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PREFACE

These are the last words that I write in this two hundred page thesis. It took
me about four years as a Ph.D. student in the TANGRAM project to come to
this point. In addition, it took me seven more years in various test and inte-
grator roles at ASML, before I started in the TANGRAM project. My ASML ca-
reer started in November 1996, where I was one of four testers/integrators in
the software validation and verification group. The number of engineers in the
software development group approached fifty at that time, if I recall correctly. I
had the opportunity to work in various integration and testing roles for many
software releases.Integration and testing of these software releases has been
a struggle despite the use of a standard software releasing process. Moreover,
integration and testing of newly developed wafer scanners, including software
and hardware, has been an even bigger struggle. A more structured integration
and testing method was required, such that the time-to-market and quality re-
quirements can still be met in the future. Developing such a method within the
context of an organization like ASML is not easy. This was one of the reasons
for ASML and the Embedded Systems Institute to start the TANGRAM research
project in 2002.

My involvement in the TANGRAM project started in the beginning of 2003.
TANGRAM was a welcome change of environment compared with the high pres-
sure TWINSCAN reliability improvement project that I was involved in since
2001. In the beginning of 2003, I asked Koos Rooda (TU/e) and Tammo van
den Berg (ASML) what the possibilities were to participate in the TANGRAM

project with the goal to pursue a Ph.D. degree. I followed some courses to re-
fresh my knowledge and eventually everybody agreed to proceed with this plan.
The support of Tammo van den Berg, the many discussions and guidance of
Koos Rooda, the review effort and the help with the mathematics of Asia van
de Mortel-Fronczak and the critical questions of Tom Brugman contributed in
many ways to this thesis. Therefore, I would like to show my deepest gratitude
to Tammo, Koos, Asia and Tom for this opportunity, the support and all help in
these years. I think that my involvement in the TANGRAM project was beneficial
for all of us.

The progress made in our TANGRAM sub-project was only possible, because
of the cooperation with Roel Boumen. It was clear from the beginning that we
both would write our own thesis, while we both had the advantage of a common
way of reasoning about integration and testing. Thank you, Roel, for your sharp
mind. Your focus and dedication kept me going. In addition, thank you for the
fun while working and traveling with you!

Many people were involved in the TANGRAM project. Some only in the begin-
ning, some only in the end. Thank you all for your cooperation. Special thanks
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are reserved for Niels Braspenning for the last 6 months where we both were
writing our thesis and the fun we had in Xi’An and New York. Thank you,
Jan, Jurryt, Luud, Michiel, René, Will and the other TANGRAM members for
your cooperation. Many thanks and gratitude go out to the students that worked
with us. Thanks to Rolf Theunissen for developing the first version of the ‘flexi-
ble’ simulator. Thanks Pieter Verduijn, Marcel van der Heijden and Martijn van
Campenhout for developing the publish-subscribe based LONETTE tool-set and
many thanks to Hans Ekelmans for all the work on test model partitioning.
I also would like to thank the members of the committee, Jos Baeten, Ed

Brinksma, Tom Brugman,Wan Fokkink and Arjan van Gemund, for the helpful
suggestions and the questions raised. In addition, I would like to thank Jan
Tretmans for reviewing this thesis and several papers. Thanks also to the many
persons at ASML that were involved in any way in my research. Thanks to the
members of the Systems Engineering group of the TU/e for their support and
the friendly and cooperative environment.
Last but not least, this work would not have been possible without the constant

support, love and interest of my family and friends. Especially, Robin andWilma
for proof reading my thesis.
Finally, I cannot offer more than my very special thanks and gratitude to my

wife Nellie and our two sons, Thijs and Tom, for their love and support.

Ivo de Jong
Oosterhout, January 2008.
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SUMMARY

Integration and test strategies for complex manufacturing machines

Complex manufacturing machines, like ASML wafer scanners, consist of thou-
sands of components like electronic boards, software, mechanical parts and op-
tics. These components of multiple disciplines are assembled or integrated into
modules. The modules are integrated into sub-systems forming the system, ac-
cording to an integration plan. Components as well as modules, sub-systems,
and systems, can be tested, diagnosed and fixed, according to a test-diagnose-
fix plan. An increase in the number of components results in an increase of
the number of tasks in these plans. Moreover, the effort required to obtain a
sequence that describes in which order the tasks should be executed also in-
creases. The duration and the cost of a sequence depends on the quality of the
system. In this project we introduce a method to analyze the duration and the
cost of sequences of integration and test-diagnose-fix tasks. The method uses
test-diagnose-fix models to analyze the performance of sequences. The basic
elements in such a model are: a) test, diagnose and fix tasks with their costs
and durations, b) fault states, c) the coverage of test tasks on fault states, d)
failure probabilities of fault states. These elements can be obtained for compo-
nents, modules or sub-systems of multiple disciplines. Three case studies have
been performed using this method. The outcome of the analysis indicates that
choosing a different test sequence can reduce the test duration by 30% to 70%.
In addition, three techniques have been developed to improve integration and
test-diagnose-fix sequences:

• To reduce the execution time of test-diagnose-fix sequences an algorithm
has been developed to determine a new test task with an optimal coverage
w.r.t. the fault states. The algorithm selects the new test task based on the
maximum information gain. A test sequence, including the new test case,
improves the test duration of the test-diagnose-fix task, because faults can
be detected earlier.

• To reduce the execution time of test-diagnose-fix sequences an adapted hy-
pergraph partitioning algorithm has been developed. The algorithm par-
titions a test-diagnose-fix task into smaller tasks which can be executed in
parallel. The result of a case study is a reduction of the test duration by
30% with a concomitant increase of 30% in the test cost.

• The impact of the choice of the system architecture on the execution time
and planning effort of integration and test-diagnose-fix sequences is in-
vestigated.
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SAMENVATT ING

Complexe fabricagemachines, zoals de waferscanner ontwikkeld door ASML,
bestaan uit duizenden componenten zoals electronische borden, mechanische
onderdelen, software en optica. Deze componenten worden geassembleerd, c.q.
geïntegreerd, in modules. Modules worden volgens een integratieplan geïnte-
greerd tot sub-systemen, die samen het systeem vormen. Componenten, mod-
ules, sub-systemen en het systeem kunnen worden getest, gediagnosticeerd en
problemen kunnen worden opgelost, volgens een test-diagnose-fix-plan. Een toe-
name van het aantal componenten resulteert in een toename van het aantal
taken in dit plan. Daarnaast neemt ook de inspanning toe die nodig is om een
integratievolgorde met daarin test-diagnose-fix-taken te verkrijgen. In dit project
wordt een methode geïntroduceerd om de tijdsduur en kosten van integratie-
en test-diagnose-fix-taken te analyseren. Deze methode maakt gebruik van een
test-diagnose-fix-model om de prestatie te analyseren van een integratie- en test-
diagnose-fix-volgorde. De elementen van dit model zijn a) test-, diagnose- en
fixtaken met de bijbehorende kosten en tijdsduur, b) mogelijke fouten, c) de
dekking van de testtaken ten aanzien van demogelijke fouten, d) de kans dat een
mogelijke fout aanwezig is. Deze elementen kunnen worden bepaald voor com-
ponenten, modules en sub-systemen uit meerdere disciplines. Drie casussen
zijn uitgevoerd, gebruikmakend van deze methode. Het resultaat van de analyse
van de test-diagnose-fix-volgorde is dat een andere volgorde kan leiden tot een
reductie van de test-diagnose-fix-duur van 30% tot 70%. Daarnaast zijn in dit
project drie technieken ontwikkeld die integratie- en test-diagnose-fix-volgorden
verbeteren:

• Om de tijdsduur van een test-diagnose-fix-volgorde te verkorten is een al-
goritme ontwikkeld dat een nieuwe testtaak welke een optimale dekking
heeft kan bepalen. Dit algoritme selecteert deze nieuwe testtaak gebaseerd
op de toename in informatie van deze taak.

• Om de tijdsduur van een test-diagnose-fix-volgorde te verkorten is een
aangepast hyper-graph partitioneringsalgoritme ontwikkeld. Dit algoritme
verdeelt de taken van een test-diagnose-fix-taak over meerdere test-,
diagnose- en fixtaken die parallel uitgevoerd kunnen worden. Het re-
sultaat van een casus met deze methode is een verkorting van de tijds-
duur van een test-diagnose-fix-volgorde van 30% met een toename van de
kosten van 30%.

• De invloed van de keuze van de systeemarchitectuur op de duur en plan-
ningsinspanning van een integratie- en test-diagnose-fix-volgorde is on-
derzocht.
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1INTRODUCTION

Research performed by Microsoft and other parties [Boehm, 1981; Engel et al.,
2004] report that during system development 30-50% of the effort is spent on
integrating and testing of their systems. These numbers match with the dura-
tion spent on integrating and testing ASML wafer scanners [Brugman, 2003].
Wafer scanners are used to manufacture integrated circuits (ICs). Nowadays,
ICs consist of millions of transistors and this number of transistors is growing.
Since 1970, the number of transistors on an IC doubles every 18 months ac-
cording to Moore’s Law [Moore, 1965]. Moore’s Law, in a way, dictates the semi-
conductor industry. Wafer scanners are manufacturing machines that perform
the most critical step in the development process of ICs. Because of this, these
wafer scanners enable Moore’s Law.

Doubling the number of transistors in an IC every 18 months requires a con-
siderable reduction in IC size in the same time period. This reduction corre-
sponds with a, so called, ‘shrinking node’. Completely new manufacturing tech-
nology could be required for every ‘shrinking node’. For ASML, this means that
new types of wafer scanners need to be developed, integrated and tested at a
constant pace.

The wafer scanners
provided by ASML
enable IC
manufacturers to
follow Moore’s Law.

The wafer scanners provided by ASML enable IC manufacturers to follow
Moore’s Law. A new type of wafer scanner enables the IC manufacturer to be
ahead of the competition. Delivering a new type of wafer scanner as early as pos-
sible to customers is therefore important for ASML. One could say that Moore’s
Law results in very high time-to-market demands for companies like ASML.

Shrinking the IC patterns, such that the number of transistors can be dou-
bled, requires that new technology needs to be introduced into IC factories.
New wafer scanners or even new wafer scanner platforms are developed for
this purpose. These new wafer scanner types become more complex with each
shrinking node. This, in return, results in a growing number of components
and a growing complexity of the individual components. The capabilities of new
wafer scanners increase on a par with the list price of these systems. Figure 1
depicts the increase in the relative list price as function of time. The wavelength,
depicted as I-Line, KrF, ArF, ArFI and EUV? along the time-axis, indicates the
type of light source that is used. Each new light source emits light with a shorter
wavelength resulting in better imaging capabilities i. e. smaller transistor fea-
tures. The aperture, in the range 0.4 to 1.35, also has an impact on the imaging
capability of a wafer scanner, i. e. the size of the transistor features. Higher aper-
tures lead to smaller lines. The platform, described as Stepper, Step & Scan and
Dual Stage, indicates when a new wafer scanner platform is introduced to en-
able future developments. The wafer size, 150mm, 200mm or 300mm, is the

1
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Figure 1. The relative list price versus the year of shipment Source: ASML at the Back
of America Annual Investment Conference, San Francisco, Sept 18th, 2007

increasing size of the silicon wafer that enables the imaging of more ICs in a
single production run. Each new type of light source, aperture (lens), platform

Each new type of
light source,
aperture (lens),
platform and wafer
size results in an
increase of the
number and the
complexity of the
components in a
wafer scanner.

and wafer size results in an increase of the number and the complexity of the
components in a wafer scanner.

Adding more components, made of multiple disciplines, to the design of a
wafer scanner also has an impact on integration and testing, because these com-
ponents need to be tested, integrated and the integrated components also need
to be tested. Adding a single component results in an additional integration
task. Moreover, additional, so called test-diagnose-fix tasks1, are required to qual-
ify the component. The quality of the component and how it can be integrated
into the complete system dictates whether adding this new component leads to
a time-to-market increase. A lot of planning and re-planning effort is spent in
preventing additional components from becoming critical in the sequence of
integration and test tasks.

The planning effort increases when the number of components and the com-
plexity of the components in a system increases. Testing, consisting of test ex-
ecution, diagnosing problems and developing solutions, is an inherently sto-
chastic process, because it is unknown beforehand what faults are present in
the system. Therefore, a set of test cases needs to be selected that finds these
possible faults. Moreover, the actual duration varies depending on the test strat-
egy used. The variability in combination with the large number of components

1A test-diagnose-fix task is the testing task where test cases are executed, failed test cases are
diagnosed and diagnosed problems are fixed.
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and their multi-disciplinary nature initiated our research into integration and test
strategies in the TANGRAM project.
Model-based techniques for integration and testing are the focus of the TAN-

GRAM research project. The TANGRAM project has been split up into five sub-
projects. The work described in this thesis has been performed in the sub-
project concerning integration and test strategies. The resulting integration and

The integration and
test planning
method is
explained in detail
in this thesis,
including the
models and
algorithms used.

test planning method utilizes these integration and test strategies. This plan-
ning method is explained in detail in this thesis, including the models and algo-
rithms used. The remainder of this introduction describes the integration and
testing background at ASML. Then the context of the TANGRAM project is intro-
duced, followed by the research questions and a thesis outline. The remainder
of this thesis contains four chapters, Chapter 2 to Chapter 5, each describing
a detailed step of the integration and test planning method. Conclusions are
drawn and recommendations are made in Chapter 6.

1.1 ASML

ASML is the industrial partner in the TANGRAM project. This means that ASML
is the primary source of case studies for the research performed by the academic
project partners. The project partners use the industrial case studies to verify
and validate existing and new theories.

Figure 2. Moore’s Law Means More Performance. Processing power, measured in mil-
lions of instructions per second (MIPS), has steadily risen because of in-
creased transistor counts
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ASML is a world leading manufacturer of advanced technology systems for
the semiconductor industry. The company offers an integrated portfolio for
manufacturing complex integrated circuits. ASML designs, develops, integrates,
markets and services these advanced systems. Global semiconductor manufac-
turers use ASML wafer scanners to manufacture ICs for computers, mobile
phones, PDA’s, MP3 players and many other devices. Typical types of chips in-
clude microprocessors andmemory chips. The basic elements of an IC are tran-
sistors. Many transistors can be used to form complex ICs, like Intel™ Core 2
Quad microprocessors or SAMSUNG™ 64Gigabit NAND chips announced in
October 2007. More transistors in general meansmore processor power or more
available memory. Figure 2 illustrates Moore’s Law by depicting the number of
transistors for Intel™ processors released in the time frame 1970 - 2006.

Figure 3. The ASML XTIII:1900i wafer scanner

Nowadays, IC manufacturers are able to place billions of transistors on an
IC, because of efforts to continuously shrink the transistor size over the last
35 years. ICs currently manufactured using the ASML TWINSCAN™ XT:1900i
wafer scanner, depicted in Figure 3, contain structures with a linewidth of 45nm
or less. Note that the linewidth of the Intel 4004 processor, manufactured 35
years ago, was 10 µm.
ICs are manufactured on a silicon wafer. The structure of the transistors is

‘imaged’ on this wafer in a similar fashion to the way that light reaches the
‘negative’ in a photo camera. A transistor is composed out of five to thirty or
more of these ‘images’. The ‘imaging’ process needs to be repeated for each of
the 15-30 layers that are placed on top of each other to form an IC. Between the
imaging steps, other steps are performed, like baking, etching and coating. A
simple overview of the IC manufacturing process of a single layer is depicted
in Figure 4. ASML wafer scanners are used for Step 5 in the IC manufacturing

ASML wafer
scanners are used
for Step 5 in the
chip manufacturing
process: the
exposure of the
structure on the
silicon wafer.

process: the exposure of the structure on the silicon wafer. The image of the
structure that needs to be placed on the wafer, the reticle or mask, is placed
in the wafer scanner. Then, a wafer is loaded into the wafer scanner and laser
emitted light is sent through a series of lenses and through the reticle and again
through a series of lenses for shrinking purposes. The resulting image reaches
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Figure 4. The IC manufacturing process

the wafer surface that contains a photo-resistant coating. The coating reacts with
the light that reaches the wafer. The coating does not react at the places where
the light does not pass the lines placed on the reticle. Multiple images are ex-
posed next to each other, until the wafer is fully exposed. Then the wafer is un-
loaded from the wafer scanner. The photo-resistant coating is developed in the
next processing step (not in the wafer scanner). Additional steps, such as mater-
ial deposition or edging, can be performed on the wafer by other manufacturing
machines. A new layer of photo-resistant coating starts the next imaging cycle

The three most
important
performance
characteristics of a
wafer scanner are:
throughput, overlay
and imaging.

using another reticle. An example reticle, which contains the design of the IC,
and a schematic overview of the imaging process in the wafer scanner are given
in Figure 5.

Reticle

Lens

Reticle

Wafer

Design

Figure 5. From design onto reticle and a reticle that masks the light to pattern the image
on the wafer
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The three most important performance characteristics of a wafer scanner
are: throughput, overlay and imaging. Throughput determines how fast the
wafer scanner can process wafers. Current throughput requirements exceed 150
wafers per hour, depending on the system type. The second important charac-
teristic is overlay. Overlay is the measure of how well two layers are imaged on
top of each other in two subsequent process steps: the placement of subsequent
images forms the three dimensional structure of a transistor. A misplaced im-
age can result in a non-functional IC. The overlay capability of a wafer scanner
also determines how good two images can be placed on top of each other and
therefore influences the number of transistors per cm2. The third important
characteristic of a wafer scanner is the imaging capability. The imaging capa-
bility is the minimal line width that can be imaged using the wafer scanner. A
transistor built up using smaller lines results in more transistors per cm2.

1.1.1 Integration and testing of wafer scanners

The integration and testing activities of wafer scanners can be found through-
out the research, development, manufacturing, customer installation and oper-
ational phases of wafer scanners. During wafer production, at the customer site,
periodic maintenance is performed to test and calibrate (fix) the performance of
the wafer scanner. The duration of the assembly and testing phase when man-
ufacturing and installing new wafer scanners at customer sites is measured in
days to weeks. The hardware of the complete system is assembled in this pe-
riod and then tested and calibrated until the nanometer performance is met.
The manufacturing phase is the most expensive period for ASML, because all
hardware is present, while the system is not signed off by the customer. Sub-
systems are partly manufactured and tested at ASML or tested and delivered by
suppliers. The focus of development testing is on design qualification of new
hardware, electronics, software and optics. These test-diagnose-fix tasks are per-
formed on testrigs, a part of a wafer scanner, and on prototype systems. During
the research phase, new sensors and stages are studied and the feasibility of
new concepts is tested. These studies are performed together with partners and
ASML subsidiaries worldwide. Often, special test equipment is developed for
this purpose.

Many integration
and testing
activities at ASML
are on the critical
path.

Many integration and testing activities at ASML are on the critical path to
the delivery of new wafer scanners to customers. Nowadays, several new types
of wafer scanners are developed, integrated and tested concurrently. The pres-
sure on integration and testing of these new wafer scanners increases. Integra-
tion tasks and test-diagnose-fix tasks are mixed such that the minimal time-
to-market is obtained. This approach has resulted in impressive time-to-market
achievements in the past. The increase in the number of components and their
complexity, together with the parallel development of new types of wafer scan-
ners, requires considerable improvements in the current integration and testing
way of working.

Maturity models (CMMi)[SEI, 2007], (TMMi)[E. van Veenendaal, 2006] and
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test process improvement (TPI)[Koomen and Pol, 1999] are natural ways to im-
prove the quality of the system and the integration and test process. Next to
these process oriented methods, product oriented formal methods are available
or should be investigated. Theories, often state-of-the-art at research institutes,
solve specific integration and testing problems for specific cases. A combination

A combination of
the continuous
process
improvement effort
and state-of-the-art
theories and
tooling is required
for short term
improvement and
long term
acceleration of the
integration and test
process.

of the continuous process improvement effort and state-of-the-art theories and
tooling is required for short term improvement and long term acceleration of
the integration and test process. This is one of the reasons why the TANGRAM

project was started by ASML together with the Embedded Systems Institute
(ESI). The next section introduces the goals of the TANGRAM project and the
partners involved.

1.2 THE TANGRAM RESEARCH PROJECT

The goal of the TANGRAM research project is to reduce the duration of the in-
tegration and test phase of large complex embedded systems, like the ASML
wafer scanner. The cost and product quality should not be affected. TANGRAM

has been initiated by the Embedded Systems Institute and ASML . The increase
in the number of components, number of new system types to be developed
and delivered in parallel, and the complexity of the components resulted in the
need for a large scale research project in the area of integration and testing. In-
tegration and testing these complex systems always remains necessary, because
it is unknown beforehand if the components are of perfect quality.

In Figure 6 there are two test durations t1 and t2 depicted that can be used
to illustrate the goal of the TANGRAM project. The integration and testing task
starts in parallel with the development task and progresses until the shipment
date of the product. Development is finished before the integration and testing
task is finished. The time between the end of the development task and the
shipment date is marked by t1. Fixing problems found during testing is consid-
ered part of testing. The duration of the testing task after product shipment is
marked by t2. The goal of the TANGRAM project is to reduce both t1 and t2. Note
that the actual shipment date is not relevant for the reduction of t1 and t2.

The work in the
TANGRAM project
was divided into
four, so-called,
‘Lines of attention’.
Line of attention 1
(LoA1) focused on
integration and test
strategies.

The work in the TANGRAM project was divided into four so-called ‘Lines of
attention’ or LoAs. Line of attention 1 (LoA1) focused on integration and test
strategies. Line of attention 2 (LoA2) focused on integration and test infrastruc-
ture. Line of attention 3 (LoA3) focused on model-based testing. Line of atten-
tion 4 (LoA4) focused on model-based diagnosis. Along the way, a fifth line of
attention was defined that focused on early model-based integration and test-
ing. These five lines of attention focused on the five most important integration
and testing problems of ASML. This thesis describes a part of the research per-
formed on integration and test strategies in LoA1. The other part focused on in-
tegration and test sequencing. The partners that cooperated in LoA1 are ASML
and Eindhoven University of Technology, Department of Mechanical Engineer-
ing, Systems Engineering Group.

The expertise in the Systems Engineering section of the Eindhoven Univer-



8 INTRODUCT ION

Time

S
h

ip
m

en
t

d
at

e

Integration and testing

t1 t2

Development

Figure 6. The goal of the TANGRAM project is to reduce both t1 and t2, the integration
and test activities between end of development and product shipment and the
integration and test activities after shipment.

sity of Technology is in the analysis of manufacturing machines on the one
hand and on the other hand the supervisory control of embedded systems.
The techniques, tools and methods developed for the analysis of manufacturing
machines have been used for the analysis of the integration and test process.
The initial LoA1 framework that described integration and testing as a four step
process with a modeling step, a sequencing step, a scheduling step and an exe-
cution step was based on a scheduling framework seen in [Pinedo, 2001]. This
framework evolved during the course of the project in the integration and test
planning method described in this thesis. An alternative approach was followed
in LoA1 relative to the other LoAs. This approach was different for two reasons.
Firstly, the initial goal was rather broad and secondly the methods that were
to be used to solve the integration and test strategy problem were not known.
In addition, these methods should be applicable in a broad problem area and
for components of multiple disciplines as opposed to the methods in the other
LoAs, which are often applicable for a single problem area for components of
one or a few disciplines. The initial objectives for line of attention 1 were trans-
lated into three research questions explained in the next section.

1.3 RESEARCH QUEST IONS

The TANGRAM project plan [Brugman and Beenker, 2003] summarizes the
goals for LoA1. Parts of the original project plan are used here to illustrate the
original goals: In the current integration and test strategy the main test problems
occur when the various disciplines integrate their results into the final system. Inte-
gration is in practice not always driven by the functional dependencies and the risks
that changes are supposed to carry with them. Very often development resources, de-
livery schedules, a predefined timetable of machine and/or software integration/test
slots, and a number of other constraints determine the integration and test order. Due
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to this, currently various system aspects are not adequately tested before first product
release. The objectives for line of attention 1 are:

• Develop an integral multidisciplinary test strategy such that:

– Testable system equals sum of testable sub-systems, etc.

– Components can be tested and diagnosed in sub-system environment.

– Minimum granularity of testable component equals replace spare parts

– Sub-systems can be early tested in isolation and in joined system and sim-
ulation context, the same sub-system can be tested in its environment.

• Allow for and define a growth path from current system architecture to a testable
system architecture

• Trade-off analysis for testability requirements (e. g. on cost and performance)
based on risk analysis.

The initial objectives from the TANGRAM project plan resulted in a rough
direction that Line of Attention 1 should follow, but not a clear set of research
questions. The first period in the project was spent on investigating integration
and test strategies within ASML and at different organizations. The company
visits are described in Section 2.1. Investigating integration and test plans in
different organizations and mapping these results to the ASML case led to the
following research questions. Research question 1 relates to the difference in
integration and test approach observed in various types of organizations.

Research question 1

Which organizational factors have an impact on the integration and test plan for
systems developed by that organization?

The second research question relates to the form and performance of integra-
tion and test plans.

Research question 2

What are the basic elements of integration and test plans? What are the key per-
formance indicators of integration and test plans? How can these key performance
indicators be measured and used to compare different integration and test plans with
each other?

Research question 3 relates to improvement techniques for integration and
test plans. Developing a single integration and test plan is step one, comparing
this plan with a number of plans is the second step. Choosing the best plan and
improving this plan is the third step.

Research question 3

Which improvement techniques for integration and test plans are beneficial for com-
plex manufacturing machines?
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1.4 THE OUTL INE OF THIS THES IS

System architecture

1. Modeling

2. Sequencing

3. Planning

4. Improvement

Stop

Figure 7. Overview of the integration and test planning method

The structure of the integration and test planning method has been used
to organize this thesis. The integration and test planning method consists of

The integration and
test planning
method consists of
four steps:
1) modeling,
2) sequencing,
3) planning and
4) improvement.

four steps: 1) modeling, 2) sequencing, 3) planning and 4) improvement, as
shown in Figure 7. The dashed lines are the feedback loops originating from
the improvement step. A summarized integration and test planning method
can be found in [Tretmans, 2007].
Chapter 2 focuses on the modeling step in the integration and test planning

method. The chapter introduces the models, that are used in the other chap-
ters: system test models and system integration models. System test models can be
used by test case developers, reviewers, test planners and test executors, since
the model represents all information used for test-diagnose-fix tasks in a struc-
tured form. Integration models describe the elements required for integration
sequencing and planning. The integration models are relevant for integration
and test planners.
Chapter 3 describes how an integration and test sequence is obtained using

two strategies, an integration strategy and a test positioning strategy. This chapter
corresponds with the sequencing step depicted in Figure 7. A few strategies are
discussed including advantages and disadvantages of these strategies.
Chapter 4 describes the planning step of Figure 7. Planning, analysis and

improvement for single test-diagnose-fix tasks is described in this chapter. Plan-
ners of test-diagnose-fix tasks can use these techniques to create and analyze
test-diagnose-fix plans. The effect of a different test strategy is evaluated, such
that the best test-diagnose-fix sequence can be selected.
Chapter 5 describes the improvement step of the integration and test planning

method. Improvement techniques are defined, that improve the integration and
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test sequence as a whole. Integration and test planners can analyze the effect of
these improvement techniques on the duration, cost and remaining risk2 of the
integration and test plan, such that the best plan can be selected.
The conclusions of this thesis are presented in Chapter 6.

Every chapter starts
with a picture
describing the
details of the step
in the method,
which is explained
in that chapter.

Each chapter starts with a picture describing the details of the step in the
method, which is explained in that chapter. The steps, which are explained in
each chapter are depicted as ovals, while the inputs and outputs are depicted as
rectangles. The steps, inputs and outputs are uniquely numbered.

2The definition of risk is based on [Kaplan, August 1997] and used for risk-based testing in [Am-
land, 2000; Pfleeger, 2000]. Risk is calculated by multiplying the probability (or likelihood)
that a failure occurs with the impact (or consequence) of that failure. The failure probability
and impact are introduced in detail in Section 2.3.2.
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The first step in the integration and test planning method is the modeling step.
The elements of the modeling step in the method are depicted in Figure 8. The
system architecture is modeled such that it can be used for integration and test
planning. The inputs of this step are the system architecture (0.A) and objec-
tives and constraints (0.B) of the integration and test sequence. First, the system
integration model, a model of the system architecture, is made in step (1.1). Based
on this model, system test models, containing fault states, test cases and their
properties are defined in Step (1.2). Section 2.3 describes these models, their
elements and the elements that are used to compose integration and test se-
quences. These elements are a result of the investigation into integration and
test sequences at different organizations. The next section describes the influ-
ence of different business drivers on the integration and test sequences that are
used by the visited organizations.

1.2 Derive test cases, fault states
coverage and properties

1.1 Model system architecture

1.A System integration model

1.D Testcases, fault states, 
coverage and properties

0.A System architecture0.B Objectives and constraints

2.1 Make integration
sequence

2.2 Make integration 
and test sequence

Figure 8. Overview of the modeling step

13
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2.1 AN OVERV IEW OF INTEGRAT ION AND TEST PLANS IN ORGANI -
ZAT IONS WITH DIFFERENT BUS INESS DR IVERS

Before the system integration model and the system test model are introduced
an overview of different integration and test plans in different organizations is
given. This overview shows that organizations with different business drivers
handle integration and testing differently. The elements of an integration and
test sequence are equal for these organizations. This section is based on [I. de
Jong et al., 2007a] and [Tretmans, 2007].

Planning an integration and test task is often done by experts in the organiza-
tions visited. These experts have a thorough knowledge of the system, integra-
tion and testing and the business drivers of an organization. An integration and
test sequence developed for an airplane is different from the integration and test
sequence for a wafer scanner. Safety (quality) is most important for an airplane,
while time-to-market is most important for a wafer scanner. These important
aspects are reflected in the integration and test sequence. A number of com-
panies have been visited in order to investigate the influence of the business
drivers on the resulting integration and test sequences. An integration and test

An integration and
test sequence
describes the tasks
that have to be
performed to
integrate individual
components into a
system. Test tasks
are performed
between the
integration tasks.

sequence describes the tasks that have to be performed to integrate individual
components into a system. Test tasks are performed between these integration
tasks. Note that integration is sometimes called assembly. Integration and test-
ing is performed in early development phases and also in a manufacturing en-
vironment. Business drivers describe what are the most important drivers for
an organization. Business drivers are defined in terms of time, cost or quality.
The hypothesis is that the order in which the importance of business drivers is
perceived in an organization determines the way of working and therefore the
integration and test sequence.

The goal of the investigation into different integration and test plans at dif-
ferent organizations is to determine what are the common elements of such
an integration and test sequence. In addition, the differences are investigated.
A number of aspects of an organization in addition to the business drivers are
recorded, for example: company size, product volume, number of components
in the system, technology used and the sub-contractor model. Note that much
of the data is obtained directly from the organization or from publicly available
resources.

The structure of this section is as follows. First, the business drivers and or-
ganizational aspects, which we consider to be of influence, are discussed. Then,
the different organizations, business drivers, organizational aspects and inte-
gration and test plans are discussed in detail followed by a summary and con-
clusions.
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2.1.1 Business drivers

Business drivers are the requirements that describe the goal of an organization.
The business drivers Time, cost and product quality are known from manufac-
turing management [Laugen et al., 2005; Pawar et al., 1994]. We will use these
business drivers to characterize the investigated organizations.

We use the
business drivers
Time, cost and
product quality to
characterize the
investigated
organizations.

An organization with time as the key business driver is focused on delivering
products as quickly as possible to the market. An organization with cost as key
business driver is focused on delivering products as cheaply as possible to the
market. Finally, an organization with product quality as key business driver is
focused on delivering products to the market that satisfy the customer as much
as possible. The order of importance determines the way of working in the orga-
nization. For example, an organization with T-C-Q (Time first, cost second and
quality least important) as business drivers delivers products of different quality
and production cost than an organization operating with T-Q-C as the order of
its business drivers. Organizations of these types are described in more detail
in the next sections. Both deliver products as quickly as possible to the market.
The first organization develops, manufactures and services these products as
cheaply as possible. Product quality is least important. The focus of the second
organization is on product quality (after fast delivery). Cost is least important.

2.1.2 Organizational aspects

The integration and test sequences of very different organizations were investi-
gated. Sometimes a specific department was visited. The observed integration
and test sequence was probably only type of sequence in that organization, while
the business drivers are identified for the entire organization. Therefore, addi-
tional aspects of the organization are recorded to determine the possible effect
of these aspects. The organizational aspects recorded are:

1. The number of products shipped per year and number of end users; both
influence the required product quality and maintenance cost. A higher
product quality is required when a high number of products is shipped,
otherwise the repair cost would be too high.

2. More complex products result in more complex integration and test se-
quences. Complexity can be the result of many components, resulting
in many integrations and possible test-diagnose-fix tasks. Complexity can
also be the result of the use of complex technology resulting in complex
test cases.

3. Using many different sub-contractors for the development of components
could result in many additional test-diagnose-fix tasks to test the deliv-
ered components. Next to that, political aspects could result in additional
test-diagnose-fix tasks. For instance, sub-contractor test cases could be
repeated to accept the delivered products, resulting in additional test-
diagnose-fix tasks.
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2.1.3 Investigated organizations

A number of different organizations have been visited to investigate the influ-
ence of business drivers on integration and test plans. A summary is given for
each of the investigated organizations. The order of business drivers indicates
the relative importance of the business driver, i. e. T-Q-C means that time-to-
market is most important followed by quality and least important is cost. T-Q/C
means that quality and cost are equally important. The order of the business
drivers is determined by the authors after the visit or investigation. Next to that,
relevant information like company size, product volume, number of compo-
nents, technology used and the number of sub-contractors was recorded.

Semiconductor (ASML and others):

Company size Medium, 6000 employees

Product volume 200-300 systems/year

Business drivers T-Q-C

Number of components average – very large

Technology used New technology

Sub-contractors Many, cooperating

Table 1. Semiconductor equipment manufacturer characteristics

A typical semiconductor equipment integration and test sequence (Figure 9)
consists of development tasks (dev) executed at suppliers, followed by a supplier
test-diagnose-fix task and a system assembly task (asm). The assembly task of
each system is followed by two test-diagnose-fix tasks: the calibration test tdfC
1 and acceptance test tdfA 2. Chuma [Chuma, 2006] investigated the duration
of the assembly phase (asm) and the durations of tdfC and tdfA for lithographic
equipment manufactured at ASML, Canon and Nikon3. The average duration
of the assembly phase is 9.8 days while the average duration of the calibration
and acceptance test are respectively 34.5 and 32.5 days in 2005 according to the
report.
ASML develops semiconductor equipment using platforms. The integration

and test sequence of the first wafer scanner of a new platform is developed
specifically for this system (see product development later). Subsequent system
types in a new platform are integrated and tested based on a previous system
type. First, a previous system type is manufactured as in Figure 9. New sub-
systems are developed. The old sub-systems are replaced by the new versions.

1A calibration test-diagnose-fix task is a task where test cases and calibration tasks are inter-
changed. Test cases are executed on the system to determine the performance of the system.
If the system is ‘out of specification’, calibrations are performed and testing continues.

2An acceptance test is the test executed to determine if the customer accepts the system.
3ASML, Canon and Nikon are the main suppliers of lithographic equipment to the semicon-
ductor market.
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asm tdf C tdf A

Figure 9. Typical semiconductor manufacturing integration and test plan

Figure 10 depicts this integration and test plan. The previous system type is as-
sembled after the first assembly task. Modules, like M1, are disassembled (das)
and a newly developed module M′

1 is assembled. Module M2 is replaced simi-
larly byM′

2 in Figure 10.

dev

devM
′

1
devM

′

2

tdf S

dev

dev

tdf

tdf

tdf

tdf tdf

tdf C tdf Aasm asm asmdas das

M1 M2

tdf

Figure 10. Semiconductor development integration and test plan

A typical aspect in this time-to-market driven organization is that the newly
developed sub-systems M′

1 and M′
2 are not tested thoroughly. Integration

progress is more important than testing the sub-systems. Remaining risk in
the system is covered in higher level (later) test-diagnose-fix tasks. The final ac-
ceptance test is a combination of a thorough, system level, design qualification
tdfS and the normal final calibration and acceptance test-diagnose-fix tasks tdfC
and tdfA. The test cases in the final test-diagnose-fix tasks tdfS, tdfC, and tdfA are
often mixed such that a faster test sequence is obtained.

Automotive:

A typical assembly line (Figure 11) for cars consists of a number of assembly
tasks (asm) followed by a short final acceptance test-diagnose-fix task tdfA. Sup-
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Company size large, 30000 employees

Product volume 100000 systems/year

Business drivers C-T/Q

Number of components Medium

Technology used Proven technology

Sub-contractors Many, cooperating

Table 2. Automotive manufacturer characteristics

pliers develop (manufacture) and test the parts that are assembled into a car.
Testing is standardized and focused on quality (for instance measurement tech-
niques for electrical systems are described in IEC 61508 Part 7 [International
Electrotechnical Commission, 2005]).

dev

tdf

asm tdf Aasm asm asm asm asm asm asm

tdf tdf tdf tdf tdf tdf tdf

dev dev dev dev dev dev dev

Figure 11. A typical ’assembly line’ for cars

Communication:

Company size large, 30000 employees
Product volume 120000000 systems/year
Business drivers Q-C/T
Number of components Small
Technology used Proven technology and new software
Sub-contractor Few/none

Table 3. Communication equipment manufacturer characteristics

A mobile phone communicates with other mobile phones via the
(GSM/GPRS/3G) network. The communication protocol between a mobile
phone and the infrastructure is standardized [ETSI, 1999-2007]. A single test-
diagnose-fix task of a few weeks qualifies if a mobile phone operates according
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to the standard. The visited organization developed such a standard test set and
this test set is used by different mobile phone developers to test newly developed
mobile phones. This test-diagnose-fix task is repeated if problems are found and
fixed until the phone operates according to the standard. A generic representa-
tion of this retest task with test-diagnose-fix tasks is depicted in Figure 12 in
the form of a recurring test-diagnose-fix task and development (fix) task. Note
that 120000000 mobile phones have been shipped in the USA only in the year
2005 [McQueen et al., 2006]. The estimated number of shipped units in 2011 is
1.25 billion worldwide. The technology used in mobile phones consists of rela-
tively proven hardware technology. The application (software) is new in this type
of products.

dev tdf dev

Figure 12. Specific example of a mobile phone test-diagnose-fix task

Avionics/Department of defense (DoD):

Company size large, 30000 employees

Product volume 300 systems/year

Business drivers Q-C-T

Number of components High

Technology used Proven technology

Sub-contractors Many, regulated

Table 4. Avionics/DoD manufacturer characteristics

Airplanes and systems developed for the department of defense (DoD) are
integrated and tested using a strict process, for example the integration and test
process for the 777 flight controls [Buus et al., 1997]. All sub-systems are tested
in the supply chain to ensure a short final test phase. To accommodate this,
interfaces between sub-systems are thoroughly described and do not introduce
new problems. An integration and test sequence for an airplane or DoD system
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is similar to the sequence depicted in Figure 9. Sub-systems are tested com-
pletely before integration. The duration of the final calibration test phase tdfC
for an airplane, like an Airbus A320, is only a few days, including a test flight.
Assemblies are performed between the final calibration test phase and accep-
tance test phase. For instance, the engine of an airplane is assembled when all
other parts have been assembled and calibrated. The reason for this is safety and
cost. Assembling an engine is done in a special area and the engine is costly, so
it is assembled as late as possible.

