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Integration and Learning in Supervision 

of Flexible Assembly Systems 
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Absrhzct- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA generic architecture for evolutive supervision 
of robotized assembly tasks, in a context of integrated manu- 
facturing systems, is presented. This architecture provides, at 
different levels of abstraction, functions for dispatching actions, 
monitoring their execution, and diagnosing and recovering from 
failures. The problem of integration of legacy systems is discussed 
and an implementation approach described. Modeling execution 
failures through taxonomies and causal relations plays a central 
role in diagnosis and recovery. Through the use of machine 
learning techniques, the supervision architecture zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAwill be given 
capabilities for improving its performance over time. Particular 
attention is given to the inductive generation of structured classi- 
fication knowledge for diagnosis. Methodologies used, performed 
experiments, and obtained results are described in detail. 

I. INTRODUCTION 

HE NEED for flexible assembly supported by intelligent 
supervision systems, largely anticipated by the research 

community, is becoming an actual competitive factor for 
industrial enterprises. The increasing globalization of the econ- 
omy, following the openness of markets and the tendency 
to the creation of economic blocks is imposing tough chal- 
lenges to manufacturing companies, leading to the concept of 
ledagi le  manufacturing. Among other vectors, this situation 
stresses the need for truly flexible manufacturing and assembly 

systems (FMSFAS). 
The development of a flexible assembly system PAS) 

imposes important requirements both from the manufacturing 

equipment and from the software architecture points of view. 
In terms of hardware, examples of such requirements are: 
the use of multioperation devices and robots with multiple 
tooldend-effectors, modular design of fixtures and feeders, 
rich sensorial environment, advanced communication infra- 
structures and standard protocols (Manufacturing Automation 
ProtocoVManufacturing Message Specification (MAPNMS) 

[21], [23], FIELDBUS [17], TCPOP), flexible cell organi- 

zation (logical cells), etc. Related to software, resorting to 
“intelligent” functionalities arises as a natural requirement. 
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1) Interactive programminglplanning, in order to reduce 
set up costs and to assure a rapid response to product 

innovation, process changes, or shifts in demand. 

2) Sensorial perception and status identification. 

3) On-line decision capabilities, such as monitoring, di- 

agnosis and error recovery, in order to cope with the 

nondeterministic behavior of less structured cells. 
4) Information integration, in order to consider the FAS 

system as part of a more general computer integrated 

manufacturing (CIM) system. 

This requires a comprehensive world model and the ca- 
pability to update such model, in run time, with perceived 

information coming from sensorial systems and from the 

human interlocutors. Therefore, an important requirement for a 

FAS will be an interactive planning and intelligent supervision 

system. 

Execution supervision of industrial assembly tasks must be 
understood in the general framework of a CIM environment. 
This activity depends on and interacts with various other 
activities involving specialized knowledge. The complexity 
and wide range of such areas, involving different expertises, 
make non realistic some “isolated” approaches to the assembly 

planning and execution supervision. The “game” has to be 

understood in the context of interaction between areas that 

are evolving in parallel, trying to benefit from their results 

and influence them in a way leading to a convergent global 

architecture. 

On the other hand, this approach is consistent with the 
tendency reflected by concurrent engineering [7], [29]. The 
concept of concurrent engineering has become more and more 
popular in recent years as a result of the recognition of the 
need to integrate diversified expertise and to improve the flow 

of information among all “areas” involved in the product life 

cycle. Evolving from earlier integration attempts, represented 

by the paradigms of “Design for Assembly”/”Design for 

Manufacturing,” concurrent engineering is a consequence of 

the recognition that a product is the result of many factors, in- 
cluding marketing and sales factors, design factors, production 

factors, usage factors (intended functionalities/requirements), 

and destructionhecycling factors. The principle of concurrent 
engineering is therefore to create a team of experts from 
different fields and make the team responsible for the design, 
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engineering, manufacturing, and marketing of a single product. 

For instance, production engineers in the team must be able 

to look at the early designs, just as well as sales people. This 
is radically different from the traditional approach known as 
finish the design and “throw it over the wall” to the production 
engineers, and hardly interact with them at all. Team work, 
based on concurrent or simultaneous activities, potentially 
leads to a substantial reduction in the design-production cycle 
time, if compared to the traditional sequential “throw it over 
the wall” approach, as well as to an improvement of quality 
and cost reduction. 

The need to understand the interactions between planning, 
scheduling, and execution supervision is just a part of this 
general concept. To design a supervision architecture, one must 
be aware of what (information) can be expected from the levels 
above. Aiming at a new generation of intelligent supervisors, it 
may be necessary to ask additional information, not required 
by traditional controllers, from the preceding activities. On 
the other hand, from the operational perspective, problems 
not solved by the supervisor have to be fed backward to 
preceding planning activities. For instance, an unrecoverable 

error may imply a rescheduling (dynamic scheduling [31]) 
or even a replanning. Knowing the structure and information 
manipulated by these activities may tune the new demands in 
order to be realistic. 

Planning in manufacturing and assembly is typically done 

in a hierarchical fashion [6], [lo]-[12]. At a more abstract 
level, processes related to long-term planning, such as strategic 
planning, marketing planning, production planning and high- 
level performance monitoring, will be carried on. At an 
intermediate level, operational planning processes, like master 

production scheduling, materials requirements planning and 

capacity planning are considered. At the next level, product 
and process oriented planning, and scheduling, will be placed. 
The traditional assembly task planning can be decomposed 
in two main phases: product oriented planning and process 
oriented planning. The first phase, based on the product model 
(bill of materials, geometric model, tolerances model, materials 
model, etc.), determines a feasible assembly precedence graph 
taking into account the constraints derived from the product 
model itself. The second phase generates, from this precedence 

graph, an executable assembly plan, taking into account the 

cell structure and functionalities and technologic knowledge. 

This phase is typically split in two steps: process planning 
and detailed execution planning, from which intermediate plan 
representations can be produced. 

The process plan is still a high level representation of the 
assembly task, based on abstract operators, like zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAPeg- into- 
hole,  Transfer, Insert-screw, Position, etc., 
but already taking into account feasibility conditions from the 
technologic point of view. Various interactive planning zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAsys- 
tems-eg., computer aided process planning (CAPP)-have 
been developed in recent years [16], [43] to help the human 

expert in generating appropriate process plans. Most of these 
systems follow an interactive generative approach, in the line 
of a decision support system, helping the production engineer 
in the generation of a feasible sequence of assembly steps. 
Each node of the process plan typically includes information 

such as: 

abstract operator to be applied; 

operands, i.e., parts to be assembled; 

mating referentials (goal positions), or approach direc- 

suggested part grasping zones; 
selected resources type (robot and end-effectors); 
operation duration. 

When a specific assembly cell is decidedselected, the task 

specification can be further refined, through several steps, 

until a description understandable (i.e., executable) by the cell 

controller is reached. 

Several attempts to adapt generic planners, developed in the 
AI community, to realistic robotic tasks have been made. Most 

of these planners were designed having the “blocks world” in 
mind and some of the approaches have just tried experiments 
in very particular situations that could be accommodated to a 
simplified world model. In some of these works, a link to a real 
robot was established, the elementary operators, generated by 
the planner, were translated into the real syntax of the robot 

control language, but demonstrated tasks are limited to the 

manipulation of very simple objects (“blocks”), under strictly 

constrained movements (grossly discretized space). Some ap- 
plications like pick-and-place or palletizing, can be realized 
with such a simple approach. For more complex tasks, as in 
assembly, additional capabilities are needed especially in what 
concerns spatial reasoning/planing of flexible motion. Other 
approaches are strongly geometric-reasoning-based [ 13, [20], 
[32] but require heavy processing procedures and achieved 

results still present some limitations. On the other hand, the 

most adequate spatial-related solutions are not completely 

justified by pure geometric reasoning but depend on other 

technological constraints. Therefore, we do not consider totally 
automatic planning approaches as realistic. 

