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Abstract. We consider the problem of efficient integration of an n-variate polyno-
mial with respect to the Gaussian measure in Rn and related problems of complex

integration and optimization of a polynomial on the unit sphere. We identify a class

of n-variate polynomials f for which the integral of any positive integer power fp

over the whole space is well-approximated by a properly scaled integral over a ran-

dom subspace of dimension O(log n). Consequently, the maximum of f on the unit

sphere is well-approximated by a properly scaled maximum on the unit sphere in a
random subspace of dimension O(log n). We discuss connections with problems of

combinatorial counting and applications to efficient approximation of a hafnian of a

positive matrix.

1. Introduction

We consider the problem of efficient integration of multivariate polynomials with
respect to the Gaussian measure in Rn.

Let us assume that the real n-variate homogeneous polynomial f of degree m is
given to us by some “black box”, which inputs an n-vector x = (ξ1, . . . , ξn) and
outputs the value of f(x). We want to compute or estimate the integral∫

Rn

f dµn,

where µn is the standard Gaussian measure with the density

(2π)−n/2e−‖x‖
2/2, where ‖x‖ = ξ2

1 + . . . + ξ2
n for x = (ξ1, . . . , ξn).
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If m is odd then the integral is 0, so the interesting case is that of an even degree
m.

An equivalent problem is to integrate f over the unit sphere Sn−1 ⊂ Rn. As-
suming that m = 2k is even, we have∫

Sn−1
f(x) dx =

Γ(n/2)
2kΓ(n/2 + k)

∫
Rn

f dµn,

where dx is the rotation invariant Haar probability measure on Sn−1. This and
related formulas for integrals of polynomials over the unit sphere and over the
Gaussian measure on Rn can be found, for example, in [B02b].

The most straightforward and the most general approach to integration is to
employ the Monte Carlo method, that is, to sample N random points xi ∈ Sn−1

and approximate the integral by the sample mean:

∫
Sn−1

f(x) dx ≈ 1
N

N∑
i=1

f(xi).

Although one can show that for a “typical” polynomial the Monte Carlo method
works reasonably well, there are simple examples of polynomials where one would
require to sample exponentially many points to get reasonably close to the integral.

(1.1) Example. Suppose that f(x) = ξ2k
1 for x = (ξ1, . . . , ξn). Then

∫
Sn−1

f(x) dx =
Γ(n/2)Γ(1/2 + k)√

πΓ(n/2 + k)
.

If we choose k ∼ n/2 then the integral is of the order of 2−n for large n.
On the other hand, if we sample N random points xi on the unit sphere Sn−1,

then with high probability we will have |ξ1| = O(
√

lnN/n) for the first coordinate ξ1

of every sampled point, cf., for example, Section 2 of [MS86]. Thus to approximate
the integral within a factor cn for some absolute constant c, the number N of
samples should be exponentially large in n.

The reason why the Monte Carlo method doesn’t work well on the above example
is clear: the polynomial f(x) = ξ2k

1 acquires some large values for an exponentially
small fraction of x ∈ Sn−1 but those values significantly contribute to the inte-
gral. In other words, the Monte Carlo method wouldn’t work well if the graph of
the polynomial looks “needle-like”. In this paper, we suggest a method tailored
specifically for such needle-like polynomials.

The following defines the class of “needle-like” or “focused” polynomials we deal
with.
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(1.2) Definitions. Let

〈x, y〉 = ξ1η1 + . . . + ξnηn for x = (ξ1, . . . , ξn) and y = (η1, . . . , ηn)

be the standard scalar product in Rn.
Let us fix a number 0 < δ ≤ 1 and a positive integer N . We say that a ho-

mogeneous polynomial f : Rn −→ R of degree m is (δ,N)-focused if there exist N
non-zero vectors c1, . . . , cN ∈ Rn such that

• for every pair (i, j) the cosine of the angle between ci and cj is at least δ;

• the polynomial f can be written as a non-negative linear combination

f(x) =
∑

I

αI

∏
i∈I

〈ci, x〉,

where the sum is taken over subsets I ⊂ {1, . . . , N} of cardinality |I| = m and
αI ≥ 0.

Our first result is that the value of the integral of a focused polynomial over a
random lower-dimensional subspace allows one to predict the value of the integral
over the whole space.