Space (satellites):

Company size medium, 5000 employees

Product volume 10 systems/year

Business drivers Q-C-T

Number of components Medium

Technology used Proven technology

Sub-contractors Few, cooperating

Table 5. Space/satellite manufacturer characteristics

Development of a satellite or other space vehicles results in a single unique
system. The integration and test sequence is very similar to an integration and
test sequence of a newly developed system. The assembly phases are executed
as concurrently as possible. Test tasks are planned after each development and
each assembly task such that the risk in the system is minimal at all times. An
overview of international verification and validation standards for space vehicles,
including the main differences between standards, is described in [Giordano
and Messidoro, 2001]. A planning and scheduling method for a space craft as-
sembly, integration and verification (AIV) is described in [Arenthoft et al., 1991].

Machine builders

Company size Medium, 5000 employees

Product volume 1000 systems/year

Business drivers C-Q-T

Number of components Medium

Technology used Proven technology

Sub-contractors Many, cooperating

Table 6. Machine manufacturer characteristics

A number of machine building organizations has been visited. The devel-
oped systems varied from manufacturing equipment to large office equipment.
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A variety of integration and test plans has been observed in the different orga-
nizations. Most of the organizations use an integration sequence that is similar
to the sequence used in the automotive industry. Some use a ‘fixed rate’ assem-
bly, e. g. each assembly task is performed in a fixed 20 minute time slot by a
single operator. Some calibration tests are performed between assembly tasks.
Configuring the system for a customer is done just before the acceptance test
tdfA. An example of a sequence with a customer specific configuration in the
last assembly task is depicted in Figure 13.

dev dev dev dev dev dev

tdf tdf tdf tdf tdf tdf

tdf C asmasmasmtdfasmasmasm tdf A

Figure 13. Example manufacturing sequence for machine builders

Drug industry:

Company size large, 20000 employees

Product volume Millions of tablets/year

Business drivers Q-C-T

Number of components Small

Technology used New technology

Sub-contractors None

Table 7. Drug developing company characteristics

Finally, the drug testing industry is discussed based on [Raven, 1997, 1998].
The products in this industry are different compared to the technical products
discussed before. Testing of medical drugs is quite different. Figure 14 depicts
an integration and test sequence for medical drugs.
The development of a potential new drug is a combination of chemical de-

sign and a structured search. The integration and test sequence starts if a new
chemical entity (NCE) is discovered. A screening test (tdfS) is performed to test
the potential of the new chemical. The new chemical is then ‘integrated’ into
tablets (devT ) or dissolved in liquid (not depicted). What follows next are four
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test phases in which the new drug is tested (tdfA, tdfI, tdfII, tdfIII). The average
total duration of the entire sequence is 14 years. Test phase tdfA is performed
on animals to test for toxicity and long term safety. Test phase tdfI is performed
mainly on healthy volunteers to determine the dose level, drug metabolism and
bio-availability4. Test phase tdfII is a test phase on a few hundred patients to
test the efficacy of the dose and the absence of side effects. Test phase tdfIII is
performed to test efficacy and safety on thousands of patients. Test phase tdfIV
is performed after the new drug has received a product license to test for rare
adverse events and to gain experience with untested groups of patients. The
conclusion of every test phase can be that testing will not be continued. The
new drug will not be further developed and released, in contrary to the (techni-
cal) products of the other organizations where problems found can be fixed and
testing continues.

dev tdf s tdf I tdf II tdf IIIasm

devT

tdf A tdf IV

Figure 14. Integration and test sequence for medical drugs

Integration and testing of software baselines:

A special case of an integration and test sequence for product development is an
integration and test sequence for software developments that are delivered into
a single code base. All code ends up in a configuration management system.
Testing is done on the code before delivery and on the ’release’, a specific base-
line in the configuration management system. Two example integration and test
sequences are discussed. These types of integration and test sequences have
been encountered at several visited companies, including ASML. Next to that,
Cusumano describes a similar integration and test sequence that is used by Mi-
crosoft [Cusumano and Selby, 1997]. The first sequence, depicted in Figure 15,
contains periodic test-diagnose-fix tasks. Integration continues when the result
of the test-diagnose-fix task is pass.
The second sequence, depicted in Figure 16, contains a periodic test-

diagnose-fix task executed in parallel with integrations of new code. A copy (cpy)

4How (and how fast) is the product entered in the body and bloodstream and how the product
is excreted from the body.
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tdf tdf tdfasm asm asm asm asm asm

dev dev dev dev dev dev

Figure 15. Software integration with periodic test-diagnose-fix tasks

of the software is made and used to test the (copied) software.

tdf

tdfcpy asm asm asm

dev dev

asm

dev

tdf

cpy asm asm asm

dev dev

Figure 16. Software integration with parallel test-diagnose-fix tasks

The test-diagnose-fix task in the periodic case is on the critical path, while the
test-diagnose-fix task in the parallel case is not. On the other hand, problems
found in the periodic case are solved before new integrations are performed.
Problem solving in the parallel case is more complex, because two baselines are
to be maintained at any point in time. This is depicted in Figure 16 with an
explicit ‘self-loop’ on the test process and an explicit assembly of solutions into
the baseline.

2.1.4 Overview of organizations and integration and test plans

An overview of the organizational types and their influence on an integration
and test sequence is depicted in Figure 17. The organizational types can be
found in Table 8. Each circle indicates a visited or investigated organization. The
size of the circle indicates the size of the organization (large circles correspond
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with large organizations). The gray tone of the circle indicates the number of
delivered end products. A darker circle indicates more shipments. Each circle
contains the key business drivers (in order) for the visited organization. The or-
ganizations are placed in the graph in Figure 17 according to the integration and
test planning approach on the x-axis (regulated or flexible) and the system com-
plexity on the y-axis. The complexity is a combination of number of components
and technology used. The type of organization is described in the bottom half
of the circle. In some cases, multiple organizations of the same organizational
type have been investigated.
A distinction is made between a regulated approach and a flexible approach,

because these type of integration and test sequences were most different from
each other in the observed organizations. The strategy of a regulated approach is
focused on removing all risk as soon as possible. Consequently, test-diagnose-fix
tasks are planned after each development and assembly task. The focus of each
test-diagnose-fix task is on removing all possible risk. The flexible approach,
on the other hand, is focused on maximal integration progress. Test tasks are
planned after some of the development and assembly tasks. These test-diagnose-
fix tasks are partially executed and the remaining risk is covered by later test-
diagnose-fix tasks.
The flexible approach allows the improvement of test-diagnose-fix tasks by

moving test cases from one task to another task. The regulated approach pre-
scribes that specific test cases need to be performed in a specific test-diagnose-
fix task. Optimization of a test-diagnose-fix task can only be done within the
context of the test-diagnose-fix task itself in the regulated approach.

Semi Semiconductor equipment
Avionics Airplanes
Space Satellites
DoD Department of defense systems
Drugs Medical drugs
Comm Communication equipment
Machines Machine equipment

Table 8. Legend of organizational types

2.1.5 Conclusions and discussion

Different organizations use different integration and test sequences to develop
or manufacture their products. The elements of an integration and test se-
quence are the same for all investigated organizations. The key business drivers
of an organization can be characterized by Time, Cost and Quality. An inte-
gration and test sequence is specific to an organization, the product and the
business drivers. As a result, it can be concluded that a strategy to obtain an
integration and test sequence for a specific organization cannot be copied to
another organization just like that. The business drivers of both organizations
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should match.
Two types of test approaches are distinguished: regulated and flexible integra-

tion and test sequences. The main differences between a regulated and flexible
integration and test sequence are 1) the positioning of test-diagnose-fix tasks
and 2) the type of test strategy that is used for each of the test-diagnose-fix tasks.
Optimizing an integration and test sequence could be beneficial in terms

of time, cost and quality. A flexible integration and test sequence allows many
improvement opportunities. Among these are the selection of a different inte-
gration sequence, test sequence, test positioning strategy and test strategy per
test-diagnose-fix task.
A regulated integration and test approach results in a fixed integration se-

quence. Selecting a different (better) sequence is difficult. The cost of changing
the regulations should be taken into account. This is also the case for the test
positioning strategy and the chosen strategies for specific test-diagnose-fix tasks.
Regulated integration and test sequences are easier to sequence and control,

which is a benefit. All parties involved know from the start what to expect and
what to do. The test content is known in advance for all test-diagnose-fix tasks.
A flexible integration and test sequence allows for the use of more improvement
techniques to obtain a better plan. The cost of this flexibility is the organizational
effort that is involved with the improvement cycle.
A combination of a regulated integration and test sequences with known ‘con-

trol’ points in the sequence and flexibility in the intermediate phases could be a
good combination for organizations that either try to increase the quality levels
and maintain the short time-to-market or try to reduce the time-to-market while
maintaining the product quality.
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Figure 17. Overview of the visited organizations by system complexity and test strategy
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2.2 INTEGRAT ION AND TEST TASKS

The investigation into integration and test plans in different organizations, de-
scribed in the previous section, resulted in a set of five basic tasks that are used
to form integration and test sequences. These five tasks are develop, assembly,
disassembly, copy and test-diagnose-fix. This section describes each of these five
tasks, as well as their inputs, outputs and properties.

The development task

The development task is the starting point in the integration and test sequence.
The end point of a development task defines when the resulting component is
ready for the next task in the sequence. How the development task is performed
is not really of importance for integration and test sequencing. What is of im-
portance is the remaining risk of a component when development is finished.
The remaining risk determines what needs to be tested in the remainder of the
integration and test sequence. The development duration and cost, ϕdev and Cdev

respectively, are properties of the development task.

dev γ1

Figure 18. The development task

The development task is depicted in Figure 18 as a task with only a single
component as output: γ1.

The assembly task

The assembly task assembles two (combined) components and their interface(s)
into a new combined component. The output of an assembly task of two compo-
nents is a new combined component connected via the interface XFγ1,γ2 between
the two components. The risk of the combined component after assembly is the
sum of the risk of the components and interfaces. Additional properties of an
assembly task are the duration and cost that are involved with this task, respec-
tively ϕasm and Casm. The assembly task is depicted in Figure 19 as a task with
three inputs (two components γ1 and γ2 and one interface XFγ1,γ2) and a single
output, the combined component.

The disassembly task

The disassembly task removes (disassembles) a combined component. The two
components γ1 and γ2 are the outputs of this task depicted in Figure 20. The
risk in the combined component is divided over the disassembled components
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asm

γ1

γ2

XFγ1,γ2
γ1,2

Figure 19. The assembly task

and their interface. The properties of a disassembly task are duration ϕdas and
costCdas. The disassembly task is depicted in Figure 20 as a task with a single in-
put, the combined component, and three outputs. The three outputs represent
the combined component that is split up into two disassembled components
and their interface.

das

γ1

γ2

γ1,2 XFγ1,γ2

Figure 20. The disassembly task

The copy task

The copy task is specific for component that can be copied. Examples of compo-
nents that can be copied are component designs and software components. De-
sign (documents) and software components are components that can be copied,
such that two identical versions of the same component are obtained. All faults
present in the original component are present in the copy of the component.
This is different for copies of mechanical and electrical components that can
contain different faults, because each ‘copy’ is slightly different. The copy task
can be used to describe integration and test sequences for software systems us-
ing a baseline integration strategy with parallel testing. Figure 21 depicts the
copy task with a component as input and two equal components as output.
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cpy

γ1

γ1

γ1

Figure 21. The copy task

The test-diagnose-fix task

The test-diagnose-fix task consists of a number of sub-tasks. The sub-tasks in
the test-diagnose-fix task are: test execution, diagnosis and fixing. The sequence
of sub-tasks is determined using a test strategy. The sub-tasks and elements of
a test strategy are explained in detail in Section Section 4.2. Figure 22 depicts
the test-diagnose-fix task that takes a component as input and outputs a (partly)
tested, diagnosed and fixed component.

tdf γ
′

1
γ1

Figure 22. The test-diagnosis-fix task

Combined tasks

The five basic integration and testing tasks can be combined into sequences of
integration and test-diagnose-fix tasks: integration and test sequences. Combi-
nations of integration and testing tasks are often observed in industrial integra-
tion and test sequences. Four typical combinations, that are often observed, are
described here.
The first combined task is a combination of two test-diagnose-fix tasks. The

combination of two test-diagnose-fix tasks can be seen as a single test-diagnose-
fix task. Subsequently, a single test-diagnose-fix task can be seen as two test-
diagnose-fix tasks that are executed in sequence if more than one test case is
executed in this test-diagnose-fix task.
The second combined task is a combination of an assembly task and a test-

diagnose-fix task. This combination has been found in the industrial integra-
tion and test sequences that were analyzed. The industrial integration and test
sequences contain activities that are described as ‘integrate’ the module γ1 and
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tdf tdf=tdf
γ1 γ

′

1
γ
′′

1
γ1 γ

′′

1

Figure 23. Combining two test-diagnosis-fix tasks

γ2 with a duration that is much longer than the duration of the assembly task
only. Integration of module γ1 and γ2 means assembly of γ1 and γ2, followed
by a test-diagnose-fix task of the combined module γ1,2. Figure 24 depicts the
combination of an assembly and test task in a single task.

asm tdf =

γ1

γ2

γ1,2
γ
′

1,2 γ
′

1,2
asm / tdf

γ1

γ2

XFγ1,γ2

XFγ1,γ2

Figure 24. Combining an assembly task and a test-diagnosis-fix tasks

The third combined task is a combination of two or more assembly tasks. The
combination of two up to n assembly tasks can be described as a single assembly
task with n + 1 incoming components and a single combined component as
output. A prerequisite of this combination is that all components that are to be
assembled are available at the start of the combined assembly task. Figure 25
depicts the combination of two assembly tasks into a single assembly tasks with
three modules and their interfaces as input.

asm =asm asm2

γ1

γ2

γ3

γ3γ2

γ1

γ1,2 γ1,2,3 γ1,2,3
XFγ1,γ2

XFγ1,γ2,γ3

XFγ1,γ2

XFγ1,γ2,γ3

Figure 25. Combining two assembly tasks

The fourth combined task is a combination of a disassembly task and an
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assembly task into a replacement task. Taking a component out of the system and
placing the next version of the component back into the system, i.e. replacing a
component, can be modeled using a single task this way. Figure 26 depicts the
replacement task as a combination of a disassembly and an assembly task.

das =asm Replace
γ1,2

γ2, XFγ1,γ2

γ2
′, XFγ1,γ

2
′

γ1,2′ γ1,2 γ1,2′

γ2, XFγ1,γ2

γ1

γ2
′, XFγ1,γ

2
′

Figure 26. Replacing a component with a new version, a combination of a disassembly
and assembly task

2.3 SYSTEM INTEGRAT ION AND TEST MODELS

The sequence of
integration
(assembly) and
test-diagnose-fix
tasks results in a
complete and
functional system

The result of an integration and test sequence is a complete and functional sys-
tem. Components are integrated and tested in this sequence. The sequence of
component integrations depends on the components that are present in the sys-
tem and the possible interfaces between these components, since components
that are not connected via an interface cannot be integrated together. Knowledge
of the components and interfaces in the system is used by integration planners
to determine an integration sequence. Test-diagnose-fix tasks are placed between
(some of) the integration tasks afterwards.
Two models will be introduced in this chapter to support planning, analysis

and improvement of integration and test sequences. The first model is a model
of the system architecture usable for integration and testing: the system integra-
tion model. The secondmodel is used to model the details of a single component
or interface: the system test model. Together, these models are used for perfor-
mance analysis of single test-diagnose-fix tasks and complete integration and
test sequences.

2.3.1 System integration model

The system integration models describe a system. These models are used for
sequencing and improvement in the integration and test planning method. The
architecture of a system consists of components and interfaces. Both the com-
ponents and interfaces are represented by the system integration model.
The system integration models should fulfill the input-output requirements

of the integration and test-diagnose-fix tasks. The output of an integration and
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test-diagnose-fix task is the input of the next task. Integration and test-diagnose-
fix tasks are combined into integration and test sequences. For instance, an as-
sembly task can be followed by another assembly task or a test-diagnose-fix task.
A component in the system integration model that is the output of the assembly
task should be of the same type as the input of the next task. System integration
models should enable performance modeling of the integration and test se-
quence. Analyzing the performance of an integration and test sequence is one
of our goals. Therefore, the integration models should support this goal. Sys-
tem integration models should support abstraction if a system contains many
components and interfaces. Integration and test sequencing is a problem for
large systems in particular. These systems consist of many components and in-
terfaces. The integration and test models should support the combination of
smaller models into large models, such that large systems can be modeled eas-
ily.

The system integration model A is defined as a five-tuple containing: models
of the components in the system Γ, models of the interfaces in the system XF,
the relation between the components and interfaces Rγ,XF , a so-called layering
L and the objective and constraints of the integration and test sequence Obj.
Thus, A = (Γ,XF, Rγ,XF ,L, Obj), where Γ represents a set of component models
γ. The elements of the system integration model are described in detail below.

The component model γ

A component in the system is modeled as a system test model D introduced
in Section 2.3.2, and properties: γ = (D,ϕdev, Cdev). The system test model
D describes the component in terms of test cases and fault states and is
described in Section 2.3.2. The duration and cost of developing a component γ

is modeled as ϕdev and Cdev respectively. The development duration is modeled
as the duration between the start of the integration and test sequence and
the moment that component development is ready. The end moment defines
when the integration and test sequence can progress. The cost of development
can also be modeled. This cost is added to the overall cost of the integration
sequence. Often, the cost is set to 0, because only the cost of integration and
test tasks is of interest when integration and test sequences are analyzed and
compared and not the cost of developing a module that is just an offset in the
total cost.

The interface model XF

An interface is also modeled as a system test model. The duration and cost of
developing the interface is also taken into account. The interface is modeled as
a triple: XF = (D,ϕdev, Cdev).

The interface risk is modeled explicitly. Even for interfaces with very low
failure probabilities and risk, the risk needs to be modeled. The combined risk
of many low risk interfaces results in an overall, system level, remaining risk
that could be too high. The low risk interfaces are also modeled by explicitly
modeling the interfaces. Note that a broad multi-disciplinary definition of
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interfaces is considered.

Relationship between components and interfaces Rγ,XF

The relationship between components and interfaces is modeled as a set
of triples that contain the models of two components and their interface
Rγ,XF ⊆ Γ × XF × Γ, which is a set of triples representing the connections that
can be made between the components in the system. Two components can
be connected by two or more interfaces. This is modeled either as separate
relations or by combining the system test models of the interfaces into a single
model. The interfaces between one component and many other components
are modeled as separate relations.

Layering L

The minimal set of models that is required to create integration and test se-
quences consists of the component model, the interface model and the model
of the relationship. The model of the relationship between components is used
to obtain the sequence. In this way, any combination of tasks can be made.
The number of sequences obtained using these five tasks and the component
models is infinite, because of the possibly infinite combinations of disassembly
and assembly tasks, the copy task and the repeatable test-diagnose-fix tasks.
Even if the copy and disassembly tasks are not taken into account and it is
assumed that test-diagnose-fix are not repeated, then the number of possible
sequences leading to a complete and tested system is huge for systems with
many components and interfaces. The number and type of possible sequences
can be constrained by using layering.

For this reason, a layering L in the system, consisting of sets of components
Γ, is defined: L ⊆ P(Γ). The relation between the components in the groups
and between the groups are derived using the component-interface relation
Rγ,XF . A set of components in a layering can contain a component that is also
present in another set of components. In other words, sets of components can
overlap. A layering is often used to describe a functional clustering opposed
to the hierarchical or mechanical clustering. The physical components can
contribute to one or more of these functional clusters. In this way, functional
integration and test sequences can be derived from the system integration
model.

Objectives and constraints Obj
The objective for an integration and test sequence describes whether the
resulting system should be integrated and tested quickly (T), cheaply (C) or with
a high quality (Q). The constraints of the integration and test sequence describe
if the executed integration and test sequence should not exceed a fixed duration,
a fixed cost level or a risk level. Objectives and constraints are both expressed in
terms of time, cost and remaining risk. The objectives are expressed as a single
objective function where time, cost and quality are weighted according to their
relevance, when these objectives are used for optimization as in Chapter 5. The
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time, cost and remaining risk objectives are described relative to each other,
such that it is indicated which objective is most important. The constraints of
an integration and test sequence determine the limits that may not be exceeded.
A constraint on duration means that the sequence should be finished at a
certain deadline. A constraint on cost means that a certain cost level may not
be exceeded and a constraint on quality means that the integration and test
sequence should lead to a certain quality level. Some examples of objectives
for a single test-diagnose-fix task are described in Sections 4.2.1 and 5.3. The
objectives of a complete integration and test sequence are described in a similar
fashion.
The next section describes the details of the system test model that is used to

model components and interfaces.

2.3.2 System test models

Components and
interfaces in a
system are
modeled as a
system test model.

Components and interfaces in a system are modeled as a system test model. A sys-
tem test model describes a component or interface as a combination of possible
fault states, test cases, the coverage of the test cases on the fault states and the
properties of the fault states and test cases. In this section, the system test model
is described in detail. The practical implication of every modeling element is dis-
cussed. The model completeness is described and stepwise improvement of the
model is explained.
The test cases, fault states and their properties are modeled as a so called

system test model. The system test model is a ten-tuple consisting of those elements
that are relevant for a test-diagnose-fix task. The ten-tuple is derived from a basic
system test model used by [Pattipati et al., Jan 1991] for sequencing diagnosis
tasks. Boumen [Boumen et al., Jan. 2008] uses a system test model, based on
the basic test model, for probabilistic test sequencing. The basic test model is
defined as D = (T, S, C, P, Rts). Our system test model D is defined as a ten-tuple
(T, S, (CT ,ϕT ), (CD,ϕD), (CF,ϕF), (CAF,ϕAF), P, I, U, Rts), where:

• T is a finite set of k tests.

• S is a finite set of l fault states.

• CT : T → R
+ gives for each test in T the associated cost of performing

that test.

• ϕT : T → R
+ gives for each test in T the associated duration of performing

that test.

• CD : T → R
+ gives for each test in T the associated cost of diagnosing the

failed test.

• ϕD : T → R
+ gives for each test in T the associated duration of diagnosing

the result of the test if the result is fail.
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• CF : S → R
+ gives for each fault state which is to be fixed the cost of fixing

that fault state.

• ϕF : S → R
+ gives for each fault state in S the associated duration of

developing a fix for the fault state.

• CAF : S → R
+ gives for each fault in S the associated cost of applying the

fix on the system under test.

• ϕAF : S → R
+ gives for each fix which is to be applied the associated

duration.

• P : S → [0..1] gives for each fault state in S the a priori probability that the
fault state is present.

Impact can be a
value relative to
each fault state or a
specific value
related to a
property of the
system under test.

• I : S → R gives for each fault state in S the impact of the fault state if the
fault state exists in the system under test.

• U : S → [0..1] gives for each fault state in S the uncertainty that the fault
state is present, which is 1 if no test case has been executed that covers the
fault state.

• Rts : T × S → [0..1] gives for each test t and fault state s the coverage of the
test t on fault state s.

Fault states

Fault states describe possible faults in the system, including the associated fail-
ure probability and impact. Fault states are assumed to be independent of each
other. Additional properties are modeled per fault state, like the uncertainty
about the fault state (used for reliability qualification), the duration and cost of
fixing the fault state and the duration and cost of applying the fix on the sys-
tem under test. A set of fault states can be modeled as a single combined fault
state with adjusted properties [Boumen, 2007] for the combined fault state,
like for instance a higher failure probability. A broad definition of fault states
is used when modeling a system. Fault states could be based on existing re-
quirements, known failures from previous system releases, failure mode effect
analysis (FMEA/FMECA) [Bowles, 19-22 Jan 1998], expert knowledge and even
more detailed fault state sources like manufacturing failure databases or static
code analysis tools for software systems.

Test cases

The detailed test
procedure is a
valuable source to
determine the
coverage of the test
case.

A test case is described in terms of its coverage on the defined fault states. The
coverage of the test case on the fault states determines the capability of the test
case on system level. Note that the detailed test procedure is a valuable source
to determine the coverage of the test case. The other properties that are mod-
eled for a test case are execution duration, execution cost, diagnosis duration
and cost. A set of test cases can be modeled as a single test case with a higher
coverage, a longer duration and higher cost.
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Coverage

The coverage is modeled as the probability that a test case t can detect a fault
state s. The coverage of a test case on a fault state can be estimated by count-
ing for a test case how many of the functions are covered by the test case. The
number of covered functions is divided by the total number of functions in the
system that this test case covers. The coverage is used in Chapter 4.3 to deter-
mine the reduction of the failure probabilities of the fault states that are covered
by a test case when the test case passes.

Uncertainty

The uncertainty is defined as the so-called subjective uncertainty [Helton, 1997]
and describes the lack of knowledge about the system. This lack of knowledge
of the analyst concerns the analysis of the test-diagnose-fix task or integration
and test task. The stochastic uncertainty, which is another definition of uncer-
tainty that is often used, is a property of the test-diagnose-fix task itself and
describes the variability of the behavior of the task. The stochastic uncertainty
of a test-diagnose-fix task (or a complete integration and test sequence) is mea-
sured in terms of the performance indicators: duration, cost and remaining risk
as defined in Section 4.1. The subjective uncertainty is used in the reliability test
planning method in Section 4.3.

Risk

Our measure for product (or system) quality is risk. The risk that is present
in a system is the sum of the risk of the fault states that are possibly in the
system. The risk that a fault state is in the system is defined as the product of
the probability that the fault state is in the system and the impact of the fault
state when it is present: R(s) = P(s)I(s) [Amland, 2000; Kaplan, August 1997;
Pfleeger, 2000]. Since fault states are assumed to be independent, the risk of
all fault states in the system can be added such that the system risk is obtained:
R =

∑

s∈S

R(s).
The required
probability can be
estimated or
obtained from
historical data.

The required probability, a property of the product, can be estimated or ob-
tained from historical data. The required impact value is not a property of the
product. The impact of the presence of a fault state is estimated, in case the fault
state occurs after the (integration) and test sequence is finished. If the product is
delivered to customers once the integration and test sequence is finished, then
the impact for customers is estimated. If the product is released for the next
task in the integration and test sequence, then the impact for the remainder of
the integration and test sequence is estimated.
The impact of the existence of a fault state can be estimated in terms of a

physical property. The impact of the existence of the other fault states is then
also estimated in terms of the same physical property. The combined risk in
terms of this physical property can then be determined. For instance, if a system
is modeled for overlay testing, then the impact of the existence of all fault states
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in the system is modeled in terms of nanometers overlay. In this way, test cases
can be selected that reduce the overlay risk as much as possible.

Example telephone system

As an example, a test model is defined for a common telephone. The telephone
consists of a handset, a cable and a device. Each of these modules can contain
a fault. The interfaces between the modules can also contain a fault. Hence, in
total, 5 fault states are defined. Additionally, 6 test cases are defined covering the
5 fault states. A graphical view of the telephone is given in Figure 27.

S1

S2

S3

S4

S5

Figure 27. Telephone system

The set of five possible fault states in the telephone is: S = {s1, s2, s3, s4, s5}.

• s1 the device contains a fault

• s2 the cable contains a fault

• s3 the handset contains a fault

• s4 the interface between the cable and the device contains a fault

• s5 the interface between the handset and the cable contains a fault

The set of six tests is defined to cover these fault states is: T = {t0, t1, t2, t3, t4, t5}.

• t0 tests the complete phone system

• t1 tests the device

• t2 tests the cable

• t3 tests the handset

• t4 tests the device and the cable

• t5 tests the handset and the cable

A matrix representation of the system test model D, including the properties
per fault state and test, is given in Table 9. The coverage of a test case on a fault
state is placed in the matrix.
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S / T t0 t1 t2 t3 t4 t5 P I U CF ϕF CAF ϕAF

s1 0.2 0.5 0 0 0.3 0 10% 7 1.0 2 2 1 1
s2 0.2 0 0.5 0 0.3 0.3 10% 5 1.0 2 2 1 1
s3 0.2 0 0 0.5 0 0.3 10% 3 1.0 2 2 1 1
s4 0.2 0 0 0 0.3 0 10% 3 1.0 2 2 1 1
s5 0.2 0 0 0 0 0.3 10% 3 1.0 2 2 1 1

CT 3 1 1 1 2 2
ϕT 6 2 2 2 4 4
CD 3 1 1 1 2 2
ϕD 10 1 1 1 6 6

Table 9. A test model for the telephone example

2.3.3 System test modeling in practice

The system test model can be obtained in two ways. The first approach starts with
the available set of test cases. The second approach uses the available set of fault
states. If the available set of test cases is taken as a starting point, then one single
fault state ‘the system contains a fault’ is added to the model and all test cases
have ‘imaginary’ coverage on this fault state. The remainder of the model (fault
states and coverage) is obtained by making each test case unique, i. e. no two test
cases may cover the same set of fault states.

The system test
model can be
obtained in two
ways. The first
approach starts
with the available
set of test cases.
The second
approach uses the
available set of
fault states.

A test case can be made unique by adding a fault state to the model that is
covered by only one of the test cases in the set. The coverage of the other test
cases on the new fault state should be estimated also. This process repeats until
all test cases are unique. It is assumed that the current set of test cases does not
contain test cases that are the same and it is assumed that the available set of
test cases covers the system sufficiently.

The second approach starts with a set of fault states that must be covered
by the test cases. These fault states typically represent the existing (customer)
acceptance criteria or negated requirements. A requirement that is not met is
called a negated requirement. For instance, the throughput requirement of a
wafer scanner for example is 150 wafers per hour. The corresponding fault state
is: the wafer scanner does notmeet its 150 [wph] throughput requirement. Once
the set of fault states is defined, test cases are added to the system test model
until all fault states are covered. Additional specific test cases could be added
for fault states with high failure probabilities, because it is more efficient to test
fault states with high failure probabilities with specific test cases instead of test
cases that cover a range of fault states [Boumen et al., Jan. 2008].

Model completeness and stepwise improvement

One could ask if the derived system test model is complete. At least the relevant
fault states and test cases should bemodeled. To answer this question, all possible
fault states and possible test cases have been drawn as a large box covering the
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four rectangles depicted in Figure 28. All possible fault states in the system are
depicted along the y-axis, while all possible test cases are depicted along the
x-axis. The rectangle marked as 1 in Figure 28 depicts the test cases that are
modeled in the system test model. The fault states in rectangle 1 are all fault
states that are covered by test cases in rectangle 1. In other words, rectangle 1
represents the system test model as it is currently known.
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Figure 28. Model completion described using four rectangles

Rectangle 2 represents all test cases that could be in the system test model,
but are not. The fault states covered by the test cases in rectangle 2 are (partly)
also covered by the test cases in rectangle 1. Discovering which test cases could
be added to themodel could be beneficial for the performance of a test-diagnose-
fix task. The next-best-testcase algorithm, described in Section 5.2, exploits the
possibility to define new test cases based on the known fault states.
Rectangle 3 represents all fault states that are not covered by the known test

cases of rectangle 1. The fault states in rectangle 3 represent unknown system
risk and are therefore relevant if a certain remaining risk (quality) level is to
be reached. The problem is that these fault states are out of sight of the mod-
eler/tester. A simple two step approach to discover these fault states is: 1) add
a fault state called ‘remaining faults/risk’ to the model and estimate what the
coverage is of the known test cases on the fault states, 2) try to identify the spe-
cific coverage of the known test cases on the ‘remaining faults/risk’ by adding
a new fault state to the model and transferring the coverage of the test case on
the ‘remaining faults/risk’ fault state to the specific fault state. In this way, the
coverage of the other test cases on the new specific fault state needs to be esti-
mated. Continue this process until the risk of the ‘remaining faults/risk’ fault
state is acceptable.
Rectangle 4 contains both the fault states that are unknown and also the un-
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known test cases. The problem with the fault states in rectangle 4 is that these
unknown fault states are to be covered by test cases that are also unknown. It is
obvious that the set of fault states in rectangle 4 should be as small as possible.
This can be obtained by reducing the unknown test cases in rectangle 2 and
reducing the unknown fault states in rectangle 3.

A system test
model should
contain as many
fault states and test
cases as possible to
ensure that all risk
in the system is
taken into account
when selecting and
executing test
cases based on this
model.

A system test model should contain as many fault states and test cases as
possible to ensure that all risk in the system is taken into account when selecting
and executing test cases based on this model. Adding as many test cases as
possible to the system test model has a similar impact.

Tools and other system test model representations

A modeling tool has been developed in the TANGRAM project that supports the
modeling steps in the method. The modeling tool, called LONETTE , also serves
as a framework from which different analysis and improvement algorithms can
be started and results can be analyzed. The model of the telephone example,
modeled in LONETTE , is depicted in Figure 29. Additional properties are cal-
culated automatically in LONETTE based on the model. These properties are for
each test case: the covered risk, the failure probability and the gained informa-
tion. For each fault state the risk involved with the fault state is calculated. How
these properties are derived is explained in the subsequent chapters.
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2 s2 0.2 0.5 0.3 0.3 10 5 2 2 0.5

3 s3 0.2 0.5 0.3 10 3 2 2 0.3

4 s4 0.2 0.3 10 3 2 2 0.3

5 s5 0.2 0.3 10 3 2 2 0.3

Test Time  [h] 3 1 1 1 2 2

Test Cost  [euro] 6 2 2 2 4 4

Diagnose Time  [h] 10 1 1 1 6 6

Diagnose Cost  [euro] 10 1 1 1 6 6

Repeatable Yes Yes Yes Yes Yes Yes

Test Risk 0.42 0.35 0.25 0.15 0.45 0.33

Fail Probability  (%) 10 5 5 5 9 9

Information Gain 0.4564 0.2864 0.2864 0.2864 0.4275 0.4275

Figure 29. System test model of a telephone in LONETTE

A different view of a system test model is a connected graph: a test graph. The
fault states and the test cases are depicted as circles and diamonds respectively.
The relations between the test cases and the fault states are depicted as edges.
Figure 30 depicts the example telephone system. The thickness of the edges
represents the coverage of the test case on the fault state. The grayness of the
fault state is a measure for the failure probability of that fault state.
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Figure 30. The telephone system depicted as connected graph. Circles describe test
cases, diamonds describe fault states. The grayness of an edge describes the
coverage of the test case on a fault state.

The test-fault state graph for a bigger model, used in one of the cases, is
depicted in Figure 31. This test-fault state graph depicts a number of fault states
that are covered well by the test cases, depicted with black edges, on the edge of
the graph. Some fault states are, however, only partially covered by test cases.
These are depicted in the center of the graph. A second example of a larger
system test model is depicted in Figure 32.

The system test models, introduced in this chapter, are used in the next
The system test
models can be used
for a wide range of
test problems,
because the models
do not contain that
is specific for
components of a
single discipline.

chapters for sequencing, planning and improvement of test-diagnose-fix tasks.
The system test models can be used for a wide range of test problems, because
the models contain only information that is relevant to testing and not the
information that is specific to components of a single discipline. Moreover, the
system test models contain information that a test engineer would consider
implicitly when planning a test-diagnose-fix task. No new information is
required. The known information is merely made explicit.
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Figure 31. Graph of system test model that is used for regression testing of an ASML
sub-system
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Figure 32. Large graph of system test model that is used for alpha testing of an ASML
software release





3INTEGRATION AND TEST SEQUENCING

The goal of integration sequencing is to form a sequence of integration tasks,
that results in a complete system. Integration and test sequencing positions
test-diagnose-fix tasks between integration tasks, such that a combined integra-
tion and test sequence is formed. The start moment and duration of these test-
diagnose-fix tasks is determined from the position in the integration sequence.
The components that are integrated at a certain moment in the sequence de-
termine which faults can be present in the system and can be tested. The per-
formance of the resulting integration sequence is measured in terms of time
(duration), cost and remaining risk (quality). An overview of the sequencing
step is given in Figure 33. An integration sequence is created in step (2.1) of the
method using the system integration model (1.A) and an integration strategy
(2.A). Then, test-diagnose-fix tasks are positioned in this integration sequence
in step (2.2) using a test positioning strategy (2.B). The integration strategy and
test positioning strategy are inputs for the integration and test sequencing step.
Both are explained below.

2.A Integration strategy

2.2 Make integration 
and test sequence

2.1 Make integration
sequence

2.C Integration sequence 2.B Test positioning strategy

2.D Integration and 
test sequence

1.A System integration model
1.B Testcases, fault states, 
coverage and properties

3.3 Make integration
and test plan

3.1 Plan individual
test phases

4.2 Partition test tasks

Figure 33. Overview of the sequencing step
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3.1 INTEGRAT ION STRATEGIES

An integration
strategy is used to
create an
integration
sequence.