Alternatively, taking into account the multistage planning 
process described above, a less automated but more realistic 
approach to assembly planning can be pursued. The interactive 
approach we followed in some experiments [6], [lo] assumes 
the availability of a “rich” task specification resulting from 

product design and process planning phases. The description 

resulting from these phases is refined by normal hierarchical 

planning techniques and resorting to graphical simulation 

to acquire, from the human expert, positioning information 
(grasping, approaching, trajectory skeletons, etc.). In this way, 
graphical simulation is, not only a mean to verify/evaluate a 
generated plan, but also zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAan instrument to help the interactive 
construction of such plan. It should be noted that a similar 
approach has been successfully applied to other domains (e.g., 
welding tasks [41]). It seems reasonable to apply the same 
strategy on assembly tasks that, in fact, are of a greater 

complexity. 
Typically various manufacturing orders may be competing 

to be executed on the same production resources. Alternative 
plans may also be available for the same product, depending 
on the process and the resources to be applied. Therefore, a 
scheduling activity takes the various executable plans, as well 
as other information, like the job size, the order due date, 

tions; 
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the available manufacturing resources, and some optimization 
criteria, and produces a refined executable plan which includes, 
in association with each operation, the assigned resource and 

time window. 
The work reported bellow is part of the development of an 

execution supervisor, which receives as input an executable 
assembly plan generated as described above and will cany out 
its execution, performing monitoring, diagnosis and recovery 

functions. The executable plan produced according to the men- 
tioned multistep procedure is assumed to have a hierarchical 
structure, which leads to more modular supervision activities 
[l l] .  On the other hand, since the planning activity is often 
carried out hierarchically, the generation of the proposed plan 

structure requires no additional effort. From the supervision 

point of view, the hierarchical approach can be combined with 

concurrent execution at each level. In the lowest level, prim- 

itive resource operators, like Move or Grasp, &e considered. 

Fine motion and compliant actions, like Peg-into-Hole, are 
considered primitive operators. At the next level, immediately 
above, operators like Pick or Mate, are included. In the upper 
levels of the plan, the operations are process-dependent and 
represent important logical phases of the plan execution. At 
each level, plan operators are modeled in STRIPS (STanford 
Research Institute Problem Solver) style zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[38]. 

The work being conducted in our labs considers, at different 

levels of abstraction, functions for dispatching actions, mon- 

itoring their execution, and diagnosing and recovering from 
failures. An important aspect in this context is the evolution 
from legacy systems. Any realistic approach to more advanced 
manufacturing and assembly systems has to take into account 
existing systems and components and find an appropriate 
transitional procedure. As an example, the “opening” and 
partial “reconfiguration” of existing device controllers, in order 
to integrate them into a cooperating community, is not a 

negligible task, as most of these controllers were designed 

under a stand alone perspective. Another main problem is the 

acquisition of knowledge about the environment in order to 

support monitoring, diagnosis and recovery. For this purpose, 

the use of machine learning techniques is being investigated. 
The integration and enhancement of existing controllers and 
sensorial subsystems as well as preprocessing techniques for 
sensorial data (signals to symbols conversion) is a major 
requirement in order to integrate symbolic machine learning 
techniques with real robotic systems. Results achieved under 
this approach in the context of the European ESPRIT project 

B-LEARN I1 are described as well as the planned extensions 
and main foreseen difficulties. 

11. SUPERVISION SYSTEM zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
As already suggested, the architecture of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAan intelligent 

execution supervisor should reflect the hierarchical structure 
of the plans. For each plan level, its main functions are 191 
and [ l l ] .  

1) Dispatching and Global Coordination: The global coor- 

dination activities performed by a high level controller include 

the following: dispatching actions to the executing agents, 
driven by the scheduled task plan; synchronization of activities zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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Example: 

Effects: 
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PZ -Del. on(B.A) 
P1 

Which is the intended effect? 

Fig. 1. Action effects and action goals. 

performed by different agents and synchronization with exter- 

nal events; and world model update and information exchange, 

resorting to a cell information system or knowledge base. The 

dispatcher also coordinates the execution of the other modules 

of the intelligent supervisor as well as the interaction with the 

human operator. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
2)  Monitoring of Assembly Plans: The monitoring function 

is used to detect nonnominal feedback in the system during 
the execution of assembly plans. Two monitoring modes are 
usually considered: discrete monitoring and continuous mon- 

itoring [24]. Discrete monitoring checks preconditions before 
the execution and goal achievement after the execution of 

operations. Continuous monitoring checks sensory conditions 

during the execution of operations. 

For reasons of efficiency, the supervision system should 
only monitor the achievement of the intended effect (Fig. 1). 

That is, during planning phases, the intentions of the planner 
when selecting an operator should be “stored” together in the 
corresponding operator node in the plan. 

In many contributions to the problem of execution monitor- 
ing, the sensory conditions to test in each situation are defined 

in a model [24], often coded as monitoring rules [SI, [22]: 

IF (situation) AND (sensory condition) THEN (actions). 

However, very often it is not easy, even for an expert, to 

specify the sensory conditions that guarantee the success or 
the preconditions of an action and to identify the statistical 
significance of each situation. The use of machine learning 
techniques may help to relate the conditions specified in a 
plan to testable sensors. 

3 )  Failure Diagnosis: The diagnosis function will firstly 

check if there really is a failure (failure confirmation) and 

update the interaal model. Then, this function will try to clas- 
sify and explain the failure. In the early work of Srinivas [42], 

for each action, a failure reason model is built, which specifies 
the collection of all possible failures and all features that are 
expected to manifest for each failure. At each execution level, 
different levels of explanation for a detected failure may be 
generated, depending on the amount of information available 
191. For example, a gross diagnostic can be “pick fail.” A more 
detailed diagnostic could be “pick fail due to object sliding.” 
The least detailed explanation would be “deviation detected.” 

In 1351 it was proposed to divide errors in three main fami- 
lies: system faults, external exceptions and execution failures 
(Fig. 2). Execution failures are deviations of the state of the 
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may-cause 

Fig. 2. Typical relations between the main causes of errors. 

world from the expected state detected during the execution 

of actions. For example, collision, obstruction, part slippage 

from the gripper, part missing at some expected location, 

etc., are execution failures. External exceptions are abnormal 

occurrences in the cell environment that may cause execution 
failures. For instance, misplaced parts, defective parts, and 

unexpected objects obstructing robot operations may cause 

execution failures. System faults are abnormal occurrences 

in the hardware and software of assembly resources and in 

communications. Generally speaking, these are not errors that 
the system can recover from, unless some functional redun- 

dancy is available and rescheduling is performed. However, 
the system must be prepared to detect and identify this type 
of errors in order to prevent the occurrence of other errors. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

4)  Failure Recovery: At each supervision level, the recov- 

ery function is called when the diagnosis function confirms a 
failure and finds an explanation. The recovery function will 
try to determine a recovery strategy to bring the execution to 

a nominal state. One basic question is how to build recov- 

ery strategies? Since the detected error is some unexpected 

(abnormal) event, the nominal plan is not to be altered. 
In the proposed hierarchical approach, when a failure is 

detected before, during, or after the execution of an action, 

and it is not possible to classify, explain, or recover from that 

failure, the problem is passed on to the next upper level where 

context information is broader. In the lower levels of the plan, 

recovery actions will tend to be simple reflexive actions, while 

in the upper levels determining recovery actions will require 

more extensive diagnosis and planning. 

In Fig. 3, an example of the whole error detection and 

recovery cycle is presented. A feature extraction function is 
permanently acquiring monitoring features from the raw sensor 
data. The monitoring function compares these features with the 
nominal action behavior model. In this example we consider 

that, during the execution of a Transfer operation, in which 

the robot carries a part to be assembled, an object, unexpect- 

edly appearing in the environment, collides with the gripper 
causing the part to move without falling. The first diagram, 

included in Fig. 3, shows the perceived sensor data during 
actual execution. The second diagram shows a qualitative 
model of the operation. The third diagram shows a qualitative 
interpretation of the raw sensor data in terms of the features 
used in the operator model. Since a deviation is detected, the 
diagnosis function is called to verify if an execution failure 
occurred and, in that case, determine a failure classification 

and explanation. For this function, additional features must 
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EXPLANATIO 

RECOVERY 
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STRATEGY 

Fig. 3. The error detection and recovery cycle-Example. 

be extracted, as it will be explained in Section IV. Diagnosis 

is a decision procedure that needs a model of the task, the 

system and the environment. The final step, based on the 

failure characterization, is recovery planning. In the example, 

the robot should place the part in a positioning device and 
regrasp it after position calibration. 

The problem of building the knowledge base, and in par- 
ticular the models that the monitoring, diagnosis and recovery 
functions need, is not easily solved. Even the best domain 
expert will have difficulty in specifying the necessary map- 
pings between the available sensors on one side and the 

monitoring conditions, failure classifications, failure explana- 
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Fig. 4. An architecture for autonomous supervision. 

tions and recovery strategies on the other. Also, a few less 

common errors will be forgotten. Known prototype systems 

show limited domain knowledge, as they are intended mainly 
for exemplification and not to be used as robust solutions in 

the real world. Thus, we include in the execution supervisor 
two other functions: Training and Learning (Fig. 4). The 
training module coordinates the interaction with the human 
operator in order to acquire new information about nominal 

execution of the assembly plans, as well as descriptions of 

new error situations. The learning module compiles raw data 

generating classification knowledge, generalizes instances of 

target concepts, etc., in order to build the needed models. In 
Section IV, a detailed description of this learning functionality 
is presented. 

