
202 IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, VOL. 12, NO. 2, APRIL 1996

Integration and Learning in Supervision

of Flexible Assembly Systems
Luis M. Camarinha-Matos, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAMember, IEEE, Luis Seabra Lopes, Student Member, IEEE, and JosC Barata, Member, IEEE zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Absrhzct- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA generic architecture for evolutive supervision
of robotized assembly tasks, in a context of integrated manu-
facturing systems, is presented. This architecture provides, at
different levels of abstraction, functions for dispatching actions,
monitoring their execution, and diagnosing and recovering from
failures. The problem of integration of legacy systems is discussed
and an implementation approach described. Modeling execution
failures through taxonomies and causal relations plays a central
role in diagnosis and recovery. Through the use of machine
learning techniques, the supervision architecture zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAwill be given
capabilities for improving its performance over time. Particular
attention is given to the inductive generation of structured classi-
fication knowledge for diagnosis. Methodologies used, performed
experiments, and obtained results are described in detail.

I. INTRODUCTION

HE NEED for flexible assembly supported by intelligent
supervision systems, largely anticipated by the research

community, is becoming an actual competitive factor for
industrial enterprises. The increasing globalization of the econ-
omy, following the openness of markets and the tendency
to the creation of economic blocks is imposing tough chal-
lenges to manufacturing companies, leading to the concept of
ledagi le manufacturing. Among other vectors, this situation
stresses the need for truly flexible manufacturing and assembly

systems (FMSFAS).
The development of a flexible assembly system PAS)

imposes important requirements both from the manufacturing

equipment and from the software architecture points of view.
In terms of hardware, examples of such requirements are:
the use of multioperation devices and robots with multiple
tooldend-effectors, modular design of fixtures and feeders,
rich sensorial environment, advanced communication infra-
structures and standard protocols (Manufacturing Automation
ProtocoVManufacturing Message Specification (MAPNMS)

[21], [23], FIELDBUS [17], TCPOP), flexible cell organi-

zation (logical cells), etc. Related to software, resorting to
“intelligent” functionalities arises as a natural requirement.

Manuscript received November 23, 1994, revised December 28, 1995 This
work was supported in part by the European Community (ESPRIT Project
B-LEARN and ECLA FlexSys) and JNICT, the Portuguese research board
(Project SARPIC, Project CIM-CASE, and a Ph D scholarship)

The authors are with the Departamento de Engenhana Electrotkcnica,
Universidade Nova de Lisboa, 2825 Monte da Caparica, Portugal

Publisher Item Identifier S 1042-296X(96)02538-4

1) Interactive programminglplanning, in order to reduce
set up costs and to assure a rapid response to product

innovation, process changes, or shifts in demand.

2) Sensorial perception and status identification.

3) On-line decision capabilities, such as monitoring, di-

agnosis and error recovery, in order to cope with the

nondeterministic behavior of less structured cells.
4) Information integration, in order to consider the FAS

system as part of a more general computer integrated

manufacturing (CIM) system.

This requires a comprehensive world model and the ca-
pability to update such model, in run time, with perceived

information coming from sensorial systems and from the

human interlocutors. Therefore, an important requirement for a

FAS will be an interactive planning and intelligent supervision

system.

Execution supervision of industrial assembly tasks must be
understood in the general framework of a CIM environment.
This activity depends on and interacts with various other
activities involving specialized knowledge. The complexity
and wide range of such areas, involving different expertises,
make non realistic some “isolated” approaches to the assembly

planning and execution supervision. The “game” has to be

understood in the context of interaction between areas that

are evolving in parallel, trying to benefit from their results

and influence them in a way leading to a convergent global

architecture.

On the other hand, this approach is consistent with the
tendency reflected by concurrent engineering [7], [29]. The
concept of concurrent engineering has become more and more
popular in recent years as a result of the recognition of the
need to integrate diversified expertise and to improve the flow

of information among all “areas” involved in the product life

cycle. Evolving from earlier integration attempts, represented

by the paradigms of “Design for Assembly”/”Design for

Manufacturing,” concurrent engineering is a consequence of

the recognition that a product is the result of many factors, in-
cluding marketing and sales factors, design factors, production

factors, usage factors (intended functionalities/requirements),

and destructionhecycling factors. The principle of concurrent
engineering is therefore to create a team of experts from
different fields and make the team responsible for the design,

1042-296X/96$05.00 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 1996 IEEE

CAMARINHA-MATOS zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAet zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAal.: INTEGRATION AND LEARNING IN SUPERVISION OF FLEXIBLE ASSEMBLY SYSTEMS 203

engineering, manufacturing, and marketing of a single product.

For instance, production engineers in the team must be able

to look at the early designs, just as well as sales people. This
is radically different from the traditional approach known as
finish the design and “throw it over the wall” to the production
engineers, and hardly interact with them at all. Team work,
based on concurrent or simultaneous activities, potentially
leads to a substantial reduction in the design-production cycle
time, if compared to the traditional sequential “throw it over
the wall” approach, as well as to an improvement of quality
and cost reduction.

The need to understand the interactions between planning,
scheduling, and execution supervision is just a part of this
general concept. To design a supervision architecture, one must
be aware of what (information) can be expected from the levels
above. Aiming at a new generation of intelligent supervisors, it
may be necessary to ask additional information, not required
by traditional controllers, from the preceding activities. On
the other hand, from the operational perspective, problems
not solved by the supervisor have to be fed backward to
preceding planning activities. For instance, an unrecoverable

error may imply a rescheduling (dynamic scheduling [31])
or even a replanning. Knowing the structure and information
manipulated by these activities may tune the new demands in
order to be realistic.

Planning in manufacturing and assembly is typically done

in a hierarchical fashion [6], [lo]-[12]. At a more abstract
level, processes related to long-term planning, such as strategic
planning, marketing planning, production planning and high-
level performance monitoring, will be carried on. At an
intermediate level, operational planning processes, like master

production scheduling, materials requirements planning and

capacity planning are considered. At the next level, product
and process oriented planning, and scheduling, will be placed.
The traditional assembly task planning can be decomposed
in two main phases: product oriented planning and process
oriented planning. The first phase, based on the product model
(bill of materials, geometric model, tolerances model, materials
model, etc.), determines a feasible assembly precedence graph
taking into account the constraints derived from the product
model itself. The second phase generates, from this precedence

graph, an executable assembly plan, taking into account the

cell structure and functionalities and technologic knowledge.

This phase is typically split in two steps: process planning
and detailed execution planning, from which intermediate plan
representations can be produced.

The process plan is still a high level representation of the
assembly task, based on abstract operators, like zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAPeg- into-
hole, Transfer, Insert-screw, Position, etc.,
but already taking into account feasibility conditions from the
technologic point of view. Various interactive planning zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAsys-
tems-eg., computer aided process planning (CAPP)-have
been developed in recent years [16], [43] to help the human

expert in generating appropriate process plans. Most of these
systems follow an interactive generative approach, in the line
of a decision support system, helping the production engineer
in the generation of a feasible sequence of assembly steps.
Each node of the process plan typically includes information

such as:

abstract operator to be applied;

operands, i.e., parts to be assembled;

mating referentials (goal positions), or approach direc-

suggested part grasping zones;
selected resources type (robot and end-effectors);
operation duration.

When a specific assembly cell is decidedselected, the task

specification can be further refined, through several steps,

until a description understandable (i.e., executable) by the cell

controller is reached.

Several attempts to adapt generic planners, developed in the
AI community, to realistic robotic tasks have been made. Most

of these planners were designed having the “blocks world” in
mind and some of the approaches have just tried experiments
in very particular situations that could be accommodated to a
simplified world model. In some of these works, a link to a real
robot was established, the elementary operators, generated by
the planner, were translated into the real syntax of the robot

control language, but demonstrated tasks are limited to the

manipulation of very simple objects (“blocks”), under strictly

constrained movements (grossly discretized space). Some ap-
plications like pick-and-place or palletizing, can be realized
with such a simple approach. For more complex tasks, as in
assembly, additional capabilities are needed especially in what
concerns spatial reasoning/planing of flexible motion. Other
approaches are strongly geometric-reasoning-based [13, [20],
[32] but require heavy processing procedures and achieved

results still present some limitations. On the other hand, the

most adequate spatial-related solutions are not completely

justified by pure geometric reasoning but depend on other

technological constraints. Therefore, we do not consider totally
automatic planning approaches as realistic.

Alternatively, taking into account the multistage planning
process described above, a less automated but more realistic
approach to assembly planning can be pursued. The interactive
approach we followed in some experiments [6], [lo] assumes
the availability of a “rich” task specification resulting from

product design and process planning phases. The description

resulting from these phases is refined by normal hierarchical

planning techniques and resorting to graphical simulation

to acquire, from the human expert, positioning information
(grasping, approaching, trajectory skeletons, etc.). In this way,
graphical simulation is, not only a mean to verify/evaluate a
generated plan, but also zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAan instrument to help the interactive
construction of such plan. It should be noted that a similar
approach has been successfully applied to other domains (e.g.,
welding tasks [41]). It seems reasonable to apply the same
strategy on assembly tasks that, in fact, are of a greater

complexity.
Typically various manufacturing orders may be competing

to be executed on the same production resources. Alternative
plans may also be available for the same product, depending
on the process and the resources to be applied. Therefore, a
scheduling activity takes the various executable plans, as well
as other information, like the job size, the order due date,

tions;

204 IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, VOL. 12, NO 2, APRIL 1996

the available manufacturing resources, and some optimization
criteria, and produces a refined executable plan which includes,
in association with each operation, the assigned resource and

time window.
The work reported bellow is part of the development of an

execution supervisor, which receives as input an executable
assembly plan generated as described above and will cany out
its execution, performing monitoring, diagnosis and recovery

functions. The executable plan produced according to the men-
tioned multistep procedure is assumed to have a hierarchical
structure, which leads to more modular supervision activities
[l l] . On the other hand, since the planning activity is often
carried out hierarchically, the generation of the proposed plan

structure requires no additional effort. From the supervision

point of view, the hierarchical approach can be combined with

concurrent execution at each level. In the lowest level, prim-

itive resource operators, like Move or Grasp, &e considered.