For a k-dimensional subspace L ⊂ Rn, let µk be the Gaussian measure con-
centrated on L with the density (2π)−k/2 exp

{
−‖x‖2/2

}
for x ∈ L. We pick a

k-dimensional subspace at random with respect to the Haar probability measure
on the Grassmannian Gk(Rn) and consider the integral∫

L

f dµk.

We claim that as long as k ∼ log N , the properly scaled integral over L approximates
the integral over Rn within a factor of (1− ε)m/2.

(1.3) Theorem. There exists an absolute constant γ > 0 with the following prop-
erty.

For any δ > 0, for any positive integer N , for any (δ,N)-focused polynomial
f : Rn −→ R of degree m, for any ε > 0, and any positive integer
k ≥ γε−2δ−2 ln(N + 2), the inequality

(1− ε)m/2

∫
L

f dµk ≤
(

k

n

)m/2 ∫
Rn

f dµn ≤ (1− ε)−m/2

∫
L

f dµk

holds with probability at least 2/3 for a random k-dimensional subspace L ⊂ Rn.

Assuming that we can integrate efficiently over lower-dimensional subspaces (see
Section 1.5 below), we get a randomized approximation algorithm for computing
the integral of f over Rn. Namely, we sample a random k-dimensional subspace
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L, compute the integral over L and output the value of that integral multiplied
by (n/k)m/2. To sample L from the uniform distribution on the Grassmannian
Gk(Rn), one can sample k vectors x1, . . . , xk independently from the Gaussian
distribution in Rn and let L = span

{
x1, . . . , xk

}
.

One “anti-Monte Carlo” feature of the algorithm is that the estimator is decid-
edly biased: the expected value of the output is essentially greater (by a factor of
(n/k)m/2) than the value we are trying to approximate. This is so because the
distribution of the integral over a random subspace has a “thick tail”: there are
subspaces which result in large integrals that significantly contribute to the integral
over the whole space but such subspaces are very rare.

To increase the probability of obtaining the right approximation, one can use the
standard approach of sampling several random subspaces and finding the median
value of the outputs.

One can observe that if f is (δ,N)-focused then fp is also (δ,N)-focused for any
positive integer p. This allows us to deduce that the maximum of f over the unit
sphere is well approximated by the scaled maximum of the restriction of f onto the
sphere in a lower-dimensional subspace.

(1.4) Corollary. There exists an absolute constant γ > 0 with the following prop-
erty.

For any δ > 0, for any positive integer N , for any (δ,N)-focused polynomial
f : Rn −→ R of degree m, for any ε > 0, and any positive integer
k ≥ γε−2δ−2 ln(N + 2), the inequality

(1− ε)m/2 max
x∈Sn−1∩L

f(x) ≤
(

k

n

)m/2

max
x∈Sn−1

f(x) ≤ (1− ε)−m/2 max
x∈Sn−1∩L

f(x)

holds with probability at least 2/3 for a random k-dimensional subspace L ⊂ Rn.

The problem of optimization of a polynomial on the unit sphere has attracted
some attention recently, see [F04] and [K+04]. Note that by restricting the polyno-
mial onto a k-dimensional subspace we effectively reduce the number of variables
to k in the optimization problem. Using methods of computational algebraic ge-
ometry allows one to optimize a polynomial over the sphere in time exponential in
the number of variables. Hence with k = O(log N), we obtain a quasi-polynomial
algorithm of mO(log N) complexity which approximates the maximum value of the
polynomial on the sphere within a (1 − ε)m/2 factor. If the degree m of the poly-
nomial is fixed and N is bounded by a polynomial in the number n of variables, we
get a polynomial time approximation algorithm.

(1.5) On the computational complexity. Let f : Rn −→ R be a homogeneous
polynomial of degree m given by its “black box” which outputs the value of f(x)
for an input x ∈ Rn. Then one can compute the monomial expansion

f(x) =
∑
α

cαxα where xα = xα1
1 . . . xαn

n for α = (α1, . . . , αn)
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in O
((

n+m−1
m

)3)
time through the standard procedure of interpolation, cf. also

[KY91] for the sparse version. If L ⊂ Rn is a k-dimensional subspace, by choosing
an orthonormal basis in L, we can identify L with Rk. Then the monomial expansion
of the restriction fL can be computed in O

((
k+m−1

m

)3)
time. If k is fixed, we get a

polynomial time algorithm. In we choose k = O(log N), the algorithms we obtain
will be “quasi-polynomial”, with the complexity of mO(log N).