111. CELL MODELING AND INTEGRATION 

In order to install an Intelligent Supervisor on a FAS, an 
execution infrastructure, providing integrated access to the 

local controllers of the manufacturing resources, is necessary. 

The increasing demand for highly sophisticated supervisors 

implies local controllers with sophisticated features. Although 

existing controllers are not suited to provide this kind of 

requirements, it would not be realistic to ignore them and 
start everything from scratch. To overcome this, it would be 
necessary to “adapt” existing controllers (legacy systems) to 
the new reality by developing an abstract machine that hides 
the hardware peculiarities and provides new sophisticated 
services to its client (the supervisor). zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
A. Migration from Legacy Systems and 
Cell Integration 

Migration from andor integration of legacy systems is 
one of the most challenging aspects of manufacturing sys- 
tems. The existing gap between functionalities provided by 
currently available controllers and fuqctionalities needed by 

an intelligent supervisor requires a considerable effort to be 
overcome. These controllers were developed with completely 

different purposes, to be used in stand-alone operation, almost 
without functionalities to cooperate with other components. 

Components were developed to be used as “masters” of a 
“small kingdom” and not as agents to be controlled by high 

level controllerslsupervisors. 
A migration procedure is necessary to “recover” existing 

controllers. Creating entirely new controllers, with functional- 
ities adapted to the supervisor requirements could be a form to 

overcome that problem, but it would imply a tremendous cost. 
Existing controllers, by economical reasons, cannot be simply 

thrown away. Therefore, a more sensible approach is to try 

to adapt existing systems to the requirements of high level 

controllers, which need only a smaller set of functionalities 
but a larger openness. 

The requirement of the high level controller to directly 
command legacy systems operations is one of the most im- 
portant aspects. Most of the existing controllers provide no 
way to do that. To fulfill this requirement an interpreter or 

adapter in the controller side should be developed to accept 

commands that could be issued via an input/output port. It 
should be pointed out that, in most cases, this interpreter 

will reduce the functionalities of the local controller, but the 

gain coming from the possibility to have a controller that 

can be easily integrated in a manufacturing system overcomes 
these disadvantages. Developing the interpreter is not an easy 
task, since robot manufacturers do not have the tradition to 
develop open architectures. To add anything to the system, 
other than developing programs using the manufacturer’s own 

development tools, is a hard job, requiring a tremendous effort 

in “breaking” protocols and adapting controllers functionality 

to the new requirements. 

B. Cell Modeling 

In our approach, to connect an intelligent supervisor to real 
components it is necessary to build up a software layer that 
provides the functionalities needed by the supervisor. This 
software layer can be seen as an abstract machine that supplies 
services to a high level supervisor in the same sense an 

operating system provides services to applications. The clear 

separation between the supervisor and the abstract machine 

allows for a transparent access, hiding the hardware peculiari- 
ties zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAand the heterogeneity of the various local controllers from 
the supervisor (Fig. 5).  In this sense, the services exported by 
the abstract machine should be independent from the specific 
hardware, meaning that the variety of existing controllers 
should be integrated by this platform. The abstract machine 
services should not be the sum of all individual features that 

exist in each real controller. This is justifiable because: 1) 

available controllers show a big heterogeneity in terms of the 

level of abstraction they export; 2) the behavior of a particular 

controller is constrained, i.e., has to be coordinated according 
to its role in the integrated community of agents. Therefore, 
services offered by the integrating platform should be of 
higher level, resorting to the low level services (existing in the 
real controllers), but they include some knowledge about the 



CAMARINHA-MATOS et al.: INTEGRATION AND LEARNING IN SUPERVISION OF FLEXIBLE ASSEMBLY SYSTEMS zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Supervisor 

hecuhon lntrastructm 

Physical Physical 
Controller Controller 

Fig. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5. Integration of local controllers in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAan open environment. 

structural aspects of the underlying system. A rich underlying 

system model (abstract machine) will simplify the supervision 

activities. 

In order to develop such abstract machine using the pro- 

posed requirements, it is necessary to choose an adequate 
modeling paradigm. Two modeling perspectives can be pointed 

out clearly: modeling of cellhystem structural aspects and 

modeling of the static and dynamic properties of individual 
components. The combination of object-oriented and frame- 
based programming paradigms seems to be suitable for this 

purpose, due essentially to their constructs to model the 
operational aspects of the components (methodddemons) and 

to represent the structural aspects of the system (relations 

that can be user defined). Methods and demons associated 

to the component’s model can hide the underlying hard- 

ware infrastructure. Another important aspect is the “relation” 
concept, which can provide a flexible way to describe inter- 
components’ relationships. The Golog frame engine, devel- 
oped in-house, is being used [341. 

I )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAStructural Model: In the following discussion, the basic 
modeling unit will be a cell. A cell is a composite entity that 

is capable of performing some transformation, movement or 

storage related to some product or part [3]. In structural terms, 

each cell has components to support the input of parts, an 
agent to perform the transforming actions and components 

to support the output of products/processed parts. An ex- 
ample of a cell model can be found in Fig. 6. The relation 
connectedJrom links the cell model to the entity or entities 
performing input activities. The relation connecteddo links 
the cell model to the entity or entities performing output 
activities. The relation processor links the cell model to the 

agent performing transformation activities. The generic cell 

concept can be specialized by activity. There can be cells 
specialized in assembly, painting, welding, storage, machining, 
transportation, etc. A shop floor is just a set of specialized cells. 

The input and output activities can be performed by several 
agents, i.e., there may exist several candidates, depending on 
the application. 

At this stage it is convenient to make a distinction be- 
tween the concepts of agent and component or manufacturing 
resource. For instance, the model of a robot component is 

a context independent description of its static and dynamic 

characteristics. A robot agent is a model of a robot and 
associated resources, like tools or auxiliary sensors, when 
inserted into a particular context. A robot can play different 
roles in different contexts. The (expected) behavior of a 
robot in an assembly context is different from its behavior 
in a spot welding context. On the other hand, when a robot 
is performing a given role, it resorts to auxiliary resources, 

Frame: cell zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( 
base-coordination-s ystem: 
processable_products: 
input-parts : 
connected f rom : 
processor : 
connected-to : 

1 
Frame: Assembly-Cell { zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

is-a zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA:cell 
Val-inp-ag: buff er, gravi t-f eeder , 

Val-out-ag: conveyor ,  agv, buffer, 

Val-proc-ag: robot 

Cell and assembly cell 

index-table, agv, conveyor 

index-table 

Fig. 6.  

- 
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Robot 

Fig. 7. Structure of an assembly robot agent 

controls 
Component Component 

Fig. 8. The relations controlledby and controls. 

like tools, sensors, buffers, etc., that extend its functionality 

in order to fulfill the functionality required by the role. A 

robot agent is, therefore, a model of the robot when playing 
a particular role and extended by selected attributes inherited 

from the auxiliary resources (Fig. 7). 

The relationship between a robot component and its con- 

troller can be found in Fig. 8. The relation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcontrolled-by 
links the model of the robot to the model of its controller 

(Figs. 8 and 10). The operations specified in the inherits slot 

are inherited by the robot component. In assembly applica- 
tions, a robot could have the role exemplified in Fig. 9. 

In a role, main-attributes is a slot related to the inheritance 
mechanism of the plays relation. In this case, it specifies which 

are the characteristics of the assembly role that will be relevant 

to a processor agent. The slot component-attributes 
has the same functionality as mainattributes, but, in this 
case, associated to the relation supportedby. This slot de- 
scribes the most relevant component attributes that are im- 
portant to the processor agent. The slots tool s-domain 
and aux-re s -doma in represent domain knowledge that is 
important. The relation currentdool associates the main player 
of this role (robot component) to a particular tool. The relation 
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Frame: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAassembly-robot zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA{ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
is-a :agent zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
plays : assembly-role 
supported-by : robot-component 

I 
Frame: assembly-role { 

is-a :role 
tools-domain: (grippers, screwdriver) 
aux-m-domain: (buffers) 
force-sensor : 
current-tool : 
available-tools: grl, gr2, sd2 
assembly-device : fixture1 
main-attributes: fo rce - senso r ,  

componen t -a t t r i bu te s :  
base-coordinate-sys t e m ,  

c o n t  r o 11 ed-by , current-position 

current-tool, . . . 