An integration strategy (2.A) is used to create an integration sequence. Common
examples of integration strategies are bottom-up integration, top-down integration
and big-bang integration [Beizer, 1990]. Other examples of integration strategies
originate from concurrent engineering and baseline development. Seven inte-
gration strategies are described in this section. Note that, for large systems, in-
tegration strategies can be combined, such that two (or even more) integration
strategies are used in a single integration sequence.

3.1.1 Bottom-up integration

The bottom-up integration strategy integrates components starting with the low-
est level components in the system. The lowest level components are integrated
first. Then, the combined components are integrated into modules that are fur-
ther integrated into sub-systems. This process continues until the complete sys-
tem is formed. A benefit of this method is that the system functionality and
quality is gradually built up. No models to simulate components during integra-
tion need to be developed (as opposed to the the top-down integration strategy).
A disadvantage of this strategy is that it is not known until the last integration
task whether the complete system can actually be integrated, i. e. it is unknown
if the components actually fit together and can perform the system level re-
quirements until the last moment. Some of the interfaces are formed late in the
process. If these interfaces contain faults, these faults are discovered, diagnosed
and fixed late in the process, resulting in additional cost and time being spent
very late in the process.

3.1.2 Top-down integration

The controlling component is developed first in the top-down integration strat-
egy. Executable simulators or stubs of lower level components are integrated
with the controller component, such that a system consisting of all compo-
nents is formed early in the project. The simulated components, sometimes
called stubs, are replaced with realizations of the components when these be-
come available. This process continues until the complete system consists of

A stub replaces the
real component in
the system. A stub
has typically limited
functionality.

realizations of components. An advantage of a top-down integration strategy is
that a (simulated) complete system is available very early in the integration se-
quence. This fully functional system can be used from that point on to perform
system level test cases. These system level test cases are used to qualify the inter-
faces with minimal support from the simulated components. A disadvantage of
the top-down integration strategy is that simulated components or stubs need
to be developed first. Additional effort is spent on developing and maintaining
these stubs. This stub development activity can become critical in the integra-
tion sequence. The trade-off between spending additional modeling effort and
the benefit of finding interface problems earlier is often difficult to make and
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system specific. A case study where this trade-off analysis has been investigated
is performed within the TANGRAM project and described in [Braspenning et al.,
2007].

3.1.3 Big-bang integration

In a big-bang integration first all components are developed, while none of the
components are integrated. Integration of all components is performed in a sin-
gle big-bang integration. After the big-bang integration, the system is complete.
The difference with the top-down integration is that no simulated components
are used. An advantage of this integration strategy is that no long, multistage,
integration sequence is required that integrates all components into a complete
system. The integration duration is short. A disadvantage of this strategy is that
this approach only works if the quality of each of the components is high. The
quality of the interfaces between the components is high and limited risk is
introduced when these interfaces are created.Components or interfaces of less
quality result in faults that are found after the big-bang integration when the
system is completely integrated. Diagnosing and fixing these faults is therefore
costly and on the critical path to system delivery.

3.1.4 Concurrent engineering

The goal of concurrent engineering is that the components in the system are
developed as much as possible in parallel and independent manner. The result-
ing integration sequence contains many assembly tasks in parallel. A benefit of
concurrent engineering is that the development and integration cost and effort
is spent in a shorter time frame, because of parallelism in the sequence. In gen-
eral, it can be stated that development and integration should be performed in
parallel, within the cost limit, because this results in the shortest possible du-
ration. A disadvantage of concurrent development and integration is that more
resources and cost are spent on integration and testing per time unit.

3.1.5 Standard enforced strategy

An integration and
test strategy
enforced by the
department of
defense framework
results in an
integration and test
sequence with a
standardized form.

This integration strategy is enforced by a standard, framework or policy. An
overview of this type of integration standards, frameworks and policies can be
found in [Stavridou, 1997]. Integration strategies based on standards or policies
are often found in large organizations, where sub-systems are developed by dif-
ferent companies or organizational units. See Section 2.1 for the characteristics
of some of the organizations using a standard enforced strategy. An advantage
of a standard enforced strategy is that all parties involved know what the strat-
egy will be and how changes to the sequence are dealt with. Communicating a
change in the sequence is relatively easy. A disadvantage of this strategy is that
faster or cheaper, integration sequences are not considered because they do not
conform to the standard.
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3.1.6 Baseline development

Baseline development integrates components in a baseline system. A complete
baseline system exists before integration of new components can be started.
A previous version of the component is replaced with a newly developed com-
ponent. A baseline development integration strategy is often used in software

A baseline
development
integration strategy
is often used in
software
development,
where the entire
code base is
available from a
previous release in
a configuration
management
system.

development, where the entire code base is available from a previous release in
a configuration management system. The old code is replaced (disassembled
and assembled) by overwriting the old code by new code. This strategy is also
followed for the development of a new type of wafer scanner provided that it is
based on a previous system type. The previous system type is built first. Then,
new components replace existing components in the system and parts of the
performance test cases are re-executed. An advantage of the baseline develop-
ment strategy is that integration into the baseline is a natural point to perform
quality checks. In this way, the quality of the baseline is protected. The strategy
is simple to explain and to follow. A disadvantage of this strategy, seen within
ASML, is the way of working that is more or less fixed. For instance, a late de-
livery of a single component to the baseline might not be optimal when the
component contains much risk. An incremental delivery, where the high risk
component is split up into smaller low risk parts, might be better for the in-
tegration sequence as a whole. A baseline development strategy should allow
deliveries of partial components, such that the high risk component can be de-
livered earlier.

3.1.7 Optimal integration

An optimal integration strategy, based on an assembly by disassembly al-
gorithm, is described in [Boumen et al., 2006a]. The optimal integration
sequencing algorithm determines all possible sequences in which the com-
plete system can be disassembled into single components. The sequence
that disassembles the system with a minimal duration, cost or remaining
risk is selected. This optimal disassembly sequence is inverted such that
the optimal assembly sequence is obtained. The algorithm uses a model of
the components and interfaces as input, which is very similar to the model
described in Chapter 2. The main benefit of this strategy is that all possible
(dis-)assembly sequences are considered and the best sequence is chosen.
An optimal solution can be calculated using an algorithm that is executed
automatically with every change in the delivery dates of components. The
disadvantage of the algorithm is that only systems of limited size can be
handled. The algorithm can calculate all possible (dis-)assembly sequences
for systems of limited size. A heuristic is required if the system contains too
many components, resulting in sub-optimal solutions, although, sub-optimal
solutions still perform better than integration sequences that are derived
manually for the cases described in [Boumen et al., 2006a]. Moreover, these
sub-optimal solutions can still be derived automatically when the inputs change.
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In practice, combinations of integration strategies are used. A system consist-
ing of three aggregation levels, system, sub-system and component level, could
be integrated using a big-bang combined with a bottom-up integration strategy.
The components could be integrated into sub-systems using a bottom-up
integration strategy and the sub-systems could be integrated using a big-bang
integration strategy. Combinations of integration strategies are also used for
different aspects in the system. An example of this combination was seen in the
development of a new wafer scanner platform at ASML. A number of prototype
systems were built when a new wafer scanner platform was developed. Each
prototype system had a specific focus. For instance, one prototype system
was built to prove that the overlay requirements are met. For this purpose, a
big-bang integration was applied, followed by a single system level qualification
phase and the overlay qualification test. Another prototype system was built
to test the functional performance and reliability. Components, modules and
sub-systems were integrated using a bottom-up integration strategy. Specific
functional and reliability test cases were performed to qualify the functional
and reliability requirements. These test cases were planned in between the
assembly tasks that followed from the bottom-up integration strategy. It can be
seen that the integration and test sequences of this new wafer scanner platform
utilized several integration strategies. Strategies that position test-diagnose-fix
tasks between the integration tasks are discussed in the next section.

3.2 TEST POS IT IONING STRATEGIES

The test positioning
strategy
determines when
risk is reduced (by
testing, diagnosing
and fixing), an
integration strategy
determines how
components are
assembled i. e. risk
is built up.

A test positioning strategy is used for integration and test sequencing to deter-
mine where test-diagnose-fix tasks are placed between the other tasks. The test
positioning strategy determines when risk is reduced (by testing, diagnosing and
fixing), while an integration strategy determines how components are assembled
i. e. risk is built up. Four test positioning strategies are described below.

3.2.1 The ‘maximum integration progress’ test positioning strategy

The ‘maximum integration progress’ test positioning strategy places test-
diagnose-fix tasks between the other tasks when test time is available between
the previous task and the next task. Figure 34 describes a small part of an in-
tegration and test sequence as a Gantt chart. Test-diagnose-fix task tdfγ2 is a
test-diagnose-fix task that is positioned in the available time window between
the development of component γ2 and the assembly task asmγ1−γ2 . No test-
diagnose-fix task is positioned for component γ1 and the risk of component γ1

is reduced in the last test-diagnose-fix task tdfγ1−γ2 . An advantage of the ‘maxi-
mum integration progress’ test positioning strategy is that integration is given
priority, such that the complete system is available as soon as possible, while
still some risk is reduced by testing. A disadvantage of this strategy is that the
risk of some components is not tested until late in the sequence. For example,
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Figure 34. Gantt chart of the ‘maximum integration progress’ test positioning strategy

the risk in component γ1, in Figure 34, is transfered to test-diagnose-fix tasks
on a higher level. This strategy could result in a large number of test cases that
still need to be executed once the system is completely integrated, because that
is the first moment that these test cases can be executed. Components with the
highest risk that are on the critical path are not tested early in the process if this
test positioning strategy is applied.

3.2.2 The ‘test all’ test positioning strategy

The ‘test all’ test positioning strategy places a test-diagnose-fix task after each
develop, assembly and copy task. The goal of each test-diagnose-fix task is to re-
duce the risk in the system asmuch as possible. This way, problems are solved as

Solving problems
as soon as possible
is the cheapest
solution, while
leaving problems
for later
test-diagnose-fix
tasks results in an
increase of the test
duration.

soon as possible, which is the cheapest solution because diagnosis and fix cost
are spent early in the sequence. A disadvantage of this test positioning strategy
is that all components are always thoroughly tested even if the risk involved is
minimal. An advantage of this test positioning strategy is that it is easily com-
municated and planned. Figure 35 depicts a resulting Gantt chart of a ‘test all’
test positioning strategy. Note that the duration of the test-diagnose-fix tasks
does not need to be equal for all tasks.

3.2.3 The ‘fault state once’ test positioning strategy

The ‘fault state once’ test positioning strategy plans a test case that covers a fault
state after the last introduction of this fault state, i. e. each fault state is tested
once. A disadvantage of this method is that the overall risk in the system can in-
crease rapidly when many reoccurring fault states exist, because risk reduction
is done late in the process. An advantage of this strategy is that test cases are
only executed once, preventing double execution of the same test cases. Detailed
information about the fault states in the system and when these fault states are
introduced is required for this strategy. Moreover, it should be known which test
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Figure 35. Gantt chart of the ‘test all’ test positioning strategy

cases cover which fault states, such that it can be determined when test cases
are allowed to be executed.

3.2.4 The ‘risk profile’ test positioning strategy

A final qualification (test-diagnose-fix) task is often the last task in an integra-
tion and test sequence. The system risk after integration determines what the
duration is of this final qualification phase. Testing reduces this failure proba-
bility and by this the risk is reduced. Figure 50 in Chapter 4 depicts the relation
between the failure probability of a system and the test duration. It shows an in-
crease of the duration of a test-diagnose-fix task with an increase of the failure
probability. The goal of the ‘risk profile’ test positioning strategy is to reduce the
risk in the integration and test sequence such that a certain risk level is reached
and the final qualification phase is as short as possible. The ‘risk profile’ test
positioning strategy plans a test-diagnose-fix task if the risk in the system has
reached a certain upper risk limit. Risk is reduced, by testing, until a certain
lower risk limit is reached. A more advanced strategy uses a ‘risk profile’ where
the upper and lower risk limits are described as function of time. The upper risk
limit in the beginning of the integration sequence could be set to a higher level
than the risk limit at the end of the sequence. The same approach is followed
for the lower limits. Figure 36 illustrates the risk profile that ‘bounces’ between
the upper and lower risk limits that are both functions of the test duration.
An integration strategy and a test positioning strategy are used to create an in-
tegration and test sequence in steps 2.1 and 2.2 of the integration and test plan-
ning method.
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Figure 36. A ‘risk profile’ test positioning strategy depicted

3.3 INTEGRAT ION SEQUENCING

An integration sequence is created in this step, using an integration strategy
(2.A) and a system integration model (1.A). Integration sequences can be created
by hand or using integration sequencing algorithms like the algorithm pro-
posed in [Boumen et al., 2006a]. The number of possible integration sequences
is large for reasonably sized systems. Therefore, it is highly unlikely that the op-
timal integration sequence is chosen by hand. Next to that, changes are bound
to happen and the integration sequence should be changed accordingly. This
causes the integration sequence to become gradually less optimal. An algorith-
mic approach in general leads to integration sequences that are faster, cheaper
or reduce more risk.

An integration sequence is described by a graph GI = (V, E), where the ver-
tices contain one of the four integration tasks, (develop, assembly, disassembly
and copy), that were previously introduced. The edges describe a precedence re-
lation between tasks. The algorithmic approach to integration sequencing has
been described in detail in [Boumen, 2007]. Many manual approaches exist,
most based on expert knowledge or a standard way of working in a specific orga-
nization. In general, it could be stated that the manual approaches lead to good
first integration sequences for a newly developed product. Changes to the man-
ually derived sequence, however, are difficult to justify and result in many dif-
ficult discussions between integration experts. Comparing and analyzing these
integration and test sequences such that the best sequence could be chosen is
necessary, but is seldom done.



3.4 INTEGRAT ION AND TEST SEQUENCING 53

3.4 INTEGRAT ION AND TEST SEQUENCING

Integration and test sequencing places test-diagnose-fix tasks in between the
integration tasks (development, (dis)assembly and copy) according to a test po-
sitioning strategy. Integration sequencing and test sequencing are often exe-
cuted in a single step by experts. A combined integration and test sequence is
formed based on an integration and test sequence from a previous project or
using a template sequence. A template sequence describes an integration and
test sequence of a particular form that is often re-used in an organization. The
integration and test sequencing algorithm proposed in [Boumen, 2007] also
combines the integration sequencing and test positioning steps in one step.
Heuristics must be used for larger systems, because of the computational com-
plexity of the algorithm. Practical methods rely on template integration and

The practical use of
sub-optimal
template
sequences and the
lack of optimal
algorithms justifies
that the integration
and test
sequencing process
is split up into a
two step process:
first integration
sequencing
followed by the
positioning of
test-diagnose-fix
tasks.

test sequences and the algorithmic approach relies on heuristics. The practi-
cal use of sub-optimal template sequences and the lack of optimal algorithms
justifies that the integration and test sequencing process is split up into a two
step process: first integration sequencing followed by the positioning of test-
diagnose-fix tasks. Integration sequencing is performed using the cited inte-
gration and test sequencing algorithm or using the integration strategies that
are described in this chapter. Positioning test-diagnose-fix tasks is performed
using the test positioning strategies that are described. The result of the se-
quencing step, described in this chapter, is an integration and test sequence: a
graph, where the vertices contain development, assembly, disassembly, copy or
test-diagnose-fix tasks and the edges describe the relations between these tasks.
The timing of the tasks in the integration and test sequence and the depen-

dencies determine the overall duration of the integration and test sequence.
The duration and cost of each task are estimated. The duration of the integra-
tion and test sequence is calculated by summing up the durations of all task on
the critical path. The cost of the integration and test sequence is determined by
summing up the cost of all tasks. The estimated timing of the test-diagnose-fix
tasks is used as input for the detailed planning step that is explained in the next
chapter.
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The previous sequencing chapter describes how a sequence of integration and
test tasks can be formed. The duration and the order of tasks defines what the
estimated duration, cost and remaining risk of the entire integration and test
sequence is. However, the duration of individual test-diagnose-fix tasks depends
on the possible faults that are present in the components and interfaces and the
selected test strategy. A detailed sequence of test, diagnose and fix tasks is cre-

The expected
duration, cost and
remaining risk of a
test-diagnose-fix
task depends on
the selected
test-diagnose-fix
strategy and the
possible faults that
are present in the
system under test.
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Figure 37. Overview of the planning step

55



56 INTEGRAT ION AND TEST PLANNING

ated in this planning step for each test-diagnose-fix task. The duration, cost and
remaining risk of the resulting test-diagnose-fix sequence is determined and an-
alyzed. A different test strategy can be selected when the analysis results do not
satisfy the constraints. An overview of the planning step is given in Figure 37.

The resulting duration, cost and remaining risk for all test-diagnose-fix tasks
in the integration and test sequence are fed back into the integration and test se-
quencing process. The performance of the integration and test sequence is then
again analyzed in step (3.4). The integration and test planning step is finished,
if the results are according to the objectives and constraints of the integration
and test sequence. Otherwise, a number of improvement techniques, described
in the next chapter, can be applied.

This chapter contains three sections. The first section describes the details
of the planning and analysis of a single test-diagnose-fix task. Section 4.3 de-
scribes the modeling, planning and analysis of reliability test-diagnose-fix tasks.
Section 4.1 describes step (3.4) of the method, the planning and analysis of an
integration and test sequence.

4.1 ANALYZ ING INTEGRAT ION AND TEST SEQUENCES

This section is based on the paper ‘Integration and test strategies for semicon-
ductor manufacturing equipment’ [I. de Jong et al., 2006] and defines the key
performance indicators (KPI) of an integration and test sequence and how these
KPI can be analyzed.

Currently, integration and test sequences are created manually based on ex-
pert knowledge. Defining an integration and test sequence can be an easy task
for small mono-disciplinary systems. Experts can manually adapt integration
and test sequences such that time-to-market and cost are taken into account.
Comparing sequences is done using known mono-disciplinary criteria, like the
amount of code coverage for software systems and the number of tested inputs
and outputs for electronic boards. Mono-disciplinary methods often cannot be
used to compare integration and test sequences for large multi-disciplinary sys-
tems. Therefore, integration and test sequences are still developed by experts,
because methods to create and evaluate integration and test sequences of multi-
disciplinary systems hardly exist. In this section, we present a method to de-
scribe, analyze and evaluate multi-disciplinary integration and test sequences.
The structure of this section is as follows. First, the key performance indica-
tors of an integration and test sequence are described in Sub-section 4.1.1. Sub-
section 4.1.2 defines how these key performance indicators can be measured
over time and formany (simulated) executions of integration and test sequences.
The results of a case study related to a performance measurement of the inte-
gration and test sequence of an XT:850E wafer scanner are discussed in Sub-
section 4.1.4.
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4.1.1 Key performance indicators of an integration and test sequence

Integration and test sequences should be compared using criteria applicable to
a variety of systems. The high level criteria (key performance indicators) charac-
terizing integration and test sequences are:

• Φ: Total integration and test duration, defined as the time from the start
of the integration and test task until the moment the stop criterion is met.

• C: Integration and test cost, defined as the sum of the costs of all assem-
bly, disassembly, copy and test-diagnose-fix tasks. The cost of developing
components can also be taken into account.

• RR: Remaining risk, which is our measure for quality, defined as the risk
that remains in the system when the test stop criterion is met. The risk for
each possible fault is calculated using Equation 4.19 in Sub-section 4.2.1.

4.1.2 Analyzing integration and test sequences

The key performance indicators, defined above, are used to analyze and compare
integration and test sequences with each other. The duration of an integration
and test sequence is calculated by summing up the duration of the tasks on
the critical path. The cost of an integration and test sequence is calculated by
summing up the cost of all tasks in the sequence. The remaining risk is cal-
culated using the failure probability of the remaining faults in the system and
the impact of these fault states. Consequently, the risk at any point in time can
be calculated also. The key performance indicators are illustrated by an exam-
ple telephone system consisting of three modules: a handset, a cable, a device
and the interfaces between handset and cable and cable and device. Figure 27
in Sub-section 2.3.2 is a graphical overview of the telephone system.
The first integration and test sequence, depicted by Figure 38, is an integra-

tion sequence where each assembly task is followed by a test-diagnose-fix task.
The stop criterion of each test task is RR = 0, meaning that testing stops when
all remaining risk is removed.
The key performance indicators for this integration and test sequence can be

derived as follows:

Φ = Φasm1 + Φtdf1 + Φasm2 + Φtdf2 (4.1)

C = Casm1 + Ctdf1 + Casm2 + Ctdf2 (4.2)

RR = 0 (4.3)

The duration and cost of developing or manufacturing the individual com-
ponents are not taken into account. The assumption is that all components are
available when integration and testing is started. A risk profile of the integration
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asm1 tdf 1 asm2 tdf 2

devCable

devHorn devDevice

Figure 38. Example integration and test sequence 1

and test sequence is depicted in Figure 39. This risk profile depicts the risk as
a function of time. At t = 1 the risk increases with 1 risk unit per developed
module. At t = 2 additional risk is introduced by the assembly of the cable and
the handset. The reason for this risk are the interface faults introduced by as-
sembling the cable and handset. At t = 3 testing reduces the risk of the cable,
handset and interface between the cable and handset to 0. The remaining risk
in the system at that point is 1 risk unit from the device. At t = 4 risk is again
introduced due to the interfaces between device and rest of the phone. This risk
is reduced by the test task at t = 5. The remaining risk after test task tdf2 is 0.
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Figure 39. Risk profile of the first integration sequence

In a second integration and test sequence, each module is tested first. Every
assembly is tested also. The stop criterion for each test task is now RR = 20%
of the initial risk of the test task. So, 80% of the risk is reduced with each test
task. Figure 40 depicts this strategy. The risk after each task is denoted on the
edges between the tasks. Now the key performance indicators for the second
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asm1 tdf 3 asm2 tdf 5

devCable

devHorn devDevice

tdf 2

tdf 1 tdf 4

Figure 40. Example integration and test sequence 2

integration and test task can be derived using Equations (4.4), (4.5) and (4.9).

Φ = max((max(Φtdf1 ,Φtdf2) + Φasm1 + Φtdf3),Φtdf4) + Φasm2 + Φtdf5 (4.4)

C = Ctdf1 + Ctdf2 + Casm1 + Ctdf3 + Ctdf4 + Casm2 + Ctdf5 (4.5)

RR = RRtdf5 (4.6)

= 0.2RRasm2

= 0.2(RRtdf3 + RRtdf4 + RRXFC,H,D )

= 0.04RRasm1 + 0.04RRDevice + 0.2RRXFC,H,D

= 0.04(RRtdf1 + RRtdf2 + RRXFC,H ) + 0.04RRDevice + 0.2RRXFC,H,D

= 0.04(0.2RRHorn + 0.2RRCable + RRXFC,H ) (4.7)

+0.04RRDevice + 0.2RRXFC,H,D

= 0.008RRHorn + 0.008RRCable + 0.04RRXFC,H (4.8)

+0.04RRDevice + 0.2RRXFC,H,D

The corresponding risk profile is depicted in Figure 41. Note that for this
example it is assumed that the components in the system are independent of
each other, such that the risk can be added in Equation (4.9).
Again this is a fairly straightforward derivation of the key performance indica-

tors. The complexity of the derivation increases with the increase of the system
size. Additionally, the assumption is that the values for each of the key per-
formance indicators are deterministic, which is not the case for testing in most
cases. The test process is a stochastic process, because of two reasons: the actual
set of faults in the system under test can only be estimated, but is not known in
advance (otherwise testing would not be necessary). The second reason is that
the selected test strategy, described in Sub-section 4.2.1, influences the duration,
cost and remaining risk of the test-diagnose-fix task.
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Figure 41. Risk profile of the integration sequence of Figure 40

4.1.3 Analysis of integration and test strategies

The result of a single simulation of an integration and test sequence is an inte-
gration and test profile. This profile consists of profiles for risk and cost as func-
tion of the integration and test time. These profiles can be used to analyze a
single integration and test execution. High peaks in risk become evident and
the integration and test sequence can be adjusted to minimize these high peaks
if required. Another way of measuring and analyzing key performance parame-
ters of an integration and test task is by simulating numerous executions of an
integration and test sequence. The actual faults in the system under test are
randomly selected for each simulation. Each simulation results in a total test
duration, cost and risk, and an integration and test profile. A histogram of the
key performance indicators describes what the minimal, maximal and expected
values for the KPI are. The risk profile, cost profile as function of time and a
histogram of the test duration are illustrated by the case study described in Sub-
section 4.1.4.

4.1.4 Case: Analysis of an integration and test sequence of the XT:850E wafer scan-
ner

In this case study, the performance of a complete integration and test sequence
is measured and analyzed. The integration and test sequence is derived from
the actual Microsoft Project plan of the XT:850E wafer scanner released a few
years ago. The Microsoft Project plan was not made with this case in mind but
still it was easy to convert the tasks in the plan into an integration and test
sequence. The only required adjustment was the separation of combined inte-
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gration and test-diagnose-fix tasks into separate integration tasks, followed by a
test-diagnose-fix task as explained in Section 2.2.

The full analysis of this integration and test sequence requires that a system
test model for every component in this wafer scanner must be defined. At the
time that this case study was performed, not all models were available, so sim-
ple abstracted models replace the missing models. For this purpose, 45 simple
models were made. These parameters were derived from the system level risk
estimation. Two prototype wafer scanners were assembled for the XT:850E de-
velopment project. One critical component was assembled and tested first in
prototype 2 and then disassembled and assembled into prototype 1. Prototype
1 was then fully qualified and the product was released to the manufacturing
department and customer.

An integration and test process simulator has been used to simulate the com-
ponents that are used to form a wafer scanner. Two thousand different instances
were generated for each component. The execution of the derived integration
and test sequence was simulated using these ‘developed’ 2000 components.
The duration, cost and remaining risk for each of the simulations has been
recorded. Additionally, the number of (simulated) faults found and the number
of faults excluded has been recorded. Excluded fault states are faults that are
diagnosed not to be present, fixed or faults excluded by passed test cases.

The histogram of the total test duration is depicted in Figure 42. The percent-
ages on the righthand side of the graph indicate the cumulative percentage of
the simulations. The median lies around 82 days. This means that if the dead-
line is 82 days, this deadline is met with a 50% probability. The range of the
total test duration lies between 70 and 96 days, which is a difference of around
1 month.
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Figure 42. Histogram of the total test duration for prototype 1 of the XT:850E wafer
scanner

The detailed risk, cost and failure profiles are depicted in Figure 43. The top
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Figure 43. Detailed risk, cost and failure profile as function of time
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graph depicts the remaining risk in the system and the excluded risk. The re-
maining risk is the risk that is still in the components and interfaces of the sys-
tem. The excluded risk is the risk removed by passed test cases, diagnosed failed
test cases and fixes. The excluded risk remains the same if no test-diagnose-fix
tasks and integration tasks are performed. This meant that no test cases were
planned, while in practice test cases that were planned on other, more busy,
systems were scheduled on this machine. This is not depicted. This is the case
between day 0 and day 20 and day 33 and 64. A complete system is first built
between day 0 and day 20, followed by a qualification phase between day 20
and 33, where the system is qualified in this period. Then the risk remains at
the same level until the critical component is delivered on day 64. The risk in-
creases because of the assembly of the critical component and then the risk is
reduced until the target level is reached on day 78.

The middle graph depicts the number of faults that are actually found in the
system and the number of faults excluded by passed test cases. Excluding and
detecting faults is only performed when test-diagnose-fix tasks are performed.
This explains the flat line between day 0 and day 20 and between day 33 and 64,
where no test cases are executed. The decrease in the number of excluded faults
is caused by a removal of components from the system, because a new compo-
nent version was introduced. The number of detected faults only increases and
does not decrease when a component is removed, because the number of faults
found is a KPI of the process and not a KPI of the components in the system
itself.

The bottom graph depicts the cost that is spent on integration and testing.
The cost increases with each executed integration task or test-diagnose-fix task.
The cost of each task is added to the system level cost at the end of each task.
This explains the stepwise increase of the cost between day 0 and day 20, where
relatively long assembly tasks are performed.

4.1.5 Conclusions

In this section, we presented a method to analyze and compare system-level
integration and test strategies. The key performance indicators of such integra-
tion and test strategies are defined as total integration and test duration Φ, cost
C and remaining risk RR. The method is supported by a set of techniques en-
abling designers to model and simulate integration and test strategies.

Following this method, the integration and test sequence of a newly developed
wafer scanner has been modeled and analyzed. The analysis results indicate
large flat areas in the risk graph, indicating the possibility for additional test-
diagnose-fix tasks and the criticality of the component delivered on day 64.
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4.2 PLANNING AND ANALYS IS OF TEST-DIAGNOSE -F IX TASKS

This section is based on ‘Analysis of test-diagnose-fix strategies for complex
manufacturing machines’ [I. de Jong et al., 2007e] and describes the elements
of a test strategy and the analysis method for single test-diagnose-fix tasks.

A test-diagnose-fix task is often planned by the executer of the test cases: the
tester. The tester determines the sequence in which test, diagnose and fix tasks
are performed, based on the available set of test cases, the goal of the test-
diagnose-fix task, the available resources, the chosen test process and some-
times the results of previous test cases. The resulting sequence of test, diag-
nose and fix tasks is executed on the system under test. Obtaining the sequence
of test, diagnose and fix tasks is increasingly difficult, because the number of
available test cases increases with an increase in the complexity and size of the
system. An increase in the number of test cases results in an increase of the
number of diagnosis and fix tasks that are possibly executed. Consequently, the
number of possible test-diagnose-fix sequences increases. Additionally, the test-
diagnose-fix sequence becomes more important, because this sequence directly
influences the duration and cost of the test-diagnose-fix task. The duration and
cost of a test-diagnose-fix task are important parameters for an integration and
test sequence, because of the pressure to deliver new products of high quality,
faster and cheaper. A more structural integration and test sequence selection
method is required, such that the best integration and test sequence is selected.
Common performance analysis techniques of test-diagnose-fix tasks only fo-

cus on the quality of the product and how the best quality is reached. Time does
not matter in this context. Furthermore, these analysis techniques use specific
mono-disciplinary techniques to measure the performance of test-diagnose-
fix task. Examples of a mono-disciplinary performance technique are so-called
‘software test techniques’ as defined in [BCS/SIGIST, 2001]. The applicability
of the analysis method for test-diagnose-fix tasks on systems of different disci-
plines is important, because nowadays integration and test sequences assemble
and test components of multiple disciplines. Equally important is the applica-
bility of the analysis method across the integration and test plan. This includes
the lowest level component test-diagnose-fix tasks and the highest level system
test-diagnose-fix tasks. In this way, test-diagnose-fix tasks can be compared with
each other and the results can be taken into account in the overall integration
and test plan.

4.2.1 Test-diagnose-fix strategy

A test-diagnose-fix task executes test, diagnose and fix tasks according to a test-
diagnose-fix sequence. The restrictions of a test-diagnose-fix sequence are: 1) a
diagnose task must be preceded by a test task , 2) a fix task must be preceded by
a diagnosis task. All other combinations of tasks are allowed in a test-diagnose-
fix sequence. However, not all combinations are typically considered for every
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system under test. A test-diagnose-fix strategy, or test strategy in short, reduces
the number of combinations that are considered. In other words, a test strategy

In other words, a
test strategy
determines how a
sequence of test,
diagnosis and fix
tasks is formed.

determines how a sequence of test, diagnosis and fix tasks is formed. Many de-
finitions of a test strategy exist in literature. The most used definitions include
the test environment [Sasidhar et al., 1997], the individual test cases [Tai, 1990;
BCS/SIGIST, 2001], multi-chip module testing [Flint, 20-25 Oct 1996], test se-
quencing [Cai et al., 2005], test-diagnose-fix task analysis [Benkahla et al., 1996;
Mahoney, 22-25 Sep 1997] and the positioning of test-diagnose-fix tasks [Kung
et al., 1995]. The most comprehensive definition of a test strategy is given in
the first table in [Farren and Ambler, 1995]. This definition of a test strategy
includes almost everything somehow related to a test-diagnose-fix task.
Our definition of a test strategy is more restricted if compared with the gen-

eral definition in [Farren and Ambler, 1995]. Not everything related to a test-
diagnose-fix task is included into our definition. Only the elements that have
an effect on the cost, duration and remaining risk of a test-diagnose-fix task
are included. A test strategy determines how the test, diagnose and fix tasks
are scheduled, how test, diagnose and fix tasks are sequenced and when the
test-diagnose-fix sequence is stopped. All three elements of a test-diagnose-fix
strategy are discussed in detail next.

Test process configuration

The test process configuration defines how test, diagnose and fix tasks are
scheduled. The test process configuration influences the total test duration, cost
and remaining risk of a test-diagnose-fix task and is therefore an important as-
pect to consider in a test-diagnose-fix strategy.
The first test process configuration discussed here is the parallel test process

configuration. This test process configuration is often used in a time-to-market
driven environment, like test-diagnose-fix tasks of an ASML wafer scanner. Test-
ing, diagnosing and fixing is done in parallel. Consequently, fixes are applied
and the system under test is changed while the test-diagnose-fix task is not fin-
ished yet. A Gantt chart of an example test-diagnose-fix sequence, scheduled us-
ing a parallel test-diagnose-fix process configuration, is depicted in Figure 44.
The duration of the test-diagnose-fix task is depicted along the x-axis. The re-
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Figure 44. Gantt chart of the parallel process configuration
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sources used for test execution, diagnosing and fixing problems are positioned
along the y-axis. In this case, two fixers are available. Test execution task tst1 is
executed first and this test fails. A diagnosis task diaT1 is started in parallel with
the next test execution task. The diagnose task is succeeded by a fix task f ix1
that fixes the problems found in the diagnose task. The sequence continues un-
til test 5 is executed, all failing test cases are diagnosed and fixes are developed.
No re-testing is performed.

The second test process configuration, the sequential test process configuration,
is a test process configuration where diagnosing, fixing and applying fixes is per-
formed after the execution of all test cases. The system under test is not changed
while test cases are executed. This test process configuration is used when the
execution of test cases is outsourced to another organization. Test cases are exe-
cuted and the results are passed to the development organization. This strategy
is also used for test-diagnose-fix tasks that are executed automatically during the
night or weekend. The results are analyzed on the next day. An example Gantt
chart of the sequential test process configuration is depicted in Figure 45.
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Figure 45. Gantt chart of the sequential process configuration

A third test process configuration discussed here is the interleaved test process
configuration. This test process configuration executes diagnosis and fixes be-
tween, not in parallel with, test tasks. An example of this test process configura-
tion can be observed during the system level design qualification of ASML wafer
scanners. The nanometer performance of a wafer scanner is measured for the
first time in this test-diagnose-fix task. When a test case fails, testing is stopped
and not continued until the problem is diagnosed and fixed. Diagnosis and fix-
ing is interleaved with test execution. An example Gantt chart of the interleaved
test process configuration is depicted in Figure 46.
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Figure 46. Gantt chart of the interleaved process configuration
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Test sequencing

The second element in the test-diagnose-fix strategy is the test sequence. A test
sequence GT is created using a test sequencing algorithm ΠT . We divide the
test sequencing algorithms into two groups: off-line and on-line test sequencing.
The first group, off-line test sequencing, does not take the result of the previ-

ous test into account when the next test case is selected i. e. the test sequence
is derived before the test-diagnose-fix task starts. Examples are risk-based test se-
quencing [Rothermel and Harrold, 1996] [Harrold et al., 2001] [Amland, 2000]
and random test sequencing. A framework for sequencing algorithms is defined
first. The sequencing algorithms that are used further on are defined using this
framework.
A sequencing algorithm ΠT that sorts the test cases can be defined as a map

function according to Equation (4.9). The map function, ΠT
n, returns for each

j-th element in the test sequence GT the corresponding index of test case t in T

Π
T
n : {1, 2, ..., n} → {1, 2, ..., n} (4.9)

where, ΠT
n(1) = π1, ΠT

n(2) = π2, ... ,ΠT
n(n) = πn, with the integers

π1,π2, ...,πn all distinct, and

Xπ1 ≥ Xπ2 ≥ ... ≥ Xπn (4.10)

Sorting function Xπj represents the jth smallest value for function Xπ of a test.
The calculation of function X determines the resulting sorted test sequence.
The second group, on-line test sequencing, takes the result of each individual

test case into account when the next test case is selected. The next test case
can be determined when the result of the previous test case is available. In ex-
ploratory testing [Kaner et al., 1999] and adaptive testing [Levendel, 2002], this
technique is used to manually adapt the direction of testing while performing
tests. The sequencing algorithm ΠT is in these cases the tester who selects the
test case that is executed next. The remainder of this section describes five func-
tions to determine the sorting function as introduced in Equations (4.9) and
(4.10). A telephone example is used to illustrate some of the sorting properties.
The telephone example is a system test model depicted in Table 10.
Random test sequencing
The random sequencing technique selects test cases randomly from the avail-
able test set T and can be seen as a sorting algorithm Πn as defined in Equations
(4.9) and (4.10). The sorting function Xπj is calculated using Equation (4.11) with
the resulting integers Xπ1 , Xπ2 , ..., Xπn all distinct.

Xπj → random(n) (4.11)

One of the possible random test sequences for the telephone example is
GRa = [t1, t3, t0, t2, t5, t4].

Ordered test sequencing
The ordered test sequencing technique selects test cases in the order of test case
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S / T t0 t1 t2 t3 t4 t5 P I ϕF ϕAF

s1 0.2 0.5 0 0 0.3 0 10% 7 2 1
s2 0.2 0 0.5 0 0.3 0.3 10% 5 2 1
s3 0.2 0 0 0.5 0 0.3 10% 3 2 1
s4 0.2 0 0 0 0.3 0 10% 3 2 1
s5 0.2 0 0 0 0 0.3 10% 3 2 1
C 3 1 1 1 2 2
ϕT 6 2 2 2 4 4
ϕD 10 1 1 1 6 6

Table 10. A test model for the telephone example

definition. The order of definition is defined as a list O consisting of distinct
integers. The function Xπj can be determined using Equation (4.12):

Xπj → O(j) (4.12)

The ordered test sequence for the phone example would be GO =
[t0, t1, t2, t3, t4, t5] when the order of definition is defined as O = [0, 1, 2, 3, 4, 5].