Once a monomial expansion is obtained, it is easy to integrate polynomials
since there are explicit formulas to integrate monomials. Given a monomial xα =
xα1

1 · · ·xαn
n , the formula is

∫
Rn

xα dµn =
{

π−n/2
∏n

i=1 2αi/2Γ
(

αi+1
2

)
if all αi are even

0 otherwise.

In Section 2, we prove Theorem 1.3 and Corollary 1.4. In Section 3, we con-
sider some examples and applications, including the problem of approximating the
hafnian of a positive matrix. In Section 4, we consider the problem of integrating
polynomials with respect to the complex Gaussian measure in Cn. We prove a
version of Theorem 1.3 in this case and show connections between efficient complex
integration and certain hard problems of combinatorial enumeration.

2. Proofs

One major ingredient of the proof of Theorems 1.3 is the formula for the integral
a product of linear forms.

(2.1) Definitions. Let m = 2k be an even positive integer. A perfect matching
I of the set {1, . . . , m} is an unordered partition of {1, . . . , m} into a union of k
unordered pairwise disjoint pairs

I =
{
{i1, j1}, {i2, j2}, . . . , {ik, jk}

}
.

Let C = (cij) be an m×m matrix, where m = 2k is an even integer. The hafnian
haf A of A is defined by the formula

haf C =
∑

I

cI ,

where the sum is taken over all perfect matchings I of the set {1, . . . , m} and cI is
the product of all cij for all pairs {i, j} ∈ I.

The following result is known as the Wick formula, see, for example, [Zv97].
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(2.2) Lemma. Let m be a positive even integer and let `i : Rn −→ R, i = 1, . . . , m,
be linear functions. Let C = (cij) be an m×m matrix defined by

cij =
∫

Rn

`i(x)`j(x) dµn.

Then ∫
Rn

m∏
i=1

`i(x) dµn = haf C.

If `i is defined by `i(x) = 〈ai, x〉 for some ai ∈ Rn then cij = 〈ai, aj〉.

We also need a version of the Johnson-Lindenstrauss “flattenning” Lemma, see,
for example, [Ve04]. We present such a version below (with non-optimal constants),
taken off Section V.7 of [B02a].

(2.3) Lemma. Let x ∈ Rn be a vector and let L ⊂ Rn be a k-dimensional subspace
chosen at random with respect to the Haar probability measure on the Grassmannian
Gk(Rn). Let x′ be the orthogonal projection of x onto L. Then, for any 0 < ε < 1,
the probability that

(1− ε)‖x‖ ≤
√

n

k
‖x′‖ ≤ (1− ε)−1‖x‖

is at least 1− 4 exp{−ε2k/4}.

The following is a straightforward corollary. We establish it in a slightly larger
generality than immediately needed, having in mind applications to complex inte-
gration in Section 4.

(2.4) Lemma. Let us choose δ > 0 and ε > 0. Suppose that a1, . . . , aN and
b1, . . . , bN are vectors from Rn such that the cosine of the angle between every pair
ai and bj of vectors is at least δ > 0.

Let us choose a ρ > 0 such that

(1− ρ)−2 ≤ 1 +
δε

3

and an integer
k ≥ min

{
n, 4ρ−2 ln

(
12N2 + 24N

)}
.

Let L ⊂ Rn be a k-dimensional subspace chosen at random with respect to the Haar
probability measure on the Grassmannian Gk(Rn). Let a′i, b

′
j be the orthogonal

projection of ai, bj onto L. Then with probability at least 2/3

(1− ε)〈ai, bj〉 ≤
n

k
〈a′i, b′j〉 ≤ (1− ε)−1〈ai, bj〉
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for all pairs (i, j).

Proof. Scaling, if necessary, we may assume that ‖ai‖ = ‖bj‖ = 1 for all i and j, so
〈ai, bj〉 ≥ δ for all i, j. We have

〈ai, bj〉 =
‖ai + bj‖2 − ‖ai‖2 − ‖bj‖2

2
and 〈a′i, b′j〉 =

‖a′i + b′j‖2 − ‖a′i‖2 − ‖b′j‖2

2
.

We note that
(1− ρ)−2 ≤ 1 +

δε

3
and (1− ρ)2 ≥ 1− δε

3
.