1 
Relation: plays { 
is-a : r e l a t i o n  
type: intransitive 
inherits: inclusion(main-attributes) 
inverse-relation: played-by 

I 
Relation: supported-by { 
is-a : relation 
type: intransitive 
inherits : inclusion(component-attributes) 
inverse-relation: perfom 

Fig. 9. The robot agent. 

assembly device specifies where assembly operations are really 
done (e.g., in Fixturel). 

Finally, an example of an agent is described in Fig. 9. The 
relation plays associates an agent with a specific role. The 

relation supportedby associates an agent with its intrinsic 

properties (component). The inheritance slot specifies the slots 

to be inherited by the processor agent. 

2) Dynamic Model: The dynamic model is related to the 
way components’ physical changes are reflected in the model 
and vice-versa. Components’ physical behavior is realized 
by controllers actions, i.e., robot movement or part feeding 
operations are actuated by a controller. Internal component 
models should reflect the physical behavior. In this way, it is 
natural to consider that models should have the same kind 

of operation, i.e., behavior is described by an entity that 

virtualizes the functionality of the physical controller. Every 
component has a controlledby relation to assign a controller 
model to a component. This is the way component models rep- 
resent behavior. For example, an instance of robot-component 
should be related to an instance of robot-ctrl-component 
via the controlledby relation (Fig. 10). This frame defines 
all methodddemons that virtualize the physical controller’s 

functionality. Connection between methods or demons and 
the physical controller is made through a server that is a 

kind of physical controller’s “mirror.” Using a method or a 
demon depends on the existence of a variable associated to its 

corresponding behavior. For instance, the behavior of feeding 

a part is described by a method, while a robot movement 

/ 
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Frame: robot-component { 
is-a : manufacturing-component 
base-coordinate-s ystem: 
controlled-by : 
applications: assembly, gluing, _. 
current-position: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

1 
Frame: robot-ctrl-component { zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

is-a : controller 
move-wc: method move-wc-fn(x, y, z, q) 
movejc: method movejc-fn(m1 ,m2,m3,m4) 
hardhome: method hardhome-€n 
acceleration: demon if write accel-dem 
speed: demon if write speed-dem input 
output: byte &mon if write output-dem 

I 
Relation: controlled-by { 

is-a : relation 
type: intransitive 
inherits: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAinclusion(move-wc,move-jc,. ~ . )  
inverse-relation: controls 

Fig 10. Robot and its controller. 

could be described by a demon associated to the attribute 

that represents robot’s position. This means the existence of 

variables that describe the controller’s internal state, which 

will be accessed through their attached demons. 

During physical controller’s operation, the model can pro- 
vide updated values of control variables when consulted. 
From the controller’s model point of view, these variables are 
persistent, because they “keep existence” over its execution. 
No concern is necessary to save these variables between su- 
pervisor’s executions, as they persist in the physical controller. 
This persistence does not imply a static behavior because there 

exists a dynamic link, implemented by a demon, between 

the supervisor side and the physical controller side. Any 

change in one side implies the other side’s awareness and 
therefore a dynamic persistence concept is achieved. Reactive 

programming is useful to implement the link between the 

model and the dynamic aspects of the components (Fig. 11). 
Control variables actuated externally (digital inputs) are 

associated to if-read demons. Every time a client (supervisor) 
of the controller server needs to know the value of an external 
input, it performs a read operation of an attribute that reflects 

the state of that input. This read action fires the demon which 

accesses the external controller to read the input value. 

On the other hand, control variables actuated internally 
(robot position) are associated to if-write demons. Every time 
a client (supervisor) needs to change the robot’s position, it 
just changes that attribute, implicitly firing an if-write demon, 
which sends the necessary commands to move the physical 
robot to the new position. But if the client only needs to know 
the current position, it just reads the corresponding attribute, 

firing an if-read demon, which sends the commands necessary 
to get the position from the physical controller (Fig. 11). 

With this approach, an abstract representation of a cell can 

be developed to be used in the supervisor architecture. This 

representation allows for physical control actions as well as 
sensorial feedback to the supervisor. 
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Fig. 11. Use of reactive programming to support dynamic persistence. 

IV. REASONING ABOUT FAILURES-A 
MACHINE LEARNING APPROACH 

As emphasized in Section 11, the difficulty in hand-coding 
the models that the monitoring, diagnosis and recovery func- 
tions need, raises the question of how to build such models 
automatically. The use of machine learning techniques seems 
a promising approach to the problem. In the following, some 

methodological and experimental developments in applying 
inductive learning to generate diagnostic knowledge are pre- 
sented. Particular attention is also given to the training method- 

ology as well as to obtaining qualitative representations of 
normal and abnormal system behavior. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
A. A zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAQualitative Reasoning Perspective 

In some early approaches to error recovery in robot pro- 
grams, it was already understood that the use of good domain 
knowledge was important but it should be combined with 

some sort of common-sense and qualitative reasoning [ 181. For 
instance, it is very difficult to model friction mathematically. 
Still, humans, using their “fuzzy” understanding of the phys- 
ical world, can deal with friction in every-day tasks. There is 
already an important body of literature coming from the area 
of qualitative physicsheasoning [ 151. However, being quite 
interesting the available results, they are at the same time 
a little disappointing, since codifying qualitative knowledge 
about the physical world turned out harder than expected. 

The fact that many of the test cases analyzed by researchers 
in this area are in the domain of continuous processes (for 

instance in chemical plants) seems to have taken them to 
believe that things change smoothly in the physical world. 
However, in the robot assembly domain, this assumption does 
not hold. Errors occur unexpectedly, causing system param- 
eters to change abruptly. Furthermore, the overall nominal 
execution of an assembly plan cannot be considered a continu- 
ous process. At most, some of the primitive actions in the plan 
can be considered to have a certain degree of continuity. And 
yet, the execution of an assembly plan is certainly a physical 
process that, at a certain level of abstraction, should be possible 
to describe qualitatively. In the following we describe ways 
to obtain qualitative representations of numerical sensor data 
relevant to monitoring and diagnosis, then give an overview 
of our current ideas about how the model of errors should 
look like and how to use it, and finally present the learning 
techniques used. 

1) From zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBASignals to Symbols: In robotics and automation 
environments, the richer sources of information about the 

status of the system are, often, sensors that return numerical 

data difficult to analyze. The main source of numerical data in 

our experimental setup is the force and torque (F&T) sensor. 
Data coming from other sensors, most of them binary, can be 
directly mapped to information on status of feeders, fixtures 
and tools. With the F&T sensor we can monitor actions in 
which the robot arm is involved. It would be desirable that the 
execution supervisor could reason about the evolution of force 
and torque values, measured during the execution of actions, 

in terms of its overall characteristics, and not in terms of the 
individual numerical values, i.e., in short, as humans do. 

In the field of qualitative physics, the frequently proposed 
representations for numbers include signs, inequalities, and 

orders of magnitude. Fuzzy logic could be used to model qual- 
itative values of numerical variables. For instance, consider the 
behavior of a sensor variable during a certain period of time. 
A human, making a qualitative description of such behavior, 
would probably divide it into intervals, and would mention 
roughly how long these intervals were, which were the average 

values in each interval, as well as the average derivatives. 

Thus, fuzzy descriptions for time intervals, amplitudes and 
derivatives are needed. These descriptions can be given or 

learned. 
Dealing with time intervals is not an easy task, mainly 

when the goal is to apply existing machine learning algorithms 
to generate new knowledge. Currently, we divide numerical 
sensor data behavior traces in a fixed number and equal length 
set of subintervals. For each of them, averages, slopes, etc., 
are calculated. The generic approach is to calculate, from the 
raw sensor data, features closer to the way humans think. The 

second step is the derivation of a symbolic description of these 
higher level features. 