Fine motion and compliant actions, like Peg-into-Hole, are
considered primitive operators. At the next level, immediately
above, operators like Pick or Mate, are included. In the upper
levels of the plan, the operations are process-dependent and
represent important logical phases of the plan execution. At
each level, plan operators are modeled in STRIPS (STanford
Research Institute Problem Solver) style zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[38].

The work being conducted in our labs considers, at different

levels of abstraction, functions for dispatching actions, mon-

itoring their execution, and diagnosing and recovering from
failures. An important aspect in this context is the evolution
from legacy systems. Any realistic approach to more advanced
manufacturing and assembly systems has to take into account
existing systems and components and find an appropriate
transitional procedure. As an example, the “opening” and
partial “reconfiguration” of existing device controllers, in order
to integrate them into a cooperating community, is not a

negligible task, as most of these controllers were designed

under a stand alone perspective. Another main problem is the

acquisition of knowledge about the environment in order to

support monitoring, diagnosis and recovery. For this purpose,

the use of machine learning techniques is being investigated.
The integration and enhancement of existing controllers and
sensorial subsystems as well as preprocessing techniques for
sensorial data (signals to symbols conversion) is a major
requirement in order to integrate symbolic machine learning
techniques with real robotic systems. Results achieved under
this approach in the context of the European ESPRIT project

B-LEARN I1 are described as well as the planned extensions
and main foreseen difficulties.

11. SUPERVISION SYSTEM zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
As already suggested, the architecture of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAan intelligent

execution supervisor should reflect the hierarchical structure
of the plans. For each plan level, its main functions are 191
and [l l] .

1) Dispatching and Global Coordination: The global coor-

dination activities performed by a high level controller include

the following: dispatching actions to the executing agents,
driven by the scheduled task plan; synchronization of activities zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

. ,,.,_ . , , , .. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
P k ” m -:;@*i{xjd$, Action

Effects :::Etf&fsz:;;
.:.:.:.:.:. , .;.:.:.:...: .:.. :...:.. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[I Action .\

Example:

Effects:
-Add: on(B. P2). clear(A) TransfeUA. 8, P2)

PZ -Del. on(B.A)
P1

Which is the intended effect?

Fig. 1. Action effects and action goals.

performed by different agents and synchronization with exter-

nal events; and world model update and information exchange,

resorting to a cell information system or knowledge base. The

dispatcher also coordinates the execution of the other modules

of the intelligent supervisor as well as the interaction with the

human operator. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
2) Monitoring of Assembly Plans: The monitoring function

is used to detect nonnominal feedback in the system during
the execution of assembly plans. Two monitoring modes are
usually considered: discrete monitoring and continuous mon-

itoring [24]. Discrete monitoring checks preconditions before
the execution and goal achievement after the execution of

operations. Continuous monitoring checks sensory conditions

during the execution of operations.

For reasons of efficiency, the supervision system should
only monitor the achievement of the intended effect (Fig. 1).

That is, during planning phases, the intentions of the planner
when selecting an operator should be “stored” together in the
corresponding operator node in the plan.

In many contributions to the problem of execution monitor-
ing, the sensory conditions to test in each situation are defined

in a model [24], often coded as monitoring rules [SI, [22]:

IF (situation) AND (sensory condition) THEN (actions).

However, very often it is not easy, even for an expert, to

specify the sensory conditions that guarantee the success or
the preconditions of an action and to identify the statistical
significance of each situation. The use of machine learning
techniques may help to relate the conditions specified in a
plan to testable sensors.

3) Failure Diagnosis: The diagnosis function will firstly

check if there really is a failure (failure confirmation) and

update the interaal model. Then, this function will try to clas-
sify and explain the failure. In the early work of Srinivas [42],

for each action, a failure reason model is built, which specifies
the collection of all possible failures and all features that are
expected to manifest for each failure. At each execution level,
different levels of explanation for a detected failure may be
generated, depending on the amount of information available
191. For example, a gross diagnostic can be “pick fail.” A more
detailed diagnostic could be “pick fail due to object sliding.”
The least detailed explanation would be “deviation detected.”

In 1351 it was proposed to divide errors in three main fami-
lies: system faults, external exceptions and execution failures
(Fig. 2). Execution failures are deviations of the state of the

CAMARINHA-MATOS et al.: INTEGRATION AND LEARNING IN SUPERVISION OF FLEXIBLE ASSEMBLY SYSTEMS zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
~ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

205

may-cause

Fig. 2. Typical relations between the main causes of errors.

world from the expected state detected during the execution

of actions. For example, collision, obstruction, part slippage

from the gripper, part missing at some expected location,

etc., are execution failures. External exceptions are abnormal

occurrences in the cell environment that may cause execution
failures. For instance, misplaced parts, defective parts, and

unexpected objects obstructing robot operations may cause

execution failures. System faults are abnormal occurrences

in the hardware and software of assembly resources and in

communications. Generally speaking, these are not errors that
the system can recover from, unless some functional redun-

dancy is available and rescheduling is performed. However,
the system must be prepared to detect and identify this type
of errors in order to prevent the occurrence of other errors. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

4) Failure Recovery: At each supervision level, the recov-

ery function is called when the diagnosis function confirms a
failure and finds an explanation. The recovery function will
try to determine a recovery strategy to bring the execution to

a nominal state. One basic question is how to build recov-

ery strategies? Since the detected error is some unexpected

(abnormal) event, the nominal plan is not to be altered.
In the proposed hierarchical approach, when a failure is

detected before, during, or after the execution of an action,

and it is not possible to classify, explain, or recover from that

failure, the problem is passed on to the next upper level where

context information is broader. In the lower levels of the plan,

recovery actions will tend to be simple reflexive actions, while

in the upper levels determining recovery actions will require

more extensive diagnosis and planning.

In Fig. 3, an example of the whole error detection and

recovery cycle is presented. A feature extraction function is
permanently acquiring monitoring features from the raw sensor
data. The monitoring function compares these features with the
nominal action behavior model. In this example we consider

that, during the execution of a Transfer operation, in which

the robot carries a part to be assembled, an object, unexpect-

edly appearing in the environment, collides with the gripper
causing the part to move without falling. The first diagram,

included in Fig. 3, shows the perceived sensor data during
actual execution. The second diagram shows a qualitative
model of the operation. The third diagram shows a qualitative
interpretation of the raw sensor data in terms of the features
used in the operator model. Since a deviation is detected, the
diagnosis function is called to verify if an execution failure
occurred and, in that case, determine a failure classification

and explanation. For this function, additional features must

EXTRACTION

odd MONITORING
I I FEATURES I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAF; -
I I I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAFl ASSESSMENT zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0

I -
DIAGNOSIS

I
I

I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
4511

EXPLANATIO

RECOVERY
PLANNING

RECOVERY
STRATEGY

Fig. 3. The error detection and recovery cycle-Example.

be extracted, as it will be explained in Section IV. Diagnosis

is a decision procedure that needs a model of the task, the

system and the environment. The final step, based on the

failure characterization, is recovery planning. In the example,

the robot should place the part in a positioning device and
regrasp it after position calibration.

The problem of building the knowledge base, and in par-
ticular the models that the monitoring, diagnosis and recovery
functions need, is not easily solved. Even the best domain
expert will have difficulty in specifying the necessary map-
pings between the available sensors on one side and the

monitoring conditions, failure classifications, failure explana-

206 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, VOL. 12, NO. 2, APRIL 1996

Fig. 4. An architecture for autonomous supervision.

tions and recovery strategies on the other. Also, a few less

common errors will be forgotten. Known prototype systems

show limited domain knowledge, as they are intended mainly
for exemplification and not to be used as robust solutions in

the real world. Thus, we include in the execution supervisor
two other functions: Training and Learning (Fig. 4). The
training module coordinates the interaction with the human
operator in order to acquire new information about nominal

execution of the assembly plans, as well as descriptions of

new error situations. The learning module compiles raw data

generating classification knowledge, generalizes instances of

target concepts, etc., in order to build the needed models. In
Section IV, a detailed description of this learning functionality
is presented.

111. CELL MODELING AND INTEGRATION

In order to install an Intelligent Supervisor on a FAS, an
execution infrastructure, providing integrated access to the

local controllers of the manufacturing resources, is necessary.

The increasing demand for highly sophisticated supervisors

implies local controllers with sophisticated features. Although

existing controllers are not suited to provide this kind of

requirements, it would not be realistic to ignore them and
start everything from scratch. To overcome this, it would be
necessary to “adapt” existing controllers (legacy systems) to
the new reality by developing an abstract machine that hides
the hardware peculiarities and provides new sophisticated
services to its client (the supervisor). zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
A. Migration from Legacy Systems and
Cell Integration

Migration from andor integration of legacy systems is
one of the most challenging aspects of manufacturing sys-
tems. The existing gap between functionalities provided by
currently available controllers and fuqctionalities needed by

an intelligent supervisor requires a considerable effort to be
overcome. These controllers were developed with completely

different purposes, to be used in stand-alone operation, almost
without functionalities to cooperate with other components.

Components were developed to be used as “masters” of a
“small kingdom” and not as agents to be controlled by high

level controllerslsupervisors.
A migration procedure is necessary to “recover” existing

controllers. Creating entirely new controllers, with functional-
ities adapted to the supervisor requirements could be a form to

overcome that problem, but it would imply a tremendous cost.
Existing controllers, by economical reasons, cannot be simply

thrown away. Therefore, a more sensible approach is to try

to adapt existing systems to the requirements of high level

controllers, which need only a smaller set of functionalities
but a larger openness.