Risk-based test sequencing
This technique sorts test cases with the highest risk first using Equations (4.9)
and (4.10). Risk-based testing is frequently used in practice. Test cases that
cover the highest amount of risk are executed first if a risk-based test sequence
is used. This approach is beneficial if the available test time is limited (less than
the required test time) and the risk in the system is relatively low.
Again, this sequencing algorithm can be seen as a sorting algorithm as de-

fined in Equations (4.9) and (4.10). The sorting function is the risk for each test
case, R(j), as calculated using Equation (4.13):

Xπj = R(j) =
∑

s∈S

P(s)I(s)Rts(j, s) (4.13)

Note that the system test model contains all information that is required to
calculate the risk reduction of a test case. The resulting risk-based test sequence
for the phone example is GRi is [t4, t0, t1, t5, t2, t3], where Xπ1 = 0.45, Xπ2 = 0.42,
Xπ3 = 0.35, Xπ4 = 0.33, Xπ5 = 0.25 and Xπ6

= 0.15.

Risk-cost-based test sequencing
This technique sorts test cases according to the highest risk/cost ration. The
normal risk-based test sequencing technique does not take cost into account.
Test cases that cover a lot of risk and are very costly, compared with the other
test cases, are placed first in the normal risk-based test sequencing technique.
A combination of cheaper test cases that together cover the same amount of
risk could be more beneficial.
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The risk/cost-ratio is calculated using Equation (4.14).

Xπj =
R(j)

CT (j)
=

∑

s∈S

P(s)I(s)Rts(j, s)

CT (j)
(4.14)

The resulting risk-cost-based test sequence for the phone example is GRC

is [t1, t2, t4, t5, t3, t0], where Xπ1 = 0.35, Xπ2 = 0.25, Xπ3 = 0.23, Xπ4 = 0.17,
Xπ5 = 0.15 and Xπ6

= 0.14.

Information gain-based test sequencing
This technique sorts test cases based on the information gained per test case
using Equations (4.9) and (4.10) and based on [Raghavan et al., Jan 1999].
Information in this context is maximal when the pass probability of a test case
is closest to 50%. Hence, a good test case is a test case that covers fault states
with a failure probability of 50%. This way, the pass probability of the test case
is also 50%, i. e. the test case has a 50% probability to detect a fault state and
50% probability to prove the absence of certain failt states in the system. This
information gain is corrected for test cost, such that the cheapest test with the
highest information gain is selected. The function used for sorting, the cost
corrected information gain for each test case, is calculated using Equation (4.15),

Xπj =
IG(j)

CT (j)
=
−
(

pp(j)log2pp(j) + pf (j)log2pf (j)
)

CT (j)
(4.15)

where pp(j) is the pass-probability of test j and pf (j) is the fail probability. The
pass probability is defined by

pp(j) =
∏

s∈Rt(j)

(

1 − P(s)Rts(j, s)

)

(4.16)

where Rt(j) is defined as follows:

Rt(j) = {s | s ∈ S ∧ Rts(j, s) > 0} (4.17)

and the corresponding fail-probability as

pf (j) = 1 − pp(j) (4.18)

One of the resulting information gain-based test sequences for the phone
example is GIG is [t1, t2, t3, t4, t5, t0], where Xπ1 = Xπ2 = Xπ3 = 0.286,
Xπ4 = Xπ5 = 0.214 and Xπ0 = 0.152. The algorithm could result in other
solutions as well, because the information gain and cost of test 1 through 3 is
the same, which is also the case for test 4 and 5.
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Test sequencing - On-line test sequencing

The on-line test sequencing techniques use the same algorithms to sequence
test cases as off-line test sequencing. The difference is an update of the failure
probabilities of the fault states after each test, diagnosis and fix task. The up-
date of the failure probability is described in Equation 4.23. The updated failure
probabilities are taken into account for the selection of the new test case in the
sequence instead of the initial model.

Test stop criteria

The next element of a test-diagnose-fix strategy is the test stop criterion. The
test stop moment influences the total test duration Φ, the total test cost C and
the remaining risk in the system RR. The remaining risk RR in the system is
calculated using Equation (4.19).

RR =
∑

s∈S

P(s)I(s) (4.19)

The duration and cost of the executed test cases contribute to the overall test
duration and cost. The actual faults in the system and when these faults are
detected result in diagnosis and fix tasks that introduce additional cost and du-
ration. The duration, cost and remaining risk of the test, diagnosis and fix se-
quence depends on the test stop criterion. Figure 47 describes the remaining
risk and cost in a test-diagnose-fix task as function of the test duration includ-
ing these test stop criteria for an example test-diagnose-fix task:

• Stop testing when a certain risk level is reached, e. g. RR = 25.

• Stop testing when a certain deadline is reached, e. g. Φ = 200.

• Stop testing when a test cost level is reached, e. g. C = 125.

In practice, it is difficult to determine if a test stop criterion based on remaining
risk is reached, because it is based on the estimation of the risk for each fault
state. A combination of estimated risk and other test metrics should be used to
determine if the stop criterion, based on risk, is reached.

4.2.2 Analysis of test-diagnose-fix tasks

The performance of a test-diagnose-fix task is described by three key perfor-
mance indicators (KPI): Time Φ, Cost C and remaining risk RR. These general
KPI are independent of the type of system under test, abstraction level of the
test case and level of aggregation in the system. Time is a measure for the du-
ration of the test-diagnose-fix task. Time is spent whilst executing test cases,
diagnosing problems, fixing faults. Additional waiting time could be spent if
test, diagnose or fix resources are not available. Cost is a measure for the cost
involved in executing the test-diagnose-fix task and is built up by executing test
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Figure 47. Test stop criteria depicted

cases, diagnosing failed test cases and fixing results. Remaining risk RR is a
measure of the quality of the system after test execution. Executing test cases,
diagnosing and fixing problems all reduce the failure probability of the covered
fault states. In this way, remaining risk is reduced. A test-diagnose-fix task that
quickly reduces all risk at low cost is considered good, while a test-diagnose-fix
task that does not reduce risk at high cost slowly is considered a test-diagnose-fix
task of bad quality.
The execution of a single test-diagnose-fix task leads to a single value for the

test duration, cost and remaining risk. However, the faults actually present in
the system influence the duration, cost and remaining risk of a single execu-
tion of a test-diagnose-fix task. Any combination of faults can be present in a
system. Therefore, the combination of possible faults needs to be taken into
account when the KPI of a test-diagnose-fix task are determined. Taking into ac-
count the actual faults in the system can be done in various ways. First, the test-
diagnose-fix task can be executed many times on many faulty systems and the
KPI can be measured and a statistical evaluation of the test duration, cost and
remaining risk can be performed. Large numbers of different systems under
test are required for this approach. This is possible in a volume manufacturing
environment, but not in a development environment with only a few systems
under test.
A different approach to determine the KPI is using a model of the system un-

der test and a model of the test process. Many ‘systems under test’ are generated
for a newly developed system that is not yet available. The different test process
configurations, test sequencing techniques and stop criteria can be selected in
the test process model. The expected values of the KPI are determined as well
as the distribution of test duration, cost and remaining risk.
The variation in test duration, cost and remaining risk is influenced by the
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test, diagnose and fix sequence and the actual faults in the (modeled) system
under test. The actual faults in the system under test that can be present in

The actual faults in
the system under
test that can be
present in any
combination,
results in 2l fault
state combinations
for a system of l
fault states.

any combination, results in 2l fault state combinations for a system of l fault
states. Executing a test-diagnose-fix task for each combination of fault states is
too computationally expensive for large systems. Therefore, a simulation model
of the test process has been developed that creates faulty systems under test
using a binomial distribution and executes test cases according to a predefined
strategy on these created systems under test. A schematic overview of the test-
diagnose-fix process is depicted in Figure 48. The sub-processes in the test-
diagnose-fix process use the system test model as input and perform sub-tasks
on this system test model. All sub-processes are explained in detail. A process is
depicted as a circle, while the inputs and outputs of the processes are depicted
as edges.

D

SEL TST DIA

t

pass

S

GT

FIXSEQT

fail

t (re-test)

S (fixed)END

Φ, C, RR

Π
T

Figure 48. Overview of the test-diagnose-fix process

The SEQT process sequences a set of test cases using a sequencing algorithm
ΠT and system test model D. The resulting test sequence GT is passed to the
Test selection process SEL. The Test selection process SEL dispatches the first test
case in the sequence to the test case execution process TST and waits for the
result of the test case. When the result is received, the next test case in the
sequence is dispatched to the test execution process. Meanwhile, test cases can
be received that require re-execution. These (re-)test cases are placed first in the
remainder of the test sequence. The diagnosis process DIA diagnoses failed test
cases. Diagnosis is assumed to be perfect. This means that diagnosing a set of
candidate fault states results in two sets: a set of fault states that are present
and a set of fault states that are not present. The faulty states are fixed in the
FIX process and the non-faulty states are excluded from the set of possible fault
states. The fixed fault states are buffered and the fix is applied on the system
under test. Next the details of the test execution, diagnosis and fix process are
described using:

• a sequence of test cases G,

• the initial set of present fault states: SS,
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• the set of detected fault states: SD,

• the set of candidate sets of possibly present fault states: Sc,

• the set of fault states that are not present (excluded): SE,

• the set of fault state sets that are to be fixed: Xf .

Test execution TST

The execution of test cases in the TST process is described next. Executing a test
case t takes ϕT (t) time and costs CT (t). Both are properties of the test case. The
test execution process is described as a set of equations that take the sequence
of executed test cases and the current test case t as input. The sequence of test
cases, combined with the current test case t is described as Gt.
The coverage of test case t on the fault states in the system determines if a test

case can detect these fault states. The fault states that can possibly be detected by
test case t are described using:

SD(t) = {s | s ∈ S ∧ sample(dist) < Rts(t, s)} (4.20)

The set of candidate fault sets contains a set of fault states for each failed
test case and is updated if the detectable fault states are actually present in the
system after executing test sequence G:

Sc(Gt) =

{

Sc(G) if SD(t) ∩ SS(G) = ∅

Sc(G) ∪ {Rt(t) \ SE(G)} if SD(t) ∩ SS(G) 6= ∅
(4.21)

where Rt(t) describes the fault states that are covered by test case
t:Rt(t) = {s|s ∈ S ∧ Rts(t, s) > 0.0}. The set of fault states that are known
to be absent in the system is modeled as SE(Gt), i. e. the excluded fault states.
If a test case fails, all covered fault states are added to the candidate set, except
those fault states that are already known to be absent in the system. Initially,
the candidate set is empty: Sc(ǫ) = ∅.

The set of excluded fault states contains those fault states that are known
to be absent. A fault state is known to be absent if: 1) The fault state is fixed, 2)
the fault state is diagnosed not to be present or 3) the failure probability of the
fault state is below a minimal level. The first and third case are described in this
test execution process, the second case is described in the diagnosis process. The
initial set of excluded fault states is empty: SE(ǫ) = ∅. The excluded fault state
set is updated according to:

SE(Gt) = SE(G) ∪ {
⋃

Xf ∈Xf (Gt)

Xf } ∪ {s | s ∈ S ∧ P(s, Gt) < 10−7} (4.22)

where SE(G) is the previous set of excluded fault states. The second part excludes
fixed fault states and the third part excludes fault states with a failure probability
below 10−7.
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The failure probability of every fault state, after executing a sequence of test
cases G, is calculated to determine if fault states can be excluded. This failure
probability is also used to determine the next test case to be executed when an
on-line test sequencing method is used. The proper way to determine the fail-
ure probability after executing a sequence of test cases requires that all combi-
nations of fault states are taken into account. This is computationally intensive,
therefore the probability estimator of [Boumen et al., Jan. 2008] is used. The
failure probability is estimated using:

P(s, G) = (1 − P(s, G))
∏

S′∈Sc(G)∧s∈S′

(1 −
P(s, G)

∑

si∈S′
P(si, G)

) (4.23)

Initially, the probabilities are set to the a-priori probabilities: P(s, ǫ) = P(s). The
probabilities of the fault states that are excluded (by any of the three methods)
is set to 0.0:

P(s, G) = 0.0 for all s ∈ SE(G) (4.24)

Finally, the set of fault states that are present in the system after executing test
sequence Gt is updated by removing the fault states that can be detected by the
test SD(t) and that are present in the system SS(G) after executing sequence G:

SS(Gt) = SS(G) \ (SD(t) ∩ SS(G)) (4.25)

The initial set of fault states SS(ǫ) = SS is equal to the set of fault states that are
present in the beginning.

Diagnosis DIA

The diagnosis of failed test cases is assumed to be perfect. This means that
fault states that are present in the system are correctly diagnosed to be present.
Fault states that are not present in the system are diagnosed not to be present.
Diagnosing a failed test case t takes ϕD(t) time and costs CD(t).
The set of excluded fault states is updated with the fault states that are diag-

nosed not to be present in the system, according to:

SE(Gt) = SE(G) ∪ (SD(t) \ SS(G)) (4.26)

The candidate set is updated as well as the failure probabilities of the fault
states that are diagnosed.

Sc(Gt) = {sc \ (SD(t) \ SS(G)) | sc ∈ Sc(G)} (4.27)

P(s, Gt) = 0.0 for all s ∈ (SD(t) \ SS(G)) (4.28)

P(s, Gt) = 1.0 for all s ∈ (SD(t) ∩ SS(G)) (4.29)
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Fixing FIX

Fixing fault states is modeled as an update of the candidate set and a placement
of the fix in the buffer. Fixing a fault state s takes ϕF(s) time and costs CF(s). The
set of fixed fault states is added to the fix buffer Xf :

Xf (Gt) = Xf (G) ∪ {SD(t) ∩ SS(G)} (4.30)

Then, the candidate set is updated according to:

Sc(Gt) = {sc \ S
′ | sc ∈ Sc(G) ∧ S′ ∈ Xf (Gt)} (4.31)

4.2.3 Illustration: Comparing test strategies

The analysis method as introduced in the previous sections is illustrated in this
section. For this purpose, a large number of system test models are generated.
The KPI of test-diagnose-fix tasks performed on these models are determined
for different test strategies. The system test model is varied in this illustration.
The system test models are randomly generated to exclude effects of specific
modeling techniques. A number of parameters are varied to analyze the effect
of these parameters on the test duration. First, the number of fault states and
test cases are varied to determine what the minimum model size is. Models
that are too small lead to unstable results, whilst models that are too large result
in long simulation durations. The probability of the fault states and the test
coverage are also varied. The cost and remaining risk are not considered in this
experiment, because the effect of different systems under test on the KPI of a
test-diagnose-fix task can be explained by using test time only.

The size of the model

The first experiment is performed to illustrate the effect of the size of the sys-
tem test model on the test duration. The minimum model size that is used for
further experiments is derived using this experiment. The failure probability
of the fault states is varied in the range 10%, 25%, 50% and 90%. The size of
the model is varied in two directions: the number of test cases is varied and the
number of fault states is varied. A number of reference models have been gener-
ated for this purpose. The reference models contain either 4, 12 or 20 test cases
with a total duration of 10.0 time units. The number of fault states in the model
is also 4, 12 and 20. The resulting models are large enough to illustrate the ef-
fect of the varied parameters and these models are small enough to minimize
the computational effort.
Test models have been created with a random coverage for each of the test

cases on the fault states with an average density, ρ (Equation (4.32)), of 0.25 for
all models. Five models for each combination of number of fault states, number
of test cases and failure probabilities are created. The results are averaged over
these five models. The remaining risk stop criterion is set to 0.2 to ensure that
a reasonable number of test cases is executed. No stop criterion is set for total
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test duration and cost. A random test selection technique is used. A random
test sequence results in many different test sequences and by this results in
the highest variance in test duration, cost and remaining risk. A random test
sequencing technique is the worst-case situation. One thousand simulations
were performed with these settings for each test model, because one thousand
simulations leads to a stable average test duration.

ρ =

∑

t∈T,s∈S

Rts(t, s)

|T | ∗ |S|
(4.32)

The resulting average test duration Φ and the average standard deviation σΦ for
each of the failure probabilities are presented in Tables 11 to 15.

(a)

Φ

|S| / |T | 4 12 20

4 7.73 2.58 1.56
12 22.93 7.13 3.57
20 52.71 8.83 4.86

(b)

σΦ

|S| / |T | 4 12 20

4 3.103 1.097 0.618
12 7.473 2.486 0.950
20 12.617 2.297 1.093

Table 11. Average duration (a) and standard deviation (b) for P = 0.1

(a)

Φ

|S| / |T | 4 12 20

4 19.34 5.33 3.03
12 46.23 9.28 5.29
20 64.93 12.87 6.77

(b)

σΦ

|S| / |T | 4 12 20

4 9.056 2.426 1.313
12 13.168 3.333 1.823
20 19.741 4.524 2.139

Table 12. Average duration (a) and standard deviation (b) for P = 0.25

(a)

Φ

|S| / |T | 4 12 20

4 36.03 6.33 3.69
12 84.55 13.07 6.28
20 137.15 18.12 7.82

(b)

σΦ

|S| / |T | 4 12 20

4 19.545 3.040 1.837
12 39.641 6.163 2.263
20 72.568 7.811 2.761

Table 13. Average duration (a) and standard deviation (b) for P = 0.5

The following conclusions can be drawn from these results.
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(a)

Φ

|S| / |T | 4 12 20

4 25.03 6.23 3.66
12 49.77 14.41 7.24
20 53.84 19.28 10.93

(b)

σΦ

|S| / |T | 4 12 20

4 16.775 3.911 2.187
12 43.615 7.782 3.677
20 33.604 13.434 6.881

Table 14. Average duration (a) and standard deviation (b) for P = 0.9

(a)

Φ

|S| / |T | 4 12 20

4 22.03 5.12 2.98
12 50.87 11.18 5.60
20 77.15 14.77 7.59

(b)

σΦ

|S| / |T | 4 12 20

4 12.120 2.619 1.489
12 25.974 5.070 2.178
20 34.633 7.017 3.218

Table 15. Average duration (a) and standard deviation (b) for all failure probabilities

• The average duration of the test-diagnose-fix task decreases with an in-
crease of the number of test cases in the model. The sum of test dura-
tions of the test cases,

∑

t∈T

ϕT (t), is equal for all models with 4, 12 and 20

test cases. Consequently, the cost of a single test in the 20-test case model
is 1

5 -th of the cost of a test case in the 4-test model, while the coverage is

roughly the same. This results in a reduction of a factor 7 to 10 in average
test duration. The main cause of this effect is the last executed test case
that brings the remaining risk of the test-diagnose-fix task below the tar-
get. This last test case is relatively lengthy in the 4-test case models. This
is illustrated in Figure 49, where the duration of t1 is less than t2. The
total test duration is longer if t2 is selected and the remaining risk target
is reached by this test case.

ϕt1

ϕt2

ϕ

RR

t1

t2

Target RR

Figure 49. Two last test cases with different durations affecting the total test duration
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• The average duration of the test-diagnose-fix task becomes higher when
the number of fault states in the test model increases. The reason for this
effect is the increase of the number of fault states in the system causing an
increase of the system risk. The 20-fault state system contains five times
more risk than the 4-fault state system. This results in an increase of the
test duration of a factor 2,5 to 3,5 on average (see Table 15(a) for details).

• Further analysis reveals some combination effects of the above. On the
other hand, the used test models also have an effect of the test duration.
In practice, the model is given and not considered a variable as it is in this
illustration.

The number of test cases and fault states to be used for the remainder of this
illustration is set to |S| = |T | = 12. The usage of models with four test cases
or four fault states leads to unstable results. Using more than 12 fault states
increases the simulation time and does not increase the stability of the results
further.

The failure probability

This experiment is performed to illustrate the effect of an increasing failure
probability on the total test duration. A system test model of 12 test cases, 12
fault states is used. Sixteen test models are generated for each of the failure
probabilities in the list: 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80% and 90%.
The average density of all models is 25%. Small variations in coverage between
models can be seen, because every model is newly created. The results of 1000
test process simulations for each of the models are depicted below in Table 16
and Figure 50. Figure 50 only contains the average total test durations, while
Table 16 also contains the standard deviation, minimum and maximum values.
The following conclusions can be drawn from these results:

P 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Φ 6.39 9.52 11.18 12.24 12.98 12.42 15.98 13.63 14.01
σϕ 1.974 3.315 4.465 5.289 5.363 5.357 8.577 7.478 7.870

ϕmin 1.67 2.50 2.50 2.50 2.50 2.50 2.50 2.50 2.50
ϕmax 21.67 40.83 71.67 112.50 110.00 64.17 248.33 128.33 132.50

Table 16. Total test duration results for varying failure probabilities

• An increase in the failure probability of the fault states in the test model
results in an increase of the total test duration. This increase in total test
duration is not linear. A logarithmic curve fit is depicted in Figure 50. A
small increase of the lower failure probabilities leads to a large increase in
total test duration. This effect is less apparent for the higher failure prob-
abilities. Test time reduction can be obtained by decreasing the failure
probability. A trade-off needs to be made between the cost of decreasing
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Figure 50. System test model failure probability versus total test duration

the failure probability and the gain in total test duration. Decreasing the
failure probability can be done by executing additional test cases in an
earlier (parallel) test-diagnose-fix task or by increasing the quality of the
system under test. The additional duration involved in these tasks needs
to be taken into account when comparing the total test duration.

• The total test duration for system test models with a failure probability of
70% contains an outlier. One test model is present in the dataset, that can
result in a total test duration of 248.33. One of the fault states in this test
model is covered by a single test. The coverage of this single test on this
fault state happens to be very low. One (randomly selected) test sequence,
consists of 149 times this test only and results in a very long test duration.
Removing this test model from the dataset results in more consistent re-
sults (not depicted).

The test coverage (density)

This experiment is performed to illustrate the effect of the test coverage on the
total test duration. The coverage of the test cases in the test model is measured
by the density ρ of the test model according to Equation (4.32). The range of den-
sities used for this experiment is (0.1,0.2,0.3,0.5,0.7,0.8,0.9). Sixteen models
were generated for each density in the range. Because the generation of models
does not result in a model with an exact density as required, an error in the
density of 0.05 is allowed for each model. The resulting models have a minimal
density of the target density and maximal density of the target density +0.05.
The results of this experiment, the average total test duration Φ and standard
deviation of the total test duration σΦ, are depicted in Table 17. Figure 51 graph-
ically depicts the average total test duration as function of the density of the test
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model. Additionally, the fitted power function is depicted in the graph. The

ρ Φ σΦ

0.1 55.09 17.455
0.2 17.81 7.261
0.29 8.55 3.403
0.5 4.28 1.470
0.69 2.66 1.115
0.8 2.07 0.932
0.9 1.46 0.807

Table 17. Result of the density experiment (average test duration and standard deviation)

0

20

40

60

80

100

120

140

160

0 0.2 0.4 0.6 0.8 1

System test model density

T
o

ta
l 

te
st

 d
u

ra
ti

o
n

Average total test duration

Minimal total test duration

Maximal total test duration

Power (Maximal total test duration)

Power (Average total test duration)

Power (Minimal total test duration)

Figure 51. System test model density versus total test duration

following conclusions can be drawn based on these results:

• A higher density (coverage of the test cases on the fault states) leads to a
lower total test duration. The reason for this is twofold. First, a test case
with a high coverage on a fault state s results in a high reduction of the
failure probability of a fault state when the test case passes. The target re-
maining risk is reached earlier this way. Second, a test case with a high
coverage on a fault state has a high probability of detecting the fault state
if the fault state is actually in the system. Fault states are found early in
the test sequence and can therefore be diagnosed and fixed earlier. Diag-
nosing and fixing a fault state also reduces the risk.

• A density increase of 10% to 30% is very beneficial for the total test dura-
tion. A factor three in test coverage results in a factor six reduction in total
test duration. The cost of increasing the test coverage from 10% to 30%
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is not taken into account here. Increasing the density (coverage) beyond
30-40% seems not beneficial.

• The target risk in the system is kept at the same level for all experiments.
Systems with a very low target risk (systems with very high quality re-
quirements) should benefit from an increase in test coverage. This is not
investigated in detail. In general, it depends on the system test model,
the number of test cases, the fault states and the length of the test cases,
whether increasing the coverage is beneficial.

The results as presented in this illustration are created using generated models
and illustrate the effect of the modeling parameters on the KPI. The results of
the illustration match with intuition about testing and the relationship between
the system under test, the test cases and the KPI. The effect of the test sequence
is not illustrated, nor are, the combination effects of different parameters. For
this, it is better to perform a case study. Many combinations of parameters lead
to different results, while the goal of a case study is clear from the start. The
case studies presented in this section are all executed to evaluate an existing
test-diagnose-fix task, including the test sequencing technique. Furthermore,
the influence of an improved diagnosis and fix duration is investigated by two
out of the three case studies.

4.2.4 Cases

Three case studies have been performed with the test-diagnose-fix task analysis
method in three different domains. The focus of the case studies is on selecting
the best test-diagnose-fix strategy and investigating the benefit of improving the
diagnosis and fix duration. The first case study is performed on a software sub-
system. The test-diagnose-fix task of the second case study concerns a system
level functional qualification. The third case study has been performed in the
ASML manufacturing department for the final qualification of wafer scanners.

Case 1: Software sub-system test-diagnose-fix strategy

This software sub-system is part of an ASML wafer scanner. The sub-system
that is used in this case study is the controlling software for Lot Production (LP).
LP consists of roughly 350.000 lines of code in around 450 files. The modeled
test-diagnose-fix task is a system level test-diagnose-fix task consisting of 54 test
cases that cover 31 fault states. LP is a mono-disciplinary sub-system consisting
of software only. The average test case duration is 76 minutes with a standard
deviation of 129 minutes. The main reason for the high standard deviation are 3
test cases with a duration of 6 hours or more. The average diagnose duration for
failed test cases is 60 minutes. The fix duration is 60 minutes also. The system
test model is depicted in Table 40 in the Appendix.
Test execution is normally planned during the weekend and fault diagnosis

and fixing failures is performed on the following Monday. The normal test se-
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quencing technique is the off-line, ordered test sequencing technique with se-
rial diagnosis and fixing. Normally, testing is stopped when all test cases are
executed once. The average remaining risk reached by the off-line test sequenc-
ing techniques is used as the test stop criterion for the on-line test sequencing
techniques. This way, a comparison on total test duration can be made between
the off-line and on-line test sequencing techniques and the best test sequencing
technique can be chosen.

The effect of different test sequencing techniques on the performance para-
meters is determined, as well as the effect of different diagnosis and fix dura-
tions for the chosen test sequences. A number of test sequencing techniques,
as described in Section 4.2.1, are used. Some of these techniques are used in
an off-line and on-line setting indicated with Of or On. A parallel process con-
figuration is indicated with P and a serial process configuration with an S. For
example, the off-line, risk-cost based test sequencing technique is indicated with
[Of/RC/P] for the parallel test process configuration and [Of/RC/S] for the ser-
ial test process configuration. Table 18 gives an description of the combination
of sequencing techniques and their abbreviation as used here and in the other
case studies.

Test sequencing Description
technique
[Of/O/S] Off-line ordered test sequencing, serial diagnosis

and fix process
[Of/O/P] Off-line ordered test sequencing, parallel

diagnosis and fix process
[Of/RC/S] Off-line risk-cost-based test sequencing, serial

diagnosis and fix process
[Of/RC/P] Off-line risk-cost-based test sequencing, parallel

diagnosis and fix process
[Of/Ra/P] Off-line random test sequencing, parallel

diagnosis and fix process
[Of/Ri/S] Off-line risk-based test sequencing, serial

diagnosis and fix process
[Of/Ri/P] Off-line risk-based test sequencing, parallel

diagnosis and fix process
[Of/iR/P] Off-line inverse risk-based test sequencing, parallel

diagnosis and fix process
[Of/IG/P] Off-line information-gain-based test sequencing,

parallel diagnosis and fix process
[On/Ri/P] On-line risk-based test sequencing, parallel

diagnosis and fix process
[On/RC/P] On-line risk-cost-based test sequencing, parallel

diagnosis and fix process
[On/Ra/P] On-line random test sequencing, parallel

diagnosis and fix process

Table 18. Table of test sequencing techniques and their abbreviation
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For this case study, the on-line test sequencing techniques perform better
in terms of the total test duration than the off-line test sequencing technique.
See Table 19 for the average test duration Φ, average test cost C and the average
remaining risk RR and see Table 20 for the standard deviations. The normal
approach, [Of/O/S], is emphasized in both tables. The average duration of an off-
line ordered test sequence in combination with a serial diagnosis and fix process
is 60.87 hours. While the duration of the on-line, risk-based test sequence with
parallel diagnosis and fixing, [On/Ri/P], is 17.3 hours. The standard deviation
of the total test duration is higher for the on-line test sequencing techniques
resulting in more variation at the test stop moment. Consequently, the standard
deviation for the cost of the test-diagnose-fix task is also larger for the on-line
test sequencing techniques.
The standard deviation of the remaining risk is much lower, 0.207 for the

original test-diagnose-fix strategy compared to 0.038 for the optimal ([On/Ri/P])
test-diagnose-fix strategy, because the target remaining risk is approached more
closely. The risk reduction of the last test cases in the original test-diagnose-fix
strategy is large, resulting in a higher standard deviation of the remaining risk.
The risk reduction of the optimal test-diagnose-fix strategy in the end phase
of testing (close to the remaining risk target) is small and results in a smaller
standard deviation of the remaining risk.

[Of/NO/S] [Of/RC/P] [Of/RC/S] [Of/Ra/P] [Of/Ri/P] [Of/iR/P]

ϕ 60.87 61.48 60.82 61.60 60.64 62.73
C 93.85 89.27 93.99 89.39 88.95 90.04
RR 0.94 0.87 0.92 0.87 0.88 0.85

[Of/IG/P] [Of/Ri/S] [Of/NO/P] [On/Ri/P] [On/Ra/P]

ϕ 61.81 60.84 60.75 17.30 44.17
C 89.42 93.19 89.02 31.10 60.24
RR 0.88 0.94 0.88 0.87 0.86

Table 19. Results for case study 1: test duration, cost and remaining risk

[Of/NO/S] [Of/RC/P] [Of/RC/S] [Of/Ra/P] [Of/Ri/P] [Of/iR/P]

σϕ 1.336 1.855 2.328 1.947 1.590 2.194
σC 3.971 2.455 5.136 2.178 1.936 2.334
σRR 0.207 0.151 0.232 0.151 0.138 0.159

[Of/IG/P] [Of/Ri/S] [Of/NO/P] [On/Ri/P] [On/Ra/P]

σϕ 1.905 1.352 1.633 3.03 9.964
σC 2.182 3.738 1.925 5.038 10.943
σRR 0.146 0.198 0.139 0.038 0.026

Table 20. Results for case study 1: standard deviation

The reduction in average total test duration for the on-line, risk-based, paral-
lel test-diagnose-fix strategy is 71% if compared with the off-line, ordered, serial
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test-diagnose-fix strategy. The standard deviation of the total test duration is in-
creased by more than a factor 2 for the online risk-based parallel strategies.

Case 2: System qualification

In this case study, a specific system function of a newly developed wafer scan-
ner is qualified. This qualification period currently consists of 53 test cases that
are executed in the order that these test cases are specified. The system func-
tion is split up into 60 sub-functions that need to be tested. The sum of the
test durations of the individual test cases is 6560 minutes (109 hours). The av-
erage failure probability of the 60 fault states is 12%. The system test model
is depicted in Table 42 in the Appendix. The normal approach during such a
functional test-diagnose-fix task is to execute all available test cases. When test
cases fail, a diagnosis is started and testing is continued. Fixes are applied to the
system under test when the fixes become available. Testing is continued after
these fixes are applied. The tester at the wafer scanner decides which test case
is executed next. No guidelines are used for this selection. This test-diagnose-
fix strategy corresponds with an off-line, random test sequencing, parallel test
process configuration indicated as [Of/Ra/P]. The normal combined diagnosis
and fix duration is 360 minutes in this system level test-diagnose-fix task. De-
velopers are constantly available to diagnose problems and develop fixes.
A range of test sequencing techniques is investigated. In addition, it is in-

vestigated if it is beneficial, in terms of total test duration, to spend effort on
minimizing the diagnosis and fix duration even further. The normal combined
diagnosis and fix duration is 360 minutes. The combined diagnosis and fix du-
rations, ϕD + ϕF, were set to 90, 180, 360 and 720 minutes.

ϕD + ϕF [Of/Ri/P] [Of/Ra/P] [Of/RC/S] [Of/Ri/S] [Of/O/P] [Of/O/S]

90 4405.42 6724.27 7280.80 7280.87 4856.50 2639.66
180 4942.63 7320.19 8042.43 7932.53 5366.35 2968.34
360 5999.05 8544.28 9493.41 9422.93 6448.33 3620.48
720 7583.41 10414.23 12295.11 12290.15 8057.89 4042.58

ϕD + ϕF [On/Ra/P] [On/RC/P] [On/Ri/P]

90 21979.85 4059.59 6212.17
180 22902.46 4783.91 6937.39
360 23675.12 5633.23 8139.05
720 24745.46 7698.30 9520.02

Table 21. Results for case study 2: average test duration

Analysis of the results reveals an improvement of almost 30% when an off-
line risk-based test sequencing with parallel diagnosis and fixing is used. Selec-
tion of the online, risk-cost-based test sequencing with parallel diagnosis and
fixing improves the average test duration by 34%. However, the on-line test se-
quencing technique requires test sequencing to take place while executing test
cases. The off-line test sequencing technique can be performed before test exe-
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ϕD + ϕF [Of/Ri/P] [Of/Ra/P] [Of/RC/S] [Of/Ri/S] [Of/O/P] [Of/O/S]

90 0.096 0.114 1.779 1.798 0.175 4.638
180 0.097 0.107 1.818 1.771 0.175 4.640
360 0.096 0.110 1.747 1.784 0.175 4.582
720 0.098 0.111 1.735 1.811 0.175 4.675

ϕD + ϕF [On/Ra/P] [On/RC/P] [On/Ri/P]

90 0.058 0.092 0.092
180 0.061 0.092 0.092
360 0.059 0.092 0.092
720 0.057 0.092 0.092

Table 22. Results for case study 2: Average risk

cution. It depends on the experience and knowledge of the test executor if the
on-line test sequencing technique can be used. The average remaining risk for
both methods is almost equal.

Case 3: Manufacturing system qualification

The manufacturing phase of a wafer scanner consists of two phases: the assem-
bly phase and the test phase. The sub-systems are assembled in the assembly
phase. The assembly phase is followed by the test phase, a test-diagnose-fix task.
The system as a whole is tested and calibrated in this test-diagnose-fix task. This
test-diagnose-fix task consists of a number of smaller test-diagnose-fix tasks, so
called job steps. One particular job step has been investigated for this case study.
This job stepmeasures (tests) and calibrates (fixes) the performance of the align-
ment system. The alignment system of a wafer scanner aligns the mask and the
wafer to each other. The required tolerance of the alignment results is between 4
and 15 nm [ASML, 2007], depending on the system type and specifications. The
job step consists of 13 test cases and 29 fault states. The average failure proba-
bility is 37.6%. The density of this test model is 0.23. The system test model can
be found in 39 in the Appendix.
Again the optimal test-diagnose-fix strategy is chosen and the diagnosis

and fix duration is varied. The average diagnosis and fix duration in the test-
diagnose-fix task of wafer scanners is ϕD = ϕF = 70 minutes. A parallel test
configuration is used in all the experiments and testing is stopped when no risk
remains in the system, i. e. RR = 0.
The resulting average test durations for several test strategies are depicted in

Table 23. The results of the reference test-diagnose-fix strategy [Of/O/P] are em-
phasized. Table 24 depicts the standard deviation and average remaining risk
of the total test duration for the selected test strategies and diagnosis and fix
durations. The test strategies that are not able to reach the test stop criterion
of RR = 0 are: [Of/Ra/P], [Of/Ri/S], [Of/O/S], [Of/RC/S] and [On/Ri/P]. The av-
erage remaining risk is not equal to 0 in these cases. The results of the test
strategies that did not meet the required stop criterion are marked with paren-
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ϕD = ϕF [Of/Ra/P] [Of/Ri/P] [Of/iR/P] [Of/IG/P] [Of/Ri/S]

17.5 430.3 403.6 497.6 507.6 375.6
35.0 681.8 621.0 820.3 829.4 577.4
70.0 1182.3 1055.2 1461.5 1482.4 933.9
140.0 2182.1 1934.7 2760.8 2776.7 1684.0

ϕD = ϕF [Of/O/P] [Of/O/S] [Of/RC/P] [Of/RC/S]

17.5 471.6 371.4 400.5 365.8
35.0 761.5 537.2 616.4 535.4
70.0 1344.5 939.1 1045.6 914.3
140.0 2481.3 1577.5 1903.6 1641.8

ϕD = ϕF [On/Ri/P] [On/IG/P] [On/Ra/P] [On/RC/P]

17.5 2093.3 1017.1 658.6 1789.7
35.0 2190.1 1396.9 787.4 2092.8
70.0 2732.3 1826.4 1041.9 2470.5
140.0 3568.3 2819.2 1603.5 3373.7

Table 23. Results of case study 3: Test duration

theses and are not taken into account.

The results of this case study show that an improvement of the average test
duration of more than 20% can be obtained by using a different test sequenc-
ing technique. The test process configuration should not be changed. Three test
sequencing techniques lead to around 20% reduction of the average test du-
ration for the normal case, where diagnosis and fixing problems both have a
duration of 70.0 minutes. These test sequencing techniques are: off-line risk-
based (-22%), off-line risk-cost-based (-22%) and on-line random (-23%) test
sequencing. The on-line random test sequencing results in a slightly higher
improvement of the average test duration when diagnosis and fixing costs 70
minutes. However, reducing the diagnosis and fix duration is not possible with
this test sequencing technique, because reducing the diagnosis and fix duration
results in an increase of the average test duration if compared with the normal
test-diagnose-fix strategy. Furthermore, the standard deviation of the test dura-
tion for the on-line random test sequencing technique is much higher than the
standard deviation of the average test duration of the normal case.