Since one of the goals is to generate classification knowl- 
edge about execution failures, based on provided examples, 
a method was developed [35], [36] to generate symbolic 
descriptions of numerical features which maximize their class 
discrimination power. This method follows three steps. The 
first step is to produce histograms for all pairs of classes and 
features. Each histogram shows the number of examples of 
each class corresponding to several intervals of values of the 
feature. The number of intervals considered is given by the 
number of Struges: Interv = 1 + logz’lot, in which Tot is 
the total number of examples represented in the diagram, i.e., 
the total number of examples belonging to that class. In the 
second step, each histogram will be approximated to several 
well known statistical distributions (e.g., normal, exponential, 
uniform). The chi-square test will determine which distribution 
fits better in the histogram. To apply this test, the relative 
frequency of objects of the considered class in each interval 

i, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAq i ,  is calculated according to the distribution being tested. 
Let N be the total number of objects of the class in the training 
set, and N, the number of objects of the class in interval i. x2 
is defined as 

(Na - N .  x2=c N . q ,  
a 

-J 
The distribution that gives the lowest value of x2 will be 
chosen. The last step is to apply a rate of significane to 
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Fig. 12. Numerical to symbolic conversion 

Error 
I - .  

is 

‘ /  
unexpected may-cause - collision object 

is-a / zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 is-a/ \b 
side collision \ 

unexpected zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI / with no zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAdamage \ 
may-cause side collision object athear 

motion path with part lost 

Fig. 13. Example of causal links at different levels of the error taxonomy. 

the distribution in order to ignore values of the feature that 
do not occur significantly in the examples of the considered 

class. Finally, the intersection of the intervals of values of 
the feature, in which each class may occur, defines qualitative 

values for that feature (Fig. 12). 
2) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAThe Model of Errors: Depending on the available sen- 

sorial information, a more or less detailed classification and 

explanation for a detected execution failure may be obtained. 
Therefore, the model of errors should be a taxonomy. At each 
level of this taxonomy, cause-effect relations between different 
types of errors should be added. Typically, execution failures 
are caused by system faults, external exceptions or other past 

execution failures, although, in general, errors of the three 

kinds may cause each other. Determining explanations for 

detected execution failures can become very complex when 

errors propagate. The proposed approach to modeling errors 
in terms of taxonomic and causal links aims at handling this 

complexity (Fig. 13) [9], [28], [35]. 
In actual execution, when a failure is detected, the current 

state of the world is analyzed, as well as its evolution in 
an interval surrounding the time of detection, and a failure 
classification is determined. This can be done using knowledge 

generated by inductive machine learning techniques, as it will 

be described bellow. Then, the model of errors will be used 
to explain the failure, i.e., to determine its causes. Diagnostic 
reasoning and causality have been studied for some time, and 
tested frequently in domains like electronic circuits, but there is 

no unified theory for these matters. Moreover, approaches like 

the one presented in [14] structure the problem considering 
that the main goal is to determine the faulty components 

in a system. However, in the assembly domain, not only 

system faults, but also external exceptions can be causes of 

off-nominal feedback. 

E. Leamitzg: Previous and Related Work 

In previous work, concerning the diagnosis functionality 

1111, [35], [36], an inductive learning algorithm [19] was 
applied. The algorithm is simple and, compared to ID3 [30], 
AQ [25] and other well known symbolic inductive learning 
algorithms, has the advantage of dealing elegantly with con- 

tinuous training data. The disadvantage is that it does not 

consider discrete features. 

The learning kit CONDIS (inductive learning in continuous 

and discrete domains), developed in-house [37], may be used 
in domains characterized by symbolic andor numerical fea- 

tures. It was designed to be easily integrated in an application. 
It can be used to test different approaches to a particular 
learning problem. The objects in a domain are characterized 
by a set of attributes or features and can be grouped according 

to a set of classes. Continuous features take numerical values 

while a discrete feature takes one of a finite prespecified set 

of values. The calculation cost for each attribute may also be 

provided. 

As pointed out by Cheng et al. [13], a symbolic inductive 
learning algorithm (decision tree generator) is a recursive 

procedure for which four rules must be specified. 

RI. Test Stop: a rule for deciding when to stop the 

E. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAClassify: a rule for labeling a leaf node with a class. 
R3. Select Feature: a rule for selecting a test feature. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

0 R4. Partition Examples:. a rule for partitioning a set of 

The CONDIS learning kit, implemented in C for efficiency 
reasons, allows the user to define such rules. In addition, for 
domains characterized by complex features, it was included in 
CONDIS the possibility of defining rules for transforming, in 
each step of the induction, the set of values that the features can 

take. Considering a rule for the initialization of the induction 
process (e.g., for data structure initialization or for generation 

of a new table of examples in terms of higher level features) 

might also be useful. 

0 R5. Trunsfom Features: transformation of the domain 

R6. Init Induction: initialization of the induction process. 

This system is being used to evaluate different variations of 
the classical structure of inductive algorithms. For example, if 
the appropriate rule implementations are provided, CONDIS 
can work as a classical ID3. However, CONDIS, as well as the 
most widely known empirical inductive learning algorithms, 

including ID3 [30], AQ [25], and CART [5] ,  is only able to 

learn “flat” concepts, uni-dimensional concept descriptions, or 
“labels”: The resulting knowledge is only able to assign classes 

to objects from a given domain. In the assembly domain, 
for example, these algorithms and systems cannot handle 

simultaneously the problems of discriminating collisions from 

recursion, i.e., when to create a leaf node. 

examples. 

of values of a feature. 
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obstructions and normal situations and discriminating between 

different types of collisions. 

C. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBALearning zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof Taxonomic Knowledge 

One extension could be learning multidimensional concept 

descriptions, but, having as motivation the automatic construc- 

tion of the models required for the Assembly Supervisor, the 

idea of generating a concept hierarchy became more attractive. 

A new algorithm, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBASKJL (structured knowledge generated by 
inductive learning), was developed to perform that task [37]. 

SKIL requires the following specification of the application 
domain: 

The concepts in the hierarchy are characterized by a set 
of classification attributes: A = {A,: i = 1 . . . zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa} .  Each 
attribute can take one of a set of discrete values: Values(A,) = 
{A,,: j = 1 . . U A , } .  The structure of the most abstract 

concepts in the hierarchy will be given by attributes selected 

from a set of top-level (start) attributes (TLA A) ,  which 

must be provided by the user. 

At the lower levels of the hierarchy, concepts are described 

in more detail, i.e., more attribute values are specified. More- 
over, in detailing or refining a concept, in which attributes take 
certain values, it may make sense to calculate other attributes. 
Therefore, the user should provide a set of attribute enabling 
statements of the form (A , ,  A,, , EA,,), meaning that when the 

value of A, is determined to be A,,, then attributes in EA,, 
should be included in the set of attributes to be considered in 

the continuation of the induction process. For example, when 
learning the behavior of a zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBATransfer operation, if a collision 

is found, it may make sense to determine some characteris- 
tics of the colliding object, like size, hardness and weight. 
This could be expressed by the following attribute enabling 
triple: 

(f ailure-type, collision, {obj -size, 

ob j hardness, ob j-weight}). 

The values of the attributes of the concepts in the hierarchy 
are determined inductively based on training data specified in 

terms of a set of discrimination attributes or features: F = 
{ F,: i = 1 . . zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAe f }. When features are continuous, qualitative 

values are obtained in each step of the induction using the 

method described in Section IV-A- 1. For discrete features, the 
set of values is provided by the user: Values(F,) = {F,,: j = 

Each example in the training set is composed of a list of 
attribute-value pairs followed by a vector of feature values. 

For instance: 

behavior = failure 
failure-type = collision 
collision-type = front 
part-status = moved 

1 * .  . UF,}. 

-1 4 20 1 4  1 1 3 - 1  0 1 0  2 - 1  
13 1 -24 -71 -3 -15 -3 0. 

In this case, the presented features were extracted from a trace 
of forces and torques. 

The algorithm (see Fig. 14) is a recursive procedure that 
takes as parameters a list of examples, a list of classification 

algorithm SKIL(LEx,LAt,LAET,LFt) ( 
// LEX, LAt, LFt are lists of examples, 
// attributes and features. LAET is the 
// list of attribute enabling triples. 
declare Node; 
NewLAt = OpenA#ributes(LEx&AaMq; 
Node.clod-ats = ClosedAtaibutes(LEx,LAt,LAET); 
if TestStop(NewLAt,LFt) [ 

Node.type = (NewLAt == LAt ? LEAF : H-LEAF ); 
// H-LEN, a concept hierarchy leaf. 
// LEAF, a tree leaf. 
return Node; 

1 
Transfdeatures(LEx,NewLAut); 
(At,TFJ = SelectTestFeature(LEx,NewLAt&Ft); 
if (FeatureIrrelevance(LEx,At,TF) > MAX-IRREL) [ 

//MAX-IRREL: Max. feature irrelevance, e.g. 97.5% 
Node.type = (NewLAt = LAt ? LEAF : H-LEAF ); 
return Node; 

NewLFt = LFt - TF; 
for each TFk in (TF.transfomed-values) do [ 

I 

NewLEx = PartitionExamples(LEx,TF,TFk); 
Node.sub-treeF]= SIUL(NewLEx,NewLAt,LAJZT,NewLFt); 

1 
Node.type = (NewLAt == LAt ? TEST : H-NODE ); 
// H-NODE, a concept hierarchy node. 
//TEST, a decision. 
return Node; 
1 

Fig. 14. The SKIL Algorithm. 

attributes, a list of attribute enabling triples, and a list of 

features. The first step is to verify which attributes can 

be closed, i.e., which attributes have the same value in 

all provided examples. In traditional inductive algorithms, 
this step corresponds to determining a class and creating a 
leaf node. In SKIL, determining the value of one or more 
classification attributes implies, by definition, the creation of a 

taxonomy node. If there are attributes whose values cannot be 

determined at the current stage, referred to as open attributes, 

induction continues. To be noted is the fact that, starting in 
the list of closed attributes and using the enabling triples, new 

open and closed attributes will be found recursively. 