The requirement of the high level controller to directly
command legacy systems operations is one of the most im-
portant aspects. Most of the existing controllers provide no
way to do that. To fulfill this requirement an interpreter or

adapter in the controller side should be developed to accept

commands that could be issued via an input/output port. It
should be pointed out that, in most cases, this interpreter

will reduce the functionalities of the local controller, but the

gain coming from the possibility to have a controller that

can be easily integrated in a manufacturing system overcomes
these disadvantages. Developing the interpreter is not an easy
task, since robot manufacturers do not have the tradition to
develop open architectures. To add anything to the system,
other than developing programs using the manufacturer’s own

development tools, is a hard job, requiring a tremendous effort

in “breaking” protocols and adapting controllers functionality

to the new requirements.

B. Cell Modeling

In our approach, to connect an intelligent supervisor to real
components it is necessary to build up a software layer that
provides the functionalities needed by the supervisor. This
software layer can be seen as an abstract machine that supplies
services to a high level supervisor in the same sense an

operating system provides services to applications. The clear

separation between the supervisor and the abstract machine

allows for a transparent access, hiding the hardware peculiari-
ties zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAand the heterogeneity of the various local controllers from
the supervisor (Fig. 5). In this sense, the services exported by
the abstract machine should be independent from the specific
hardware, meaning that the variety of existing controllers
should be integrated by this platform. The abstract machine
services should not be the sum of all individual features that

exist in each real controller. This is justifiable because: 1)

available controllers show a big heterogeneity in terms of the

level of abstraction they export; 2) the behavior of a particular

controller is constrained, i.e., has to be coordinated according
to its role in the integrated community of agents. Therefore,
services offered by the integrating platform should be of
higher level, resorting to the low level services (existing in the
real controllers), but they include some knowledge about the

CAMARINHA-MATOS et al.: INTEGRATION AND LEARNING IN SUPERVISION OF FLEXIBLE ASSEMBLY SYSTEMS zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Supervisor

hecuhon lntrastructm

Physical Physical
Controller Controller

Fig. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5. Integration of local controllers in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAan open environment.

structural aspects of the underlying system. A rich underlying

system model (abstract machine) will simplify the supervision

activities.

In order to develop such abstract machine using the pro-

posed requirements, it is necessary to choose an adequate
modeling paradigm. Two modeling perspectives can be pointed

out clearly: modeling of cellhystem structural aspects and

modeling of the static and dynamic properties of individual
components. The combination of object-oriented and frame-
based programming paradigms seems to be suitable for this

purpose, due essentially to their constructs to model the
operational aspects of the components (methodddemons) and

to represent the structural aspects of the system (relations

that can be user defined). Methods and demons associated

to the component’s model can hide the underlying hard-

ware infrastructure. Another important aspect is the “relation”
concept, which can provide a flexible way to describe inter-
components’ relationships. The Golog frame engine, devel-
oped in-house, is being used [341.

I) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAStructural Model: In the following discussion, the basic
modeling unit will be a cell. A cell is a composite entity that

is capable of performing some transformation, movement or

storage related to some product or part [3]. In structural terms,

each cell has components to support the input of parts, an
agent to perform the transforming actions and components

to support the output of products/processed parts. An ex-
ample of a cell model can be found in Fig. 6. The relation
connectedJrom links the cell model to the entity or entities
performing input activities. The relation connecteddo links
the cell model to the entity or entities performing output
activities. The relation processor links the cell model to the

agent performing transformation activities. The generic cell

concept can be specialized by activity. There can be cells
specialized in assembly, painting, welding, storage, machining,
transportation, etc. A shop floor is just a set of specialized cells.

The input and output activities can be performed by several
agents, i.e., there may exist several candidates, depending on
the application.

At this stage it is convenient to make a distinction be-
tween the concepts of agent and component or manufacturing
resource. For instance, the model of a robot component is

a context independent description of its static and dynamic

characteristics. A robot agent is a model of a robot and
associated resources, like tools or auxiliary sensors, when
inserted into a particular context. A robot can play different
roles in different contexts. The (expected) behavior of a
robot in an assembly context is different from its behavior
in a spot welding context. On the other hand, when a robot
is performing a given role, it resorts to auxiliary resources,

Frame: cell zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(
base-coordination-s ystem:
processable_products:
input-parts :
connected f rom :
processor :
connected-to :

1
Frame: Assembly-Cell { zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

is-a zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA:cell
Val-inp-ag: buff er, gravi t-f eeder ,

Val-out-ag: conveyor , agv, buffer,

Val-proc-ag: robot

Cell and assembly cell

index-table, agv, conveyor

index-table

Fig. 6.

-

207

Robot

Fig. 7. Structure of an assembly robot agent

controls
Component Component

Fig. 8. The relations controlledby and controls.

like tools, sensors, buffers, etc., that extend its functionality

in order to fulfill the functionality required by the role. A

robot agent is, therefore, a model of the robot when playing
a particular role and extended by selected attributes inherited

from the auxiliary resources (Fig. 7).

The relationship between a robot component and its con-

troller can be found in Fig. 8. The relation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcontrolled-by
links the model of the robot to the model of its controller

(Figs. 8 and 10). The operations specified in the inherits slot

are inherited by the robot component. In assembly applica-
tions, a robot could have the role exemplified in Fig. 9.

In a role, main-attributes is a slot related to the inheritance
mechanism of the plays relation. In this case, it specifies which

are the characteristics of the assembly role that will be relevant

to a processor agent. The slot component-attributes
has the same functionality as mainattributes, but, in this
case, associated to the relation supportedby. This slot de-
scribes the most relevant component attributes that are im-
portant to the processor agent. The slots tool s-domain
and aux-re s -doma in represent domain knowledge that is
important. The relation currentdool associates the main player
of this role (robot component) to a particular tool. The relation

208

Frame: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAassembly-robot zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA{ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
is-a :agent zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
plays : assembly-role
supported-by : robot-component

I
Frame: assembly-role {

is-a :role
tools-domain: (grippers, screwdriver)
aux-m-domain: (buffers)
force-sensor :
current-tool :
available-tools: grl, gr2, sd2
assembly-device : fixture1
main-attributes: fo rce - senso r ,

componen t -a t t r i bu te s :
base-coordinate-sys t e m ,

c o n t r o 11 ed-by , current-position

current-tool, . . .

1
Relation: plays {
is-a : r e l a t i o n
type: intransitive
inherits: inclusion(main-attributes)
inverse-relation: played-by

I
Relation: supported-by {
is-a : relation
type: intransitive
inherits : inclusion(component-attributes)
inverse-relation: perfom

Fig. 9. The robot agent.

assembly device specifies where assembly operations are really
done (e.g., in Fixturel).

Finally, an example of an agent is described in Fig. 9. The
relation plays associates an agent with a specific role. The

relation supportedby associates an agent with its intrinsic

properties (component). The inheritance slot specifies the slots

to be inherited by the processor agent.

2) Dynamic Model: The dynamic model is related to the
way components’ physical changes are reflected in the model
and vice-versa. Components’ physical behavior is realized
by controllers actions, i.e., robot movement or part feeding
operations are actuated by a controller. Internal component
models should reflect the physical behavior. In this way, it is
natural to consider that models should have the same kind

of operation, i.e., behavior is described by an entity that

virtualizes the functionality of the physical controller. Every
component has a controlledby relation to assign a controller
model to a component. This is the way component models rep-
resent behavior. For example, an instance of robot-component
should be related to an instance of robot-ctrl-component
via the controlledby relation (Fig. 10). This frame defines
all methodddemons that virtualize the physical controller’s

functionality. Connection between methods or demons and
the physical controller is made through a server that is a

kind of physical controller’s “mirror.” Using a method or a
demon depends on the existence of a variable associated to its

corresponding behavior. For instance, the behavior of feeding

a part is described by a method, while a robot movement

/

IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, VOL. 12, NO. 2, APRIL 1996

Frame: robot-component {
is-a : manufacturing-component
base-coordinate-s ystem:
controlled-by :
applications: assembly, gluing, _.
current-position: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

1
Frame: robot-ctrl-component { zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

is-a : controller
move-wc: method move-wc-fn(x, y, z, q)
movejc: method movejc-fn(m1 ,m2,m3,m4)
hardhome: method hardhome-€n
acceleration: demon if write accel-dem
speed: demon if write speed-dem input
output: byte &mon if write output-dem

I
Relation: controlled-by {

is-a : relation
type: intransitive
inherits: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAinclusion(move-wc,move-jc,. ~ .)
inverse-relation: controls

Fig 10. Robot and its controller.

could be described by a demon associated to the attribute

that represents robot’s position. This means the existence of

variables that describe the controller’s internal state, which

will be accessed through their attached demons.

During physical controller’s operation, the model can pro-
vide updated values of control variables when consulted.
From the controller’s model point of view, these variables are
persistent, because they “keep existence” over its execution.
No concern is necessary to save these variables between su-
pervisor’s executions, as they persist in the physical controller.
This persistence does not imply a static behavior because there

exists a dynamic link, implemented by a demon, between

the supervisor side and the physical controller side. Any

change in one side implies the other side’s awareness and
therefore a dynamic persistence concept is achieved. Reactive

programming is useful to implement the link between the

model and the dynamic aspects of the components (Fig. 11).
Control variables actuated externally (digital inputs) are

associated to if-read demons. Every time a client (supervisor)
of the controller server needs to know the value of an external
input, it performs a read operation of an attribute that reflects

the state of that input. This read action fires the demon which

accesses the external controller to read the input value.

On the other hand, control variables actuated internally
(robot position) are associated to if-write demons. Every time
a client (supervisor) needs to change the robot’s position, it
just changes that attribute, implicitly firing an if-write demon,
which sends the necessary commands to move the physical
robot to the new position. But if the client only needs to know
the current position, it just reads the corresponding attribute,

firing an if-read demon, which sends the commands necessary
to get the position from the physical controller (Fig. 11).