The standard deviation of the average test duration of the off-line risk-based
and off-line risk-cost-based test sequencing techniques are similar to the stan-
dard deviation of the average test duration of the normal test-diagnose-fix strat-
egy. The average test duration of the off-line risk-cost-based test-diagnose-fix
strategy is slightly lower than the average test duration of the off-line risk-based
test-diagnose-fix strategy.
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ϕD = ϕF ([Of/Ra/P]) [Of/Ri/P] [Of/iR/P] [Of/IG/P] ([Of/Ri/S])

035.0 σϕ (41.47) 31.9 30.8 30.4 (39.8)
070.0 σϕ (78.68) 64.4 63.4 62.4 (108)
140.0 σϕ (166.8) 122 122 126 (173)
280.0 σϕ (319.9) 264 246 251 (380)

ϕD = ϕF [Of/O/P] ([Of/O/S]) [Of/RC/P] ([Of/RC/S])

035.0 σϕ 32.3 (43.9) 30.7 (39)
070.0 σϕ 64 (88.1) 61.8 (76.5)
140.0 σϕ 127 (155) 119 (176)
280.0 σϕ 256 (275) 249 (299)

ϕD = ϕF ([On/Ri/P]) [On/IG/P] [On/Ra/P] [On/RC/P]

035.0 σϕ (726) 278.5 228 502
070.0 σϕ (526) 3109 239 616
140.0 σϕ (731) 439.6 284 600
280.0 σϕ (703) 492.3 402 685

Table 24. Results of case study 3: Standard deviation

4.2.5 Conclusions

A typical integration and test sequence for a complex manufacturing system
consists of many test-diagnose-fix tasks between the integration (assembly)
tasks. A tester selects a test-diagnose-fix strategy for a test-diagnose-fix task and
executes the test-diagnose-fix task on the system under test. It is increasingly dif-
ficult to select the optimal test-diagnose-fix strategy when the number of compo-
nents increases, the number of possible test cases increases and also the num-
ber of possible test-diagnose-fix sequences increases. Amethod is proposed that
is able to analyze and compare sequences of test, diagnose and fix tasks, such
that the best test-diagnose-fix sequence can be selected. The key performance
indicators, duration, cost and remaining risk, are analyzed for a test-diagnose-
fix sequence using this method. No specific mono-disciplinary knowledge is re-
quired for this analysis. This method is therefore applicable for test-diagnose-fix
tasks at all levels in the integration and test sequence and even for manufactur-
ing test-diagnose-fix tasks as shown in case study 3. Three case studies have
been performed with this method. The goal of the case studies was to select
the best test sequence for a test-diagnose-fix task and to investigate the effect of
reducing the diagnosis and fix duration. The result of the first case study is a
reduction of the average test duration of 71%, if an on-line, risk-based, parallel
test sequence is used. The results of the second case study are: 1) a reduction of
30% by using an off-line risk-based test sequencing technique, 2) a reduction of
16% by reducing the diagnosis and fix duration by a factor two. The third case
study results in an improvement of 54% in total test duration if an off-line risk-
based test sequencing technique is used in combination with the reduction of
the diagnosis and fix duration by a factor two.
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4.3 PLANNING AND ANALYS IS OF REL IAB I L ITY TEST-DIAGNOSE -
F IX TASKS

This section is based on the paper ‘Reliability qualification of semiconductor
software releases’ [I. de Jong et al., 11-12 June 2007] and describes the analysis
of reliability test-diagnose-fix tasks. An uncertainty based test sequencing algo-
rithm is used such that the duration of the test-diagnose-fix task can be reduced.

The reliability qualification period of a newly developed software release at
ASML is planned according to SEMI standard E10-0600 [SEMI, 1986-2000].
The goal of the reliability qualification test-diagnose-fix task is to prove that the
mean-time-between-failures (MTBF1) of a wafer scanner or software release is
according to the agreed level. For this purpose, a reliability test-diagnose-fix task
is planned. The SEMI-E10 standard defines the test duration that is required to
reach a certain MTBF level with a certain level of confidence. One of the as-
sumptions in the SEMI-E10 standard is that one system-level test case is used
for reliability qualification. The standard contains a lookup table, Table A1-4,
to determine the test duration. The values in the lookup table, the k-factors,
are derived using an inverse χ2 distribution. The k-factor that must be multi-
plied with the MTBF target to obtain the required test duration: test duration
= k × MTBFtarget. Further details can be found in Section 7.6.5 and Table A1-4
in [SEMI, 1986-2000] and [NIST/SEMATECH, 2003-2006]. A higher test du-
ration, due to increasing MTBF targets, results in an increase of the time-to-
market of newly developed software releases.
Specific sub-system test cases could be beneficial if they utilize the sub-

systems much better than the system-level ‘run production’ test case. The bene-
fit of specific sub-system test cases is that either the reliability target can be met
in less time or a higher MTBF can be reached in the same amount of qualifica-
tion time. Additionally, the sub-system test equipment is often much cheaper.
The problem with sub-system qualification is that the SEMI-E10 standard

only supplies a test duration for a system-level qualification. Detailed meth-
ods from reliability engineering [NIST/SEMATECH, 2003-2006; Villacourt and
Mahaney, 1994] are required to qualify the reliability at system level using sub-
system test cases. These methods describe the components in the system with
lifetime distributions. The structure of the system is used to combine the life-
time distributions into a system-level lifetime distribution. A failure distribution
is used to model the effect of failures. The problem with this approach is the
amount of work required to determine and maintain the system model.
This section introduces a simple and intuitive method for reliability qualifi-

cation that can deal with sub-system test cases and actual failures. Section 4.3.1
describes the reliability qualification method as currently practiced by ASML
and the normal reliability engineering approach that is capable of dealing with
specific sub-system test cases. Section 4.3.2 introduces our method consisting

1MTBF is defined in SEMI-10 in Section 6.2.2 as the mean time between failures measured by
productive time,MTBFp
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of a reliability test model and the method to determine the uncertainty about
the MTBF on system level. Furthermore, a test sequencing algorithm and the
effect of failing test cases and applying fixes to the system are described. Sec-
tion 4.3.3 describes two performed cases including the results. Conclusions are
presented in Section 4.3.4.

4.3.1 Current method

The current reliability qualification method at ASML is planned according to
the SEMI-E10 standard. A target MTBF is chosen for a specific software release.
The confidence level of 80% and five failures allowed in the qualification period
are chosen based on previous results. The resulting k-factor is 7.9. The test cases
are planned on one or more wafer scanners and the execution is monitored. A
number of test cases is selected for reliability qualification. The production set-
tings from these test cases differ from each other. For instance, the size of the
image and the exposure settings are varied to mimic typical production settings.
The reliability test cases are executed during the night and the results are gath-
ered and analyzed to facilitate the diagnosis and fixing of reliability failures.

An extensive in-house alpha test and a beta test at selected customers are
executed before new software is released to customers worldwide. The relia-
bility qualification period starts with the start of the alpha test and continues
throughout the beta test until the required target is met. The reliability tar-
get for consolidation releases is higher compared to software releases that are
used for newly developed wafer scanners, because these consolidation releases
replace the software on all systems worldwide. The duration of the reliability
qualification period is therefore also higher. A reliability qualification period of
a few weeks is planned for a new consolidation release. Functional test cases are
performed during the normal operating hours and reliability qualification is
performed during the nights. Nowadays, the duration of the reliability qualifica-
tion becomes the bottleneck, i. e. the reliability qualification duration becomes
longer than the available test time during the nights. Extending reliability qual-
ification during the days would increase the time-to-market. Additional test re-
sources could be assigned to prevent that the reliability qualification period is
the bottleneck. The approach presented in this section increases the confidence
on sub-system level faster, such that the system level confidence target is reached
earlier.

Reliability engineering theory

The normal approach from reliability engineering [NIST/SEMATECH, 2003-
2006] enables the use of sub-system test cases by the following approach. The
components in the system and the interfaces between these components are
identified. The components are connected in series, in parallel, R out of N or us-
ing more complex structures, which are combinations of the serial and parallel
component structures. This structural information is then used to determine
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the reliability equation. A lifetime distribution is chosen for each of the com-
ponents from typical lifetime distributions, e. g.: exponential, Weibull, extreme
value, log-normal, gamma, Birnbaum-Saunders or proportional hazards.

The next step is to estimate the parameters of the lifetime distributions. Typ-
ical parameters are the failure rate for an exponential distribution or shape and
scale parameters for other distributions like the gamma and Weibull distrib-
ution. These parameters are used together with the structural information to
calculate the system lifetime distribution. The duration required for system reli-
ability qualification can be determined by using a χ2 test on the system lifetime
distribution. Determining the test duration at sub-system level and executing
test cases at system level changes the lifetime distribution at sub-system level.
Subsequently, the system level lifetime distribution is changed also, resulting in
a shorter test duration at system level.

The approach to incorporate the effect of failures is based on the combination
of two distributions. A system lifetime distribution is derived and its parameters
are estimated. Additionally, an exponential distribution describing the failure
rate is chosen. The combination of the two distributions leads to a new distri-
bution, which incorporates the effect of the failure rate. This new distribution
is then used to determine the test duration using the χ2 test and a chosen con-
fidence interval. This approach is described in [Villacourt and Mahaney, 1994]
and [NIST/SEMATECH, 2003-2006].

The reliability theoretic approach is not used extensively for the reliability
qualification of an ASML wafer scanner. The main reasons for not using the
theoretical approach at system level are: the number of components is large,
the many sub-system interactions are complex and the components change of-
ten. Furthermore, the multidisciplinary nature of the system requires the use of
lifetime distributions of multiple types. The resulting reliability equation, prob-
ability density function and test duration are impossible to determine within the
available time frame and budget. Simple models are required to bridge the gap
between the high level SEMI standard and the low-level reliability engineering
approach.

4.3.2 Proposed method

The proposed method uses a reliability test model to model the system and sub-
system test cases. This model is used to determine a test sequence in which
the reliability confidence is reached as fast as possible. The confidence as used
in the SEMI-E10 standard is modeled as uncertainty per sub-system. The uncer-
tainty on the system level is determined using the sub-system uncertainties. The
effect of an executed test case (passed or failed) is fed back into this test model.
The system test model, introduced in Chapter 2, is used for planning and analy-
sis of reliability test-diagnose-fix tasks. An example matrix representation of a
system test model (D), including the properties per fault state and test, is given
in Table 25.

The relation between tests and fault states (Rts) is represented by a 0 if a test



4.3 PLANNING AND ANALYS IS OF REL IAB I L ITY TEST-DIAGNOSE -F IX TASKS 91

S / T t0 t1 t2 t3 t4 t5 U

s1 1/100 2/100 0 0 1.5/100 0 1.0
s2 1/100 0 2/100 0 2/100 1.5/100 1.0
s3 1/100 0 0 3/100 0 2/100 1.0
s4 1/100 0 0 0 1.5/100 0 1.0
s5 1/100 0 0 0 0 1.5/100 1.0

CT 1 1 1 1 1 1

ϕT 1 1 1 1 1 1

Table 25. A reliability test model for the telephone example

does not cover the fault state. Otherwise, the coverage is larger than 0. In this
example, the coverage is 1

100 , where 100 represents the target MTBF for the
telephone. Test t0 covers one hundredth of the reliability target if the test is exe-
cuted. Note that for this example, the duration of each test is 1 hour indicating
that 1 hour of testing covers 1

100 of the reliability target.
The phone system can also be modeled as a ‘single test-single fault state’ test

model as depicted in Table 26. This reliability test model describes the phone
and the single ‘run production’ test case as required by the SEMI E10 standard.
Test t0, the ‘run production’ test, is the same test in both models. A single fault
state s0 describes that the reliability confidence target is not met. Note that the
initial uncertainty is 1.0 when no test cases have been performed.

S / T t0 U

s0 1/100 1.0

CT 1

ϕT 1

Table 26. SEMI E10 modeled telephone example using a single test and a single fault
state

Remaining uncertainty

The calculation of the remaining uncertainty UR is straightforward for the ‘single
test-single fault state’ reliability test model depicted in Table 26. The remaining
uncertainty is equal to the uncertainty of the only fault state in the model, s0.
For a model with a set of fault states, the executed test sequence G is used to
derive the uncertainty per fault state U(s, G) after executing the test cases in G.
Equation (4.33) is used to calculate the remaining uncertainty.

UR(G) =
1

|S|

∑

s∈S

U(s, G) (4.33)

In other words, the system-level uncertainty is the average of the fault state
uncertainties. Both models must be modeled such that the coverage of test t0
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on fault state s0 in the system model is the same as the coverage of t0 on each
of the fault states in the sub-system model, because both models represent the
same system and test case. The rest of the test cases in the sub-systemmodel can
now be modeled relative to the test case t0. For instance, test t3 tests reliability
fault state s3 in the handset. This test case has a coverage that is three times
higher than the system level test t0, because the specific test case performs three
times the number of cycles in the same time if compared with test t0. Another
reason could be that the coverage of the test case t3 is three times higher than
the coverage of test t0.

Uncertainty reduction by executing a test

The uncertainty for fault state s decreases when the next test case t after se-
quence G passes. The uncertainty is calculated using Equation (4.35).

U(s, ǫ) = 1.0 (4.34)

U(s, Gt) = U(s, G) − Rts(t, s)U(s, G)

= U(s, G)(1 − Rts(t, s)) (4.35)

The initial uncertainty of a fault state as described in the system reliability
model in Chapter 2 is U(s, ǫ) = U(s). The sequence G is empty in that case.
Equation (4.36) describes the remaining uncertainty when a sequence G of test
cases has been executed. Equation (4.37) describes the special case when the
same test case is executed n times, i. e. the sequenceG contains one test n times,
n = |G| and G = tn.

U(s, Gt) =
∏

t∈G(1 − Rts(t, s)) if t passes (4.36)

= (1 − Rts(t, s))n if t passes (4.37)

Equation (4.37) is the equation used for the SEMI reliability test model in Ta-
ble 26. A passed test case results in an uncertainty reduction according to Equa-
tion (4.36). A failed test case on the other hand results in a diagnosis and a fix
task. In the diagnosis task, the root cause of the failing test case is determined.
A solution for the failure is developed and applied on the system. The duration
of this diagnosis and fix task can range fromminutes to weeks or longer. A loose
cable can be diagnosed and connected within a few minutes, while a failure due
to a faulty hardware design can take up to weeks to be fixed. A failed test case
increases the uncertainty, because it is unknown at the moment of failure what
the effect of the failure is on the overall system reliability. The uncertainty of the
sub-system where the failure occurred is reset to 1.0:

U(s, Gt) = 1.0 if t f ails (4.38)
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Comparing SEMI-E10 with our method

Appendix A in the SEMI standard describes the method to determine the re-
quired test duration to reach a confidence level α. The system reliability model
as depicted in Table 26 should lead to the same results. These results are
shown below. In our method, the confidence level α is modeled using the re-

In our method, the
confidence level α

is modeled using
the remaining
remaining
uncertainty:
α = 1 −UR(G).

maining remaining uncertainty: α = 1 − UR(G). The length of test sequence G
can be determined for the special case, where the reliability test model con-
tains a single test and a single fault state by rewriting Equation (4.37) into
|G| = log(1−Rts(t,s))

Utarget. Note that the duration of test sequence G depends on
the target uncertainty Utarget. The length of the test sequence can be calculated
for the telephone system model in Table 26. The uncertainty target is 0.2 and
corresponds with an 80% confidence limit. The length of the test sequence is
|G| = log(1− 1

100 )
0.2 = 160.13. The duration of a test case is 1 hour, so 161 hours

of testing is required to reach the target of 20% uncertainty. The lookup value
for the k-factor in the SEMI standard for the confidence level of 80% is 1.61.
This value needs to be multiplied with the reliability target of 100 hours and
also results in 161 hours of testing and is equal to our result. The details of the
comparison of the two methods has been described in Appendix A, including
the (numerical) proof that both methods yield the same results.
The objective for the general case, where a model contains a number of test

cases and a number of fault states, is to find an optimal sequence G∗ with the
minimal duration Φ∗ from all possible sequences G, such that the uncertainty
target 1 − α is met:

Φ
∗ =

∑

t∈G∗

ϕT (t) = min
G∈G

∑

t∈G

ϕT (t)

s.t. UR(G) = 1 − α (4.39)

Algorithms to solve this test sequencing problem are described in [Boumen
et al., Jan. 2008, 2006b]. These algorithms can be used to obtain an optimal test
sequence G∗ that meets the uncertainty target as soon as possible. These opti-
mal algorithms are computationally intensive for largemodels, because both the
pass and fail result are taken into account for each test case in the sequence. Risk
is used as optimization criterion in these algorithms. Below, a more simple, less
computationally intensive, algorithm is described that uses uncertainty as op-
timization criterion. Only pass results are taken into account. Failing test cases
are handled by updating the uncertainties and recalculating the test sequence.

Sequence test cases

The goal of the
sequencing step is
to obtain a test
sequence that
reaches the
required remaining
uncertainty as
quickly as possible.

The goal of the sequencing step is to obtain a test sequence that reaches the re-
quired remaining uncertainty as quickly as possible. The sequencing method
uses a reliability test model as input and the resulting test sequence G can be
executed.
Several general purpose test sequencing techniques are known in literature

and practice, see [Rothermel and Harrold, 1996] [Harrold et al., 2001] [Amland,
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2000] for some examples in the software domain. For example, risk-based test-
ing results in a test sequence where the test cases are ordered such that the
highest amount of risk is reduced first. The goal of reliability qualification is
to reduce the uncertainty and not the risk. Moreover, a specific test case can be
executed more than once to reduce the uncertainty. Hence, simple risk-based
ordering is not sufficient. The sequencing method described below selects the
test case such that the overall remaining uncertainty is reduced as much as
possible. This procedure is repeated until the target uncertainty is reached. A
single sequence is determined as opposed to the optimal sequencing algorithm
in [Boumen et al., Jan. 2008, 2006b] where all possible test sequences are eval-
uated. The test sequencing algorithm is depicted in a flow chart in Figure 52.

Start

Stop

UR(G) ≤ Utarget

G := ǫ

mδ := max
t∈T

(
n∑
s=0

ua[s].Rts(t, s))

let t∗ := t

s.t. mδ =
n∑

s=0

ua[s]Rts(t
∗, s)

Step 1© Initialize

Step 3© Calculate

system

uncertainty and

update test

sequence

Step 2©

Determine next

test case and

update

uncertainties

Step 4© Stop

algorithm?

Result: test sequence G

G := Gt∗

UR(G) =
1
n

n∑
s=0

ua[s]

Y

N

for s := 0 to n do ua[s] := U(s)

for s := 0 to n do ua[s] := ua[s](1 − Rts(t
∗, s))

Figure 52. Flowchart of the test sequencing algorithm
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Step 1© is the initialization step. The test sequenceG is initialized to an empty
sequence and all uncertainties in ua are set to the uncertainties in U. The next
test in the test sequence is determined in Step 2©. First the delta uncertainty
is calculated for all test cases in the test set T . Then, the test case that reduces
the remaining uncertainty UR the most is chosen as the next test case in the
sequence, t∗. Step 3© updates the uncertainty of the fault states in the test model
using the selected test case t∗. Then, the test sequence G is updated with the
selected test case and the remaining uncertainty, UR, is calculated using the
updated fault state uncertainties.
Step 4© checks if the stop criterion is reached. The test sequencing algorithm

continues if the stop criterion is not reached, otherwise the algorithm termi-
nates resulting in a test sequence G.

Execute test sequence and update test model

With the method described above, sub-system test cases can be selected and ex-
ecuted. The selection of sub-system test cases leads to either a reduction of test
duration or a reduction of risk in the same amount of test time. This effect is
illustrated by Figure 53. Figure 53 depicts the uncertainty reduction by executing
test cases (that all pass). The SEMI-E10 line depicts the normal uncertainty re-
duction using a system level test case. The sub-systemmodeling line depicts the
usage of the sub-system test cases that are sequenced according to the described
method. The target uncertainty is 20%.
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Figure 53. Uncertainty reduction leading to reduction of test duration or risk reduction

If the target uncertainty is to be reached faster, then the test duration is re-
duced by roughly 50% in this example. If more uncertainty is to be reduced
in the SEMI-E10 test duration, then an uncertainty reduction of roughly a factor
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three is obtained. It depends on the goal of the project as to whether a reduction
of the test duration or an additional uncertainty reduction is required.

Assumptions

The assumptions in our method are:

• The failure rate is not taken into account, while the individual failure rates
of sub-systems are directly related to the system reliability. It is assumed
that sub-systems with higher failure rates will cause failures during test-
ing and by this the uncertainty is increased. An increase of the uncertainty
results in an increase of the test duration.

• The sub-system uncertainties are averaged to obtain the system level un-
certainty according to Equation (4.33). This approach assumes that the
probability density function of the uncertainty of each of the fault states is
normal shaped. This is the case if the uncertainties of the fault states are
reset due to failing test cases in the reliability qualification period. Other-
wise, the uncertainty reduction follows an exponential decay function for
which the average uncertainty is higher than the expected uncertainty. In
this case, the uncertainty used to calculate the remaining uncertainty is
too pessimistic.

• The system structure is not explicitly taken into account in this model. It
is assumed that the test cases that are used in the model cover all aspects
of the system that affect the system reliability. Next to that, a number of
properties for the test cases and fault states in the model must hold:

– All test cases should be unique. I. e., no two test cases may have the
same coverage: Rt(t1) 6= Rt(t2), where, Rt(t) = {s|s ∈ S ∧ Rts(t, s) 6= 0}.
Two test cases with the same coverage are either the same test case or
a fault state is missing that makes these two test cases unique. The
latter is often the case and adding the fault state makes the model
more complete.

– All fault states should be unique. I. e. no two fault states may have the
same coverage: Rs(s1) 6= Rs(s2), where, Rs(s) = {t|t ∈ T ∧ Rts(t, s) 6= 0}.
Two fault states with the same coverage describe the same sub-
system. Two test cases should be added, in case of two equal sub-
systems that are present in the system. One testing the first sub-
system and the other testing the second sub-system. This way, the
reliability of both sub-systems can be qualified separately of each
other.

– The model does not contain fault states that are not covered by a test:
Rs(s) 6= ∅ (for all s ∈ S). Fault states that are not covered by test cases
are either not relevant for the system reliability or test cases must be
added to cover these fault states.

– The model does not contain test cases covering no fault state:
Rs(t) 6= ∅ (for all t ∈ T). Test cases that do not cover fault states are
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either not relevant or fault states must be added that are covered by
these test cases.

4.3.3 Case: software release qualification

Two case studies have been performed using the described modeling and se-
quencing method. The first case study has been performed in addition to the
normal SEMI approach. The second case study has been performed to monitor
the reliability during the development of the new software release.

Case 1: Reliability qualification phase

The goal of the first case study was to decrease the uncertainty of the system
reliability by executing additional test cases. Additional sub-system test cases
have been selected using the sub-system reliability model of the system. The
model used consists of 15 test cases and 12 sub-systems modeled as fault states.
The reliability test model is depicted in Table 44. Every test case has a duration
of six hours, since six hours are available for reliability qualification during the
night. The initial uncertainty of all fault states is set to 1.0. Test t1 is the standard
‘run production’ test case and all other test cases are modeled with test t1 as
the reference. The coverage of test t1 on each of the fault states is 6

150 , where an

MTBF-target of 150 hours is used together with the test duration of 6 hours.
The selected sub-system test cases have been executed in addition to the

SEMI sequence. An additional 850 hours have been spent on testing and the
uncertainty level at the end of the first phase was reduced more than the un-
certainty reduction according to the SEMI-E10 approach. The result of the two
approaches should be compared by performing the two corresponding test se-
quences on two equal independently developed systems. Then the number of
issues found can be compared. This is too expensive in practice. Therefore,
comparison is done by comparing the reliability hits of this software release and
the previous release. The number of release specific issues, which are found at
customers, is compared for this release and a previous software release. This
comparison assumes that the quality of these two releases is the same.
The reliability Top-202 of the previous release contained eight software re-

lease specific MTBF failures. This Top-20 was created eight weeks after the
software was released for customer installation. The eight release specific fail-
ures caused 60% of the MTBF failures. Two software release specific issues are
found in the Top-20 of the release used for this case study. The Top-20 was cre-
ated 12 weeks after the installation at customers started. The two release specific
issues caused 11% of the MTBF failures in the twelve week measuring period.
Factors other than the reliability qualification method probably also contributed
to these results. The results and the simplicity of the modeling technique gave

2All lot aborts are registered in a database and related to a root cause. Root causes of the lot
aborts are sorted according to the frequency of occurrence in 4 weeks. The ‘Top-20’ is the list
of twenty root causes with the highest frequency in four weeks.
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rise to the decision to continue this approach for reliability qualification of soft-
ware releases.

Case 2: Reliability monitoring during development

The second case study has been performed to measure and monitor the uncer-
tainty during the development of a new software release. The FMEA [Bowles,
19-22 Jan 1998] activity is succeeded by the reliability measurement program.
Some of the failure modes need to be tested using a specific (sub-system) relia-
bility test case. The resulting set of specific sub-system reliability test cases is put
in a test queue. Two test systems were used to either execute the test queue or ex-
ecute a multi-lot endurance test (MLET). The multi-lot endurance test consists
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Figure 54. Uncertainty profile and MTBF during software development

of a set of test cases that together form the ‘run production’ test case. Whether
the test engineer starts the test queue or the MLET-queue was not guided by a
test sequence. This means that a test queue could be used for execution, while
the MLET-queue would have reduced the uncertainty more and vice versa. A
system reliability model of the involved sub-systems and the test cases has been
defined. The model consists of nine fault states and twenty two test cases. The
full model is defined in Table 45 in the Appendix. Note that the model is split
up into two tables, since there are many test cases. The MLET duration and test-
queue duration are recorded per week. The failures are recorded also each week,
including the sub-system that caused the failure. These data is converted into
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the format that can be used to determine the uncertainty profile. For this pur-
pose, a sequence of test cases was created. Each hour of MLET testing results in
a single MLET test (of one hour) as specified by the model by t1. The sequence
of the test queue is not recorded. However the set of test cases in the test queue
is known and consists of t2 to t22. It is assumed that the duration of each test
is one hour. In reality, some test cases have a longer duration and others have a
shorter duration. Moreover, it is assumed that the test queue is restarted once it
is finished. A sequence of test cases is created such that the recorded test queue
duration is filled. The remainder of the time in the week is calculated and added
as a single test with no coverage on fault states. This is necessary, because the
data was recorded on a weekly basis and the uncertainty per week was deter-
mined. The failure data consist of a date and hour of failure and the sub-system
causing the failure. The date and time are converted into hours since the start
of the measurement, while the causing sub-system is mapped onto the related
fault state in the reliability test model. An uncertainty profile, depicted in the up-
per graph in Figure 54, is calculated using the system test model, test sequence
and failure data. The uncertainty profile is calculated for a period of 28 weeks.
The initial uncertainty for all fault states is set to 1.0. Uncertainty is decreased
when executed test cases result in a passed verdict. Test cases that result in a
failed verdict reset the uncertainty for the covered fault states to 1.0. This behav-
ior is reflected in the uncertainty graph by uncertainty reduction with passed
test cases and jumps in uncertainty with failing test cases. The ‘flat’ areas in the
graph indicate that no test cases have been executed. The bottom graph in Fig-
ure 54 depicts the productive time (MLET and MLET + test queue), the number
of failures, indicated with a +, and the corresponding MTBF per week. The pro-
ductive time of the test queues has not been taken into account for the MTBF
calculation. Note that MTBF graph varies much due to the one-week average
that is depicted. The other source of variation of the MTBF is the low productive
time in certain weeks, that limits the MTBF. The following results have been ob-
tained. Four distinct periods can be identified in the uncertainty profile. These
periods are marked with A©, B©, C© and D© in the top graph of Figure 54.

• Period A© starts at the beginning of the measurement program and ends
in week 15. This period is characterized by long flat areas where no testing
takes place and some periods where the uncertainty is above the target
uncertainty.

• Period B© shows an increase in peak uncertainties. The level of the un-
certainty peaks becomes higher with each failure. Test execution is still
efficient, since the minimal uncertainty levels are almost the same after
each test period. In this period, the number of hits increases as well as
the number of sub-systems causing these hits.

• Period C© shows a decrease in peak uncertainties and the minimal uncer-
tainty level stays almost the same. The number of hits decreases in this
period, while the productive time is high.
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• Period D© shows a decrease in peak uncertainties and a decreasing mini-
mal uncertainty. This is caused by the low number of failures (three weeks
without failures) and the high number of test cases that have been exe-
cuted in this period.

The analysis of the uncertainty profile can be used to adjust the test strategy
for each of the four identified periods. Period A© can be improved by schedul-
ing and executing more test cases, assuming that the required test resources
are available. Period B© can be improved by speeding up the diagnosis and fix
process. Period C© can be improved by selecting test cases with a high coverage
on a specific fault state with a high uncertainty. Period D© could be optimized
by executing only the MLET test case and only for a limited time per week. This
can be done because the need to reduce much uncertainty does not exist any
more.

4.3.4 Conclusions

The reliability qualification of ASML software releases is performed according
to the SEMI-E10 standard. The required test duration is proportional to the
target MTBF and the reliability qualification phase is on the critical path for
software releases with high reliability requirements. The utilization of specific
sub-system test cases could reduce the test duration or reduce the uncertainty
of the system reliability. However, applying the current reliability engineering
methods costs a lot of effort for a large, complex and changing system like a
wafer scanner. This work introduces a method bridging the gap between the
system level SEMI standard and the detailed reliability engineering methods.
The model that is used to determine a reliability test sequence and duration is
simple and intuitive. The method has been applied to two cases.
The first case study is related to the parallel execution of sub-system test cases

during the reliability qualification phase for a software release. More than 850
hours of additional sub-system testing have been used, test cases have failed and
problems were solved. The new software release has been rolled out on wafer
scanners world wide. The number of failures caused by the new software release
was 11% of the Top-20 failure count after 12 weeks. The number of failures
caused by the previous release in the Top-20 after 8 weeks was 60%. This results
from a combination of factors including the execution of additional and specific
test cases.
The second case study concerns the monitoring of the uncertainty of the reli-

ability during the development phase of a new software release. The main result
of this case study is that the uncertainty can be monitored during development
and the test plan can be adjusted using the monitoring results. Specific periods
can be identified using the uncertainty profile and specific actions are proposed
to improve the test plan. The advantage of this method is that a simple model
is used to describe the system. The method to determine the remaining uncer-
tainty is also straightforward, at the cost of losing part of the expressiveness of a
full reliability engineering model.
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This chapter describes the improvement step of the integration and test plan-
ning method. The improvement step currently consists of four techniques:
test partitioning, development of new test cases, updating the constraints and
objectives and redesigning the system. Figure 55 describes the selection step
(4.1), where an improvement technique is selected, and four improvement tech-
niques. The results of these four improvement techniques are fed back into the
other three steps of the integration and test planning method. The feedback
loops, starting as output of the improvement techniques, result in: another inte-
gration and test sequence (2.D), additional test cases (1.B), another integration
model (1.A) or a change in the system architecture (0.A). Each of the improve-

The main goal of
partitioning a
test-diagnose-fix
task (4.2) is the
reduction of the
test duration by
executing two
resulting
test-diagnose-fix
tasks in parallel.

ment techniques is introduced in the next sections.

4.A Selected improvement technique

4.1 Select improvement
technique

4.2 Partition test tasks 4.3 Develop new testcases

4.4 Update constraints
 and objectives

Improvement techniques

4.5 Re-design system

0.A System architecture1.A System architecture model

1.B Testcases, fault states, 
coverage and properties

2.D Integration and 
test sequence

3.1 Plan individual
test phases

3.E Execution/simulation results3.D Integration and test plan

Figure 55. Overview of the improvement step
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5.1 PART IT IONING TEST-DIAGNOSE -F IX TASKS

The next section is based on [I. de Jong et al., 2007b].

Parallel execution of test cases on two test systems can be the only option tomeet
the deadline in a time-to-market driven development environment, like the de-
velopment of a new type of ASML wafer scanner. Purchasing an additional test
system is considered for each test-diagnose-fix task on the critical path. Paral-
lel execution reduces the duration of a test-diagnose-fix task with approximately
50%, depending on the duration of the individual test cases.
Dividing test cases over two test-diagnose-fix tasks can be done manually for

small and simple test sets or with existing bin-packing algorithms [Coffman Jr.
et al., 1997] for larger test sets with different test durations per test case. The
overlap of test cases is not taken into account in these algorithms, only the test
duration per test case is taken into account. It is shown in [Boumen et al., Jan.
2008] that this coverage information can be beneficial in terms of total test du-
ration by selecting the optimal test sequence. The reduction of test time can be
up to 20 − 30% if the coverage info is taken into account to determine a bet-
ter test sequence. Executing a test-diagnose-fix task in parallel itself leads to a
reduction of the duration of roughly 50%. An additional duration reduction of
20 − 30% per executed test-diagnose-fix task in parallel is expected, when the
coverage information from the test cases is used. The total expected reduction
of parallelizing test-diagnose-fix tasks in combination with the usage of the cov-
erage information is therefore in the range of 60 − 65%.

A set of test cases
can be divided into
two smaller sets of
test cases, such
that these smaller
sets can be
executed in parallel
or in series.

A set of test cases can be divided into two smaller sets of test cases, such
that these smaller sets can be executed in parallel or in series. The advantage
of executing two sets in parallel is that the duration of the test-diagnose-fix task
can be reduced by more than a factor two. Dividing the test cases into two sets of
test cases that are executed in series can be used as a heuristic for a sequencing
algorithm as introduced in [Boumen et al., Jan. 2008]. Only parallel execution
is considered in this paper.
A simple and straightforward division of test cases for parallel execution takes

only the test duration into account. Test cases are divided such that two sets
of test cases are obtained and the maximum duration of the two test sets of
test cases is minimal. The duration of the set of test cases is determined by
summing up the duration of the individual test cases in each test set. Several
algorithms are available to solve this problem. However, the resulting test sets
are equal in test duration if and only if all test cases result in a pass verdict, no
faults are present in the system and no diagnosis and fix tasks are required.
In practice, test cases fail and diagnosis and fixes are required. The diagnosis
and fix duration, and the test sequence, influence the test duration. In fact, the
total test duration Φ of a test set depends on the test cases, the test sequence,
the actual set of problems in the system under test and the test stop criteria [I.
de Jong et al., 2007e]. Hence, these four aspects need to be taken into account
while partitioning a set of test cases.
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Graph partitioning algorithms are used in our approach to partition a set of
test cases into smaller sets of test cases. To be able to use this approach, we
need to translate a set of test cases into a test graph. This is done in two steps.
First, the set of test cases is represented as a system test model where test cases
are related to possible faults in the system and relevant properties for test cases
and fault states are given. Second, the system test model is translated into a test
graph. The test graph is partitioned using a multi-level hypergraph partitioning

The test graph is
partitioned using a
multi-level
hypergraph
partitioning
method. This
method originates
from the domain of
parallel computing.

method. This method originates from the domain of parallel computing [Hen-
drickson and Kolda, 2000]. The objective of partitioning in the domain of par-
allel computing is reducing the duration of a large calculation. The durations
of the executed tasks can be summed up. In the test domain, the cost (test du-
ration or cost) depends on the test cases, the test sequence, the actual system
under test and the test stop criterion. Consequently, the total test duration is not
a summation of the test case durations, but requires a more advanced calcula-
tion. Therefore, cost estimators have been developed.

This section is organized as follows: Section 5.1.1 is a general introduction into
graph partitioning. The graph partitioning section is followed by Section 5.1.2 on
system test model partitioning, where the details on partitioning the system test
model are introduced as well as the adaption to the available graph partitioning
algorithm. The objective functions and estimators are explained in Section 5.1.3.
An example and an industrial case study are presented in Sections 5.1.4 and 5.1.5.
In Section 5.1.6 conclusions and future work are presented. The system test
model that is used by the algorithm has been introduced in Chapter 2.

5.1.1 Matrix partitioning

Originally, partitioning algorithms were used to partition computing jobs over
multiple processors. For this purpose, jobs and inter-job communication are
represented using a sparse matrix. The sparse matrix is partitioned over the
processors, such that the computing time and the communication of data be-
tween processors is minimized. Usually, matrix partitioning is formulated as
a graph partitioning problem that is NP-hard [Garey and Johnson, 1976]. The
standard approach to partitioning graphs is explained in [Hendrickson and
Kolda, 2000], including the discussion of the shortcomings of this approach.
Available software packages like PaToH [Ü. Çatalyürek and Aykanat, 2002] and
hMetis [Karypis and Kumar, 1998; Karypis, 2002] implement the partitioning
algorithm using heuristics to generate solutions that approach the optimal solu-
tion in reasonable time. The standard partitioning problem has been extended
with bipartite graph models and hypergraph models. Bipartite graph models al-
low the modeling of problems where the initial vertices are different from the
final vertices. Hypergraph models are a more general form of bipartite mod-
els [Hendrickson and Kolda, 2000].

A hypergraph G = (V,H) consists of a set V of vertices and a set H of hy-
peredges. Each hyperedge consists of a subset of vertices. In this way, the depen-
dencies are represented as hyperedges and the partitioning goal is to equally
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distribute the vertices and minimizing the hyperedges that cross the resulting
partitions. The hypergraph model is used in this paper. Multi-level partitioning
algorithms are proposed in the early 1990s by several researchers, such that
large graphs could be partitioned faster. This approach has proven to be quite
robust. The general idea behind the approach is as follows:

1. A large graph is grouped into a smaller graph, while preserving the es-
sential properties of the original graph. This process is repeated up to a
certain level.

2. The smallest graph is partitioned using a partitioning algorithm.

3. The partition is propagated back through the sequence of larger graphs
and being refined along the way.

PaToH, hMetis and Mondriaan are three graph partitioning algorithms that fol-
low this hypergraph approach. The performance of these algorithms are com-
pared using the Rutherford-Boeing sparse matrix Collection [Duff et al., 1997]
in [Riyavong, 2003]. The purpose of each algorithm is different, while the gen-
eral performance of the algorithms is comparable. In our case, the generic
hypergraph partitioning algorithm is applied for partitioning test-diagnose-fix
tasks. For this purpose, the test problem needs to be transformed into a hyper-
graph model. Second, a specific objective function needs to be defined and im-
plemented using one of the available implementations. The following sections
describe the chosen model and algorithms for the partitioning of test-diagnose-
fix tasks.