In each stage of the induction, the main goal is to close 

classification attributes. For each attribute, the discrimination 

power of features is evaluated, in terms of an entropy measure, 
as in ID3 [30]. The feature that, for some attribute, gives the 
lowest entropy is selected to be test feature. If the chi-square 
test for stochastic independence [30] returns a confidence 

factor on the irrelevance of the test feature (concerning at- 

tribute value discrimination) greater than some threshold (e.g., 

97.5%), expansion is stopped and a leaf node is created. 

The basic knowledge transmutation used by SKIL is, there- 

fore, empirical inductive generalization, only that at multiple 
levels of abstraction (see the inferential theory of learning 

[26]). The generated knowledge structure is a hierarchy of 
anonymous concepts, each of them defined by the combina- 
tion of several attribute-value pairs. The number of specified 

attributes and values defines the abstraction level. The for- 
mation of these concepts, guided by the attribute enabling 
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triples, depends highly on the training data. The hierarchy is, 

simultaneously, a decision tree that can be used to recognize 

instances of the concepts. It is equivalent to a set of rules of 
the form 

The left hand side of the implication is a conjunction (indicated 

by the A sign) of conditions, on the values of several discrim- 

ination features, sufficient to recognize the concept specified, 

on the right hand side, by a conjunction of attribute values. 

The problem of learning at multiple levels of abstraction 

has not yet been adequately considered in the literature. In 
some approaches, a fixed decomposition of concepts is used, 
and learning is applied at each level [27]. This means that, for 
instance, the structure of the taxonomy in Fig. 13 would have 
to be user-defined. However, this is not flexible enough. Fixed 
decompositions have also been used for feature values [27], 
[33]. In the case of numeric features, since SKIL performs 

the clustering of numeric values in every decision node, the 
resulting decomposition tends to be the most adequate. In 
what concerns symbolic features, a decomposition of values 
could help. However, this was not implemented, since most 

of the available sensor data in the application that motivated 

the research is numeric. Developed with a particular problem 
in mind, SKIL is a contribution to the research in multilevel 
learning. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
D. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBATraining or Tutoring Methodology 

According to the paradigm of programming by human 

demonstration, complex systems are programmed by show- 

ing particular examples of their desired behavior and giving 
explanations for particular failure situations. In our current 
approach, the interaction between the execution supervisor and 

the human operator is fundamental. The human will carry out 
an initial training phase for the nominal plan execution. The 
traces of all testable sensors will be collected during training 
in order to generate the corresponding monitoring knowledge. 

In the existing implementation, for each action and each 

continuous feature, the typical behavior of the attribute during 

the execution of the action is calculated as being the region 

between the average minus standard deviation behavior and the 
average plus standard deviation behavior. The trace of discrete 
features is also recorded. Also in the initial training phase, 
the human operator may decide to provoke typical errors, in 
order to collect raw data in error situations. Error classification 
knowledge is subsequently generated by induction, currently 
using SKIL. 

When a new failure is detected during real execution of 

the assembly system, the human operator is called to classify 

and explain the failure and to provide a recovery strategy for 
the situation. This is considered also as a training action, 
since the system history and the model of errors will be 

expanded and new knowledge will eventually be generated by 
incremental induction, therefore improving future performance 
of the system. 

V. EXPERIMENTAL DEVELOPMENTS zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
A. Cell Integration 

Experimental evaluation of the methodologies described 
above has been taking place in NovaFlex, a FMSIFAS pi- 
lot unit installed at the UNINOVA institute, and in the €3- 
LEARN assembly cell, installed at Universidade Nova de 
Lisboa (UNL). 

N o v a e x  was conceived as a demonstration unit able to 

handle a set of typical activities of a computer integrated 

manufacturing (CIM) system [2]. Besides the machining and 

the assembly subsystems, the Pilot Unit includes zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa, storage 

component, an input section for raw materials, a delivery 

section for finished products and a transportation subsystem 
that links all the other components. The transportation medium 
is a pallet-based conveyor belt. Each pallet can be adapted to 
transport different kinds of parts and products. 

The system was required to comply with a variety of 
products (a basic design goal). The objective was to build a 

relatively generic infrastructure, that could adapt to a range of 

products with minimal setup effort. Another very important 

aspect is the possibility of different groups of users being 

simultaneously using different subsystems of NovaFlex for 

separate experiments. As a matter of fact, this situation is 
expected to be the most common in practice. This requirement 
led to an architecture in which NovaFlex can be operated either 
as an integrated FMSFAS system or as a set of isolated sub- 
systems (machining, assembly, transportation, storage, etc.). 
This has particular consequences on the design of the control 

architecture. 

Therefore, the need to support these different research areas 

implied the design of a flexible architecture, from the topology 
to the control points of view. An easy reconfiguration of 

its operating mode is an important requirement to support 

concurrent research activities. 

Fig. 15 illustrates the approach that was followed in No- 
vaFlex. As mentioned in Section 111, the set of methods of the 
controller model implement the actions that are needed to send 
the right commands to the real controller. The real controller 

imagq is developed using a client-server approach. In this way, 

implementation methods can ask this server to perform the 

required actions. These methods hide the underlying hardware 

structure from the application, i.e., an application using a 
robot component does not need to know much about the real 
controller and its image or server. The applications only know 
which functionalities are provided by the robot component 
model. This approach appears to be suitable to integrate 
existing controllers, making the integration of legacy systems 
an easier task. 

In the B-LEARN assembly cell, experiments concerning the 

application of machine learning techniques in assembly super- 

vision have been performed, in the framework of the European 
ESPRIT project B-LEARN. This cell is composed of one 

SCARA robot (needless to say, in all our robots, the control 
languages are not suited to write intelligent control software), 
three robot grippers, tools magazine and corresponding tool 
exchange mechanism, two special purpose feeders, one fixture 
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Fig. 15. NovaFlex physical infrastructure. 

and sensing devices. As feedback information sources for the 

supervision system, the following discrete information sensors 

were integrated in the cell: a) in each gripper, to detect if it is 

open, closed or clamping; b) in feeders, to detect part presence, 

part stock existence and feeder problems; c) in the wrist of the 

robot, to find out which tool is attached, if any; d) in each tool 
place to detect tool presence; and e) in the fixture, to detect 
if the jig which will hold the assembly is present. The most 
frequent execution failures are expected to be those in which 
the robot zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAarm is involved, including collisions, obstructions, 
and handling failures. Therefore, a force and torque sensor, 

which seems a good candidate to give information about those 

failures, was also included. 

From the supervision point of view, the main limitation 

of the robot control language is that it does not provide 

guarded movements. Since communication via teach pendant 
(TP) is very fast, the solution was to decompose each motion 

command into a series of increments, executed sequentially 
via TP, until some condition is verified [40]. A server process 
emulating the teach pendant (TP emulator) and running on a 
dedicated PC, due to the tight communication cycle, was first 

developed. A layer added to the TP emulator provides guarded 

movements, other robot commands normally available via TF’, 
and commands of other cell resources, that are actuated via 

the robot controller outputs. The TP emulator also provides 

information about robot errors. To the TP emulator plus the 
adaptation layer built on top of it, we call it an operational 

server. 
As it is not easy to make acquisition of large quantities 

of sensorial data in UNIX workstations, and, on the other 
hand, concurrency in UNIX affects the sensor sampling rate, a 
program called low-level monitor is run in another dedicated 
PC, where it is quite simple and cheap to implant a data 
U 0  board. The low-level monitor (LLM) checks conditions 

during the execution of actions, as specified by its client (the 

intelligent supervisor), and is able to answer questions about 
the state of the system during the diagnosis phase. The main 

services provided by the LLM are as follows. 