With this approach, an abstract representation of a cell can

be developed to be used in the supervisor architecture. This

representation allows for physical control actions as well as
sensorial feedback to the supervisor.

CAMARINHA-MATOS zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAef zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAal.: INTEGRATION AND LEARNING IN SUPERVISION OF FLEXIBLE ASSEMBLY SYSTEMS 209 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

U

Fig. 11. Use of reactive programming to support dynamic persistence.

IV. REASONING ABOUT FAILURES-A
MACHINE LEARNING APPROACH

As emphasized in Section 11, the difficulty in hand-coding
the models that the monitoring, diagnosis and recovery func-
tions need, raises the question of how to build such models
automatically. The use of machine learning techniques seems
a promising approach to the problem. In the following, some

methodological and experimental developments in applying
inductive learning to generate diagnostic knowledge are pre-
sented. Particular attention is also given to the training method-

ology as well as to obtaining qualitative representations of
normal and abnormal system behavior. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
A. A zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAQualitative Reasoning Perspective

In some early approaches to error recovery in robot pro-
grams, it was already understood that the use of good domain
knowledge was important but it should be combined with

some sort of common-sense and qualitative reasoning [181. For
instance, it is very difficult to model friction mathematically.
Still, humans, using their “fuzzy” understanding of the phys-
ical world, can deal with friction in every-day tasks. There is
already an important body of literature coming from the area
of qualitative physicsheasoning [151. However, being quite
interesting the available results, they are at the same time
a little disappointing, since codifying qualitative knowledge
about the physical world turned out harder than expected.

The fact that many of the test cases analyzed by researchers
in this area are in the domain of continuous processes (for

instance in chemical plants) seems to have taken them to
believe that things change smoothly in the physical world.
However, in the robot assembly domain, this assumption does
not hold. Errors occur unexpectedly, causing system param-
eters to change abruptly. Furthermore, the overall nominal
execution of an assembly plan cannot be considered a continu-
ous process. At most, some of the primitive actions in the plan
can be considered to have a certain degree of continuity. And
yet, the execution of an assembly plan is certainly a physical
process that, at a certain level of abstraction, should be possible
to describe qualitatively. In the following we describe ways
to obtain qualitative representations of numerical sensor data
relevant to monitoring and diagnosis, then give an overview
of our current ideas about how the model of errors should
look like and how to use it, and finally present the learning
techniques used.

1) From zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBASignals to Symbols: In robotics and automation
environments, the richer sources of information about the

status of the system are, often, sensors that return numerical

data difficult to analyze. The main source of numerical data in

our experimental setup is the force and torque (F&T) sensor.
Data coming from other sensors, most of them binary, can be
directly mapped to information on status of feeders, fixtures
and tools. With the F&T sensor we can monitor actions in
which the robot arm is involved. It would be desirable that the
execution supervisor could reason about the evolution of force
and torque values, measured during the execution of actions,

in terms of its overall characteristics, and not in terms of the
individual numerical values, i.e., in short, as humans do.

In the field of qualitative physics, the frequently proposed
representations for numbers include signs, inequalities, and

orders of magnitude. Fuzzy logic could be used to model qual-
itative values of numerical variables. For instance, consider the
behavior of a sensor variable during a certain period of time.
A human, making a qualitative description of such behavior,
would probably divide it into intervals, and would mention
roughly how long these intervals were, which were the average

values in each interval, as well as the average derivatives.

Thus, fuzzy descriptions for time intervals, amplitudes and
derivatives are needed. These descriptions can be given or

learned.
Dealing with time intervals is not an easy task, mainly

when the goal is to apply existing machine learning algorithms
to generate new knowledge. Currently, we divide numerical
sensor data behavior traces in a fixed number and equal length
set of subintervals. For each of them, averages, slopes, etc.,
are calculated. The generic approach is to calculate, from the
raw sensor data, features closer to the way humans think. The

second step is the derivation of a symbolic description of these
higher level features.

Since one of the goals is to generate classification knowl-
edge about execution failures, based on provided examples,
a method was developed [35], [36] to generate symbolic
descriptions of numerical features which maximize their class
discrimination power. This method follows three steps. The
first step is to produce histograms for all pairs of classes and
features. Each histogram shows the number of examples of
each class corresponding to several intervals of values of the
feature. The number of intervals considered is given by the
number of Struges: Interv = 1 + logz’lot, in which Tot is
the total number of examples represented in the diagram, i.e.,
the total number of examples belonging to that class. In the
second step, each histogram will be approximated to several
well known statistical distributions (e.g., normal, exponential,
uniform). The chi-square test will determine which distribution
fits better in the histogram. To apply this test, the relative
frequency of objects of the considered class in each interval

i, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAq i , is calculated according to the distribution being tested.
Let N be the total number of objects of the class in the training
set, and N, the number of objects of the class in interval i. x2
is defined as

(Na - N . x2=c N . q ,
a

-J
The distribution that gives the lowest value of x2 will be
chosen. The last step is to apply a rate of significane to

210 IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, VOL 12, NO 2, APRIL 1996 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
N
TIP

Fig. 12. Numerical to symbolic conversion

Error
I - .

is

‘ /
unexpected may-cause - collision object

is-a / zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 is-a/ \b
side collision \

unexpected zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI / with no zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAdamage \
may-cause side collision object athear

motion path with part lost

Fig. 13. Example of causal links at different levels of the error taxonomy.

the distribution in order to ignore values of the feature that
do not occur significantly in the examples of the considered

class. Finally, the intersection of the intervals of values of
the feature, in which each class may occur, defines qualitative

values for that feature (Fig. 12).
2) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAThe Model of Errors: Depending on the available sen-

sorial information, a more or less detailed classification and

explanation for a detected execution failure may be obtained.
Therefore, the model of errors should be a taxonomy. At each
level of this taxonomy, cause-effect relations between different
types of errors should be added. Typically, execution failures
are caused by system faults, external exceptions or other past

execution failures, although, in general, errors of the three

kinds may cause each other. Determining explanations for

detected execution failures can become very complex when

errors propagate. The proposed approach to modeling errors
in terms of taxonomic and causal links aims at handling this

complexity (Fig. 13) [9], [28], [35].
In actual execution, when a failure is detected, the current

state of the world is analyzed, as well as its evolution in
an interval surrounding the time of detection, and a failure
classification is determined. This can be done using knowledge

generated by inductive machine learning techniques, as it will

be described bellow. Then, the model of errors will be used
to explain the failure, i.e., to determine its causes. Diagnostic
reasoning and causality have been studied for some time, and
tested frequently in domains like electronic circuits, but there is

no unified theory for these matters. Moreover, approaches like

the one presented in [14] structure the problem considering
that the main goal is to determine the faulty components

in a system. However, in the assembly domain, not only

system faults, but also external exceptions can be causes of

off-nominal feedback.

E. Leamitzg: Previous and Related Work

In previous work, concerning the diagnosis functionality

1111, [35], [36], an inductive learning algorithm [19] was
applied. The algorithm is simple and, compared to ID3 [30],
AQ [25] and other well known symbolic inductive learning
algorithms, has the advantage of dealing elegantly with con-

tinuous training data. The disadvantage is that it does not

consider discrete features.

The learning kit CONDIS (inductive learning in continuous

and discrete domains), developed in-house [37], may be used
in domains characterized by symbolic andor numerical fea-

tures. It was designed to be easily integrated in an application.
It can be used to test different approaches to a particular
learning problem. The objects in a domain are characterized
by a set of attributes or features and can be grouped according

to a set of classes. Continuous features take numerical values

while a discrete feature takes one of a finite prespecified set

of values. The calculation cost for each attribute may also be

provided.

As pointed out by Cheng et al. [13], a symbolic inductive
learning algorithm (decision tree generator) is a recursive

procedure for which four rules must be specified.

RI. Test Stop: a rule for deciding when to stop the

E. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAClassify: a rule for labeling a leaf node with a class.
R3. Select Feature: a rule for selecting a test feature. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

0 R4. Partition Examples:. a rule for partitioning a set of

The CONDIS learning kit, implemented in C for efficiency
reasons, allows the user to define such rules. In addition, for
domains characterized by complex features, it was included in
CONDIS the possibility of defining rules for transforming, in
each step of the induction, the set of values that the features can

take. Considering a rule for the initialization of the induction
process (e.g., for data structure initialization or for generation

of a new table of examples in terms of higher level features)

might also be useful.

0 R5. Trunsfom Features: transformation of the domain

R6. Init Induction: initialization of the induction process.

This system is being used to evaluate different variations of
the classical structure of inductive algorithms. For example, if
the appropriate rule implementations are provided, CONDIS
can work as a classical ID3. However, CONDIS, as well as the
most widely known empirical inductive learning algorithms,

including ID3 [30], AQ [25], and CART [5] , is only able to

learn “flat” concepts, uni-dimensional concept descriptions, or
“labels”: The resulting knowledge is only able to assign classes

to objects from a given domain. In the assembly domain,
for example, these algorithms and systems cannot handle

simultaneously the problems of discriminating collisions from

recursion, i.e., when to create a leaf node.

examples.

of values of a feature.

CAMARINHA-MATOS zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAet zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAal.: INTEGRATION AND LEARNING IN SUPERVISION OF FLEXIBLE ASSEMBLY SYSTEMS zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA21 1

obstructions and normal situations and discriminating between

different types of collisions.

C. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBALearning zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof Taxonomic Knowledge

One extension could be learning multidimensional concept

descriptions, but, having as motivation the automatic construc-

tion of the models required for the Assembly Supervisor, the

idea of generating a concept hierarchy became more attractive.

A new algorithm, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBASKJL (structured knowledge generated by
inductive learning), was developed to perform that task [37].