Since there are altogether N2 + 2N vectors ai, bj , and ai + bj , by Lemma 2.3, for
a random k-dimensional subspace L, with probability at least 2/3, we get

‖ai + bj‖2(1− ρ)2 ≤ n

k
‖a′i + b′j‖2 ≤ (1− ρ)−2‖ai + bj‖2

and, similarly,

‖ai‖2(1− ρ)2 ≤ n

k
‖a′i‖2 ≤ (1− ρ)−2‖ai‖2 and

|bi‖2(1− ρ)2 ≤ n

k
‖b′i‖2 ≤ (1− ρ)−2‖bi‖2

for all pairs i, j. Since ‖ai‖ = ‖bj‖ = 1 and ‖ai + bj‖ ≤ 2, we get

‖ai + bj‖2 − 4δε

3
≤ n

k
‖a′i + b′j‖2 ≤ ‖ai + bj‖2 +

4δε

3

and, similarly,

‖ai‖2 − δε

3
≤ n

k
‖a′i‖2 ≤ ‖ai‖2 +

δε

3
and

|bi‖2 − δε

3
≤ n

k
‖b′i‖2 ≤ ‖bi‖2 +

δε

3
.

Therefore,
〈ai, bj〉 − δε ≤ n

k
〈a′i, b′j〉 ≤ 〈ai, bj〉+ δε.

Since 〈ai, bj〉 ≥ δ, the proof follows. �

(2.5) Corollary. There exists an absolute constant γ > 0 with the following prop-
erty.

Let δ > 0 and ε > 0 be numbers, let N be a positive integer, and let a1, . . . , aN

and b1, . . . , bN be vectors from Rn such that the cosine of the angle between every
pair ai, bj of vectors is at least δ. Let k be a positive integer such that

k ≥ γδ−2ε−2 ln(N + 2)
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and let L ⊂ Rn be a k-dimensional subspace chosen at random with respect to the
Haar probability measure in the Grassmannian Gk(Rn). Let a′i, b

′
j be the orthogonal

projections of ai, bj onto L. Then, with probability at least 2/3, we have

(1− ε)〈a′i, b′j〉 ≤
k

n
〈ai, bj〉 ≤ (1− ε)−1〈a′i, b′j〉

for all pairs ai, bj.

The proof follows by Lemma 2.4.

Now we are ready to prove Theorem 1.3.

Proof of Theorem 1.3. We can write

f(x) =
∑

I

αI

∏
i∈I

〈ci, x〉,

where the cosine of the angle between every pair of vectors ci and cj is at least δ,
I ranges over subsets I ⊂ {1, . . . , N} of cardinality m, and αI ≥ 0. For every I,
let us consider the m×m matrix CI whose entries cij are defined by cij = 〈ci, cj〉.
Then, by Lemma 2.2, ∫

Rn

f(x) dµn =
∑

I

αI haf CI .

Let L ⊂ Rn be a k-dimensional subspace. Then the restriction fL of f onto L can
be written as

fL(x) =
∑

I

αI

∏
i∈I

〈c′i, x〉,

where c′i are the orthogonal projections of ci onto L. Therefore,∫
L

f(x) dµk =
∑

I

αI haf C ′
I ,

where the entries c′ij of C ′
I are defined by c′ij = 〈c′i, c′j〉. Since the hafnian of an

m × m matrix is a non-negative homogeneous polynomial of degree m/2 in the
entries of the matrix, the proof follows by Corollary 2.5 where we take ai = bi = ci.
�

Proof of Corollary 1.4. First, we claim that

max
x∈Sn−1

f(x) = max
x∈Sn−1

|f(x)|.

If the degree m of f is odd, this is immediate. If m is even, let us consider the
polynomial fp for some odd p. Since

f(x) =
∑

I

αI

∏
i∈I

〈ci, x〉 where αI ≥ 0,
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the polynomial fp is also represented as a non-negative linear combination of prod-
ucts of 〈ci, x〉, where the cosine of the angle between every pair ci, cj of vectors is
at least δ. It follows from the proof of Theorem 1.3 above that∫

Sn−1
fp dx > 0 for any p.

from which we conclude that the maximum value of f and the maximum absolute
value of f on the sphere Sn−1 must coincide.

