Informal Description:
When a call arrives, a user picks up the phone,
engages in a conversation, and finally hangs up.

Actions Event Names Preconditions Postconditions
call arriving t-routing

phone ringing t-ringing
off hook t-activate
on hook t-end-talk

TABLE 3
AN ACTION-CONDITION TABLE FOR NORMAL CALL RECEIVING

Name: call receiving: U4

Informal Description:
When a call arrives, a user picks up the phone,
engages in a conversation, and finally hangs up.

Actions Event Names Preconditions Postconditions
call arriving t-routing

phone ringing t-ringing busy
off hook t-activate
on hook t-end-talk not-busy
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Start5) are declared as shared places and renamed
as Ring and R-idle, respectively (see Fig. 8c and 8d).

Transitions, internal or shared, may reference or update
the status of binary state variables. Such conditions are
declared as a special type of shared place which we call a
toggle place. Busy and not-busy, shown in Fig. 8a, are ex-
amples. A toggle place consists of a pair of places where
one place is the negation of the other. Whenever a token
is deposited to a toggle place, a token is automatically
removed from the counterpart, and vice versa. An ex-
ample of a toggle place is busy and not-busy. A formal
definition of a toggling constraint net preserving the
consistency of the toggle place is given as follows:

DEFINITION 7. Let M C i nN ni
= = 1KJ L  be a CMPN. A tog-

gling constraint net Cn = (P, T, F, W, L, M) for p satisfies
the following:

•� P = {p, not-p},

•� T L t t T p or not p t t t tg ii

n
= ∈ ∈ ∪ − ∩

=
0 5 4 9 4 9J L1U o o o o, -

•� F = {("p, t) ¶ P × T|p ¶ (t° - °t), t ¶ T} ° {("t, p) ¶
T × P|p ¶ (t° - °t), t ¶ T} ° {"(not-p, t) ¶ P × T|not-
p ¶ (t° - °t), t ¶ T} ° {"(t, not-p) ¶ T × P|not-p ¶ (t°
- °t), t ¶ T}

•� L is a label function: "x ¶ P ° T, L(x) = x
•� W : F � Nat is a set of weight functions: "(x, y) ¶ F,

W(x, y) = 1
•� M0 is the initial marking: "p� ¶ P, M0(p�) = Mg(p�).

       (a)          (b)

     (c)        (d)

Fig. 8. Converting action-condition tables to constraint nets. (a) A constraint net for U4. (b) A constraint net for U5. (c) A constraint net for U4. (d)
A constraint net for U5.
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Fig. 9a, 9b, 9c, and 9d are obtained by applying the pro-
cedure described above to use cases U1 through U3 and
U6, respectively. Fig. 9e illustrates how the value of the
toggle place busy is manipulated by various transitions. It
is worth noting that the constraint net representing the
toggle place manipulation can be automatically generated.

Once use cases are converted to the CMPN, Petri nets
analysis techniques can be used to detect such anomalies as
incompleteness or inconsistency. Should such analysis tech-
niques detect flaws, the use cases would need to be revised
and another iteration of CMPN analysis undertaken.

5 CMPNS ANALYSIS: CONSISTENCY AND
COMPLETENESS

A variety of Petri nets analysis techniques can be applied to a
CMPN model to detect such errors as inconsistency or in-
completeness. Simulation can potentially reveal the incorrect
behavior of use cases. As noted earlier, users are most likely
to be interested in analyzing the behaviors of only a selected
subset of use cases and the interactions among them. A sig-
nificant advantage offered by our approach is that a simula-
tion can be tailored to the user’s specific viewpoints and its
complexity minimized. That is, it is sufficient to perform
simulation involving only those portions of CMPN slices
containing places or transitions corresponding to the use

      (a) (b)          (c)

         

   (d) (e)

Fig. 9. CMPNs of basic call processing. (a) A constraint net for U1. (b) A constraint net for U2. (c) A constraint net for U3. (d) A constraint net for
U6. (e) A constraint net for toggle places.
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cases in which a user or users are particularly interested. The
simulation of the rest of the CMPN slices can be hidden.
Likewise, the consistency and completeness analysis can be
applied to either the CMPN or the CMPN slices.

A CMPN model is said to be inconsistent if there exists a
set of transitions that are never enabled. This type of flaw is
analogous to unreachable code in programs. Since use cases
are expected to reflect genuine needs, it is reasonable to
require that CMPNs do not contain transitions that are
never enabled.

Another type of inconsistency occurs if there are dead-
locks. Take the call forwarding (CF) service as an example. In
our example, shown in Fig. 10, incoming calls are uncondi-
tionally8 directed to another phone. Circular forwarding
clearly doesn’t make sense, and such anomalies are detected
by applying well-known deadlock detection algorithms.

Criteria or heuristics to detect the incompleteness of
CMPNs are summarized as follows:

Nondeterminism: If the reachability analysis reveals the
presence of nondeterministic execution paths, the CMPN
may be incomplete because users may have forgotten to
fully specify the constraints associated with the use cases.
It must be emphasized that nondeterministic execution
paths may have been introduced on purpose and that the
final decision can be made only by the domain experts.