SKIL requires the following specification of the application
domain:

The concepts in the hierarchy are characterized by a set
of classification attributes: A = {A,: i = 1 . . . zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa} . Each
attribute can take one of a set of discrete values: Values(A,) =
{A,,: j = 1 . . U A , } . The structure of the most abstract

concepts in the hierarchy will be given by attributes selected

from a set of top-level (start) attributes (TLA A) , which

must be provided by the user.

At the lower levels of the hierarchy, concepts are described

in more detail, i.e., more attribute values are specified. More-
over, in detailing or refining a concept, in which attributes take
certain values, it may make sense to calculate other attributes.
Therefore, the user should provide a set of attribute enabling
statements of the form (A , , A,, , EA,,), meaning that when the

value of A, is determined to be A,,, then attributes in EA,,
should be included in the set of attributes to be considered in

the continuation of the induction process. For example, when
learning the behavior of a zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBATransfer operation, if a collision

is found, it may make sense to determine some characteris-
tics of the colliding object, like size, hardness and weight.
This could be expressed by the following attribute enabling
triple:

(f ailure-type, collision, {obj -size,

ob j hardness, ob j-weight}).

The values of the attributes of the concepts in the hierarchy
are determined inductively based on training data specified in

terms of a set of discrimination attributes or features: F =
{ F,: i = 1 . . zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAe f }. When features are continuous, qualitative

values are obtained in each step of the induction using the

method described in Section IV-A- 1. For discrete features, the
set of values is provided by the user: Values(F,) = {F,,: j =

Each example in the training set is composed of a list of
attribute-value pairs followed by a vector of feature values.

For instance:

behavior = failure
failure-type = collision
collision-type = front
part-status = moved

1 * . . UF,}.

-1 4 20 1 4 1 1 3 - 1 0 1 0 2 - 1
13 1 -24 -71 -3 -15 -3 0.

In this case, the presented features were extracted from a trace
of forces and torques.

The algorithm (see Fig. 14) is a recursive procedure that
takes as parameters a list of examples, a list of classification

algorithm SKIL(LEx,LAt,LAET,LFt) (
// LEX, LAt, LFt are lists of examples,
// attributes and features. LAET is the
// list of attribute enabling triples.
declare Node;
NewLAt = OpenA#ributes(LEx&AaMq;
Node.clod-ats = ClosedAtaibutes(LEx,LAt,LAET);
if TestStop(NewLAt,LFt) [

Node.type = (NewLAt == LAt ? LEAF : H-LEAF);
// H-LEN, a concept hierarchy leaf.
// LEAF, a tree leaf.
return Node;

1
Transfdeatures(LEx,NewLAut);
(At,TFJ = SelectTestFeature(LEx,NewLAt&Ft);
if (FeatureIrrelevance(LEx,At,TF) > MAX-IRREL) [

//MAX-IRREL: Max. feature irrelevance, e.g. 97.5%
Node.type = (NewLAt = LAt ? LEAF : H-LEAF);
return Node;

NewLFt = LFt - TF;
for each TFk in (TF.transfomed-values) do [

I

NewLEx = PartitionExamples(LEx,TF,TFk);
Node.sub-treeF]= SIUL(NewLEx,NewLAt,LAJZT,NewLFt);

1
Node.type = (NewLAt == LAt ? TEST : H-NODE);
// H-NODE, a concept hierarchy node.
//TEST, a decision.
return Node;
1

Fig. 14. The SKIL Algorithm.

attributes, a list of attribute enabling triples, and a list of

features. The first step is to verify which attributes can

be closed, i.e., which attributes have the same value in

all provided examples. In traditional inductive algorithms,
this step corresponds to determining a class and creating a
leaf node. In SKIL, determining the value of one or more
classification attributes implies, by definition, the creation of a

taxonomy node. If there are attributes whose values cannot be

determined at the current stage, referred to as open attributes,

induction continues. To be noted is the fact that, starting in
the list of closed attributes and using the enabling triples, new

open and closed attributes will be found recursively.

In each stage of the induction, the main goal is to close

classification attributes. For each attribute, the discrimination

power of features is evaluated, in terms of an entropy measure,
as in ID3 [30]. The feature that, for some attribute, gives the
lowest entropy is selected to be test feature. If the chi-square
test for stochastic independence [30] returns a confidence

factor on the irrelevance of the test feature (concerning at-

tribute value discrimination) greater than some threshold (e.g.,

97.5%), expansion is stopped and a leaf node is created.

The basic knowledge transmutation used by SKIL is, there-

fore, empirical inductive generalization, only that at multiple
levels of abstraction (see the inferential theory of learning

[26]). The generated knowledge structure is a hierarchy of
anonymous concepts, each of them defined by the combina-
tion of several attribute-value pairs. The number of specified

attributes and values defines the abstraction level. The for-
mation of these concepts, guided by the attribute enabling

212 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA’ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, VOL. 12, NO 2, APRIL 1996

triples, depends highly on the training data. The hierarchy is,

simultaneously, a decision tree that can be used to recognize

instances of the concepts. It is equivalent to a set of rules of
the form

The left hand side of the implication is a conjunction (indicated

by the A sign) of conditions, on the values of several discrim-

ination features, sufficient to recognize the concept specified,

on the right hand side, by a conjunction of attribute values.

The problem of learning at multiple levels of abstraction

has not yet been adequately considered in the literature. In
some approaches, a fixed decomposition of concepts is used,
and learning is applied at each level [27]. This means that, for
instance, the structure of the taxonomy in Fig. 13 would have
to be user-defined. However, this is not flexible enough. Fixed
decompositions have also been used for feature values [27],
[33]. In the case of numeric features, since SKIL performs

the clustering of numeric values in every decision node, the
resulting decomposition tends to be the most adequate. In
what concerns symbolic features, a decomposition of values
could help. However, this was not implemented, since most

of the available sensor data in the application that motivated

the research is numeric. Developed with a particular problem
in mind, SKIL is a contribution to the research in multilevel
learning. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
D. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBATraining or Tutoring Methodology

According to the paradigm of programming by human

demonstration, complex systems are programmed by show-

ing particular examples of their desired behavior and giving
explanations for particular failure situations. In our current
approach, the interaction between the execution supervisor and

the human operator is fundamental. The human will carry out
an initial training phase for the nominal plan execution. The
traces of all testable sensors will be collected during training
in order to generate the corresponding monitoring knowledge.

In the existing implementation, for each action and each

continuous feature, the typical behavior of the attribute during

the execution of the action is calculated as being the region

between the average minus standard deviation behavior and the
average plus standard deviation behavior. The trace of discrete
features is also recorded. Also in the initial training phase,
the human operator may decide to provoke typical errors, in
order to collect raw data in error situations. Error classification
knowledge is subsequently generated by induction, currently
using SKIL.

When a new failure is detected during real execution of

the assembly system, the human operator is called to classify

and explain the failure and to provide a recovery strategy for
the situation. This is considered also as a training action,
since the system history and the model of errors will be

expanded and new knowledge will eventually be generated by
incremental induction, therefore improving future performance
of the system.

V. EXPERIMENTAL DEVELOPMENTS zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
A. Cell Integration

Experimental evaluation of the methodologies described
above has been taking place in NovaFlex, a FMSIFAS pi-
lot unit installed at the UNINOVA institute, and in the €3-
LEARN assembly cell, installed at Universidade Nova de
Lisboa (UNL).

N o v a e x was conceived as a demonstration unit able to

handle a set of typical activities of a computer integrated

manufacturing (CIM) system [2]. Besides the machining and

the assembly subsystems, the Pilot Unit includes zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa, storage

component, an input section for raw materials, a delivery

section for finished products and a transportation subsystem
that links all the other components. The transportation medium
is a pallet-based conveyor belt. Each pallet can be adapted to
transport different kinds of parts and products.

The system was required to comply with a variety of
products (a basic design goal). The objective was to build a

relatively generic infrastructure, that could adapt to a range of

products with minimal setup effort. Another very important

aspect is the possibility of different groups of users being

simultaneously using different subsystems of NovaFlex for

separate experiments. As a matter of fact, this situation is
expected to be the most common in practice. This requirement
led to an architecture in which NovaFlex can be operated either
as an integrated FMSFAS system or as a set of isolated sub-
systems (machining, assembly, transportation, storage, etc.).
This has particular consequences on the design of the control

architecture.

Therefore, the need to support these different research areas

implied the design of a flexible architecture, from the topology
to the control points of view. An easy reconfiguration of

its operating mode is an important requirement to support

concurrent research activities.

Fig. 15 illustrates the approach that was followed in No-
vaFlex. As mentioned in Section 111, the set of methods of the
controller model implement the actions that are needed to send
the right commands to the real controller. The real controller

imagq is developed using a client-server approach. In this way,

implementation methods can ask this server to perform the

required actions. These methods hide the underlying hardware

structure from the application, i.e., an application using a
robot component does not need to know much about the real
controller and its image or server. The applications only know
which functionalities are provided by the robot component
model. This approach appears to be suitable to integrate
existing controllers, making the integration of legacy systems
an easier task.

In the B-LEARN assembly cell, experiments concerning the

application of machine learning techniques in assembly super-

vision have been performed, in the framework of the European
ESPRIT project B-LEARN. This cell is composed of one

SCARA robot (needless to say, in all our robots, the control
languages are not suited to write intelligent control software),
three robot grippers, tools magazine and corresponding tool
exchange mechanism, two special purpose feeders, one fixture

CAMARINHA-MATOS zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAet zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAal.: INTEGRATION AND LEARNING IN SUPERVISION OF FLEXIBLE ASSEMBLY SYSTEMS zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA213

NovaFlex zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAHigh Level zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Control lar

Local Controller Local Controller Local Controller Local Controlla Local Convoller

Fig. 15. NovaFlex physical infrastructure.

and sensing devices. As feedback information sources for the

supervision system, the following discrete information sensors

were integrated in the cell: a) in each gripper, to detect if it is

open, closed or clamping; b) in feeders, to detect part presence,

part stock existence and feeder problems; c) in the wrist of the

robot, to find out which tool is attached, if any; d) in each tool
place to detect tool presence; and e) in the fixture, to detect
if the jig which will hold the assembly is present. The most
frequent execution failures are expected to be those in which
the robot zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAarm is involved, including collisions, obstructions,
and handling failures. Therefore, a force and torque sensor,

which seems a good candidate to give information about those

failures, was also included.