DEFINE-CONDITION-Define a sensory condition to 

be evaluated on demand. 

DEFINE-PROFILE-Define a sensory profile, i.e., a 

specification of allowable conditions for a set of sensor 

variables along a given time interval. 
START-EVALUATION-Start evaluating a previously 
specified condition. If a deviation is detected, the current 
action must be interrupted and the diagnosis function is 
called. 
STOP-EVALUATION-Stop evaluating a condition. 
MONITOR-PROFILE-Monitor a previously specified 

profile. In case of a deviation, execution is stopped and the 

diagnosis function is called.CONSULT-SENSOR-Read 
the value of a sensor. 

GET-BEHAVIOR-Return the behavior of all testable 

sensors during the execution of a terminated action. 

Communication between the LLM and the Intelligent su- 
pervisor is accomplished via an RS232C line. Communication 
between the operational server (OS) and the intelligent super- 
visor is accomplished via RPC’s (remote procedure calls). This 

infrastructure (Fig. 16) was developed using a client-server 

approach. The “recovered” controller includes the legacy con- 
trollers (robot, F&T sensor, etc.) and the LLM and OS server 
processes, runing on two dedicated PC’s [40]. 

B. Learning zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof Diagnosis Knowledge 

1 )  Training Situation and Training Data: The experimen- 
tal work that will be presented concerns the identification 
of the execution failure, i.e., the classification part of the 
diagnosis process. Some failures can easily be identified by 
simple discrete sensors. For instance, if the wrong tool is 

attached to the robot, that situation can be detected by one 
sensor. If the part is missing in feeder, that may as well be 

detected with little effort. Such kind of knowledge can be 
easily coded by hand as rules. 
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Fig. 16. Assembly cell integrating infrastructure (B-LEARN project). 

However, a question remains: How to characterize the 
situation in which the force profile in the robot wrist is not 
normal? Different external exceptions can occur causing exe- 
cution failures that manifest through abnormal force and torque 
profiles. These profiles, although sometimes recognizable by 
the human, are difficult to model analytically. Therefore, what 

would be desirable is that the system learned to look at the 
force profiles in order to identify different situations. 

The chosen case study is the macrooperation <<Pick and 
Place>> of a part, which can be hierhchically decomposed as 

shown in Fig. 17. For the experiments, we selected three of 
the primitives involved in the operation: a) approach to grasp 
position zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(Approach-Grasp) ; b) Transfer (of part); and 
c) approach to the final position (Approach-Ungrasp) . 
Dunng the training phase, each of the selected operations 
was executed many times and several external exceptions 

were provoked. In most cases an object was placed, either in 

motion or stopped, in the robot ann motion path. The forces 

and torques trace in an interval surrounding each failure was 
collected and the failure classification was associated to it. The 
length of the trace is of 15 samples. 

In this way, for the operation Approach-Ungrasp, 
117 classified examples were collected. The following failure 
classes were considered (see force profiles in Fig. 19): 0: 

normal behavior; 1: collision in part and part moved; 2: 

collision in part and part lost; 3: collision in tool; 4: front 

collision and part moved; zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5: front collision and part lost; 

and 6: obstruction. For the operations Approach-Grasp 
and Transfer, less examples were collected (88 and 47, 

respectively), but more information about the failure situation 
was recorded. This information is organized in terms of the 
following attributes. 

* behavior-generic information about the operation be- 

havior; can be normal, collision, front collision, or ob- 

struction; what will be learned is, in fact, a model of the 

behavior (either normal or abnormal) of the system when 

performing these operations. 
body-what was involved in the failure, e.g., the part, the 
tool, thejingers (le@, right or both fingers). 

region-region of body that was affected, e.g., front, le@, 
right or back side, bottom, etc. (see Fig. IS). zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

0 object size-size of object causing failure: small, large. 
object hardness-can be so@ or hard. 

* object weight-can be low or high. 

2) Experimental Results: To run learning algorithms, some 

preprocessing of the raw sensor data is needed. In fact, if all 
numerical values in a force or torque trace, in total 15 values, 

are given to the learning algorithm, it will probably run less 
efficiently and the knowledge produced will be less readable 
and less efficient to use. On the other hand, when humans look 
at force profiles, they can easily recognize trends and high level 

features that the learning algorithm will ignore if the training 
set is not given to it in terms of the "good" features. For 

these experiments, using measures such as average, slope, and 

monotonicity, higher level features were extracted from raw 

sensor data (same method as in [ll]). In this way, for each 

force or torque profile, we reduced the total number of features 

from 15 to 7, being 4 of them (slopes and monotonicity) clearly 

of a higher level of abstraction. 
One of the goals of the performed experiments was to 

evaluate the impact of the method for signals to symbols 
conversion, presented in Section IV-A-1, comparing it with 

"blind" discretization. For this problem, the CONDIS learning 

kit was used on the data collected during the execution 

of the Approach-Ungrasp primitive. The following two 

implementations of the rule Transform Features (R5) were 
provided to the system. 

R5.1: "Blind" discretization: the domain d values of 
continuous features is transformed into a set of intervals 
of equal length that are used as discrete values. The 
number of intervals is given by the Number of Struges: 
1 + log 2N, where N is the number of examples. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

e R5.2: The domain of values of each continuous attribute 

is transformed into a set of qualitative values following 
the method described in Section IV-A-1. 

For feature selection, an entropy based rule, like in ID3, was 
used. Partitioning examples in a node for further expansion is 
also done as in ID3: create a branch for each value of the test 
feature of the current node. Two different implementations of 
the rule Test Stop (Rl: for deciding when to create a leaf 
node) were also provided. 

0 R1.l: Create a leaf node when all examples belong to the 

same class, or when the current list of attributes is empty. 
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Fig. 17. Hierarchical decomposition of a <<Pick and Place>> macrooperation. 
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Fig. 18. Regions of a gripper that may be involved in a failure. 

R1.2: Create a leaf node in the conditions of R1.1 or if the 
chi-square test for stochastic independence [30] returns a 
confidence on the irrelevance of the best feature higher 
than 97.5%. 

As can be seen from the Table I, the largest tree, corre- 
sponding to the simultaneous use of rules R1.l and R5.1, has 
108 nodes: 63 leaf nodes that represent the learned rules, and 

45 interior nodes that represent the points of decision. An 

example of a learned rule is zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
if (pFz2 in [-361.1,-268.4[) and 

(pFxl in [-64.6,-63.4[) 
then behavior = "front collision with 
part 1 os t " : 

As it was expected, rule R1.2, which stops branching when 
the irrelevance of the test feature is too high, reduces the 
number of decisions to 29. The number of rules is preserved 
and therefore the global number of nodes is reduced from 108 
to 91. On the other hand, rule R5.2 reduces the number of 
decisions from 45 to 35 and the number of rules from 63 to 
56. The global number of nodes is reduced from 108 to 92. 

The smallest tree is produced when rules R1.2 and R5.2 are 
used simultaneously. In that case, the number of decisions is 
reduced to 16 and the global number of nodes is reduced to 72. 

:"I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
-100 

V 

-150' -400 ' 
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Fig. 19. Typical behavior of force Fy during different types of failures in 
the Approach with part operation. (a) Collision in part and part moved. (b) 
Collision in part and part lost. (c) Collision in tool. (d) Front collision and 
part lost. (e) Front collision and part moved. (f) Obstruction. 

TABLE I 
RESULTS OF APPLYING CONDIS ON THE DATA OF Approach-Ungrasp 

The rule R5.2 produces good results since the tree becomes 
more concise. When using R1.l, the reduction in the number 
of nodes produced by R5.2 is of 16%. When using R1.2, the 
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TABLE I1 
APPROACH-UNGRASP PROBLEM SPECIFICATION 

reduction in the number of nodes produced by R5.2 is of 22%. 

However, rule R5.2 seems to lead to slightly higher error rates. 

This is a problem that must be better investigated. In any case, 
the gain in simplicity of the generated tree seems to be greater 
than the loss of accuracy. In the four experiments, the error 
rates (leave-one-out test) were very high, around 40% to 46%. 
This is due, mainly, to not having enough training examples. 

In the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAApproach-Ungrasp problem, the failure classifi- 
cations have embedded some sort of hierarchy. For instance, 

there are three major types of collisions: collision in part, 

collision in tool and front collision. Some of these still have 

more refined descriptions. This implicit hierarchy could be 

used to guide the induction process and possibly reduce the 

error rates. That is what will be attempted next, using S a .  
The concept hierarchy that this algorithm learned charac- 

terizes the execution situation at different levels of detail. 
The most detailed descriptions will correspond to the seven 
failure classifications considered above. The set of classifica- 
tion attributes (in the SKIL sense) shown in Table II(a) seems 

to be enough to obtain the most detailed descriptions. The 

attribute enabling statements are shown in Table II(b). The 

top-level (start) attributes are zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAbehavior and partstatus. The 

discrimination attributes or features are the same as before, 

and the same preprocessing was applied. The classifications 
in the table of examples were decomposed according to the 
classification attributes. 