Consider the minimal slice set (Fig. 11) obtained from
the CMPNs corresponding to BCP and CF services. The
presence of a token in the arrival place in slice 3 indicates
that three transitions, t-busy-tone, t-ringing, and cf-routing
are simultaneously enabled. Since slice 2 indicates that
the first two transitions are never enabled at the same
time, we are left with two possibilities of nondeter-
ministic execution between the following transition
pairs: (t-busy-tone; cf-routing) and (t-ringing; cf-routing).
Close examination reveals that we have detected a flaw
in the use cases. That is, the use cases for BCP and CF
were correct when analyzed in isolation. However, when
the CF service was introduced, the CMPN for BCP

8. Modern telecommunications switches allow conditional (e.g., only
when the line is busy or no one answers the phone within a specified dura-
tion) forwarding of calls. In order not to excessively complicate our exam-
ple, we chose not to model the conditional call forwarding capability.

should have been modified to properly integrate the CF
service. For example, a constraint net corresponding to
the use case U4 might have been modified so that the
place not-CF could be connected to the transition t-
ringing with both input and output arcs. That is, the
event t-ringing should have been generated only when
the call forwarding service was currently turned off.

Dependencies in telecommunications services can be
quite subtle when diverse features are introduced. Con-
flicts may occur when a customer subscribes to several
services. Similarly, conflicts may occur due to interaction
among customers subscribing to the same or different sets
of services. The detection of such interaction flaws, called
the feature interaction problem [14], [24], [5] in the tele-
communications industry, is known to be a difficult prob-
lem. Traditional techniques such as inspection can, in
principle, detect such flaws. However, if minor changes to
use cases occur frequently, as is likely in industrial proj-
ects, repeated manual inspection is highly unlikely to be
cost-effective. On the other hand, the completeness analy-
sis of CMPNs can be fully automated.

Missing toggle place references: Another criteria for com-
pleteness is that references to state variables, modeled as
toggle places, must be complete. This is analogous to the
requirements completeness criteria for reactive systems
[18] in which the union of trigger conditions must al-
ways yield tautology. If a reference to the toggle place CF
is made in a constraint net Cni

, it is reasonable to expect

that there must exist another constraint net which speci-
fies what the system must do when such a condition is
not satisfied.

Toggle place values never modified: It makes little sense if
the values assigned to state variables are never changed
during system operation. Since state variables are mod-
eled as toggle places, CMPNs must contain transitions
that are capable of removing or depositing a token from
or to the toggle places, respectively. Otherwise, the
CMPNs are surely incomplete. In our example, a con-
straint net for the CF specifies what happens when the
service is activated. However, our CMPN does not spec-
ify when the CF service can be deactivated and how such
deactivation affects the BCP. Hence, it is incomplete.

Fig. 10. Deadlock in circular call forwardings.
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Slices with no shared transitions: When the minimal
CMPN slices are computed, they are likely to contain
shared transitions which serve as synchronization points
among concurrently executing CMPN slices. Otherwise,
a slice is assumed to operate on its own without ever

having to interact with the rest of the system. The pres-
ence of a system component that never interacts with the
rest of the system is likely, although not conclusively, to
be incorrect.

          

  (a) (b)

(c)

Fig. 11. Slice sets of basic call processing and call forwarding. (a) Slice 1. (b) Slice 2. (c) Slice 3.
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6 CONCLUSION AND FUTURE WORK

Scenario-based or use case approaches are popular for sev-
eral reasons: their intuitive appeal to practitioners, their
scalability, understandability, and traceability. However,
several weaknesses must be addressed before use case ap-
proaches can be effectively used in applications demanding
high levels of assurance. We have identified the two most
significant limitations:

1)� lack of formal syntax and semantics, and
2)� lack of analytic procedures to detect flaws resulting

from use case interactions.

As an effective way to formalize the use case approach,
we have proposed the Constraints-based Modular Petri nets
approach (CMPNs) and presented informal, as well as for-
mal, definitions and operational semantics. We believe that
the research reported in this paper is significant because:

•� We have demonstrated that existing Petri net formal-
isms, P/T nets or CP nets, are inadequate in formal-
izing use cases and that CMPNs can overcome such
weaknesses, and

•� We have developed a set of guidelines to determine if
CMPNs are consistent and complete so that flaws in a
use cases specification can be detected at the earliest
possible opportunity.

We have demonstrated an application of our approach
using real-world examples found in telecommunications
software development. While our research offers improve-
ments in formalizing the informal aspects of the use case
approach, there are some issues that are worthy of further
research. First, additional CMPN analysis methods are
needed to detect flaws currently not covered. Data on the
type and frequency of known errors in industrial applica-
tions of use cases would be helpful. Second, software tools
to support CMPN-based modeling and analysis are needed
because the productivity gains one can expect when apply-
ing our approach manually are limited. Finally, CMPN for-
malism itself could be extended. Promising areas for exten-
sion include support for timing analysis and system vari-
ables that are not of the Boolean type. Somé et al. [28] have
demonstrated how such extensions can be introduced to
timed automata and CMPNs need to be extended similarly.
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