Next, as in the proof of Theorem 1.3, we observe that if L ⊂ Rn is a k-dimensional
subspace such that for the orthogonal projections c′1, . . . , c′N of c1, . . . , cN onto L
we have

(1− ε)〈c′i, c′j〉 ≤
k

n
〈ci, cj〉 ≤ (1− ε)−1〈c′i, c′j〉 for all pairs i, j

Then

(1− ε)mp/2

∫
L

fp dµk ≤
(

k

n

)mp/2 ∫
Rn

fp dµn ≤ (1− ε)−mp/2

∫
L

fp dµk

for all p. In particular, if the degree m of f is even,∫
Sn−1∩L

fp dx > 0 for all p.

Therefore,
max

x∈Sn−1∩L
f(x) = max

x∈Sn−1∩L
|f(x)|.

The proof now follows from the identities

lim
p−→+∞

(∫
Sn−1

f2p(x) dx

)1/2p

= max
x∈Sn−1

|f(x)| = max
x∈Sn−1

f(x),

lim
p−→+∞

(∫
Sn−1∩L

f2p(x) dx

)1/2p

= max
x∈Sn−1∩L

|f(x)| = max
x∈Sn−1∩L

f(x),∫
Sn−1

f2p(x) dx =
Γ(n/2)

2mpΓ(n/2 + mp)

∫
Rn

f2p dµn, and∫
Sn−1∩L

f2p(x) dx =
Γ(k/2)

2mpΓ(k/2 + mp)

∫
L

f2p dµk.

�
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3. Examples and an Application

Some natural examples of sets of vectors c1, . . . , cN ∈ Rn with the property that
for every (i, j), the cosine of the angle between ci and cj is at least δ > 0 are as
follows.

(3.1) Examples.
(3.1.1) Let c1, . . . , cN ∈ Rn be vectors with positive coordinates such that the

ratio of the smallest/largest coordinate for each vector ci is at least
√

δ. It is easy
to show that the cosine of the angle between ci and cj is at least δ for each pair
(i, j).

(3.1.2) Suppose that n = k(k + 1)/2 and let us identify Rn with the space of
k×k symmetric matrices with the scalar product 〈a, b〉 = trace(ab). Let c1, . . . , cN

be positive definite matrices such that the ratio of the smallest/largest eigenvalue
for each matrix ci is at least

√
δ. It is easy to show that the cosine of the angle

between ci and cj is at least δ for each pair (i, j).

Other examples can be obtained by sampling c1, . . . , cN at random from some
biased distribution in Rn (a distribution with a non-zero expectation).

Whenever we have a polynomial

f(x) =
∑

I⊂{1,... ,N}
|I|=m

αI

∏
i∈I

〈ci, x〉 where αI ≥ 0

and vectors ci as in (3.1.1)-(3.1.2), integration (optimization) of such a polynomial
over the unit sphere Sn−1 reduces to integration (optimization) over a random lower-
dimensional subspace L. If we want to achieve a (1− ε)m factor of approximation,
the dimension k of the subspace is only logarithmic in N , so that as long as N is
bounded by a polynomial in n, we achieve an exponential reduction in the number
of variables.

Finally, we consider the problem of computing (approximating) the hafnian of a
given positive matrix. This problem is of interests in combinatorics and statistical
physics and generalizes the problem of computing the permanent, see Section 8.2
of [Mi78]. Unlike in the case of the permanent, where a polynomial time approx-
imation algorithm has been recently obtained [J+04], much less is known about
computing hafnians.

(3.2) Computing the hafnian of a positive matrix. Let C = (cij) be an
m × m positive symmetric matrix, where m = 2k is even. Recall (see Definition
2.1) that the hafnian of C is the polynomial

haf C =
∑

I

cI ,
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where the sum is taken over all perfect matchings I =
{
{i1, j1}, . . . , {ik, jk}

}
of

the set {1, . . . , m} and cI is the product of cij for {i, j} ∈ I.
Suppose that C is positive semidefinite. Then C is the Gram matrix of a set of

vectors, so cij = 〈ci, cj〉 for some vectors c1, . . . , cm ∈ Rm and such a representation
can be computed efficiently (in polynomial time). Using the Wick formula (Lemma
2.2), we can write

haf C =
∫

Rm

m∏
i=1

〈ci, x〉 dµm.