5.1.2 System test model partitioning

The approach taken for system test model partitioning is similar to the gen-
eral partitioning approach. The relations between test cases and fault states are
translated into a test graph. This test graph is coarsened into a hypergraph. This
hypergraph is partitioned using a local search partitioning algorithm with a dy-
namic objective function. The reason for the dynamic objective function is that
the cost of the test-diagnose-fix task in the partition depends on the coverage of
the test cases in that partition. Finally, the matrix is uncoarsened at each coars-
ening level. The details of each step in this process are explained below.

The system test model represented as test graph

The system test model D is translated into a test graph G = (V, E). The vertices
The edges in graph
G represent the
relations between
test cases and fault
states.

in the test graph are the test cases from the system test model:

V = T (5.1)

The edges in graphG represent the relations between test cases and fault states.
An edge is a pair of a test case and a fault state where the coverage of the test



5.1 PART IT ION ING TEST-DIAGNOSE -F IX TASKS 105

case on a fault state is > 0. These pairs follow from the relation Rts:

E = {(t, s) ∈ T × S | Rts(t, s) > 0} (5.2)

Using these definitions, a mathematical formulation of a graph partitioning
problem is as follows:

Given: A directed graph G = (V, E), K ∈ N, L ∈ N

Find: A partition P = (V1, ..., VL) of V with |Vl| ≤ K
for each 1 ≤ l ≤ L, with the minimal cost J∗P.

The minimal cost J∗P for L partitions that are run in parallel is the minimum of
the maximum cost for each partition P in the set of all possible partitions P:

J∗P = min
P∈P

(max
l∈L

(JP(Vl))) (5.3)

Graph partitioning algorithms are able to find partitions for traditional appli-
cations, like processor load balancing, while minimizing communication vol-
ume. The traditional graph partitioning algorithm is explained first, starting
with graph coarsening.

Graph coarsening

The graph is coarsened into a hypergraph H consisting of a set of vertices V

and a set of hyperedges (nets) N : H = (V,N ). A set of vertices V consists of
vertices Vl. Each element v of vertex Vl is only present once. So, Vl ∩ Vj = ∅

holds for each vertex in V. All elements in the original set of vertices V can be
found in the set of vertices V:

⋃

l Vl = V . The initial hypergraph H0 consists
of all vertices and edges of the original test graph. The initial hypergraph is
coarsened into a sequence of smaller hypergraphs H1 = (V1,N1), H2 = (V2,N2),
..., Hm = (Vm,Nm). Each coarsened hypergraph is smaller than the previous in
the sequence: |V0| > |V1| > |V2| > ... > |Vm|, where V0 is the set of uncoars-
ened vertices: level 0, V1 is the first coarsening level and so on. Coarsening is
achieved by combining disjoint subsets of vertices from the hypergraph. This
way, multiple vertices form a single vertex in the hypergraph on the next level.
The (combined) vertices in the next level can be combined again into a new ver-
tex for the next level. This process stops when the number of the vertices in the
hypergraph is below a user defined limit or when the ratio between the previ-
ous number of vertices and the new number of vertices is below a user defined
stop ratio. Graph coarsening is performed using a matching-based clustering
technique described in [Ü. Çatalyürek and Aykanat, 1999] as Heavy Connectiv-
ity Matching. This technique combines highly connected vertices into combined
vertices. Highly connected vertices for system test models are vertices where
test cases and fault states are highly connected. The Heavy Connectivity Match-
ing algorithm visits vertices in a random order. The highest net connectivity
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is calculated for all unmatched vertices v in V and the vertices that are adja-
cent to v. Two vertices are adjacent if both vertices share the same net. A net
is defined as a set of fault states in a test graph. Two vertices v and w share a
net if nets(v) ∩ nets(w) 6 = ∅, where nets(v) returns the set of nets connected to
vertex v. Vertices that share the same net are merged into a vertex Vl. Vertex v
remains single if no adjacent unmatched vertices exist for vertex v. The highest
net connectivity is the maximal net connectivity: |nets(v)∩nets(w)|. Other match-
ing criteria and strategies can be used. See [Ü. Çatalyürek and Aykanat, 1999]
for a strategy called Heavy Connectivity Clustering, that is similar to Heavy Con-
nectivity Matching. A vertex in Heavy Connectivity Matching is joined with only
one other vertex (or none). A vertex in theHeavy Connectivity Clustering strategy
can be joined with another vertex or with another group of vertices. In this case,
no singleton vertices remain at the end. Which vertex or group of vertices is se-
lected for joining a vertex is determined by a selection criterion. The selection
criterion for theHeavy Connectivity Clustering strategy is based on the connectiv-
ity of the newly formed cluster divided by the weight of the newly formed cluster.
The weight resembles the number of vertices in the newly formed cluster. The
division by the weight is required to avoid the polarization towards very large
clusters. See [Ü. Çatalyürek and Aykanat, 1999] for details on the calculation of
the weight and connectivity for the newly formed cluster.

Hypergraph partitioning

Hypergraph partitioning can be performed in one or two dimensions. hMeTiS
and PaToH are two software packages that implement one dimensional par-
titioning algorithms [Ü. Çatalyürek and Aykanat, 1999, 2002]. hMeTis uses
an initial (random or guided) partition that is refined by the Kerninghan-Lin
(KL) algorithm [Kernighan and Lin, 1970] followed by the Fiduccia-Matheyses
(FM) algorithm [Fiduccia and Mattheyses, 14-16 June 1982]: the HKLFM-
algorithm (hypergraph Kerninghan-Lin Fiduccia-Matheyses algorithm. PaToH
uses a Greedy Hypergraph Growing algorithm [Ü. Çatalyürek and Aykanat,
2002] for partitioning. A two-dimensional algorithm has been proposed by Vas-
tenhouw and Bisseling [Vastenhouw and Bisseling, 2005] and implemented in
the Mondriaan software package. The two-dimensional algorithm partitions the

The
two-dimensional
algorithm partitions
the vertices as well
as the edges in an
alternating
algorithm where
first the vertices are
partitioned
followed by a
partitioning of the
edges

vertices as well as the edges in an alternating algorithm where first the vertices
are partitioned followed by a partitioning of the edges (or the other way around).
The two-dimensional algorithm uses the HKLFM algorithm for each partition-
ing step in each of the two directions. Mondriaan can also operate as a one
dimensional partitioning algorithm. We use the HKLFM algorithm as parti-
tioning algorithm and the Mondriaan implementation as starting point for test
graph partitioning. The objective function, which is specific for test-diagnose-fix
tasks, is developed using the Mondriaan implementation.
The hypergraph Kerninghan-Lin Fiduccia-Matheyses (HKLFM) algorithm is

a refinement algorithm. First an initial partition is randomly selected. This ran-
dom initial partition is then refined using the HKLFM algorithm. A single pass
of the KLFM algorithm visits all vertices in the graph. Two vertices from differ-
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ent partitions are selected and the cost is calculated assuming that these two
vertices were swapped between partitions. The two vertices that result in the
maximal gain are selected and these two vertices are placed in each others par-
titions (the two vertices are swapped). This process repeats for all vertices that
are not swapped and stops when no vertices are available for swapping. The en-
tire process can be repeated with the resulting partitions as input. Typically, a
small number of passes is required to converge. The algorithm can be restarted
a number of times with a completely different randomly selected initial par-
tition. A modification to the KL algorithm, proposed by Fiduccia-Matheyses,
improves the run time significantly without decreasing its effectiveness. In this
algorithm, only one vertex is moved between partitions with each pass instead of
swapping pairs. The gain of moving a vertex is calculated for each vertex in both
partitions. The vertex with the highest gain is moved to the other partition and
then excluded for further movement in this pass. A vertex is only moved when it
does not violate the imbalance constraint as set by the user. The pass ends when
no vertices can be moved, that is when no vertices are available to move or no
vertex is able to move because of violation of the imbalance constraint. Again,
this process can be repeated a number of times with the previous partition as
input, such that a better result is obtained.

Uncoarsening and refinement

The coarsened partitioned hypergraph is uncoarsened in this phase. Uncoars-
ening means that the coarsened vertex is projected back to a set of vertices. A
refinement step is performed after each uncoarsening step. The refinement step
is again performed by the HKLFM algorithm using the uncoarsened partitions.
This uncoarsening process is repeated until no coarsened vertices are present
in the graph, i. e. level 0 is reached.

Parameters in the HKLFM algorithm

A number of parameters can be set to control the HKLFM algorithm. These
parameters are discussed in this subsection. The first parameter, the minimal
number of vertices (test cases) in a hypergraph Vmin controls the allowed depth
of the coarsening phase. The number of vertices in a hypergraph should exceed
the minimal number of vertices: |Vl| > Vmin. Coarsening is stopped when the
minimal number of vertices is reached. More coarsening levels lead tomore exe-
cutions of the KLFM algorithm. The optimal setting depends on how connected
the graph is.

The second parameter, the fraction of reduction of the number of vertices ηred,
is used to stop coarsening if subsequent coarsening phases are not beneficial
enough. Coarsening is not beneficial enough if the number of vertices between
two coarsening phases, l − 1 and l, is not reduced enough. This parameter is

expressed as a fraction: |Vl−1|−|Vl|
|Vl|

> ηred. The default setting of ηred = 0.2 was

sufficient in our experiments.



108 IMPROVING INTEGRAT ION AND TEST SEQUENCES

The third and fourth parameters stop the heavy connectivity matching clus-
tering method. The third parameter,MaxNrVtxInCluster, stops clustering when
the maximal number of vertices (test cases) in a cluster C is reached:

|C| ≤ MaxNrVtxInCluster (5.4)

This way, the size of the cluster can be controlled and also the depth of the coars-
ening phase (depending on how the graph is connected). The fourth parameter,
CMaxWghtFrac, stops clustering when the weight of a cluster is reached:

∑

v∈Cj

ϕ(v)

∑

v∈Vl

ϕ(v)
≤ CMaxWghtFrac (5.5)

Where, Cj is the j-th cluster in vertex Vl on the i-th coarsening level. The weight
of a cluster is approximated by the sum of the test durations in the cluster. This
way, the size of the cluster in terms test duration (weight) can be controlled such
that equally sized clusters are obtained.

Partition cost and communication volume

The original partitioning algorithms are developed to distribute calculations
over multiple processors such that the communication volume between proces-
sors is minimized and the load on each processor is balanced. A fixed weight
for communication overhead is used and the amount of calculations determines
the processor load. Communication volume for partitioning system test graphs
is similar. The overlap (communication) between test-diagnose-fix tasks should
be minimized, because this is beneficial for the duration, cost and remaining
risk of the combined test-diagnose-fix task. The main difference between parti-

The main difference
between
partitioning for
parallel distribution
of processor load
and parallel
execution of test
cases is how the
cost of a partition is
determined.

tioning for parallel distribution of processor load and parallel execution of test
cases is how the cost of a partition is determined. For the distribution of com-
putations, the sum of the tasks is equal to the load on the processor. In other
words, the tasks are assumed to be independent of each other. This is not the
case for test cases. For example, if two test cases cover the same fault state and
the first test case fails because this fault state is actually in the system, then the
second test case will also fail. The two test cases therefore depend on each other.
The risk reduction and remaining risk in a test-diagnose-fix task depends on
the executed test sequence. Test cases with very limited coverage on the fault
states in a partition require much more time to reach the remaining risk target
or cannot meet the target at all. Hence, the cost of a partition is not a simple
summation of the test duration.
The graph partitioning algorithm from literature (HKLFM using the Mondri-

aan implementation) has been adapted such that the dynamic objective function
is used to determine the ‘partition cost’. TheMondriaan toolset is used as imple-
mentation instead of PaToH or hMetis, because partitioning fault states could
also be beneficial. This extension can be developed easily using Mondriaan, be-
cause the basis of Mondriaan is a bipartition algorithm. The developed objective
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functions are explained in detail in the next section, followed by a small example
in Section 5.1.4.

5.1.3 Objective functions

The objective function of the combined test-diagnose-fix task is expressed in terms
of the test duration ΦT the cost CT and the remaining risk after testing RR,T .
This is also the case for the objective function of a partitioned test-diagnose-fix
task as depicted in Figure 56. Figure 56 shows the test duration, cost and re-
maining risk of the two partitioned test-diagnose-fix tasks T1 and T2 and the
test duration, cost and remaining risk of the combined test-diagnose-fix task T .
The system is copied first in the cpy task, such that test cases can be executed
in parallel in the tdf tasks. The results are assembled in the asm task and the
integration and test sequence can be continued. This assembly task assembles
the risk in the system and is required to determine the complete duration of
the parallel test-diagnose-fix task. The objective function of a test-diagnose-fix

cpy

tdf 1

tdf 2

asm

ΦT1
, CT1

, RR,T1

ΦT , CT , RR,T

ΦT2
, CT2

, RR,T2

Figure 56. Key performance indicators of a partitioned test-diagnose-fix task

task is described as vector c in Equation (5.6). Each element in the cost vector c
consists of two parts that are summed up. The first part is the expected value or
maximum value of the test duration, cost or remaining risk. This way it is pos-
sible to optimize on the expected value or maximum value or combinations of
these. The second part is a penalty function P used to penalize a solution which
constraints are not met. Note that the solution is not excluded from the solution
set to allow the algorithm to overcome local optima. The penalty function is de-
fined in Equation (5.8) for the expected test duration. The penalty functions for
the other parameters are defined in a similar fashion.

The objective function of the test-diagnose-fix task is described in terms of a
weight vector w. The elements of vector w in Equation (5.7) describe how impor-
tant each of the performance measures are. The weight vector is later used in
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the objective function.

c = ( E(Φ) + PE(Φ), Φmax + PΦmax ,
E(C) + PE(C), Cmax + PCmax ,
E(RR) + PE(RR), RR,max + PRR,max )

(5.6)

w = (wE(Φ), wΦmax , wE(C), wCmax , wE(RR), wRR,max ) (5.7)

P(EΦ) =
{

105(E(Φ, target) − E(Φ))2 if E(Φ) > E(Φ, target)
0 if E(Φ) ≤ E(Φ, target)

(5.8)

The objective function of a single test-diagnose-fix task is defined according to
Equation (5.9). The weight function typically contains 0’s and a single 1 to in-
dicate which performance indicator should be optimized. More complex weight
vectors are possible, to accommodate a trade-off between performance indica-
tors.

J = c · wT (5.9)

The performance of the combined test-diagnose-fix task is also expressed in terms
of test duration ΦT , cost CT and remaining risk RR,T . The expected cost E(CT )
is calculated using Equation (5.10).

E(CT ) = E(CT1) + E(CT2) (5.10)

The test duration of the combined test-diagnose-fix task is the maximum of the
test durations of the parallel test-diagnose-fix tasks:

ΦT = max(ΦT1 ,ΦT2) (5.11)

Note that this is a maximum of two discrete variables ΦT1 and ΦT2 . The max-
imal test duration of the combined test-diagnose-fix task is determined using
Equation (5.12). Here, the maximum duration is the maximum of the maximal
test duration of both parallel test-diagnose-fix tasks.

ΦT,max = max(ΦT1,max,ΦT2,max) (5.12)

The risk in the system is the summed product of the a-priory failure probability
and impact for each fault state in the system:

RR,T =
∑

s∈S

P(s)I(s) (5.13)

Executing test case t reduces the failure probability of a fault state s by 1−Rts(t, s).
Therefore, executing test cases reduces the risk of certain fault states. The reduc-
tion of the failure probability due to test sequence G is expressed by:

∆P(s, G) = 1 −
∏

t∈G

(1 − Rts(t, s)) (5.14)
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The calculation of the remaining risk in the combined test-diagnose-fix task
is more involved, because a certain fault state can now be present in two (or
more) parallel test-diagnose-fix tasks. Executing test cases in both parallel test-
diagnose-fix tasks reduces the risk of the fault state in both test-diagnose-fix
tasks. The reduction of the risk in both test-diagnose-fix tasks should be taken
into account, because the combined remaining risk is lower, hence, the remain-
ing risk stop criterion could be reached earlier. Therefore, the remaining risk
of the combined test-diagnose-fix task depends on the fault states and the se-
quences executed in each of the parallel test-diagnose-fix tasks. The fault states
in the parallel test-diagnose-fix tasks can be overlapping, i. e. one fault state can
be covered by two test-diagnose-fix tasks. The set of fault states S is split up into
subsets to determine the remaining risk and maximal remaining risk for the
parallel test-diagnose-fix tasks. Three subsets can be distinguished for a test-
diagnose-fix task with two parallel test-diagnose-fix tasks: S1, S2 and So. Where,
the subset S1 are the fault states that are covered in test-diagnose-fix task 1 and
S2 are the fault states covered in test-diagnose-fix task 2. The overlapping fault
states, So, are the fault states that are covered in both test-diagnose-fix task 1 and
2: So = S1 ∩ S2.
The executed test sequence is of importance, because the sequence deter-

mines how much risk is reduced during testing [I. de Jong et al., 2007e]. The
remaining risk of the combined test-diagnose-fix task therefore depends on the
test sequences of both parallel test-diagnose-fix tasks, G1 and G2, and the fault
states in the partitions. The remaining risk for two parallel test-diagnose-fix
tasks is:

RR(G1, G2) =
∑

s∈S1\So

∆P(s, G1)P(s)I(s)

+
∑

s∈So

∆P(s, G1)∆P(s, G2)P(s)I(s)

+
∑

s∈S2\So

∆P(s, G2)P(s)I(s)

(5.15)

Above, the test sequences of both test-diagnose-fix tasks are denoted by G1

and G2. The maximum remaining risk for a parallel test-diagnose-fix task i is
calculated using Equation (5.16). All possible execution sequences Gi for test-
diagnose-fix task i need to be taken into account to determine the maximal re-
maining risk for a test-diagnose-fix task. The sequence of test cases is fixed,
however test cases can pass or fail resulting in a diagnosis of the problem and
eventually a fix. Therefore, Gi represents all possible pass and fail sequences and
this way the maximum remaining risk is calculated.

RR,max,i = max
Gi∈Gi

∑

s∈Si

∆P(s, Gi)P(s)I(s) (5.16)

The maximal remaining risk of the combined test-diagnose-fix task is the max-
imum of the maximal remaining risk of the parallel test-diagnose-fix tasks if
these parallel test-diagnose-fix tasks are independent. In general, this is not the
case and parallel test-diagnose-fix tasks are dependent because of the overlap in
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fault states. Determining the maximum remaining risk for the combined test-
diagnose-fix task requires that all possible combinations of fault states in P(S)
need to be taken into account for both sequences. To reduce the complexity of
the calculation the maximal remaining risk for two test-diagnose-fix tasks is es-
timated using Equation (5.17).

RR,max = max
G1∈G1,G2∈G2

(

+
∑

s∈S1\So

∆P(s, G1)P(s)I(s)

+
∑

s∈So

∆P(s, G1)∆P(s, G2)P(s)I(s)

+
∑

s∈S2\So

∆P(s, G2)P(s)I(s)
)

(5.17)

Test stop criteria of the partitioned test-diagnose-fix tasks

The hypergraph partitioning algorithm splits a test-diagnose-fix task into two
tasks and combines the cost vector of the two test-diagnose-fix tasks into a com-
bined cost vector. The test stop criterion should still be met after combining the
results of the partitioned test-diagnose-fix tasks. Meeting the test stop criterion
for (maximal) cost can be assured by setting the stop criteria for the partitioned
test-diagnose-fix tasks such that the sum of stop criteria equals the overall stop
criterion. The stop criterion for (maximal) duration is obtained in a similar fash-
ion. The stop criterion for duration for the partitioned tasks is equal to the over-
all stop criterion, because they are executed in parallel. The stop criterion for the
remaining risk is more involved, because the remaining risk of the partitioned
test-diagnose-fix tasks influences the overall remaining risk, because overlap-
ping fault states are covered in more than one partitioned test-diagnose-fix task.
Moreover, the effect of all test-diagnose-fix tasks on these overlapping fault states
need to be taken into account to determine if the remaining risk stop criterion is
met. The remaining risk of the combined test-diagnose-fix task needs to be de-
termined after every step in the KLFM algorithm, to check if the stop criterion
on system level is met using Equations (5.16) and (5.17). This is computation-
ally intensive. Therefore, another approach is followed. The remaining risk stop
criterion for the parallel test-diagnose-fix tasks is calculated in advance by mul-
tiplying the remaining risk stop criterion on system level with a remaining risk
factor ηRR . A suitable value for the remaining risk factor needs to be selected for
this purpose. A remaining risk factor that is too low leads to less optimal but
feasible partitions, while a remaining risk factor that is too high leads to infea-
sible partitions. The risk reduction in the partitions takes longer than required
because a low risk factor is used. This way, the risk stop criterion is reached and
feasible solutions are obtained. However, a better solution could be available. A
high risk factor on the other hand, results in shorter durations for the partitions,
so a better solution could be obtained. However, the combined risk could exceed
the risk stop criterion, leading to infeasible solutions.
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Estimated objective function

The idea behind the estimator of the test duration, cost and remaining risk is
explained first, followed by the definitions. The interleaved test process configu-
ration can be depicted as a directed binary graph. The initial state of this binary
graph is the first test in the off-line test sequence. Each test can pass or fail. A
passed test case results in the selection of the next test in the sequence. This
results in the pass transition from the initial state. The failing test case is the
second transition. This way, a binary directed graph is built up. A failing test
case results in a diagnosis and fix task and the next test in the sequence is
selected after diagnosis and fixing is completely finished. The directed binary
graph of the interleaved test process configuration is depicted in Figure 57. A
state is depicted as a circle, a transition as an edge and a leaf node as a triangle.
A leaf node indicates that the stop criterion is reached. Multiple leaf nodes can
exist, since the stop criterion could be reached via multiple paths through the
binary graph. A state, depicted as a circle in Figure 57, is defined as a five-tuple
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Figure 57. Directed binary graph representation of the interleaved test process configu-
ration

X =
(

p,∆P,ϕ, c, rR
)

with a domain R× (S → R) ×R×R×R. The elements in the
state X are:

• p, the probability that the state is reached during the test-diagnose-fix task,

• ∆P, the reduction of the failure probability of each fault state s ∈ S,

• ϕ, the time passed since the start of the test-diagnose-fix task,

• c, the cost of testing since the start of the test-diagnose-fix task,

• rR, the remaining risk in the system.

A leaf node is reached if the following condition holds: ((Φ > Φtarget) ∨ (c >
Ctarget)∨ (rR < RR,target)). The leaf nodes of the directed binary graph are used to
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determine the expected and maximal cost, remaining risk and duration of the
combined test-diagnose-fix task. Two transitions are possible from each state in
the directed binary graph: a transition if a test passes and a transition if a test
fails. The pass transition results in state Xp(t, X) derived using Equation (5.18).
A fail transition results in state Xf (t, X) derived using Equation (5.19).

Xp(t, X) = (pp(t,∆P)p, δpass(t,∆P),ϕ + ϕT (t),
c + CT (t), rR(δpass(t,∆P)))

(5.18)

Xf (t, X) = ((1 − pp(t,∆P))p, δf ail(t,∆P),
ϕ + ϕT (t) + ϕD(t) + E(ϕFix),
c + CT (t) + CD(t) + E(CFix),
∆rR(δf ail(t,∆P)))

(5.19)

Both transitions result in a new state according to the pass or fail result of the
test case. The transition of the passed test case uses the pass probability pp of
the test case, while the fail transition uses the fail probability 1 − pp. A different
reduction of failure probability δpass and δf ail is used accordingly. The other dif-
ference in the state transitions is the update of the duration and cost with the
diagnosis and estimated fix duration for the fail transition due to the interleaved
test process. The pass probability of a test t is defined according to Equation
(5.20). The reduction of the failure probability for all fault states is given as ar-
gument δ to this function.

pp(t, δ) =
∏

s∈S

(1 − δ(s)P(s)) (5.20)

The reduction in failure probability due to a passing test δpass is described as a
function δpass : T × (S → R) → (S → R) and defined as follows, for s ∈ S:

δpass(t, δ)(s) = δ(s)(1 − Rts(t, s)) (5.21)

The remaining risk can be calculated using a certain reduction in failure prob-
ability δ according to Equation (5.22).

∆rR(δ) =
∑

s∈S

δ(s)P(s)I(s) (5.22)

The reduction in failure probability due to a failing test δf ail is described as
follows. For s ∈ S:

δf ail(t, δ)(s) =

{

δ(s) if Rts(t, s) = 0
0.0 if Rts(t, s) > 0

(5.23)

The expected fix duration, E(ϕFix), is calculated using Equation (5.24). A number
of fixes can be executed in parallel when a diagnosis finishes. The expected fix
duration depends on the fix duration of each fault state, as well as the probability
that the fix duration is spend. The fix duration of each fault state ϕF is known
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from the system test model. The probability that the fix duration is spent pFix is
calculated using Equation (5.25).

E(ϕFix) =
∑

s∈S

ϕF(s)pFix(s) (5.24)

The idea behind the calculation of the fix duration probability pFix is that the fix
duration is spent depending on the probability that the fault state is actually in
the system and the probability that the fix duration of another fault state that is
to be fixed in parallel takes longer. The probability that a fault state is actually

The probability that
a fault state is
actually in the
system is ∆P(s)P(s),
while the
probability that the
fix duration of
another fault state
takes longer is
determined using a
sorted list of fault
states that are to be
fixed.

in the system is ∆P(s)P(s), while the probability that the fix duration of another
fault state takes longer is determined using a sorted list of fault states that are
to be fixed. A sorted list, Ssorted, is created with the fix duration and fault state as
elements. The list is sorted such that the fault state with the highest fix duration
is placed first, followed by the fault state with the second highest fix duration
and so on. The probability that a fix duration is spend can be calculated for each
s ∈ Ssorted:

pFix(s) =
1

1 − pp
∆P(s)P(s)

∏

sl∈SL

(1 − ∆P(sl)P(sl)) (5.25)

Where, the list SL contains the fault states that are already visited. The current
element is added to SL after pFix(s) is determined.
A single recursive definition for the expected fix duration with signature

E(ϕFix) : Ssorted × S → R that replaces Equation (5.24) is given in Equation
(5.26).

E(ϕFix)(S, SL) =


















0 if S = ∅

ϕF(S.0)
1

1−pp
∆P(S.0)P(S.0) if S 6= ∅

∏

sl∈SL

(1 − ∆P(sl)P(sl)+

E(ϕFix)(tl(S), SL ∪ {S.0})

(5.26)

Where S.0 is the first element in the sorted list and tl(S) returns the sorted list
except the first element of the sorted list, i. e. the remainder of the sorted list or
tail. The expected fix cost, E(CFix), is calculated using Equation (5.27).

E(CFix) =
∑

s∈S

(1 − ∆P(s)P(s))CF(s) (5.27)

A state in the binary graph represent, among the probability that the state
is reached, the time passed since the start of the test-diagnose-fix task and the
cost and remaining risk. The end states in the binary graph of nodes represent
the states that reached the test stop criterion. The time, cost and remaining risk
reached in these end states are used to determine the expected duration, cost
and remaining risk for the entire test-diagnose-fix task. The set of all sequences
leading to an end state in the binary graph G is used in Equations (5.16) and
(5.15). The expected cost and duration of a single test-diagnose-fix task are calcu-
lated by taking the average duration and cost of all the sequences in G.
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S / T t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 t13 t14 t15 t16 t17 P

s1 1 1 0 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0.1
s2 1 0 1 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0.1
s3 1 0 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0.1
s4 1 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0.1
s5 1 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0.1
s6 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0.1
s7 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0.1
s8 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0.2
s9 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0.1
s10 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0.3
s11 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0.1
s12 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0.1
s13 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0.1
s14 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0.1
s15 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 1 0 0.01
s16 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0.1
s17 0 0 0 0 0 0 0 1 0 0 1 1 1 0 0 1 0 0.1
s18 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 1 1 0.1
s19 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 0 1 0.1
s20 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 0 0.1
s21 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 0.1
s22 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0.1
CT 3 1 1 1 2 2 5 3 3 5 5 3 1 1 1 2 2

Table 27. System test model (relevant elements) of the example VOIP system

5.1.4 Example

An extension of the telephone example is used to illustrate the partitioning of
system test models. The simple telephone system is extended with a Voice-Over-
IP (VOIP) network and another telephone on the other side. So the example
system consists of two telephones connected to each other via a VOIP system.
The system test model is depicted in Table 27. The impact I of all fault states
is set to 1.0. The diagnosis, fix duration and apply fix duration is set to 0.0 for
all fault states and test cases. The test graph of this VOIP system is presented
in Figure 58. Two types of nodes can be seen in Figure 58. The circular nodes
represent test cases. The grey diamonds represent fault states. The a-priori fault
state probability, P, is represented by the grey color. A darker tint of grey indi-
cates that the failure probability is higher. The edges in Figure 58 represent the
relations, Rts, between test cases and fault states. The system test model of the
VOIP system consists of 17 test cases with a total test duration of 41 time units.
The test graph of the VOIP system is first parallelized with a bin-packing algo-
rithm. The test duration is the only required parameter per test case. A result of

bin-packing (bp) are the test sets T
bp
1 and T

bp
2 :

T
bp
1 = {4, 5,6, 7,9, 12, 13, 14, 17} (5.28)

T
bp
2 = {1, 2, 3, 8, 10, 11, 15, 16} (5.29)

The test duration of T
bp
1 is the sum of all individual test cases, Φ

T
bp
1
=

∑

t∈T
bp
1

ϕT (t).

The test duration of T
bp
2 is determined in a similar fashion. The duration of

both test-diagnose-fix tasks executed in parallel is Φbp = max(Φ
T
bp
1
,Φ

T
bp
2
). For
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Figure 58. Test graph of the VOIP system

the VOIP system, Φ
T
bp
1

= 20 and Φ
T
bp
2

= 21, so the test duration of both test-

diagnose-fix tasks executed in parallel is Φbp = 21. A graphical overview of the
test cases, fault states and relations in the VOIP system is depicted in Figure 59.

The resulting test sets T
bp
1 and T

bp
2 are represented by darker and lighter circles

respectively. The fault states and relations are presented for completeness pur-
poses. These relations are not taken into account in the bin-packing algorithm.
The dotted edges indicate that the connected fault state is covered by only one
of the two test partitions. The black solid edges indicate that the connected fault
state is covered by tests from two test partitions. This illustrates that the bin-
packing algorithm does not take test coverage into account. This graph can be
compared with the resulting graph of the test graph partitioning algorithm later
on. It can be concluded based on Figure 59, that the bin-packing algorithm
does not take the coverage of each test case and the timing related properties of
each test and fault state into account, since the selected test cases for each test-
diagnose-fix task are scattered. The overlap between the test-diagnose-fix tasks

The overlap
between the
test-diagnose-fix
tasks obtained via
bin-packing is
large, as can be
seen by the solid
lines in Figure 59.

obtained via bin-packing is large, as can be seen by the solid lines in Figure 59.

The adapted HKLFM algorithm does take the coverage and timing properties
into account. The step by step adaptedHKLFM can be visualized using the VOIP
test model of Figure 58. First the test graph is coarsened, i. e. test cases are
grouped together. Seven groups are created for the VOIP example: H1, H2, ...,
H7. These groups are graphically presented in Figure 60, where it can be seen
that test cases are grouped with neighboring test cases.

The initial partitioning after coarsening is represented with darker and lighter
circles. Initially, one partition consists of one test group with one test case (t15),
while the other partition contains six groups of test cases. Now, groups of test
cases are moved to the other partition if this is beneficial for the total cost. The
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scheme that has been followed in this case is:

Step 1: Move t3 to partition 2, ΦHKLFM = 29.0.
Step 2: Move test cluster with t8,t9,t10 to partition 2, ΦHKLFM = 13.0.
Step 3: Move t15 to partition 1, ΦHKLFM = 12.0.
Step 4: Move t3 to partition 1, ΦHKLFM = 11.0.
Step 5: Trying the other test groups results in no benefit, so terminate.

Table 28. Partitioning scheme for the VOIP system

Then, the groups of test cases are uncoarsened into single test cases, such
that partition T1 = {1, 2, 3, 4, 5,6, 7, 11, 12, 13, 14, 15, 16, 17} and partition T2 =
{8,9, 10}. The same HKLFM procedure is now repeated on the uncoarsened
test cases. The resulting test case swaps are:

Step 1: Move t13 to partition 2, ΦHKLFM = 11.0.
Step 2: Move t2 to partition 2, ΦHKLFM = 11.0.
Step 3: Trying the other test cases results in no benefit, so terminate.

Table 29. Uncoarsened partitioning scheme for the VOIP system

Step 2 is beneficial because the number of links between the test-diagnose-fix
tasks is lower when t2 is moved to partition 2. The total cost remains the same
however.
The final result is depicted in Figure 61. The cost of these parallel test-

diagnose-fix tasks is 11.0. If this result is compared with the initial bin-packing
result, then a cost improvement of 47% is obtained for this example. If the re-
sulting cost is compared with the initial (non-parallel) test set with total test cost
of 41 time units, then an improvement of 73% is obtained.

5.1.5 Case: Lot operations sub-system

In this section, a case study is discussed where the test partitioning algorithm
and proposed objective functions are applied. The case study is performed with
the lot operations sub-system of an ASML wafer scanner. This sub-system con-
sists of software only. The test-diagnose-fix task that is considered in this case
can be executed on a standard SUN Solaris system without requiring additional
hardware. Moreover, the fault states in this sub-system are configuration inde-
pendent, because the same software can be copied and installed on more than
one test system. A wafer scanner is used in the critical (lithographic) step in
the manufacturing process of integrated circuits (IC’s). The manufacturing ex-
ecution system in an IC factory sends a so-called ‘lot’ to a wafer scanner. The
lot describes the type of job that the wafer scanner needs to perform. These
lots are queued in the lot operations (LO) sub-system. The LO sub-system then
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Figure 61. Test graph of the VOIP system partitioned by the adopted HKLFM algorithm

performs the required setup actions in the wafer scanner and waits until all re-
quired material is available to process the lot. The LO sub-system is the main
controller of the wafer scanner.
ASML test engineers have defined a system test model of the lot operations

sub-system with the following properties:

• Number of test cases: 44,

• Number of fault states: 31,

• Cumulative test duration: 56.3 [h],

The test cases that are described in the system test model are developed over a
period of a few years. The test cases first developed test the normal operation
of LO, while test cases developed in a later stage test additional functionality
and special cases where problems were found over the years. The set of 44 test
cases, ‘test chapters’, in the system test model contain a few up to hundreds
automated test cases. The set of fault states in the system contains fault states
for individual components in the system as well as fault states for sub-functions
and special high-risk areas. The diagnosis cost and duration is set to 1 hours.
This is also the case for the fix cost and duration. We assume here that a test en-
gineer is present when the test cases are executed. Problems found are analyzed
and fixed immediately and then testing is continued. This test process matches
with the interleaved test process as discussed in Section 4.2. The test-diagnose-
fix task that is partitioned is the final test of a redesign of the LO sub-system.
The LO sub-system has been redesigned to accommodate future developments.
Additionally, the internal design required an update, because the changes over
time in the system resulted in a degradation of the current design. The test-
diagnose-fix task is planned to test if the redesigned code still complies with the
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normal expected behavior of the LO sub-system. This test-diagnose-fix task is
parallelized to gain time-to-market. Cost is less important, because enough test
resources and developers are available. Three groups of failure probability of the
fault states can be distinguished: P(s) > 80% (4 fault states), 80% ≥ P(s) > 30%
(6 fault states) and P(s) ≤ 30% (21 fault states).

Reference case

First, the duration of the single (non-parallel) test-diagnose-fix task has been
determined for reference purposes, because currently all test cases are executed
in a weekend, without interleaved diagnosis and fix activities. The current test
duration is therefore 56.3 hours. A reference case, with interleaved diagnosis
and fixing, needs to be compared with the parallel execution of test-diagnose-fix
tasks. The test stop criterion is set to a remaining risk of 1.20, the interleaved
test process and an off-line information gain-based test sequencing method are
used. No stop criterion on cost and time is defined. The expected duration of
the single test-diagnose-fix task is 16.0. The maximal test duration is 37.6 and
the expected and maximal cost are 18.18 and 40.13, respectively. The expected
remaining risk is 1.08, while the maximal remaining risk is 1.20 according to
the target. The test cases are capable of reducing the remaining risk to a level of
1.15, when no faults are present in the system. If faults are present in the system,
it depends if the faults are fixed if the remaining risk level of 1.15 is reached.
Therefore a slightly higher target remaining risk of 1.2 is chosen, resulting in
more feasible sequences.