From the supervision point of view, the main limitation

of the robot control language is that it does not provide

guarded movements. Since communication via teach pendant
(TP) is very fast, the solution was to decompose each motion

command into a series of increments, executed sequentially
via TP, until some condition is verified [40]. A server process
emulating the teach pendant (TP emulator) and running on a
dedicated PC, due to the tight communication cycle, was first

developed. A layer added to the TP emulator provides guarded

movements, other robot commands normally available via TF’,
and commands of other cell resources, that are actuated via

the robot controller outputs. The TP emulator also provides

information about robot errors. To the TP emulator plus the
adaptation layer built on top of it, we call it an operational

server.
As it is not easy to make acquisition of large quantities

of sensorial data in UNIX workstations, and, on the other
hand, concurrency in UNIX affects the sensor sampling rate, a
program called low-level monitor is run in another dedicated
PC, where it is quite simple and cheap to implant a data
U 0 board. The low-level monitor (LLM) checks conditions

during the execution of actions, as specified by its client (the

intelligent supervisor), and is able to answer questions about
the state of the system during the diagnosis phase. The main

services provided by the LLM are as follows.

DEFINE-CONDITION-Define a sensory condition to

be evaluated on demand.

DEFINE-PROFILE-Define a sensory profile, i.e., a

specification of allowable conditions for a set of sensor

variables along a given time interval.
START-EVALUATION-Start evaluating a previously
specified condition. If a deviation is detected, the current
action must be interrupted and the diagnosis function is
called.
STOP-EVALUATION-Stop evaluating a condition.
MONITOR-PROFILE-Monitor a previously specified

profile. In case of a deviation, execution is stopped and the

diagnosis function is called.CONSULT-SENSOR-Read
the value of a sensor.

GET-BEHAVIOR-Return the behavior of all testable

sensors during the execution of a terminated action.

Communication between the LLM and the Intelligent su-
pervisor is accomplished via an RS232C line. Communication
between the operational server (OS) and the intelligent super-
visor is accomplished via RPC’s (remote procedure calls). This

infrastructure (Fig. 16) was developed using a client-server

approach. The “recovered” controller includes the legacy con-
trollers (robot, F&T sensor, etc.) and the LLM and OS server
processes, runing on two dedicated PC’s [40].

B. Learning zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof Diagnosis Knowledge

1) Training Situation and Training Data: The experimen-
tal work that will be presented concerns the identification
of the execution failure, i.e., the classification part of the
diagnosis process. Some failures can easily be identified by
simple discrete sensors. For instance, if the wrong tool is

attached to the robot, that situation can be detected by one
sensor. If the part is missing in feeder, that may as well be

detected with little effort. Such kind of knowledge can be
easily coded by hand as rules.

214 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, VOL. 12, NO. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2, APRIL 1996 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

F&T Senao
SCHUNK

Discrete
Sensors zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

I 1 - 1

Fig. 16. Assembly cell integrating infrastructure (B-LEARN project).

However, a question remains: How to characterize the
situation in which the force profile in the robot wrist is not
normal? Different external exceptions can occur causing exe-
cution failures that manifest through abnormal force and torque
profiles. These profiles, although sometimes recognizable by
the human, are difficult to model analytically. Therefore, what

would be desirable is that the system learned to look at the
force profiles in order to identify different situations.

The chosen case study is the macrooperation <<Pick and
Place>> of a part, which can be hierhchically decomposed as

shown in Fig. 17. For the experiments, we selected three of
the primitives involved in the operation: a) approach to grasp
position zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(Approach-Grasp) ; b) Transfer (of part); and
c) approach to the final position (Approach-Ungrasp) .
Dunng the training phase, each of the selected operations
was executed many times and several external exceptions

were provoked. In most cases an object was placed, either in

motion or stopped, in the robot ann motion path. The forces

and torques trace in an interval surrounding each failure was
collected and the failure classification was associated to it. The
length of the trace is of 15 samples.

In this way, for the operation Approach-Ungrasp,
117 classified examples were collected. The following failure
classes were considered (see force profiles in Fig. 19): 0:

normal behavior; 1: collision in part and part moved; 2:

collision in part and part lost; 3: collision in tool; 4: front

collision and part moved; zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5: front collision and part lost;

and 6: obstruction. For the operations Approach-Grasp
and Transfer, less examples were collected (88 and 47,

respectively), but more information about the failure situation
was recorded. This information is organized in terms of the
following attributes.

* behavior-generic information about the operation be-

havior; can be normal, collision, front collision, or ob-

struction; what will be learned is, in fact, a model of the

behavior (either normal or abnormal) of the system when

performing these operations.
body-what was involved in the failure, e.g., the part, the
tool, thejingers (le@, right or both fingers).

region-region of body that was affected, e.g., front, le@,
right or back side, bottom, etc. (see Fig. IS). zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

0 object size-size of object causing failure: small, large.
object hardness-can be so@ or hard.

* object weight-can be low or high.

2) Experimental Results: To run learning algorithms, some

preprocessing of the raw sensor data is needed. In fact, if all
numerical values in a force or torque trace, in total 15 values,

are given to the learning algorithm, it will probably run less
efficiently and the knowledge produced will be less readable
and less efficient to use. On the other hand, when humans look
at force profiles, they can easily recognize trends and high level

features that the learning algorithm will ignore if the training
set is not given to it in terms of the "good" features. For

these experiments, using measures such as average, slope, and

monotonicity, higher level features were extracted from raw

sensor data (same method as in [ll]). In this way, for each

force or torque profile, we reduced the total number of features

from 15 to 7, being 4 of them (slopes and monotonicity) clearly

of a higher level of abstraction.
One of the goals of the performed experiments was to

evaluate the impact of the method for signals to symbols
conversion, presented in Section IV-A-1, comparing it with

"blind" discretization. For this problem, the CONDIS learning

kit was used on the data collected during the execution

of the Approach-Ungrasp primitive. The following two

implementations of the rule Transform Features (R5) were
provided to the system.

R5.1: "Blind" discretization: the domain d values of
continuous features is transformed into a set of intervals
of equal length that are used as discrete values. The
number of intervals is given by the Number of Struges:
1 + log 2N, where N is the number of examples. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

e R5.2: The domain of values of each continuous attribute

is transformed into a set of qualitative values following
the method described in Section IV-A-1.

For feature selection, an entropy based rule, like in ID3, was
used. Partitioning examples in a node for further expansion is
also done as in ID3: create a branch for each value of the test
feature of the current node. Two different implementations of
the rule Test Stop (Rl: for deciding when to create a leaf
node) were also provided.

0 R1.l: Create a leaf node when all examples belong to the

same class, or when the current list of attributes is empty.

CAMARINHA-MATOS zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAet zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAal.: INTEGRATION AND LEARNING IN SUPERVISION OF FLEXIBLE ASSEMBLY SYSTEMS zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA215

Eject-Part(Pt.feder.Pt)]

Retract(Pt.feeder) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Depart-Ungrasp(R.Pos.dp) I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Fig. 17. Hierarchical decomposition of a <<Pick and Place>> macrooperation.

right back

Side Vi w

bottom back

bottom middle

bottom front
B tomVi w

Fig. 18. Regions of a gripper that may be involved in a failure.

R1.2: Create a leaf node in the conditions of R1.1 or if the
chi-square test for stochastic independence [30] returns a
confidence on the irrelevance of the best feature higher
than 97.5%.

As can be seen from the Table I, the largest tree, corre-
sponding to the simultaneous use of rules R1.l and R5.1, has
108 nodes: 63 leaf nodes that represent the learned rules, and

45 interior nodes that represent the points of decision. An

example of a learned rule is zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
if (pFz2 in [-361.1,-268.4[) and

(pFxl in [-64.6,-63.4[)
then behavior = "front collision with
part 1 os t " :

As it was expected, rule R1.2, which stops branching when
the irrelevance of the test feature is too high, reduces the
number of decisions to 29. The number of rules is preserved
and therefore the global number of nodes is reduced from 108
to 91. On the other hand, rule R5.2 reduces the number of
decisions from 45 to 35 and the number of rules from 63 to
56. The global number of nodes is reduced from 108 to 92.

The smallest tree is produced when rules R1.2 and R5.2 are
used simultaneously. In that case, the number of decisions is
reduced to 16 and the global number of nodes is reduced to 72.

:"I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
-100

V

-150' -400 '
(e) (f)

Fig. 19. Typical behavior of force Fy during different types of failures in
the Approach with part operation. (a) Collision in part and part moved. (b)
Collision in part and part lost. (c) Collision in tool. (d) Front collision and
part lost. (e) Front collision and part moved. (f) Obstruction.

TABLE I
RESULTS OF APPLYING CONDIS ON THE DATA OF Approach-Ungrasp

The rule R5.2 produces good results since the tree becomes
more concise. When using R1.l, the reduction in the number
of nodes produced by R5.2 is of 16%. When using R1.2, the

216 EEE TR

TABLE I1
APPROACH-UNGRASP PROBLEM SPECIFICATION

reduction in the number of nodes produced by R5.2 is of 22%.

However, rule R5.2 seems to lead to slightly higher error rates.

This is a problem that must be better investigated. In any case,
the gain in simplicity of the generated tree seems to be greater
than the loss of accuracy. In the four experiments, the error
rates (leave-one-out test) were very high, around 40% to 46%.
This is due, mainly, to not having enough training examples.