After running SKIL on the new domain specification and 
new table of examples, a decision tree was obtained having 
71 nodes. The concept hierarchy contained in the tree has 
59 nodes, being 10 of them internal nodes and 49 terminal 

nodes (see Fig. 20). Examples of the corresponding rules are 
as follows: 

\y’x: ( F z l ( x ,  [ 7 , 2 1 [ )  & F x l ( x ,  [ - 4 . 5 , 1 [ )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
& D x l  (x, [ - 0 . 5 , O .  5 [ ) ) 

+ ( behavior (x ,  normal) 
& part-status (x, ok) ) 

V X :  (Fzl(x, [ - 9 9 5 , 7 [ )  

& D 2 2  (x ,  [ - 5 4 2 , - 5 1 [ )  

& Fx3 (x ,  [ - 4 6 4 , - 1 3  [ )  ) 

+ ( behavior (x, failure) 
& part-status (x,moved) 
& failure-type (x ,  obstruction) ) 
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The size of the tree is very similar to the size of the tree 
generated by CONDIS using rules R1.2 and R5.2 (72 nodes). 

This was expected since, in SKIL, numerical to symbolic 
conversion is done by the same method as in R5.2. SKIL also 

uses the chi-square test for stochastic independence as in R1.2. 

Performing the leave-one-out test with the same data and 

algorithm, the resulting average error rate is 15%, much lower 
than in the “flat” classification obtained in any of the four 
experiments with CONDIS (see Table 111). 

From this comparison we see that SKIL may be used 

to generate more accurate knowledge. However, its great 
advantage is that it is able to generate conceptual hierarchies. 
The problem of generating failure classification knowledge for 
the Approach- Ungr a s p primitive was initially formulated 
in terms of seven classes of failures. Then, the problem 

was reformulated for SKIL in terms of four classification 

attributes. The total number of complete failure descriptions 

that can be built using the attributes and their values is 15. 

Of course, some of them never occur (e.g., {behavior = 
normal, partstatus = lost}), and others were not present 
in the training set. 

When the user wants to get more and more information 
about a failure situation, the number of classification attributes 
and their values increases. If these attribute values are to be 

combined to produce “flat” classifications or labels, the number 

of labels increases exponentially, and the problem becomes 

intractable. This is the case of the information collected during 

failures of Approach-Grasp , which included 10 attributes, 
28 values and 8 enabling triples (see domain specification on 
Table zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIV). 

The characteristics of the decision tree and concept. hi- 
erarchy generated by SKIL starting with top-level attribute 
behavior, are shown in Table V. The global number of nodes 

is 93. The error rate (30%) is much higher than in the 
previous problem when SKIL was also applied (15%). This is 

understandable since the target concept is much more complex 

and a smaller training set was provided (only 88 examples). 

For the Transfer problem, for which only 47 examples were 

collected, a taxonomy was also generated by SKIL, and the 

error rate was 34%. We see, as a general trend, that as the 
number of occurrences of each attribute value in the training 
set increases, the corresponding error rate decreases (Fig. 21). 

The general approach is, therefore, to collect examples of 
normal and abnormal behavior of each operation or operation- 
type/operator and generate a behavior model (Fig. 20) that 

the diagnosis function (Figs. 3 and 4) will use to verify the 
existence of failures, to classify and explain them and to 

update the world model. The developed methodologies and 

the pedormed experiments are a contribution to the failure 

classification part of the diagnosis task. Failure explanation is 
a topic for further research. 

The CONDIS learning kit and the algorithm SKIL are tools 
that can be easily integrated in a performer and used to gener- 
ate knowledge from examples. With CONDIS we empirically 
demonstrated the viability of our approach concerning the 

signals to symbols conversion. The results obtained with SKIL, 

seem rather promising since it produces structured (taxonomic) 
knowledge with a higher degree of accuracy. 
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failw-type zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
affected_body zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
affected zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAbodv 

0 Taxonomy Node 
0 Decision Tree Node 

Learned descriptions of the target concept at different levels of detail: 

Node O : { } ;  
Node 2 : { behavior = failure } ; 
Node 3 : { behavior = failure, part-status = moved } ; 
Node 4 : { behavior = failure, part-status = moved, failure-type = obstruction } ; 
Node 13 : { behavior = failure, failure type = collision } ; 
Node 24 : { behavior = failure, failureztype = collision, collision-type = front, part-status = moved} ; 
Node 51 : { behavior = normal, part-status = ok } ; 

obstruction ( obj-size, obj-hardn,obj-weight) 
tool ( tool-region ) 
fineers I fineers reeion 1 

.... 
Fig. 20. Behavior taxonomy generated by SKIL for the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAApproach-Ungrasp primitive. 

TABLE I11 
SKIL VERSUS CONDIS ON THE DATA OF Approach-Ungrasp 

[Aleorithm I CONDIS I SKlL 1 
Number of Tree Nples I 72 I 71 
Number of Taxonomv Nnder; - 59 

~~ 

I Number of Taxonomv zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBALeafs I -  r- 4 9  i 
Number of Taxonomy Interior Nodes 

Number of Decisions 

Number of Rules 

Error Rate ve-one-out zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA46% 
0.29 0.42 

Accuracy, however, is a problem requiring further investi- 
gation. Work, in the context of the European ESPRIT project 
B-LEARN, in cooperation with the University of Turin, in 
which the learning tool Smart+ [4] was applied to the same 

data, could not solve the accuracy problem either. If the lack of 
examples, which are expensive to acquire, was one of the main 
causes for the less satisfactory results concerning accuracy, this 
implies that more research effort must be put in the design of 
the training methodology. The continuation of the research 
focused on efficient ways of collecting examples (including 
example interpolation), in feature construction and selection 
and in long-term learning, and some interesting results have 
been reported [38], [39]. 

VI. CONCLUSION AND FUTURE WORK 

Planning and executing flexible assembly tasks on a real 
industrial environment is a highly complex problem that must 
take into account (benefit from) the multiple inter-relationships 
with other activities involved in the manufacturing process. 
In particular, the design of an intelligent execution supervisor 
needs a clear understanding, not only of the execution planning 

TABLE IV 
AITRIBUTES, VALUES, AND ENABLING TRIPLES 

Attribute I Attribute Values 
behavior J ( normal, failure ) I 

( initial, middle, terminal ) 
( collision, fr-collision, obstruction ) 
[ tool, tool-tubes, fingers ) 
( front, right, left, back, bottom ) 

failure-type 
&ectfX-bOdy 
tool-region 

obj-size ( small, large ) 
obj-hardness ( soft, hard 1 
obi weight ( low, hight ) 

(a) 

Attribute I Value I Enabled Attributes 
behavior I failure I ( failure-type, affected-body ) 

lbehavior I normal I I nhase 1 I 
failure-type I collision I ( obj-size, obj-hardn, obj-weight ) 

I fr-collision I ( obj-size, obj-hardn, obj-weight ) lure_type 

~~ 

Ltool region I bottom I ( bottom subregion 1 

(b) 
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phase but also of other phases like process planning, product 

design, scheduling, production planning, etc. 
An evolutive execution supervision architecture was pre- 

sented in this framework. Flexibility implies increasing the 
on-line decision making capabilities, for which dispatching, 
monitoring, diagnosis and error recovery functionalities have 
been devised. The lack of comprehensive monitoring and 
diagnosis knowledge in the assembly domain points out to 
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TABLE V 
EVALUATION OF KNOWLEDGE GENERATED BY 

S m L  ON THE DATA OF zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAApproach-Grasp zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

8 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
20 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

I 
4 

0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI 
0 20 40 60 80 

Fig. 21. 
provided (Approach- G r  a sp problem). 

Error rates per attribute value according to the number of examples 

the use of machine learning techniques, leading to an evo- 
lutive architecture. Preliminary experiments in this direction 
demonstrated the feasibility of the approach, and allowed the 
identification of the main difficulties and following steps. 

Finally, another important aspect in any integrated approach 
to the assembly supervision problem is the integration of 
legacy systems. A methodology developed in this work proved 

successful as a method to integrate existing device controllers 

into an open infrastructure. 
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