Experiments

Several experiments are performed. The performance of the HKLFM algorithm
was tested by varying the minimum number of vertices Vmin, the max weight
factor CMaxWghtFrac and the number of vertices in a clusterMaxNrVtxInClus-
ter. Furthermore, the remaining risk factor ηRR is varied to determine the opti-
mal remaining risk factor for this case.
The settings for Vmin, CMaxWghtFrac and MaxNrVtxInCluster are summa-

rized in Table 30. The number of vertices in each different coarsening level are
summarized under |V0| for level 0 through |V2| for level 2. The experiments are
marked as C1 through C7. C1 is the experiment where the HKLFM algorithm is
used without coarsening and uncoarsening the test-diagnose-fix tasks. The re-
sults of the experiments with varying CMaxWghtFrac, MaxNrVtxInCluster and
Vmin are presented in Table 31. The number of performed replications is indi-
cated in the # repl. column. The number of replications is 10 for C1 through C3
because the results of these experiments were very close to each other. This way,
it is excluded that an accidentally bad or good solution influences the results.
Experiments C4 through C7 have been performed 5 times. The results of each
experiment C1 through C7 have been used to calculate the average duration µΦ,
standard deviation σΦ and the minimal duration Φ̂

∗
min. The difference between

the minimal duration and the minimal duration of experiment C1 is calculated
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Exp. CMaxWghtFrac MaxNrVtxInCluster Vmin |V0| |V1| |V2|
C1 - - ∞ 45 - -
C2 0.01 2 28 45 28 -
C3 0.5 2 24 45 24 -
C4 0.1 2 14 45 24 14
C5 0.006 3 30 45 30 -
C6 0.12 3 18 45 18 -
C7 0.025 3 13 45 20 13

Table 30. The settings of the performed experiments

Exp. # repl. µΦ σΦ Φ̂
∗
min

Φ̂
∗

min−Φ̂
∗

C1

Φ̂
∗

C1

CPU [hr]

C1 10 12.33 1.31 11.50 0.00 10 × 15
C2 10 12.05 0.78 11.66 0.01 10 × 7
C3 10 11.79 0.00 11.79 0.02 10 × 4
C4 5 14.89 1.18 12.53 0.09 5 × 4
C5 5 13.14 1.33 12.05 0.05 5 × 8
C6 5 18.89 1.10 16.81 0.46 5 × 6
C7 5 16.32 0.00 16.32 0.42 5 × 6

Table 31. Results of the different experiments
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using Φ̂
∗

min−Φ̂
∗

C1

Φ̂
∗

C1

. The CPU [hr] column (10 × 15) indicates that a single replication

costs 15 hours and this replication is repeated 10 times. The trade-off between
the computational effort and obtained minimal test duration can be seen for
the different settings of the algorithm. The obtained minimal test duration is
higher for all experiments than the best solution of experiment C1. The best
solution of experiment C1 also took the longest time to calculate.
The remaining risk factor ηRR has been varied to determine the optimal re-

maining risk factor and the effect of varying ηRR on the end result. Experiment
C3 has been used for this purpose, since experiment C3 delivers the best results
in the shortest calculation time. The result of experiment C3 differs 2% from
the optimal solution and is determined in 10 × 4 hours, while experiment C2
differs 1% and is determined in 10 × 7 hours. The remaining risk factor values
used are 0.25,0.3,0.325,0.34,0.35,0.36,0.375. Figure 62 depicts the remaining
risk factor versus the minimal test duration. The minimal duration is obtained
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∗
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(ϕ̂
|Π

∗
)
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Figure 62. Relation between the expected test duration E(Φ) and factor ηRR

with a remaining risk factor of 0.35. Infeasible solutions are obtained when the
remaining risk factor exceeds 0.375.

Results

Partitioning the test-diagnose-fix task of the LO sub-system results in a reduc-
tion of the expected test duration from 16 hours to 11.50 hours, which is a re-
duction of around 30%. The maximal test duration is also reduced by around
30%. The expected test cost is increased with roughly 30%, because test cases
are executed in parallel. The detailed results are presented in Table 32. The com-
putational effort can be reduced by using coarsening and clustering as set up in
experiment C3.

5.1.6 Conclusions

This section extends the well-known Hypergraph Kerninghan-Lin and Fiduccia-
Matheyses (HKLFM) partitioning algorithm, such that it can be applied to par-
tition test-diagnose-fix tasks. The extension includes a domain specific objective
function, where the presence of an edge in a partition influences the outcome



124 IMPROVING INTEGRAT ION AND TEST SEQUENCES

Expected test duration
Exp. E(ϕS) E(ϕ|Π∗) Change
C1 16.00 11.50 -28.1%
C3 16.00 11.74 -26.6%

Maximal test duration
Exp. max(ϕS) max(ϕ|Π∗) Change
C1 37.6 25.60 -31.9%
C3 37.6 25.10 -33.2%

Expected test cost
Exp. E(CS) E(C|Π∗) Change
C1 18.18 23.50 29.3%
C3 18.18 23.82 31.0%

Table 32. Detailed results of partitioning the LO test-diagnose-fix task into two parallel
tasks. RR,max,target = 1.2 and ηRR

= 0.35

of the objective function. The extension of the HKLFM algorithm enables the
partitioning of test-diagnose-fix tasks into parallel test-diagnose-fix tasks, while
taking the important elements of a test-diagnose-fix task into account: the test
sequence, test process, test stop criteria and the system under test itself. An es-
timator for the objective function has been developed for this purpose and this
estimator has been incorporated in the Mondriaan toolset.
The hypergraph partitioning algorithm for test-diagnose-fix tasks has been

applied to a case study at ASML. A test-diagnose-fix task of a software sub-
system has been partitioned and an improvement in terms of expected test
duration of around 30% is obtained. Different parameters of the partitioning
algorithm have been varied to investigate the effect of these parameters on the
expected test duration and computational effort. An optimal setting for the case
study has been determined this way.
A number of possible improvements can be made. The current objective

function can be extended with additional test sequencing techniques and test
process configurations. This extension broadens the applicability for other types
of test-diagnose-fix tasks. Three extensions related to partitioning are proposed.
First, the current algorithm supports partitioning a test-diagnose-fix task into
two tasks. More than two test-diagnose-fix tasks could be beneficial. This can
be done using a recursive algorithm or a flat method algorithm as proposed
by [Lim and Cong, 1998]. The recursive method can be applied manually using
the current toolset.
The second extension relates to the partitioning of fault states instead of test

cases. The current partitioningmethod is limited to the partitioning of test cases
only, while the partitioning of fault states could also be chosen. The partition-
ing of fault states should lead to the same results with the current objective
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functions. It could be possible that more simple estimators of the KPI could be
defined if the fault states are partitioned.

The third extension related to partitioning uses the hypergraph partitioning
algorithm to partition a large test-diagnose-fix task into two test-diagnose-fix
tasks that are executed in series. This way, a rough test sequence, of large groups
of test cases, is obtained. These groups of test cases could be sequenced in detail
using an optimal test sequencing algorithm [Boumen et al., Jan. 2008].

Communication between two parallel test-diagnose-fix tasks is currently not
supported, resulting in less optimal results. Communication enables that prob-
ability information about fault states present in both test-diagnose-fix tasks is
exchanged. Fixing a fault state in one test-diagnose-fix task is then beneficial for
the other test-diagnose-fix task(s) also. Communication on the other hand com-
plicates the estimator of the test duration of a single test-diagnose-fix task and
could result in an increase of the computational effort.

We would like to thank Kirsten van de Meer (ASML) and Rudi Pendavingh
(Eindhoven University of Technology) for their participation in this work.

5.2 DEVELOP ING NEW TEST CASES

The next section is based on [I. de Jong et al., 2007d].

The complexity of wafer scanners increases with every new system type. The
effort involved with designing and developing new test cases for components
in a wafer scanner therefore also increases. A set of test cases, a test set, for an
existing component is the basis for the test set for the new version of the compo-
nent. Changes in the new version of the component require that new test cases
are developed. Developing new test cases is a process where component experts
and test experts are involved. First, the high-risk areas are defined. Second, the
available test cases are reviewed. Third, missing test cases are identified. Finally,
these missing test cases are developed and can be executed. High-risk areas re-
sult in new test cases that have a specific coverage on that high-risk area.

The areas that are of high-risk change for subsequent versions of the compo-
nent. A specific test case with high coverage on a high-risk area is not optimal in
the next version of the component when this risk is reduced, because this test
case does not reducemuch risk in the next version of the component. A test case
covering many low risk areas is much more beneficial for the new version of the
component. Often, test cases are developed when the risk in a specific area is
high and then these test cases are not reviewed and changed anymore. One of

One of the
characteristics of
platform
development is that
the majority of the
components, used
in a version of the
system, remain
unchanged in the
next system
version.

the characteristics of platform development is that the majority of the compo-
nents remain unchanged between two system versions. In other words, the risk
in these unchanged components remains at the same low level as the previous
component version. The selected set of test cases executed in test-diagnose-fix
tasks for two versions of a system type should therefore be adjusted based on
the risk in the system.
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This section presents amethod that defines the so-called next-best-test-case, us-
ing the coverage of the existing test cases and the failure probability of possible
faulty areas in the system. The problem of defining the next-best-test-case is de-
fined in Section 5.2.1. A basic algorithm is presented in Section 5.2.2. This algo-
rithm is able to determine optimal next-best-test-cases by selecting the coverage
of the test case such that the highest information gain is obtained. This algo-
rithm is able to determine the next-best-test-case for small systems. Industrial-
size systems contain many possible faulty areas (fault states) and large test sets.
Therefore, Section 5.2.3 presents an algorithm to select the next-best-test-case
using a combination of a clustering technique and the optimal next-best-test-
case algorithm. The performance of the optimal next-best-test-case-algorithm
and the clustered next-best-test-case algorithm are illustrated in Section 5.2.4.
Section 5.2.5 describes two cases that have been performed using this method
to improve the test set of large test phases at ASML.

5.2.1 Problem definition

The next-best-test-case problem is a selection problem, where the best test case,
out of all possible test cases, needs to be selected according to some objective
function. The test signature describing the coverage of the test case is what de-
fines a test case. The coverage is described in terms of faulty areas in the system
or fault states. The next-best-test-case algorithm determines the best signature
according to an objective function. Available test cases are taken into account in
the objective function assuming that these test cases are executed first. Conse-
quently, the coverage of the available test cases on the fault states is taken into
account. The available test cases, the fault states in the system and the coverage
of the test cases on these fault states are modeled in a system test model. Infor-
mation gain is used as performance criterion and is introduced first using the
system test model introduced in Chapter 2. Sections 5.2.2 and 5.2.3 describe
the next-best-test-case algorithm that uses the system test model and objective
function to calculate the next-best-test-case.

System test model

The system test model is introduced earlier in Chapter 2. Table 33 depicts a
system test model for version v1.0 of an example component. Six test cases are
defined and five fault states. The failure probabilities and impact are defined
per fault state. The IG row represents the information gain per test case that is
derived from the elements of the model. The information gain per test case is
described later in this section. The coverage of each test case on a fault state is
represented by a value between 0 and 1, where 0 means that the test case does
not cover the fault state and 1 means that the fault state is 100% covered by the
test case. A value between 0 and 1 represents partial coverage.
Table 34 represents a system test model for the second version of the same

component. The differences between both models are the failure probabilities
and the additional fault state s6. The failure probabilities are reduced due to the
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S / T t0 t1 t2 t3 t4 t5 P I

s1 0.5 0.5 0 0 0.5 0 80% 1
s2 0.5 0 0.5 0 0.5 0.5 80% 1
s3 0.5 0 0 0.5 0 0.5 10% 1
s4 0.5 0 0 0 0.5 0 10% 1
s5 0.5 0 0 0 0 0.5 10% 1
IG 0.89 0.97 0.97 0.29 0.93 0.99

Table 33. An example system test model of component version 1.0, Dv1.0

test cases, diagnosis and fix tasks that are executed for version v1.0 or increased
because of changes in the system. Fault state s6 represents the specific changes
for version v2.0 of the component.

S / T t0 t1 t2 t3 t4 t5 P I

s1 0.5 0.5 0 0 0.5 0 8% 1
s2 0.5 0 0.5 0 0.5 0.5 8% 1
s3 0.5 0 0 0.5 0 0.5 8% 1
s4 0.5 0 0 0 0.5 0 8% 1
s5 0.5 0 0 0 0 0.5 70% 1
s6 0.5 0 0 0 0 0.5 80% 1
IG 0.92 0.24 0.24 0.24 0.52 0.94

Table 34. An example system test model of component version 2.0, Dv2.0

The next-best-test-cases for model version v1.0 and v2.0 are expected to be
different because of the failure probabilities of the fault states in the two versions
of the model and the coverage of the test cases on the fault states (s6).

Objective function

The objective
function, used to
evaluate possible
next-best-test-
cases, is based on
the information
gain of a test case.

The objective function, used to evaluate possible next-best-test-cases, is based on
the information gain of a test case. The information gain for a test case, defined
in Equation (5.30), is maximal if a test case has a failure probability of 50%. A
test case with a failure probability of 50% has a 50% probability that a fault is
found. Fault detection is one of the purposes of a test case. This test case also has
a 50% probability that it passes. A passed test case means that the covered fault
states do not exist in the system. A failing test case is an opportunity to improve
the system (and reduce the failure probability). A passing test case reduces the
failure probability of the covered fault states. A test case is represented by its
test signature. A test signature represents the set of fault states that is covered
by the test case. The information gain for a single test case with signature sig is
calculated using Equation (5.30).

IG(sig) = −
(

pp(sig)log2pp(sig) + pf (sig)log2pf (sig)
)

(5.30)
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where pp(sig) is the pass probability of a test with signature sig and pf (sig) is the
fail probability. The pass probability is defined by

pp(sig) =
∏

s∈sig

(

1 − P(s)Rts(s)

)

(5.31)

and the corresponding fail probability as

pf (sig) = 1 − pp(sig) (5.32)

The objective function used in the next-best-test-case algorithm takes the cov-
erage of the previously executed test cases into account. For this purpose, it is
assumed that the test cases, currently present in the test model, are executed
before the new next-best-test-case. The exclusion of fault states by previous test
cases results in a change of the failure probability of the covered fault states.
Therefore, the pass and failure probability of a possible new test case is affected.
This means that Equation (5.31) to determine the pass probability for a test case
needs to be revised such that the previously covered test cases are taken into
account.
The optimal method to calculate the pass probability for a test case takes all

combinations of covered fault states for each test case into account. This method
is computationally intensive, because of the calculation of all possible fault state
combinations for each test. Therefore, an estimator of the pass probability is
required. This probability estimator estimates the pass probability for a test case
with a high accuracy. The optimal method to determine the pass probability of
a test case and the probability estimator are investigated in [Boumen et al., Jan.
2008]. The probability estimator, defined in Equation (5.33), is used to calculate
the pass probability of a test case.

pp(sig) =
∏

s∈sig

(

(1 − P(s))
∏

S′∈Sc∧s∈S′
(1 − P(s)

∑

si∈S′
P(si)

)
)

(5.33)

5.2.2 Optimal next-best-test-case algorithm

The next-best-test-case function NBTC : P(S) × P(P(S)) → P(S) takes a set of
fault states as input and the set of candidate sets Sc of fault states. The function
returns the set of fault states covered by the next-best-test-case, the signature of
the next-best-test-case. The set of fault states describes what could be covered
by the next-best-test-case. The candidate set Sc describes what is already covered
by the test cases that are previously executed. The candidate set contains the
signature of all test cases that are currently in the test model.
The candidate set Sc is the set of test signatures for all test cases

that are currently present in test set T , using the coverage relation
Rt(t) : P(T) → S: Rt(t) = {s | Rts(t, s) > 0}.

Sc = {Rt(t) | t ∈ T} (5.34)



5.2 DEVELOP ING NEW TEST CASES 129

The optimal next-best-test-case algorithm is defined as follows:

NBTC(S, Sc) =
{sig∗ | ∀sig ∈ Θ(S, Sc) : IG(sig∗) ≥ IG(sig)}

(5.35)

The idea behind the
optimal
next-best-test-case
algorithm is that
the signature of a
test case is a set of
fault states.

The idea behind the optimal next-best-test-case algorithm is that the signa-
ture of a test case is a set of fault states. Generating all possible combinations of
fault states, therefore results in a all possible test cases that can be evaluated. A
system test model containing l fault states results in 2l fault state combinations.
This includes the empty set ∅ that is removed, because a test case that does not
cover any fault state is not useful. The set of fault states in the candidate set are
also removed, because these ‘test cases’ are already present in the model (and
have been executed). Calculating the information gain for each test signature
and choosing the test signature with the highest information gain results in the
next-best-test-case.
The function Θ : P(S) × P(P(S)) → P(P(S)) calculates all combinations of

fault states of the fault states in S, excluding the empty set and the sets of fault
states Sc that are already covered in previous test cases Sc.

Θ(S, Sc) = setcombine(S) \ {∅ ∪ Sc} (5.36)

The optimal next-best-test-case algorithm is able to determine the optimal test
case for a given system test model, because all possible test cases are examined.
The problem with the optimal next-best-test-case algorithm is that determining
all possible test cases using Equation (5.36) is computationally intensive. Algo-
rithms to generate all possible combinations are fairly simple, but the memory
usage or duration of the calculation increases exponentially with the number of
fault states in the system. Therefore, the optimal next-best-test-case algorithm
cannot be used to determine the next-best-test-case for large system test mod-
els. The current maximum number of fault states lies around 17. The clustered
next-best-test-case algorithm has been developed to overcome this disadvantage.
The clustered next-best-test-case algorithm is explained in Section 5.2.3.

5.2.3 Clustered next-best-test-case algorithm

The clustered next-best-test-case algorithm replaces fault states with a new fault
state, such that the information of the replaced fault states is represented by
the new fault state. Clustering of fault states continues until |S| < maxS, where
3 ≤ maxS ≤ 15.1 The next-best-test-case for the clustered system test model can
now be calculated using the optimal next-best-test-case algorithm. This process
is repeated on the resulting signature such that the result is refined. A flowchart
of the clustered next-best-test-case algorithm NBTCcl is depicted in Figure 63.
In a formal definition the clustered next-best-test-case algorithm is defined as

a function NBTCcl : D×Πcl×N → S that takes a system test modelD, a clustering

1The maximum number of fault states depends on the available computer processing power. A
safe choice of 15 fault states is chosen here.
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Start

|S| ≤ maxS

|S| ≤ maxS ∨ |t′| = |S| ∨ |t′| = 1

D := removeS(D,D.0 \ t′)

sig := uncluster(NBTC(D′.0, D′.6), D′)

sig := NBTC(D.0, D.6)
Yes

Yes

No

No
Stop

Result: sig

Stop
Result: sig

t′ := uncluster(NBTC(D′.0, D′.6), D′)

D′ := cluster(D,Πcl,maxS)

D := (S, T, Rts, P, I, Rc, Sc)

Select clustering strategy Π
cl and maxS

Model the system: (S, T, Rts, P, I, Rc, Sc)

Figure 63. Flowchart of the clustered next-best-test-case algorithm

strategy Πcl = {minmin,minmax,maxmin,maxmax} and a maximum number
of fault states in the clustermaxS as input and outputs the signature of the next-
best-test-case. The corresponding algorithm is described in Equation (5.37).

The system test model, used in the clustering algorithm, is based on the sys-
tem test model defined in Chapter 2: D = (S, T, Rts, P, I, Rc, Sc). The elements
Rc and Sc are specific for the clustered next-best-test-case algorithm and used
to maintain additional information required in the algorithm. The relation Rc

defines for a fault state in which cluster the fault state is clustered or {∅} if the
fault state is not clustered. This clustering relation is defined as Rc : S → P(S).
The clustering relations defined for the set of all possible fault states S are empty
initially. Note that the domain of clustering relation is larger than the domain
of the fault state set S for the purpose of clustering and unclustering using
Equations (5.52), (5.60) and (5.61). The candidate set Sc is used to maintain the
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signatures of the executed test cases.

NBTCcl(D,Πcl, maxS) =






NBTC(D.0, D.6) if |D.0| ≤ maxS
t′ if |D.0| ≤ maxS ∨ |t′| = |D.0| ∨ |t′| = 1
NBTCcl(removeS(D, S \ t′)) if |D.0| > maxS ∧ |t′| 6= |D.0| ∧ |t′| > 1

(5.37)

Where variable t′ stands for:

t′ = uncluster(NBTC(D′.0, D′.6), D′) (5.38)

and

D′ = cluster(D,Πcl, maxS) (5.39)

The clustered algorithm NBTCcl calculates the next-best-test-case using the
optimal next-best-test-case algorithm when |S| ≤ maxS. Otherwise, a clustered
next-best-test-case is calculated using the variables t′ and D′, which cluster the
D first into D′, calculate the clustered next-best-test-case and uncluster the clus-
tered next-best-test-case into t′. If the number of fault states in the signature is
more or equal than maxS or if the signature of the clustered next-best-test-case
t′ is the same the original fault state set in the model D.0 or the number of
elements of the clustered next-best-test-case is 1, then the clustered next-best-
test-case t′ is the result of the algorithm. Otherwise, the fault states S \ t′ are
removed from the original model D by removeS and the algorithm restarts. The
recursion stops when the size of the clustered next-best-test-case is 1 or if the
clustered next-best-test-case is the same as the original set of fault states.
The function removeS : D × P(S) → D removes a set of fault states sig from

the system test model D and removes the relations between test cases that are
not relevant anymore because of the removal of fault states.

removeS(D, sig) =
(S′, T ′, D.2 ↾ (S′ × T ′), D.3 ↾ S′, D.4 ↾ S′, D.5 ↾ S′, {x \ sig | x ∈ D.6} \ {∅})

(5.40)

Where: S′ = D.0 \ sig and T ′ = D.1 \ {t | ∀s : s ∈ D.0 \ sig : Rts(t, s) = 0}. The
other properties in the model are updated by projecting the changes in S and T
on the properties using the ↾ operator.
The function uncluster : P(S) ×D → P(S) ×P(S) translates the signature that

could contain clustered fault states to a signature without clustered fault states.
This function returns the unclustered signature by looking up all fault states
that are in the model D′ and related via D′.5 with a clustered fault state in sig.
The uncluster function assumes that the clustering function cluster only adds
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clustered fault states, without reusing the properties of existing fault states for
this purpose.

uncluster(sig, D′) =
{s | s ∈ D′.0 ∧ ((∃s′ : s′ ∈ sig : s′ ∈ D′.5(s)) ∨ (∃s′ : s′ ∈ sig : s′ ∈ D′.0))}

(5.41)

The introduced clustered next-best-test-case algorithm can be used as a
generic clustered next-best-test-case algorithm. The clustering technique deter-

The clustering
technique
determines what
the performance is
of the clustered
next-best-test-case
algorithm.

mines what the performance is of the clustered next-best-test-case algorithm.
The three clustering algorithms, used in this paper, are described next.

Clustering

The clustering technique used in the clustered next-best-test-case algorithm de-
termines the performance of the algorithm, because a bad clustering algorithm
results in next-best-test-cases that are not optimal at all. A general clustering al-
gorithm is defined in Equation (5.42), and utilizes an objective function to clus-
ter fault states. Three different clustering methods are defined. Additionally, a
clustering strategy Πcl needs to be selected.

cluster(D,Πcl, maxS) =






















D if |D.0| ≤ maxS

cluster(mrg(D, IG−(x), IG−(y))) if |D.0| > maxS ∧ Πcl = minmin

cluster(mrg(D, IG−(x), IG+(y))) if |D.0| > maxS ∧ Πcl = minmax

cluster(mrg(D, IG+(x), IG−(y))) if |D.0| > maxS ∧ Πcl = maxmin

cluster(mrg(D, IG+(x), IG+(y))) if |D.0| > maxS ∧ Πcl = maxmax

(5.42)

Where, x ∈ IG−(D.0) and y ∈ IG−(D.0 \ {x}). Four clustering strategies are
defined:minmin,minmax,maxmin andmaxmax. Theminmin clustering strat-
egy combines the two fault states with the two lowest values for the objective
function. The minmax clustering strategies combine the two fault states with
the lowest and highest value for the objective function and otherwise for the
maxmin clustering strategy. Both strategies are equal. The maxmax clustering
strategy selects two fault states with the two highest information gains.
Three clustering objective functions are defined: IG+/IG− based on the infor-

mation gain per test signature, P+/P− based on the failure probability of a test
signature and IGR+/IGR− based on the combination of information gain and
risk for a test signature. Each of the three objective functions is defined in two
forms, a function to determine the minimal value and a function to determine
the maximal value. The minimal and maximal values are used in the different
clustering strategies.
A fault state with the lowest information gain is selected using Equation (5.43).

A fault state with the highest information gain is selected using Equation (5.44).
Fault states are not selected twice for merging, by removing the first fault state
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from the set of fault states as in variable y. Clustering using information gain as
objective function is referred to as CTMIG in the remainder of this section.

IG−(S) = {x ∈ s∗ | s∗ ∈ S ∧ ∀s ∈ S : IGs(s∗) ≤ IGs(s)} (5.43)

IG+(S) = {x ∈ s∗ | s∗ ∈ S ∧ ∀s ∈ S : IGs(s∗) ≥ IGs(s)} (5.44)

Where:

IGs(s) = −
(

psp(s)log2p
s
p(s) + psf (s)log2p

s
f (s)

)

(5.45)

where psp(s) is defined as:

psp(s) =
∏

t∈T

(

1 − P(s)Rts(t, s)

)

(5.46)

and:

psf (s) = 1 − psp(s) (5.47)

The second, similar to the first, clustering objective function clusters two fault
states using failure probability instead of the information gain. Equations (5.48)
and (5.49) are used to combine two fault states for the different strategies. Clus-
tering using failure probability as objective function is identified with CTMP in
the remainder of this section.

P−(S) = {x ∈ s∗ | s∗ ∈ S ∧ ∀s ∈ S : P(s∗) ≤ P(s)} (5.48)

P+(S) = {x ∈ s∗ | s∗ ∈ S ∧ ∀s ∈ S : P(s∗) ≥ P(s)} (5.49)

The third clustering objective function clusters two fault states using the in-
formation gain per fault state together with the risk involved with this fault state.
The use of risk in addition to the information gain could result in test cases with
less information gain in favor of the risk covered. The usage of an objective func-
tion that is a combination of two functions has an advantage when determining
what fault states can be clustered. The usage of risk could lead to better solu-
tions. The information gain risk is calculated using Equations (5.50) and (5.51).
Clustering using information gain and risk as objective function is identified as
CTMIGR in the remainder of this section.

IGR−(S) = {x ∈ s∗ | s∗ ∈ S ∧ ∀s ∈ S : IGR(s∗) ≤ IGR(s)} (5.50)

IGR+(S) = {x ∈ s∗ | s∗ ∈ S ∧ ∀s ∈ S : IGR(s∗) ≥ IGR(s)} (5.51)
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The information gain risk for a fault state is defined as the product of the risk
and information gain: IGR(s) = IGs(s)P(s)I(s).
The actual combination, or merging, of fault states is performed by the mrg

function, defined in Equation (5.52). This function merges s′ and s′′ into a new
fault state newS and removes s′ and s′′ from the system test model D. Note that,
the new fault state newS can be uniquely identified. Next to that, the properties
related to s′ and s′′ are updated. The mrg function is defined as:

mrg(D, s′, s′′) =
((D.0 ∪ {newS}) \ {s′, s′′}, D.1, R′

ts, P
′, I′, R′

c, S
′
c)

(5.52)

Where:

• R′
ts is defined as R′

ts : D.1 × (D.0 ∪ {newS}) \ {s′, s′′} → R, such that:
for every t ∈ D.1 and s ∈ D.0:

R′
ts(t, s) if s 6= s′ ∧ s 6= s′′ (5.53)

and

R′
ts(t, newS) = (Rts(t, s

′) + Rts(t, s
′′))/2 (5.54)

• P′ is defined for every s ∈ D.0 as :

P′(s) = P(s) if s 6= s′ ∧ s 6= s′′ (5.55)

and

P′(newS) = 1 − ((1 − P(s′))(1 − P(s′′))) (5.56)

• I′ is defined for every s ∈ D.0 as :

I′(s) = I(s) if s 6= s′ ∧ s 6= s′′ (5.57)

and

I′(newS) = (I(s′) + I(s′′))/2 (5.58)

• R′
c is defined for every s ∈ D.0 as :

R′
c(s) = Rc(s) if s 6= s′ ∧ s 6= s′′ (5.59)

and

R′
c(s

′) = Rc(s
′) ∪ {newS} (5.60)

and

R′
c(s

′′) = Rc(s
′′) ∪ {newS} (5.61)

• S′c is defined for every s ∈ (D.0 ∪ {newS}) \ {s′, s′′} as :

S′c = {R′
ts(t, s) | t ∈ D.1} (5.62)
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5.2.4 Illustration

The performance of the clustered next-best-test-case is compared with the opti-
mal next-best-test-case algorithm in this illustration. For this purpose, a large
number of system test models has been generated. These system test mod-
els have been used to calculate the next-best-test-case for a range of clustering
methods and strategies. The calculated next-best-test-cases are compared with
the next-best-test-cases calculated using the optimal algorithm.
The following system test model parameters have been varied: the number

of test cases in the model [8 or 16], the number of fault states in the model
[5,7,9,11 and 13], the failure probability for all fault states in the models [0.1, 0.25,
0.5, 0.75 and 0.9] and the density of the model [0.1, 0.25, 0.5, 0.75 and 0.9].
All these parameters are self explanatory, except the density that is defined as:
ρ = 1

|T |×|S|

∑

t∈T,s∈S

Rts(t, s). The density of a system test model is a measure for the

coverage of all test cases on all fault states.
The system test models used for this analysis are randomly generated result-

ing in 250 system test models with different settings. These models are used
to measure the performance of the clustered next-best-test-case algorithm. The
clustering method, the clustering strategy and the maximum number of fault
states in a cluster are varied, such that the influence of these parameters on the
information gain of the calculated next-best-test-case is measured. Furthermore,
the optimal next-best-test-case algorithm has been applied, such that the results
of the clustered algorithm and different settings can be compared with the op-
timal next-best-test-case. A total number of 23050 next-best-test-cases has been
determined in this setup. A number of results can be obtained from this data.
The 5 different settings: model density, clusteringmethod, clustering algorithm,
failure probability of the model and whether refinement is used are varied for
each of the 10 models generated with different modeling settings. This leads to
38 results for each model and combination of the modeling settings. No results
are obtained when maxS > |S|.
The first result that is evaluated is the effect of the clustering method and

clustering strategy versus the average failure probability of the fault states and
the density of the system test model. The average information gain of each next-
best-test-case is compared with information gain of the optimal next-best-test-
case. Table 35 depicts the results of this analysis. The information gain for the
clustered next-best-test-cases is an average over 38 next-best-test-cases calculated
for each of the different settings. These 38 next-best-test-cases were calculated
for a combination of different models and maximum fault statesmaxS. The op-
timal information gain is an average of 10 optimal next-best-test-cases calculated
for 10 models with different settings.
Table 35 contains 81 results. The effect of the clustering strategy is investi-

gated. Therefore, the best clustering strategy is selected for the 27 combinations
of clustering method, failure probability and density. The minmin clustering
strategy performs best in 23 of the 27 cases. Themaxmax clustering strategy per-
forms better in two of the 27 cases. The minmax clustering strategy performs
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IG P
0.1 0.5 0.9

Clustering ρ

method strategy 0.1 0.5 0.9 0.1 0.5 0.9 0.1 0.5 0.9

CTMIG maxmax 0.703 0.705 0.719 0.355 0.534 0.578 0.552 0.492 0.616
minmax 0.713 0.717 0.829 0.578 0.616 0.710 0.616 0.607 0.604
minmin 0.892 0.845 0.894 0.797 0.828 0.916 0.831 0.812 0.783

IGCTMg 0.770 0.755 0.814 0.577 0.659 0.735 0.666 0.637 0.668

CTMIGR maxmax 0.668 0.793 0.719 0.441 0.505 0.682 0.547 0.506 0.613
minmax 0.709 0.763 0.882 0.588 0.627 0.705 0.610 0.607 0.597
minmin 0.936 0.798 0.900 0.801 0.810 0.887 0.828 0.762 0.766

IGCTMIGR 0.771 0.785 0.833 0.610 0.647 0.758 0.662 0.625 0.659
CTMP maxmax 0.691 0.832 0.747 0.572 0.674 0.786 0.611 0.756 0.775

minmax 0.712 0.786 0.892 0.518 0.581 0.691 0.611 0.579 0.602
minmin 0.914 0.766 0.892 0.832 0.849 0.735 0.820 0.816 0.810

IGCTMPg 0.772 0.794 0.844 0.641 0.701 0.737 0.681 0.717 0.729

Opt Opt 0.990 0.983 0.997 0.996 1.000 1.000 0.998 1.000 0.999

Table 35. The average information gain for different clustering methods and strategies
versus the average failure probability and model density

better in one of the 27 cases. The minmin and minmax clustering strategy lead
to the same results in one of the 27 cases.

The results of the experiments for different clustering methods (CTMIG,
CTMP or CTMIGR) are less conclusive. It can be seen that all three clustering
methods are optimal in some case, for all combinations of clustering strategies,
failure probabilities and model densities. This is also the case if only the best
clustering strategy (minmin) is analyzed.

The second investigated clustering setting is the use of the refinement step,
defined in Equation (5.37) as recursive call to the NBTCcl algorithm. For this
purpose, a number of experiments has been conducted with and without the
use of the refinement step in the algorithm. The results of these experiments
for the different models are depicted in Table 36. The table depicts the average
information gain. The models are described as 16x11 if the model contained 16
test cases and 11 fault states. Three rows of results are presented: don’t refine
if no refinement step was used, optimal for the optimal result and refine if the
refinement step was applied.

A 19% improvement of the information gain is obtained if the refinement
step in the algorithm is used. The data in Table 36 includes all clustering strate-
gies. If the results of themaxmax andminmax clustering strategies are removed
from the dataset, then the average improvement due to refinement is 7%. Both
results justify the application of the refinement step in the clustered next-best-
test-case algorithm.

The average information gain of the next-best-test-cases, which is derived us-
ing the clustered next-best-test-case algorithm, is on average 0.82, while the in-
formation gain derived using the optimal next-best-test-case algorithm is 1.0 on
average. Additionally, the application of the refinement step is justified, because
and improvement of the information gain between 7% and 19% is observed.
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IG Refinement setting

D don’t refine optimal refine

16x5 0.740 0.995 0.877
16x7 0.701 0.999 0.843
16x9 0.647 0.998 0.807
16x11 0.608 0.999 0.759
16x13 0.522 1.000 0.748
8x5 0.765 0.979 0.898
8x7 0.739 0.998 0.874
8x9 0.655 0.998 0.861
8x11 0.639 0.997 0.829
8x13 0.528 0.998 0.823

Average IG 0.632 0.996 0.820

Table 36. The average information gain for different system test models and the appli-
cation of a refinement step in the algorithm.

5.2.5 Case

Two case studies have been performed with the clustered next-best-test-case al-
gorithm. The first case study determines the next-best-test-case for the weekly
validation test for software that controls an ASML wafer scanner. The second
case study determines the next-best-test-case at the start of the alpha test, a test-
diagnose-fix task executed to determine if a new software release operates ac-
cording to the system specifications.

Case 1: Weekly validation test

At ASML, the weekly validation test for the software baseline is executed weekly
to determine if the software still operates according to the specifications. The
selection of test cases and the sequence in which the test cases are executed is
determined every week, based on the software delivered to the baseline in that
week. For this purpose, a system test model is maintained with 349 test cases
and 156 fault states. The set of test cases available for selection is fixed, while
new test cases could improve the selection or sequence. This case study applies
the next-best-test-case algorithm to the system test model.
The properties of the system test model are:

• Number of test cases: 349

• Number of fault states: 156

• Average failure probability: 0.278

• Average impact: 0.449

• Average information gain of the test cases: 0.685

• Average failure probability of the test cases: 0.483
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• Average coverage of the test cases on the fault states: 0.244

A total of 5 next-best-test-cases has been derived using the clustered next-best-
test-case algorithm. The coverage of the fault states that are covered by newly
generated next-best-test-case is set to 0.224, which is the average coverage of the
test cases that are already present in the system test model. Only the first test
case is considered for development, because the other four test cases depend
on the coverage of the previous test cases, including the first next-best-test-case.
The other four test cases are derived to check the performance of the algorithms
and settings.
The maximum number of fault states in a cluster was set to 13, such that

the largest possible clusters were used and the results were obtained quickly.
The used clustering techniques are: CTMIG, CTMP and CTMIGR. The min-
min and maxmax clustering strategies were both used for all three clustering
techniques. The resulting information gain profiles for the three techniques are
depicted in the Figures 64, 65 and Table 37 for the minmin and maxmax strat-
egy respectively.
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Figure 64. The information gain profile for the 5 test cases determined using the
minmin strategy

It can be concluded from the Table 37 and Figures 64 and 65 that themaxmax
clustering strategy performs worse than the minmin clustering strategy. The
first next-best-test-case (350) of the CTMIGR clustering method, with minmin
clustering strategy, performs best, i. e. the information gain for this test case is
IG(t350) = 1.0.
The test experts analyzed the newly generated test case t350. Test case t350

covers a single fault state s37 with a failure probability of 96.6%. Two other
test cases t210 and t313 that were already present in the system test model and
covered s37 both with a coverage of 0.3. The failure probability of s37 was re-
duced by the two existing test cases into a failure probability of: P(s37)t210,t313 =
(1 −Rts(t210, s37)(1 −Rts(t313, s37) = 0.966(1 − 0.3)(1 − 0.3) = 0.473. The information



5.2 DEVELOP ING NEW TEST CASES 139

0.000

0.100

0.200

0.300

0.400

0.500

0.600

0.700

0.800

0.900

1.000

350 351 352 353 354

CTM/max-max

CTMP/max-max

CTMIGR/max-max

Figure 65. The information gain profile for the 5 test cases determined using the
maxmax strategy

CTMIG CTMP CTMIGR CTMIG CTMP CTMIGR
minmin maxmax

350 0.929 0.169 1.000 0.400 0.337 0.339
351 0.991 0.994 0.996 0.461 0.215 0.000
352 0.820 0.438 0.582 0.000 0.428 0.000
353 0.872 0.001 0.973 0.000 0.392 0.355
354 0.879 0.063 0.904 0.000 0.000 0.000

Table 37. Information gain of the ‘new’ weekly validation test cases for the different
clustering techniques and strategies

gain of a test case that only covers this fault state with a failure probability of
P(s37) = 0.473, leads to an information gain close to 1.
The second test case t351 derived using the same clustering technique and

strategy also leads to an information gain of approximately 1.0. This test case
again covers fault state s37, which has a failure probability of P(s37) = 0.378, after
executing all test cases in the model including t350. A second fault state s73 is
covered by t351, such that the information gain is improved.