In the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAApproach-Ungrasp problem, the failure classifi-
cations have embedded some sort of hierarchy. For instance,

there are three major types of collisions: collision in part,

collision in tool and front collision. Some of these still have

more refined descriptions. This implicit hierarchy could be

used to guide the induction process and possibly reduce the

error rates. That is what will be attempted next, using S a .
The concept hierarchy that this algorithm learned charac-

terizes the execution situation at different levels of detail.
The most detailed descriptions will correspond to the seven
failure classifications considered above. The set of classifica-
tion attributes (in the SKIL sense) shown in Table II(a) seems

to be enough to obtain the most detailed descriptions. The

attribute enabling statements are shown in Table II(b). The

top-level (start) attributes are zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAbehavior and partstatus. The

discrimination attributes or features are the same as before,

and the same preprocessing was applied. The classifications
in the table of examples were decomposed according to the
classification attributes.

After running SKIL on the new domain specification and
new table of examples, a decision tree was obtained having
71 nodes. The concept hierarchy contained in the tree has
59 nodes, being 10 of them internal nodes and 49 terminal

nodes (see Fig. 20). Examples of the corresponding rules are
as follows:

\y’x: (F z l (x , [7 , 2 1 [) & F x l (x , [- 4 . 5 , 1 [) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
& D x l (x, [- 0 . 5 , O . 5 [))

+ (behavior (x , normal)
& part-status (x, ok))

V X : (Fzl(x, [- 9 9 5 , 7 [)

& D 2 2 (x , [- 5 4 2 , - 5 1 [)

& Fx3 (x , [- 4 6 4 , - 1 3 [))

+ (behavior (x, failure)
& part-status (x,moved)
& failure-type (x , obstruction))

ANSACTIONS ON ROBOTICS AND AUTOMATION, VOL. 12, NO. 2, APRIL 1996

The size of the tree is very similar to the size of the tree
generated by CONDIS using rules R1.2 and R5.2 (72 nodes).

This was expected since, in SKIL, numerical to symbolic
conversion is done by the same method as in R5.2. SKIL also

uses the chi-square test for stochastic independence as in R1.2.

Performing the leave-one-out test with the same data and

algorithm, the resulting average error rate is 15%, much lower
than in the “flat” classification obtained in any of the four
experiments with CONDIS (see Table 111).

From this comparison we see that SKIL may be used

to generate more accurate knowledge. However, its great
advantage is that it is able to generate conceptual hierarchies.
The problem of generating failure classification knowledge for
the Approach- Ungr a s p primitive was initially formulated
in terms of seven classes of failures. Then, the problem

was reformulated for SKIL in terms of four classification

attributes. The total number of complete failure descriptions

that can be built using the attributes and their values is 15.

Of course, some of them never occur (e.g., {behavior =
normal, partstatus = lost}), and others were not present
in the training set.

When the user wants to get more and more information
about a failure situation, the number of classification attributes
and their values increases. If these attribute values are to be

combined to produce “flat” classifications or labels, the number

of labels increases exponentially, and the problem becomes

intractable. This is the case of the information collected during

failures of Approach-Grasp , which included 10 attributes,
28 values and 8 enabling triples (see domain specification on
Table zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIV).

The characteristics of the decision tree and concept. hi-
erarchy generated by SKIL starting with top-level attribute
behavior, are shown in Table V. The global number of nodes

is 93. The error rate (30%) is much higher than in the
previous problem when SKIL was also applied (15%). This is

understandable since the target concept is much more complex

and a smaller training set was provided (only 88 examples).

For the Transfer problem, for which only 47 examples were

collected, a taxonomy was also generated by SKIL, and the

error rate was 34%. We see, as a general trend, that as the
number of occurrences of each attribute value in the training
set increases, the corresponding error rate decreases (Fig. 21).

The general approach is, therefore, to collect examples of
normal and abnormal behavior of each operation or operation-
type/operator and generate a behavior model (Fig. 20) that

the diagnosis function (Figs. 3 and 4) will use to verify the
existence of failures, to classify and explain them and to

update the world model. The developed methodologies and

the pedormed experiments are a contribution to the failure

classification part of the diagnosis task. Failure explanation is
a topic for further research.

The CONDIS learning kit and the algorithm SKIL are tools
that can be easily integrated in a performer and used to gener-
ate knowledge from examples. With CONDIS we empirically
demonstrated the viability of our approach concerning the

signals to symbols conversion. The results obtained with SKIL,

seem rather promising since it produces structured (taxonomic)
knowledge with a higher degree of accuracy.

CAMARINHA-MATOS zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAet zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAal.: INTEGRATION AND LEARNING IN SUPERVISION OF FLEXIBLE ASSEMBLY SYSTEMS zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Tu1

failw-type zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
affected_body zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
affected zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAbodv

0 Taxonomy Node
0 Decision Tree Node

Learned descriptions of the target concept at different levels of detail:

Node O : { } ;
Node 2 : { behavior = failure } ;
Node 3 : { behavior = failure, part-status = moved } ;
Node 4 : { behavior = failure, part-status = moved, failure-type = obstruction } ;
Node 13 : { behavior = failure, failure type = collision } ;
Node 24 : { behavior = failure, failureztype = collision, collision-type = front, part-status = moved} ;
Node 51 : { behavior = normal, part-status = ok } ;

obstruction (obj-size, obj-hardn,obj-weight)
tool (tool-region)
fineers I fineers reeion 1

....
Fig. 20. Behavior taxonomy generated by SKIL for the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAApproach-Ungrasp primitive.

TABLE I11
SKIL VERSUS CONDIS ON THE DATA OF Approach-Ungrasp

[Aleorithm I CONDIS I SKlL 1
Number of Tree Nples I 72 I 71
Number of Taxonomv Nnder; - 59

~~

I Number of Taxonomv zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBALeafs I - r- 4 9 i
Number of Taxonomy Interior Nodes

Number of Decisions

Number of Rules

Error Rate ve-one-out zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA46%
0.29 0.42

Accuracy, however, is a problem requiring further investi-
gation. Work, in the context of the European ESPRIT project
B-LEARN, in cooperation with the University of Turin, in
which the learning tool Smart+ [4] was applied to the same

data, could not solve the accuracy problem either. If the lack of
examples, which are expensive to acquire, was one of the main
causes for the less satisfactory results concerning accuracy, this
implies that more research effort must be put in the design of
the training methodology. The continuation of the research
focused on efficient ways of collecting examples (including
example interpolation), in feature construction and selection
and in long-term learning, and some interesting results have
been reported [38], [39].

VI. CONCLUSION AND FUTURE WORK

Planning and executing flexible assembly tasks on a real
industrial environment is a highly complex problem that must
take into account (benefit from) the multiple inter-relationships
with other activities involved in the manufacturing process.
In particular, the design of an intelligent execution supervisor
needs a clear understanding, not only of the execution planning

TABLE IV
AITRIBUTES, VALUES, AND ENABLING TRIPLES

Attribute I Attribute Values
behavior J (normal, failure) I

(initial, middle, terminal)
(collision, fr-collision, obstruction)
[tool, tool-tubes, fingers)
(front, right, left, back, bottom)

failure-type
&ectfX-bOdy
tool-region

obj-size (small, large)
obj-hardness (soft, hard 1
obi weight (low, hight)

(a)

Attribute I Value I Enabled Attributes
behavior I failure I (failure-type, affected-body)

lbehavior I normal I I nhase 1 I
failure-type I collision I (obj-size, obj-hardn, obj-weight)

I fr-collision I (obj-size, obj-hardn, obj-weight) lure_type

~~

Ltool region I bottom I (bottom subregion 1

(b)

217

phase but also of other phases like process planning, product

design, scheduling, production planning, etc.
An evolutive execution supervision architecture was pre-

sented in this framework. Flexibility implies increasing the
on-line decision making capabilities, for which dispatching,
monitoring, diagnosis and error recovery functionalities have
been devised. The lack of comprehensive monitoring and
diagnosis knowledge in the assembly domain points out to

218 IEEE TR

TABLE V
EVALUATION OF KNOWLEDGE GENERATED BY

S m L ON THE DATA OF zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAApproach-Grasp zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

8 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
20 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

I
4

0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI
0 20 40 60 80

Fig. 21.
provided (Approach- G r a sp problem).

Error rates per attribute value according to the number of examples

the use of machine learning techniques, leading to an evo-
lutive architecture. Preliminary experiments in this direction
demonstrated the feasibility of the approach, and allowed the
identification of the main difficulties and following steps.

Finally, another important aspect in any integrated approach
to the assembly supervision problem is the integration of
legacy systems. A methodology developed in this work proved

successful as a method to integrate existing device controllers

into an open infrastructure.

ACKNOWLEDGMENT

The authors would like to thank J. C. Silva for his contri-
bution to the experimental setup.

REFERENCES

[I] A. P. Ambler, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAS . A. Cameron, and D. F. Comer, “Augmenting the
RAPT robot language,” in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAProc. NATO Advanced Research Workshop
on Languages for Sensor-based Control in Robotics, NATO AS1 series,
1987, no. 29, pp. 305-316.

[2] J. Barata and L. M. Camarinha-Matos, “Development of a FMSlFAS
system-The CRI’s pilot unit,” Studies Informatics Contr., vol. 3, no.

[3] J. Barata, L. M. Camarinha-Matos, and J. F. Rojas Chavarria, “Mod-
eling, dynamic persistence and active images for manufacturing pro-
cesses,” Studies Informatics Contr., vol. 3, no. 2-3, pp. 173-183, Sept.
1994.

[4] M. Botta and A. Giordana, “SMART+: A multi-strategy learning tool,”
in Proc. Int. Joint Con$ Artificial Intelligence (IJCAI-93), 1993, pp.
937-943.

[5] L. Breiman, J. Friedman, R. A. Olshen, and C. J. Stone, Classification
and Regression Trees.

[6] L. M. Camarinha-Matos, “Sistema de programapo e controle de
eSta$des rob6ticas. Uma arquitectura baseada em conhecimento,” Ph.D.
dissertation, Universidade Nova de Lisboa, June 12, 1989.