Suppose that for each pair ci, cj of vectors the cosine of the angle between ci and
cj is at least δ, which means that cij ≥ δ

√
ciicjj for every pair i, j. Then, by

Theorem 1.3, to approximate haf C within a factor of (1 − ε)m/2, we can replace
the integral by the integral over a random k-dimensional subspace L ⊂ Rm with
k = O

(
ε−2δ−2 ln(m+2)

)
. If ε and δ are fixed in advance, we get a quasi-polynomial

algorithm of mO(ln m) complexity.
One can extend the above argument as follows. We observe that haf C does not

depend at all on the diagonal entries of C, so we are free to change the diagonal
entries of C to ensure that the above conditions are satisfied. If we put sufficiently
large numbers on the diagonal of C, we can make sure that C is positive definite,
so cij = 〈ci, cj〉 for some vectors c1, . . . , cm ∈ Rm. The goal is to make the cosine
of the angle between every pair ci, cj of vectors as large as possible. Suppose that
cii = 0 for all i and let −λ be the minimum eigenvalue of C. Then C + λI is a
positive semidefinite matrix and the cosine of the angle between ci and cj is cij/λ.
Thus as long as the absolute value λ of negative eigenvalues of C is sufficiently
small, we get an efficient algorithm to approximate haf C.

4. Complex Integration

Let f, g : Rn −→ R be real n-variate homogeneous polynomials. Let us identify
Rn ⊕ Rn = Cn via x + iy = z and let νn be the Gaussian measure on Cn with the
density

π−ne−‖z‖
2
, where ‖z‖2 = ‖x‖2 + ‖y‖2 for z = x + iy.

We recall that z = x− iy is the complex conjugate of z = x + iy.
Let us define the scalar product on the space of polynomials

〈f, g〉 =
∫

Cn

f(z)g(z) dνn

(although we use the same notation for the standard scalar product on Rn, we hope
no confusion will result since the domains are drastically different). One can easily
check that the monomials

xα = xα1
1 . . . xαn

n for α = (α1, . . . , αn), where αi ≥ 0 for i = 1, . . . , n.
11



are orthogonal under the scalar product, though not orthonormal:

〈xα,xβ〉 =
{

α1! . . . αn! if α = β = (α1, . . . , αn)
0 if α 6= β.

Therefore, if
f =

∑
α∈F

aαxα and g =
∑
α∈G

bαxα

are the monomial expansions of f and g, we have

〈f, g〉 =
∑

α∈F∩G

aαbαα1! · · ·αn!.

It follows from the integral representation that the scalar product is invariant under
the action of the orthogonal group: if U is an orthogonal transformation of Rn

and polynomials f1, g1 are defined by f1(x) = f(Ux) and g1(x) = g(Ux), then
〈f1, g1〉 = 〈f, g〉.

Various problems of combinatorial counting reduce to computing the scalar prod-
ucts of two polynomials.

(4.1) Example. Let a1, . . . , aN and b be some non-negative integer n-vectors. Let
M be a positive integer. We define

f(x) =
N∏

i=1

(
M∑

k=0

xkai

)
and g(x) = xb.

Then the monomial expansion of f contains all monomials xa, where a is a lin-
ear combination of a1, . . . , aN with positive integer coefficients not exceeding M .
Furthermore, if b = (β1, . . . , βn), then 〈f, g〉 is the number of non-negative integer
solutions (k1, . . . , kN ), 0 ≤ ki ≤ M , to the equation

k1a1 + . . . + kNaN = b

times β1! . . . βn!. The number of such solutions (k1, . . . , kN ) as a function of b
is often called the vector partition function, cf. [BV97]. Computing the vector
partition function is generally as hard as counting integer points in a polytope.

(4.2) Definition. Let us fix a number 0 < δ ≤ 1 and a positive integer N . We
say that a pair of homogeneous polynomials f, g : Rn −→ R of degree m is (δ,N)-
focused if there exist N non-zero vectors a1, . . . , aN ∈ Rn and N non-zero vectors
b1, . . . , bN ∈ Rn such that

• for every pair (i, j) the cosine of the angle between ai and bj is at least δ;

• the polynomial f can be written as a non-negative linear combination

f(x) =
∑

I

αI

∏
i∈I

〈ai, x〉,
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while the polynomial g can be written as a non-negative linear combination

g(x) =
∑

I

βI

∏
j∈J

〈bj , x〉,

where the sum is taken over subsets I, J ⊂ {1, . . . , m} of cardinality |I| = |J | = m
and αI , βJ ≥ 0.

We prove that the value of the scalar product of a well-focused pair of polyno-
mials can be well-approximated from the scalar product of the restriction of the
polynomials onto a random lower-dimensional subspace.