[7] L. M. Camarinha-Matos and H. Afsarmanesh, “Federated information
systems in manufacturing,” in Proc. European Robotics and Intelli-

2-3, pp. 231-239, 1994:

Belmont, CA, Wadsworth Int. Group: 1984.

ANSACTIONS ON ROBOTICS AND AUTOMATION, VOL. 12, NO 2, APRIL 1996

gent Systems Con$ (EURISCON’94), Malaga, Spain, 1994, pp. 1598-
1613.

[8] L. M. Camarinha-Matos, U. Negreto, G. R. Meijer, J. Moura-Pires, and
R. Rabelo, “Information integration for assembly cell programming and
monitoring in CIM,” presented at the 21st ISATA, Wiesbaden, Germany,
1989.

[9] L. M. Camarinha-Matos and A. L. Os6ri0, “Monitoring and error
recovery in assembly tasks,” presented at ISATA, Vienna, Austria, 1990.

[lo] L. M. Camarinha-Matos and H. J. Pinheiro-Pita, “Interactive planning
of motion and assembly operations,” in Proc. IEEE Int. Workshop
Intelligent Motion Control, Istambul, Turkey, 1990, pp. 587-592.

[11] L. M. Camarinha-Matos, L. Seabra Lopes, and J. Barata, “Execution
monitoring in assembly with learning capabilities,” Proc. 1994 IEEE
Int. Con$ Robotics and Automation, San Diego, CA, pp. 272-279.

[12] S. Chakrabarty and J. Wolter, “A hierarchical approach to assembly
planning,” in Proc. I994 IEEE Int. Con$ Robotics and Automation, San
Diego, CA, 1994, pp. 258-263.

[13] J. Cheng, U. M. Fayad, K. B. ‘Irani, and Z. Qian, “Improved decision
trees: A generalized version of ID3,’: in 5th Int. Con$ Machine Learning,
1988, pp. 100-106.

[I41 J. de Kleer, A. K. Mackworth, and R. Reiter, “Characterizing diagnoses,”
in 8th National Con$ ArtiJTcial Intelligence (AAAI-90), Boston, MA,
1990, pp. 324-330.

[15] K. Forbus, “Qualitative physics: Past, present and future,” Exploring
Artifcia1 Intelligence, H. Shrobe, Ed. San Mateo, CA: Morgan Kauf-
mann, 1988, pp. 239-296.

[16] B. Furth, Automated Process Planning, NATO Advanced Study Institute
on CIM: Current Status and Challanges. Berlin-Heidelberg: Springer-
Verlag, NATO AS1 Series, 1988.

[17] Gespac Intemational SA, FIELDBUS Hardware and Firmware Spec$-
cation Manual, 1992.

[18] M. Gini, “Symbolic and qualitative reasoning for error recovery in robot
programs,” NATO ASI Ser., Lang. Sensor-Based Contr., vol. F29, pp. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

_I

i47-167, 1987.
1191 K. Hirota, Y. Arai. and S. Hachisu. “Moving mark recognition and - -

moving object manipulation in fuzzy’ controllevd robot,” Co;tr.-Theory
Adv. Technol., vol. 2, no. 3, pp. 399-418, 1986.

[20] L. S. Homem de Mello and S. Lee, Eds., Computer-Aided Mechanical
Assembly Planning. BostonDordrechtlLondon: Kluwer, 1991.

1211 ISOlLEC 9506, manufacturing message specification, (1: krvice defini-
tion; 2: protocol definition), 1990.

1221 E. L6pez-Mellado and R. Alami, “A failure recovery scheme for
assembly workcells,” I990 IEEE Int. Con$ Robotics and Automation,
Cincinnati, OH, 1990, pp. 702-707.

[23] MAPITOP Users Group, Manufacturing Automation Protocol SpeciJica-
tion, V3.0, 1991.

[24] G. R. Meijer, “Autonomous shopfloor systems-A study into excep-

tion handling for robot control,” Ph.D. dissertation, Universiteit van
Amsterdam, Amsterdam, The Netherlands, 1991.

[25] R. S. Michalsky, “On the quasi-minimal solution of the general cov-
ering problem,” in Proc. 5th Int. Symp. Information Processing, Bled,
Yugoslavia, 1969, pp. 125-128.

[26] -, “Inferential theory of learning: Developing foundations for
multistrategy learning,” Machine Learning. A Multistrategy Approach,
vol. IV, R. S. Michalsky and G. Tecuci, Eds. San Mateo, CA: Morgan
Kaufmann, 1994.

[27] I. Mozetic, “The role of abstractions in learning qualitative models,”
in Proc. 4th Int. Workshop Machine Learning, Irvine, CA, 1987, pp.
242-255.

[28] -, “Hierarchical model-based diagnosis,” Int. J. Man-Machine zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Studies, vol. 35, pp. 329-362, 1991.

[29] A. L. Os6rio and L. M. Camarinha-Matos, “Support for concurrent en-
gineering in CIM-FACE,” Balanced Automation Systems. Archilectures
and Design Methods, L. M. Camarinha-Matos and H. Afsarmanesh, Eds.
London: Chapman & Hall, 1995, pp. 275-286.

[30] J. R. Quinlan, “Induction of decision trees,” Machine Learning, vol. 1,

[31] R. Rabelo and L. M. Camarinba-Matos, “Control and dynamic
scheduling in virtual organization of production resources,” IFIP
Transactions on Production Management Methods. Amsterdam:
North-Holland, 1994, pp. 359-368.

[32] C. Ramos, “Planeamento e Execupo Inteligent de Tarefas de Montagem
e de Manipulaqito (in Portuguese),” Ph.D. dissertation, Universidade do
Porta, Portugal, 1993.

[33] Y. Reich, “Macro and micro perspectives of multistrategy learning,”

Machine Learning. A Multistrategy Approach, vol. IV, R. S. Michalsky
and G. Tecuci, Eds. San Mateo, CA: Morgan Kaufmann, 1994, pp.
379401.

pp. 81-106, 1986.

CAMARINHA-MATOS et al.: INTEGRATION AND LEARNING IN SUPERVISION OF FLEXIBLE ASSEMBLY SYSTEMS zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA219

[34] L. Seabra Lopes, “Golog 2.0 Um Gestor de Objectos em Prolog,” Dep.
Elect. Eng., Universidade Nova de Lisboa, Lisbon, Portugal, Tech. Rep.

UNL 12-94, 1994.
[35] L. Seabra Lopes and L. M. Camarinha-Matos, “Learning in assembly

task execution,” in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAProc. I1 European Workshop Learning Robots, Turin,
Italy, 1993, pp. 129-142.

[36] zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-, “Learning to diagnose failures of assembly tasks,” in Proc. Int.
Con$ ArtiJicial Intelligence in Real-Time Control, Valencia, Spain, Oct.

[37] - , “Inductive generation of diagnostics knowledge for autonomous
assembly,” in Proc. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1995 IEEE Int. Con$ Robotics and Automation,
Nagoya, Japan, 1995, pp. 2545-2552.

[38] -, “Planning, training and learning in supervision of flexible
assembly systems,” Balanced Automation Systems. Architectures and
Design Methods, L. M. Camarinba-Matos and H. Afsarmanesh, Eds.
London: Chapman & Hall, 1995, pp. 63-74.

[39] -, “Example generation and processing for inductive leaming in
the assembly domain,” in Proc. 4th European Workshop on Learning
Robots, Karlsruhe, Germany, 1995, pp. 1-9.

[40] L. Seabra Lopes, J. C. Silva, and L. M. Camarinba-Matos, “SupervisZo,
Aprendizagem e Integra@o de ServiGos em Rob6tica de Montagem,”
in Proc. 5as J. Projecto, Planeamento e Produpio Assistidos por Com-
putador, GuimarZes, Portugal, 1995, pp. 397-404.

[41] G. Spur et al., “Operational control for robot system integration into
CIM,” IPK, Berlin, Esprit 623, 5th Interim Rep., 1987.

[42] S. Srinivas, “Error recovery in robot systems,” Ph.D. dissertation, Calif.
Inst. Tecbnol., Pasadena, 1977.

[43] K. Tierney, R. Browden, and J. Browne, “ESPFAS-A prototype expert
system for technological planning in robot based flexible assembly
systems,” Ann. OR, vol. 15, pp. 111-130, 1986.

1994, pp. 125-131.

Luis M. Camarinha-Matos (M’92) received the
Ph.D. degree in computer engineering from the
Universidade Nova de Lisboa (UNL), Portugal, in
1989.

He is a Co-Founder of the Electrical Engineering
Department of UNL where be is currently Auxil-
iary Professor (equivalent to Associate Professor)
and Coordinator of the Robotics and CIM research
unit. He has participated in many international and
national projects, both as researcher and as coordi-
nator. He has been involved in the organizing and

program committees of various international conferences He has edited various
issues of joumals and books and has more than 90 publications in joumals
and conference proceedings.

Luis Seabra Lopes (S’92) graduated from the Com-
puter Science Department of the Universidade Nova
de Lisboa (UNL), Portugal, in 1990.

He is currently a doctoral candidate in the Elec-
trical Engineering Department of UNL. He became
a member of the Intelligent Robotics Group of
the same university after receiving his degree in
1990. He is currently participating in the european
ESPRIT project B-LEARN, one of the first projects
to investigate applications of machine learning to
robotics. At the moment, his m a n interests are

robotics, machine learning, and intelligent supervision.

JosC Barata (M’87) received the computer sci-
ence degree from the Universidade Nova de Lisboa
(UNL), Portugal, in 1990, and the M.Sc. degree
from the same University in 1995.

Currently, he is an Assistant at the Electrical
Engineering Department of UNL and belongs to
the Robotics and CIM research group. His mains
interests are CIM systems integration and intelligent
manufacturing systems.