For a k-dimensional subspace L ⊂ Rn, let us consider its complexification
LC = L ⊕ iL ⊂ Cn. Let νk be the Gaussian measure in LC with the density
π−k exp{−‖z‖2} for z ∈ LC. We pick a k-dimensional subspace L ⊂ Rn at random
with respect to the Haar probability measure on the Grassmannian Gk(Rn) and
consider the restrictions fL and gL onto L and the integral

〈fL, gL〉 =
∫

LC

f(z)g(z) dνk.

We claim that as long as k ∼ log N , the properly scaled integral over LC approxi-
mates the integral over Cn within a factor of (1− ε)m.

(4.3) Theorem. There exists an absolute constant γ > 0 with the following prop-
erty.

For every δ > 0, for any positive integer N , for any (δ,N)-focused pair of poly-
nomials f, g : Rn −→ R of degree m, for any ε > 0 and any positive integer
k ≥ γε−2δ−2 ln(N + 2), the inequality

(1− ε)m〈fL, gL〉 ≤
(

k

n

)m

〈f, g〉 ≤ (1− ε)−m〈fL, gL〉

holds with probability at least 2/3 for a random k-dimensional subspace L ⊂ Rn.

The proof is very similar to that of Theorem 1.3. The only difference is that we
need the complex version of the Wick formula.

(4.4) Definitions. Let m be a positive integer. A permutation of the set
{1, . . . , m} is a bijection σ : {1, . . . , m} −→ {1, . . . , m}.

Let C = (cij) be an m×m matrix. The permanent perC of C is defined by the
formula

perC =
∑

σ

m∏
i=1

ciσ(i),

where the sum is taken over all permutations of the set {1, . . . , m}.

Here is the complex version of the Wick formula. Since the author was unable
to locate it in the literature, a proof is given here.
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(4.5) Lemma. Let m be a positive integer and let fi, gi : Rn −→ R be linear
functions. Let C = (cij) be an m×m matrix defined by

cij =
∫

Cn

fi(z)gj(z) dνn.

Then ∫
Cn

n∏
i=1

fi(z)gi(z) dνn = per C.

If fi is defined by fi(x) = 〈ai, x〉 and gj is defined by gi(x) = 〈bj , x〉 for some
ai, bj ∈ Rn then cij = 〈ai, bj〉.

Proof. Given vectors a1, . . . , am and b1, . . . , bm, let

p(x) =
m∏

i=1

〈ai, x〉 and q(x) =
m∏

j=1

〈bj , x〉.

Our goal is to prove that

〈p, q〉 = per C where cij = 〈ai, bj〉.

First, we check the identity in the special case when a1 = . . . = am = e1, the
first basis vector, and b1 = . . . = bm = b = (β1, . . . , βn) is an arbitrary vector. In
this case, p(x) = xm

1 and q(x) = (β1x1 + . . . + βnxn)m, so we have 〈p, q〉 = βm
1 m!.

On the other hand, cij = β1 for all i and j, so perC = m!βm
1 as well.

Next, we check the identity when a1, . . . , am = a and b1, . . . , bm = b, where
a and b are arbitrary vectors. Applying scaling, if necessary, we can assume that
‖a‖ = 1. Since an orthogonal transformation of Rn does not change either 〈p, q〉 or
C, this case reduces to the previous one.

Now we consider the general case. We observe that both quantities 〈p, q〉 and
perC are multilinear and symmetric in a1, . . . , am and multilinear and symmet-
ric in b1, . . . , bm, so we obtain the general case by polarization. For variables
λ = (λ1, . . . , λm) and µ = (µ1, . . . , µm) we introduce vectors aλ = λ1a1 + . . . +
λmam and bµ = µ1b1 + . . . + µmbm. If F (a1, . . . , am; b1, . . . , bm) is any polyno-
mial multilinear and symmetric in a1, . . . , am and multilinear and symmetric in
b1, . . . , bm, then (m!)2F (a1, . . . , am; b1, . . . , bm) is equal to the coefficient of the
product λ1 · · ·λmµ1 · · ·µm in the expansion of F (aλ, . . . , aλ; bµ, . . . , bµ) as a poly-
nomial in λ1, . . . , λm, µ1, . . . , µm. Since if two such polynomials F and G agree on
all (2m)-tuples (a, . . . , a; b, . . . , b), they agree everywhere. Letting F = 〈p, q〉 and
G = perC, we complete the proof. �

Now the proof of Theorem 4.5 follows the proof of Theorem 1.3.
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