Case 2: Software alpha test

ASML releases a software baseline to customers when a new type of wafer scan-
ner is released. Additional ‘consolidation’ software releases are released to en-
able customers to upgrade all wafer scanners in the IC factory to the same soft-
ware release. The number of different software releases delivered to customers
is four or more per year. Every software release is qualified in an alpha test and
beta test before it is ready to be rolled out at customers world-wide. Alpha test-
ing is performed on different types of wafer scanners at the ASML premises.
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CTM CTMP CTMIGR CTM CTMP CTMIGR
minmin maxmax

77 0.460 0.269 0.460 1.000 0.725 0.457
78 0.748 0.177 0.541 0.164 0.525 0.977
79 1.000 0.381 1.000 0.999 0.999 0.815
80 0.028 0.823 0.028 0.998 0.000 0.002
81 0.098 0.927 0.098 0.941 0.055 0.000

Table 38. Information gain of the ‘new’ alpha test cases for the different clustering
methods and strategies

Beta testing is typically performed at wafer scanners that are already running
production at customers worldwide.
The alpha test of a new software release has a number of goals. First, it needs

to be tested if the performance of the wafer scanners is equal or better with the
new software release. Second, the high-risk areas in the new software release are
tested. Third, problems found during the alpha test period are analyzed, solved
and retested. A standard set of performance test cases is available to test the
performance of the new release. This set is always executed. Another set of test
cases is selected to meet the second goal. This selection process is continued
throughout the test execution and problem solving process to meet the third
goal. A system test model has been created to support the selection process of
the alpha test cases. The system test model had the following characteristics at
the start of the alpha test:

• Number of test cases: 76

• Number of fault states: 15

• Average failure probability: 0.306

• Average impact: 0.393

• Average information gain of the test cases: 0.4535

• Average failure probability of the test cases: 0.6212

• Average coverage of the test cases on each fault state: 0.189

The samemodeling parameters as used in the previous case study were applied:
five ‘new’ test cases were defined using the three clustering methods and the
minmin and maxmax clustering strategy. The information gain profile of all
clustering methods and strategies is depicted in Figure 66. The detailed results
are depicted in Table 38.
The test case resulting in the best information gain (1.0) is derived using

the CTM clustering method with a maxmax clustering strategy. For this case
study, themaxmax clustering strategy leads in general to better results. The fault
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Figure 66. Information gain profile for the different clustering methods and strategies

states covered by the best test case are: {s5, s11, s13}. The properties of these fault
states are P(s5) = 82.85%, P(s11) = 0.1% and P(s13) = 30%. All three fault states
are already covered by other test cases. Fault state s11 describes the possibitity
that the software operating system (OS) is faulty and is the lowest level fault
state. Fault state s13 describes the possibility that the measurement sensors are
faulty, a mid-level fault state. Fault state s5, a high-level fault state, models the
possible fault that a complete system is not calibrated. A test graph for this
model, depicting the relations between fault states and test cases, can be found
in Figure 67 and is used by the test experts for detailed analysis of the (new)
test cases. The new test case, and its coverage on the fault states, was drawn (by
hand) in the figure. This way, the result was checked with the expectations of
the test experts. The resulting test case seems good, however, it was not possible
to find better test cases using this method. The measure for the information
gain per test case is required for that purpose.
A test case covering fault state s13 and s5 can be designed using available test

means. However, a test case that covers sensors and the system calibration, fault
state s13 and s5, and stresses the software OS in addition, is more difficult to
design. Whether this test case is actually developed depends on the required
and available development effort.

5.2.6 Conclusions

The complexity of manufacturing machines, like the ASML wafer scanner, in-
creases as well as the number of test cases that are available to test the com-
ponents and sub-systems. Over time, some test cases become irrelevant, while
other test cases could be beneficial for the performance of a test-diagnose-fix
task. An example of test cases that become less relevant over time are design
qualification test cases that are executed once. An example of test cases that
could be beneficial are very specific test cases covering high-risk areas.
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A method to determine which new test cases are most beneficial has been
presented. The gained information is used as objective function to determine
these so called next-best-test-cases. The method does not take into account if a
next-best-test-case can actually be developed. The method guides the develop-
ment. A system test model is used to model the test cases and the coverage of
these test cases on possible fault states.
An optimal next-best-test-case algorithm is described that is able to deter-

mine the optimal next-best-test-case for systems of limited size. A clustered
next-best-test-case algorithm is defined that is able to determine the next-best-
test-case for larger systems. The performance of these two algorithms has been
illustrated and two industrial case studies have been performed at ASML. The
next-best-test-cases that are determined for the industrial case studies have been
discussed with the test experts, test architects, at ASML. It is difficult for the ex-
perts to evaluate if the suggested next-best-test-cases are good test cases, because
of the size of the model. Depicting the system test model as a test graph helps.
The number of relations between the test cases and fault states is the reason
why this next-best-test-case algorithm has been investigated.
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5.3 UPDAT ING CONSTRAINTS AND/OR OBJECT IVES

Updating the
high-level
constraints and
objectives for
integration and test
sequences is in the
list of improvement
techniques,
because this could
be the only
remaining option if
other improvement
techniques did not
lead to feasible
solutions.

Updating the high-level constraints and objectives for integration and test se-
quences is in the list of improvement techniques, because this could be the only
remaining option if other improvement techniques did not lead to feasible solu-
tions. Updating the constraints or objectives is a different type of improvement
technique than the other three improvement techniques described in this chap-
ter. The objectives of an integration and test sequence are described in terms of
time, quality and cost (TQC). These objectives are defined relative to each other.
One of the objectives is most important, another is second most important and
the last objective is least important. See Section 2.3.1 for more details on these
objectives and their relation.
The constraints of an integration and test sequence are described in terms of

maximal duration, maximal cost and minimal remaining risk. Integration and
test sequences that are obtained using the described planning method should
satisfy these constraints, otherwise the integration and test sequence is not fea-
sible. The goal of this ‘improvement’ technique is to increase the number of fea-
sible integration and test sequences that are considered in the planningmethod.
Next, the constraint updates and objectives updates are discussed.

5.3.1 Updating constraints

Two improvement techniques are discussed here: updating the relative impor-
tance of the constraints and updating the constraint order. The first improve-
ment technique changes the relative importance of the constraints, not the or-
der. The relative importance can be expressed by means of weight factors for
each constraint. These weight factors are used to weigh the results of the ex-
pected duration, cost and remaining risk of an integration and test sequence,
such that a single value is obtained that can be used to compare integra-
tion and test sequences. Equation (5.63) describes such an objective function.
The relative importance of the constraints is defined by choosing appropriate
weights. For instance, an organization with an extreme focus on time, some fo-
cus on quality and less focus on cost (T-Q-C)2 could be described by weights of
wΦ = 10000, wRR = 100, wC = 10 for time, quality and cost respectively.

J = Φ · wΦ + C · wC + RR · wRR (5.63)

Updating the relative importance of the constraints means that the weights are
adjusted relative to each other, resulting in different integration and test se-
quences.
The order of importance of the constraints can also be changed. An example

T-Q-C order can be changed into T-C-Q or otherwise by changing the weight
values. This update also leads to different integration and test sequences with
a different performance. However, changing the order also means that another

2The order of the business drivers time, quality and cost (T-Q-C) is described in detail in Sec-
tion 2.1.
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business driver has become more important. It is highly unlikely that this situ-
ation happens during the course of the project, or due to the fact that the inte-
gration and test sequences do not meet the initial constraints and objectives.

5.3.2 Updating objectives

Three types of updates are discussed: updating the maximal duration, maximal
cost and minimal remaining risk. Combinations of these three updates are pos-
sible, but not discussed here. The maximal duration objective can be relaxed,

The maximal
duration objective
can be relaxed,
such that a feasible
integration and test
sequence is
obtained.
Increasing the
maximal duration
means that the
deadline is shifted.

such that a feasible integration and test sequence is obtained. Increasing the
maximal duration means that the deadline is shifted.
The maximal cost objectives can be relaxed, such that more cost can be spent.

Spending more cost on model-based integration could result in less faults in
a later stage [Braspenning et al., 2007]. Spending more cost on parallel testing
decreases the duration and/or remaining risk as described in Section 5.1.
The remaining risk objective can be relaxed, such that less testing is required.

Less test, diagnosis and fix tasks to be executed results in less cost and a de-
crease of the integration and test duration. The integration and test sequence
is finished earlier and the system can be released earlier to customers. The re-
maining risk that is still in the system should be reduced after shipment using a
costly diagnosis and fix process. Still it can be beneficial to be first in the market
with a new product.
In practice, a trial and error approach is followed when the constraints and

objectives are changed, such that a feasible integration and test sequence is ob-
tained. Structured methods to analyze and compare the effect of a change in
constraints and objectives on the performance of an integration and test se-
quence are based on designs of experiments. More optimal methods as devel-
oped in the TANGRAM project and described in [Boumen, 2007] still require
heuristics such that solutions are obtained in feasible time. To determine the
values for the heuristics a design of experiments is required, because the com-
bination of models, algorithm and heuristics influences the performance of in-
tegration and test sequences. Despite the great progress that has been made in
this area, some work is to be done such that the effect of model parameters on
the performance of integration and test sequences can be predicted.

5.4 SELECT ING A SYSTEM ARCHITECTURE AND DES IGN

The next section is based on [I. de Jong et al., 2007c].

System architecting [Muller, 2007] is the process of creating an architecture
for a system. The resulting architecture is a trade-off between the most impor-
tant architectural views, like functionality, maintainability, extendability, etc. A
list of these architectural views, so called quality attributes, that need balanc-
ing is given in the ISO-9126 standard [ISO-9126-1, 2000-03-20]. Two of these
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quality attributes are testability and manufacturability. Testability fits within our
definitions and defines if a system is well testable or not. Manufacturability in
the context of ISO-9126 is a much broader term than the term integratability3,
which we prefer. Only a limited number of architectural views is considered
when an architecture and design are defined. Testability and integratability are
often not the most important views that are considered. Consequently, the re-
sulting architecture does not reflect testability and integratability very well. Two
solutions exist for this problem. The first solution defines integratability and
testability as the most important architectural views of a system and the entire
system architecture and design are centered around this view. Although, this so-
lution results in a system that is designed for integration and testing, it requires
a specific business case where this is beneficial. For most systems, integration
and testing are not the most important architectural views.

The second solution uses an existing architecture, design and resulting inte-
gration and test sequence. The architecture and design are then improved based
on the performance of the integration and test sequence. This, more iterative,
solution is the basis for this section. The structure of this section is as follows.
First, definitions of an ‘architecture’ are discussed in Section 5.4.1. Then, Sec-
tion 5.4.2 defines methods and guidelines for the selection of components, in-
terfaces and layerings. These guidelines are illustrated with example systems.
Conclusions are given in Section 5.4.6.

5.4.1 Architectures

According to the Oxford English Dictionary, the term ‘Architecture’ is defined
as: 1) the art or practice of designing and constructing buildings, 2) the style
in which a building is designed and constructed, 3) the complex structure of
something. The first definition describes the process of designing buildings, or
systems, also called architecting in [Muller, Jan. 2004]. The second definition
reflects the most commonly known definition of an architecture that is the style
of a building. The, most relevant, third definition broadens the second defini-
tion, such that it is applicable to complex structures of ‘something’. If we start
with the first, building oriented, definition, then we see that the low-level com-
ponents of most buildings are equal. For instance, bricks, mortar, nails and glue
are used to build any type of house. The architectural ‘style’ defines if a building
is functional and beautiful.

For systems, as defined as ‘something’ in the third definition, the same holds.
The components (bricks) can be defined for a family of systems. This is also the
case for the interfaces (mortar, nails, glue, etc.). Complex manufacturing ma-
chines are also built up using components and interfaces as defined in Chap-

3The word integratability is first used by SUN microsystems to indicate the easy integration ca-
pabilities of the Java™ platform. The word integratability is not defined in a dictionary at this
moment. Other words describing integratability could be synthesizability or assembleabil-
ity. Both words have different meanings in different domains and are also not defined in a
dictionary.
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ter 2. The style, if applied to these systems determines if the system is functional
and beautiful. The style determines how the components interact and are able to
function together. The architectural style also determines how well the system

The architectural
style also
determines how
well the system can
be split up into
smaller
sub-systems and
how well this
work-break-down-
structure can be
communicated and
maintained
throughout the
development
process: the beauty
of the architecture.

can be split up into smaller sub-systems and how well this work-break-down-
structure can be communicated and maintained throughout the development
process: the beauty of the architecture. Our definition for architectural style,
which is presented earlier in Chapter 2, is called Layering. The layering splits
up the set of components and interfaces of a system into groups of components
and interfaces. These groups of components are used for integration and test
planning, such that the planning effort is reduced and the integration and test
sequences are kept more or less the same after replanning.

Components, interfaces and a layering are the elements of an architecture
that are relevant for integration and testing. The remainder of this section de-
scribes how components, interfaces and a layering can be selected such that
they are suitable for integration and testing.

5.4.2 Selection of a suitable set of components

A suitable set of components, in the context of integration and testing, means
that the components are integratable and testable. The aspects that influence
the integratability and testability of an architecture are the number of com-
ponents and the size of the components. The break-down of the system into
components determines how many components need to be integrated. Not all
components need to be taken into account for the system level integration and
test sequence. Small risk, low-level components could be ignored in the system
level integration and test sequence. It is then assumed that these components
are integrated and tested on sub-system level. How to select the number of com-
ponents suitable for integration and testing is discussed below.

The number of components in the system determines how many integration
tasks are required to build the complete system. More integration tasks could
lead to longer integration and test sequences, depending on the possible paral-
lelism in the sequence. An example system is broken down into nine compo-
nents in Figure 68(a) and into five components in Figure 68(b). The resulting
integration sequences for the nine and five component system are depicted in
Figure 69 and Figure 70 respectively. The number of assembly tasks in the se-
quence of the nine-component system is larger and therefore probably takes
more time, depending on the duration of the individual tasks.

Splitting up a system into more components leads to longer integration se-
quences. A small number of components results in components that are too
complex, too large, hence contain too much risk. Higher risk results in lengthy
and costly test-diagnose-fix tasks, because the risk in the system needs to be
reduced. Exclusion of risk can be done in two ways. First, passed test cases re-
duces the risk in the system because it is proven, by a passed test case, that
some risk is not in the system. Second, failed test cases result in a diagnosis of
the failure and a fix of the fault. Fixing a failure also reduces the risk, so does
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Figure 68. An example system split up into nine and five components
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the diagnosis that a fault is not in the system. Both ways of reducing risk cost
more time/money when the risk in the system is high. Consequently, a suitable
number of components is a balancing act between the number of components
to select and the size of the resulting integration sequence. Some guidelines for
this balancing act are given below.

Guidelines for selecting components

Selecting the number of components to accommodate the integratability and
testability is a balancing act. An algorithm that determines the optimal in-
tegration and test sequence, given the components and interfaces is NP-
hard [Boumen et al., 2006a, 2007]. Comparing a number of component selec-
tions is therefore also NP-hard. Nevertheless, some guidelines for component
selection are given below. The first guideline is most important, the other guide-
lines are exceptions on the first guideline.

• The risk of a component should guide the split up of a component. High
risk components should be split up to accommodate: parallel integration,
parallel testing and a shorter test-diagnose-fix task because less faults are
found.

• Parallel integration and testing is only beneficial when the resulting in-
tegration and test sequence has a shorter duration than the original se-
quence. The resulting integration and test sequence can be longer in one
of the following cases:

– The development duration of both new components is longer, be-
cause additional time is spent on interface definition and develop-
ment. This can be the case if two development groups are involved
and/or the interface decisions are more difficult to make.

– The assembly of the two components is difficult (because the inter-
face agreements are more difficult to make).

– The combination of components and interfaces is the risky part of
the development, while the individual components are relatively sim-
ple. The additional parallel test-diagnose-fix tasks have no benefit in
this case, because reducing the risk is done in the last test-diagnose-
fix task and is therefore on the critical path in the integration and
test plan.

• Splitting up components is only beneficial if the interfaces between the
new components ‘allow’ splitting up these components. The properties of
interfaces that ‘allow’ splitting up components are:

– The number of (different) interfaces between the split up compo-
nents should not increase, because the increase in interfaces could
result in an increase of the duration of the assembly phase.
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– The interface risk after splitting up a component into two compo-
nents should be low. A component split-up that results in high risk
interfaces results in a longer test phase after assembly. Examples of
high risk interfaces after component split up are interfaces that are
to be developed newly, because of the component split up, or inter-
faces with extreme requirements in terms of speed, tolerance, etc.

5.4.3 Selection of a suitable set of interfaces

Two approaches can be followed to select the suitable (integratable/testable) set
of interfaces. The first approach is directly related to the selection of compo-
nents, while the second approach involves the selection of a different interface
paradigm. The first approach is a result of the component selection as discussed
in the previous section. Splitting up components leads in general to more inter-
faces. E. g. dividing a single component with two external interfaces into two
components leads to at least one additional interface between the two compo-
nents. The selection criteria for suitable interfaces are similar for component
selection in this setting. Dividing a component into two smaller components
reduces the risk in the component. Dividing the component into two smaller

Testability is
increased by
reducing the
number of
interfaces, interface
usage and reducing
the risk involved
with this type of
interfaces.
Integratability is
increased by
reducing the time
required to
connect, disconnect
and reconnect two
components to
each other, i. e. the
assembly time and
cost are minimal.

components with (too) many interfaces between these components increases
the risk, because of possible problems with definition, implementation and uti-
lization of these interfaces.
The second approach involves the selection of a different interface paradigm

that increases the integratability and testability. Testability is increased by re-
ducing the number of interfaces, interface usage and reducing the risk involved
with this type of interfaces. Integratability is increased by reducing the time re-
quired to connect, disconnect and reconnect two components to each other, i. e.
the assembly time and cost are minimal.

Example: A mechanical interface in the ASML wafer scanner

An example of a mechanical interface in an ASML wafer scanner that is spe-
cially chosen to increase the testability and integratability is the so called ‘cable
slab’ between the body of the wafer scanner and a wafer stage. Figure 71 depicts
the mechanical interface. The wafer stage is a sub-system of the wafer scanner,
that needs to move in six degrees of freedom. Any contact of the wafer stage
with the environment (the body) results in vibrations in the wafer stage system
resulting in overlay and imaging problems. The required power, signal and air-
flow to control and move the wafer stage is supplied via the ‘cable slab’. A special
interface has been designed such that the stage can easily be replaced and tested.
A specially designed interface imposes additional risk, because no common-of-
the-shelf (COTS) interface is used. Additional ‘cable slab’ and sub-system testing
was required for the ‘cable slab’, while the cable slab itself reduced risk of overlay
and imaging problems on system level. The cable slab is an example of an inter-
face where additional time and cost is spent to reduce the higher level system
risk.
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Figure 71. Cable slab

Next, some guidelines for selecting an interface paradigm are given. An in-
terface paradigm that is suitable for integration and testing:

• reduces the number of interfaces or the risk involved with interfaces,

• reduces the bandwidth used by the interfaces,

• reduces the assembly or disassembly duration and cost,

• improves the testability and diagnosability by adding additional measure-
ment capabilities,

• improves the ability to assemble and disassemble components.

5.4.4 Selection of a suitable set of layerings

Components and interfaces are the only elements that are necessary to create an
integration and test plan. However, the number of possible integration and test
plans increases dramatically when the number of components (and interfaces)
increases. The selected layering for a system reduces the complexity of creating
an integration and test plan. The functional and organizational layering can dif-

The functional and
organizational
layering can differ
from the layering
that is chosen for
the benefit of
integration and
testing.

fer from the layering that is chosen for the benefit of integration and testing.
Selecting a layering suitable for integration and testing means that the set of
components and interfaces are grouped such that a good integration and test
sequence can be created.

Example: Layering a car axle

An example car axle with wheels is depicted in Figure 72 and modeled as a four
component architecture, depicted in Figure 73. The architecture consists of two
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wheels (W1 and W2) and two steering knuckles (SK1 and SK2). The axle itself
is modeled as the interface between the two steering knuckles. The functional

Figure 72. Example car axle system
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Figure 73. Car axle architecture

layering for this system could be defined as a layer for each side of the car as de-
picted in Figure 74(a). An organizational layering could be grouped according to
the two competences involved in this system: wheels and steering knuckles. The
organizational layering is depicted in Figure 74(b). The integration sequences
for the functional and organizational layering have a different duration, assum-
ing that assembling each interface costs the same time in this example. Fig-
ure 75 depicts the resulting integration sequence for the layering according to
the competence. The first two assembly tasks assemble a wheel and a steering
knuckle. The last assembly task assembles both wheels and steering knuckles
with their common interface, the axle. A total of four interfaces is created. How-
ever, the first two interfaces are created in parallel. If the creation duration of
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Left wheel Right wheel

(a) Functional layering of the car
axle system

Competence: steering knuckles

Competence: wheels

(c) Organizational layering of the
car axle system

Figure 74. Two layerings of the car axle system

each interface is one time unit, then the total duration of this sequence is three
time units.
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Figure 75. Integration sequence of the axle according to the functional layering

The integration sequence according to the organizational axis is depicted in
Figure 76. Now, the steering knuckles are assembled first, followed by an as-
sembly of the wheels to the steering knuckles. The duration of this integration
sequence is four time units, assuming again that the creation of each interface
costs one time unit and testing is not taken into account.
This example does not include test-diagnose-fix tasks. It is assumed that the

components are available at the start of the integration sequence. Development
durations and cost of components need to be taken into account as well as the
test-diagnose-fix tasks.
Some guidelines are given such that a suitable layering can be chosen.

• The layering chosen during design of the system is not necessarily the
best layering for integration and testing.

• Selecting a new layering for integration and testing can be done late in the
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Figure 76. Integration sequence of the axle according to the organizational layering

process. See the next sub-section for details.

• If all possible sequences of components and interfaces that are able to
form a system are considered, the optimal sequence can be selected. How-
ever, this approach makes planning an integration and test sequence for
large systems complex and time consuming. To reduce this complexity,
layering can be applied.

• Take the interfaces between components into consideration when choos-
ing a layering. A layering that divides the system, such that the integration
and test sequence can be executed as much as possible in parallel is ben-
eficial.

• Layers containing components that are not connected result in less opti-
mal integration and test plans.

5.4.5 Illustration: TWINSCAN wafer scanner integration

The TWINSCAN™ wafer scanner platform of ASML was designed and devel-
oped from 1997 onwards. In 2000-2001, the first TWINSCAN™ systems were
shipped to customers. The initial design was set up such that the (relatively
large) sub-systems are easily recognizable within the system and that these sub-
systems are evolvable. The sub-systems are recognizable for the purpose of sys-
tem level training and understandability. Evolvability was important for the pur-
pose of creating a platform that served as a basis for the quick development of
new system types. The technical design and layering was centered around the
most important aspect of the TWINSCAN™ system at that time: productivity.
The TWINSCAN™ system was designed using a sub-system oriented archi-

tecture/layering. The system level specifications were broken down into sub-
system level specifications and so on. The sub-systems could be identified easily
in the system architecture. This architecture was suitable for breaking the high
level problem into smaller problems and for managing this work-break-down
structure.
However, system level integration requires cooperation of all sub-systems,

such that the system function, run production, could be performed. A single
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sub-system contributes to the performance of many other sub-systems that to-
gether result in a system level performance. The goal at integration time, is

‘Life-of-a-wafer’
describes in terms
of sub-functions
how production is
run on a wafer
scanner. The
sub-systems in the
wafer scanner
contribute to one or
more of the
sub-functions in
the ‘Life-of-a-wafer’
process.

to combine all these sub-systems, with their individual performance require-
ments, into a complete and performing system.

Around one year before the first shipment, the intended function, run pro-
duction, of the wafer scanner was split up in around 15 sub-functions. These
functions were related to each other by a process description called ‘life-of-a-
wafer’. ‘Life-of-a-wafer’ describes in terms of sub-functions how production is
ran on a wafer scanner. The sub-systems in the wafer scanner contribute to one
or more of the sub-functions in the ‘Life-of-a-wafer’ process. The focus during in-
tegration and testing shifted from sub-system development to sub-function and
function integration and qualification. The integration and test sequence re-
flected this new layering, because milestones for these functions were planned
and function owners were assigned.

Shifting from a sub-system development approach to sub-function integra-
tion, a new layering was not an easy task. Many developers were convinced or
forced to use the ‘new’ way-of-working. Functional milestones did not seem like
progress for upper management and customers who wanted to see the results in
terms of throughput, overlay or imaging performance. However, the developed
systems were shipped on time and a record breaking number of additional sys-
tem types were shipped in the next year. Furthermore, the system reliability and
availability was brought to the required levels twice as fast if compared with the
previous platform. Afterward, it can be concluded that changing the layering
very late in the process, with the purpose of creating a better integration and
test plan, was successful for the TWINSCAN™ platform.

5.4.6 Conclusions

The selection of an architecture that is suitable for testing and integration is im-
portant, because this choice influences the integration and test sequences that
can be created. By this selection, the performance of an integration and test se-
quence is influenced. Often, a single architecture is considered for a system un-
der test. Testability and integratability aspects are balanced together with other
architectural aspects. A suitable architecture for integration and testing is cho-
sen, if testability and integratability are aspects of high importance. Otherwise,
the resulting architecture leads to a sub-optimal integration and test sequence.
Selecting an architecture that is suitable for integration and testing requires a
component selection, an interface selection and a selection of layers.

Component selection is a balancing act between the number of selected com-
ponents and the risk of these components. Selecting too many components
leads to a large integration and test sequence, while selecting too few compo-
nents results in an integration and test sequence with too much risk in the in-
dividual components and long and unpredictable test-diagnose-fix tasks. Com-
ponent selection determines what level of abstraction is used for the system.
Consequently, an integration and test sequence is obtained with more or fewer
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integration tasks.
Interface selection is related to component selection, because the selection

of components determines what interfaces are selected. Interface selection by
selecting a different interface paradigm could reduce the number of interfaces
and the interface usage. Additionally, selecting an interface that does not fit in
the interface paradigm could increase the number of interfaces and the usage
of the interfaces.
Component and interface selections are, in principle, the only required as-

pects to consider for a suitable integration and test architecture. The compo-
nents and interfaces are the inputs for the integration and test planning process.
However, the number of possible integration and test sequences for real life sys-
tems is large. Selecting a layering for a system reduces the number of possible
integration and test sequences that are to be considered. Therefore, layering is
an important selection mechanism.
Component, interface and a layering can be selected late in the development

process, when the system architecture does not change because of the selection.
Additionally, selecting a different interface paradigm should be done as early as
possible, because a change in the interface paradigm often requires that the in-
dividual components need to be changed as well. Implementing a new interface
paradigm could introduce additional risk. The additional risk can be minimized
by selecting an implementation of the interface paradigm that is stable already.
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This chapter concludes the work performed in a four year project on ‘Integration
and test strategies for complex manufacturing machines’. This study has been
performed at ASML and at Eindhoven University of Technology in the context
of the TANGRAM research project. The results described in this thesis can be
characterized as broad and methodological as well as specific and in-depth.

Three main contributions can be distinguished. The first contribution is the
high-level integration and test planning method introduced in the Chapter 1. The
chapters in this thesis correspond to the steps in the integration and test planning
method and explain in detail the steps that need to be performed to create an in-
tegration and test plan. Where possible, existing or newmodels, algorithms and
strategies are applied in the steps in the method. The used system integration
and test models are explained in Chapter 2. The models and algorithms have
been applied to practical integration and test planning problems as illustrated
in the case studies performed. Not all models and improvement algorithms are
mandatory to apply the integration and test planning method in a real-life con-
text. The integration and test planning method serves as a framework for this
thesis and as a framework for integration and test planning in practice.

The second main contribution of this thesis are the models that are defined
and used for integration and test planning and improvement. The models that
were selected were easy to define and well suited for the planning and improve-
ment algorithms. The basic test model introduced by [Pattipati et al., Jan 1991]
served as a starting point. The enhanced basic test model, the system test model,
is used to model, analyze and improve real-life test-diagnose-fix tasks, whilst the
simplicity of the system test model was not sacrificed. The simplicity of the sys-
tem test models enabled the roll out of the developed methods and algorithms
within ASML. Apparently, the system test models only formalize the knowledge
of system integration and test engineers, because the roll out of the integration
and test planning method would not have proceeded as it has until now. The sys-
tem test model contains enough information for the analysis and comparison of
single test-diagnose-fix tasks. In addition, system test models are used to model
components and interfaces in the system integration model, the second model
used in this method. Both models are used to analyze integration and test se-
quences as explained in Chapter 4. Additionally, the improvement algorithms,
described in Chapter 5, use the system test model as basis.

The third main contribution of this thesis are the developed analysis and im-
provement techniques and algorithms. Two levels of analysis and improvement
can be distinguished: analysis and improvement of test-diagnose-fix tasks, and
analysis and improvement of integration and test sequences. Analysis and im-
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provement of test-diagnose-fix tasks results in a reduction of the duration of
test-diagnose-fix tasks from 61 to 17 hours and 142 to 94 hours, a gain of 71%
and 34% respectively. The improvements are measured in terms of total test
duration, because this is the most important business driver for ASML, whilst
similar results for cost or quality are expected when the methods are applied
in other organizations. Although, this has not been investigated. The actual re-
sults depend, of course, on the models that are made for the case studies, i. e.
the system under test. A good example of the application of the modeling and
the analysis techniques is the analysis of reliability test-diagnose-fix tasks as
described in Section 4.3. This technique maps the SEMI-E10 reliability quali-
fication standard onto the system test model, including the use of uncertainty
as a measure for reliability confidence. This mapping enables the application of
lower level reliability test cases, such that the system level reliability is qualified
faster. Moreover, the system level uncertainty can be monitored throughout the
integration and test sequence. The application of this reliability qualification
method leads to a six-fold quality improvement for the performed case study.
The analysis method for integration and test sequences leads to cost and re-
maining risk profiles as function of time. This way, the performance of the se-
quence as a whole is evaluated. The expected duration, cost and remaining risk
for an integration and test sequence can be used to compare integration and test
sequences. Partitioning test-diagnose-fix tasks into two parallel test-diagnose-fix
tasks resulted in a reduction of the test duration from 16 to 11.5 hours. This is a
reduction of 30% in test duration with a cost increase of 30%, because of parallel
test execution.

Practical contributions

Four years of study into integration and test strategies also led to a number of
practical contributions at ASML that did not end up in this thesis. Some of these
practical contributions are described briefly here:

• The test process model (and simulator) were used to analyze the cycle
time, also called flow time or sojourn time, of a new wafer scanner plat-
form in the ASML factory. Existing cycle timemeasurements were used to
calibrate the models of the current platform. The expected change in diag-
nosis and fix durations for the new platform was estimated. The new cycle
time was estimated by simulation. This way, the change in cycle time of
the new platform could be predicted. As a spin-off, the calibration of the
current platform, using the test process model, provided valuable insight
into the current cycle time. Cycle time improvements for the current plat-
form are identified based on these results.

• A utilization measurement program on wafer scanners in the ASML fac-
tory and prototype systems was set up using the integration and test
process model as basis. Measuring the utilization of wafer scanners in a
customer manufacturing environment requires that productive time (run
production) and nonproductive time (idle, down, maintenance, etc.) is
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measured. For wafer scanners in the ASML factory, the productive time is
the time that a system performs integration, test, diagnosis and fix tasks.
A ‘state model’, based on the state model used to determine the effective
process time of semiconductor equipment [A. de Ron and Rooda, Feb.
2005], representing the states in the integration and test process, has been
developed tomeasure the performance of the wafer scanners in the ASML
factory and for ASML prototype systems. These measurement results are
currently used to guide utilization improvement projects.

• The integration and test planning method describes how a test sequence
can be created and analyzed. An existing test sequence can also be taken
as a starting point. For this purpose, test sequences, executed to manu-
facture ASML wafer scanners, are obtained for a number of newly manu-
factured wafer scanners. The analysis of these logs, obtained from these
wafer scanners, revealed if the test sequences were actually executed in
the specified order. Additionally, the duration of each step could be mea-
sured and matched with the target duration. For this purpose, a research
project in cooperation with Van der Aalst and Rozinat of the Department
of Information Systems of the Eindhoven University of Technology was
performed [Rozinat et al., 2007]. Business process modeling algorithms
were applied to the logs of the executed test sequences. The ‘reference’
test process model has been compared with the process model derived
from the test logs and a number of improvements to the reference se-
quence were suggested. The application of algorithms to derive the test
sequence as executed from available logging information can be seen as a
formalization of step (3.5) of the integration and test planning method.

RESEARCH QUEST IONS

The research questions from Section 1.3 are answered in this section using the
results of the previous chapters. Research question 1 relates to the observation
that integration and test sequences are not the same across organizations.

Research question 1

• Which organizational factors have an impact on the integration and test
plan for systems developed by that organization?

A large number of organizations have been visited and investigated throughout
the TANGRAM project to answer research question 1. These organizations have
been visited with the goal to investigate real-life integration and test sequences.
Additionally, the different aspects of organizations have been recorded. Chap-
ter 2 describes the different organizations and the observed integration and test
sequences. Each integration and test sequence at each visited organization is
unique.
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Integration and test sequences observed in the different organizations can
be characterized by two aspects: the flexibility in the organization and the com-
plexity of the system, where complexity is measured in terms of number of
components and the technology used for the components. The investigated or-
ganizations have been classified according to these two aspects in Figure 17. The
order of the business drivers is one of the factors of an organization depicted in
this figure. The order of the business drivers, denoted by Q-C-T (quality-cost-
time) or T-Q-C for the organizations in Figure 17, determines if an organization
is primarily quality driven or time-to-market driven. Note that the (integration
and testing) flexibility of an organization corresponds with the classification of
Q-C-T or T-Q-C in Figure 17. Therefore, the underlying answer to research ques-
tion 1 is that the organizational factor that impacts the integration and test plan
of an organization can be described in terms of the business drivers quality (Q),
cost (C) or time (T). The priority of these business drivers determines how the
integration and test plan is made.
Research question 2 relates to the difference in the observed integration

plans, the elements in these integration plans and the performance indicators
of an integration and test plan.

Research question 2

• What are the basic elements of an integration and test plan?

• What are the key performance indicators of an integration and test plan?

• How can these key performance indicators be measured and used to com-
pare different integration and test plans with each other?

An integration and test plan consists of a sequence of integration and test tasks:
an integration and test sequence. An integration and test sequence for a product
in an organization is unique. All integration and test sequences are, however,
composed of the same set of elements: develop, assemble, disassemble, copy and
test-diagnose-fix . The answer to the first question is that these five elements are
the basic elements of an integration and test plan. The details of each element
and some typical combinations of elements are described in Section 2.2.
An integration and test planning method, which utilizes three strategies, is

used to create these integration and test sequences. Many integration and test
sequences can be created using this integration and test planning method. The
performance of these integration and test sequences is evaluated based on: du-
ration, cost and remaining risk. The remaining risk is our measure for product
quality. The duration, cost and remaining risk can be analyzed for the complete
integration and test sequence and for each of the tasks in the sequence. The
duration, cost and remaining risk for the develop, assembly, disassembly and copy
tasks can be estimated and are more or less deterministic. The duration, cost
and remaining risk of test-diagnose-fix tasks depend on the faults in the system
and the used test strategy. Therefore, testing is an inherently stochastic process.
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The answer to the second question is that the performance indicators of an inte-
gration and test sequence are: duration, cost and remaining risk, where it should
be noted that these performance indicators are stochastic variables, because of
the stochastic nature of testing.
The answer to the third question is given in Chapter 4, where an integra-

tion and test process simulator is used to measure the performance of one or
many simulated executions of an integration and test sequence. A simulator is
used, because real-life evaluation of the performance of an integration and test
sequence requires a large number of systems that are to be integrated. This sit-
uation only occurs in a manufacturing environment and not for integration and
test sequences executed in a product development environment. The integration
and test sequences are compared by comparing the expected duration, cost and
remaining risk for the simulated integration and test sequences.
The ability to analyze and compare integration and test sequences is im-

portant, because in this way the results of the integration and test planning
method can be evaluated. Improving an existing integration and test sequence,
such that a better sequence is obtained is also important, because in this way
shorter, cheaper sequences or products of higher quality can be obtained. Re-
search question 3 relates to improving integration and test sequences.

Research question 3

• Which improvement techniques for an integration and test plan are ben-
eficial for complex manufacturing machines?

Four improvement techniques have been investigated in this work. The first
technique, updating the objectives and constraints, is not really an improve-
ment technique. It is described only because it completes the framework with
a technique that is often applied in practice. The benefit of this technique is
that the deadline, cost limit or required product quality is adjusted. This adjust-
ment could result in shorter or cheaper integration and test sequences or higher
product quality.
The second improvement technique describes how a single test-diagnose-fix

task can be improved by defining new test cases. The ‘next-best-test-case’ is de-
rived from the system test model. The benefit of this technique is that test case
development is guided, such that the test with the best test coverage can be de-
veloped.
The third improvement technique splits test-diagnose-fix tasks into two test-

diagnose-fix tasks, which are executed in parallel. Parallel execution of test cases
results in a reduction of the test-diagnose-fix duration by roughly a factor 2 if
the coverage of the test cases on the fault states is not taken into account. An
additional test duration reduction can be obtained by taking the coverage of the
test into account. The benefit of this improvement technique is shown in the
performed two case studies, which show a reduction of the test duration of 30%.
The fourth and last improvement technique describes how the system archi-

tecture can be changed, such that a better integration and test sequence is ob-
tained. This technique, described in Section 5.2, presents guidelines to split
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components and interfaces. Additionally, guidelines for the definition of a so
called layering are presented. The benefit of this improvement technique is that
the effect of architectural choices on the integration and test sequence are made
explicit.

DIRECT IONS FOR FURTHER RESEARCH

Detailed directions for further research have been proposed in the different sec-
tions in this thesis. These directions for further research are not repeated here.
Instead, three most relevant research direction are described in more detail.
The first research direction continues the work for planning test-diagnose-

fix tasks described in Section 4.2. Additional test sequencing algorithms could
be defined that lead to faster or cheaper test-diagnose-fix sequences or lower
remaining product risk. This could also be the case for other test process
configurations. The performance of new test sequencing algorithms and test
process configurations should be investigated further, such that the test plan-
ning method can be used to analyze more test-diagnose-fix tasks.
The second research direction that could be investigated is the application

of on-line integration strategies. The integration strategies described in Chap-
ter 3 determine the sequence of integration tasks beforehand. These integration
strategies are considered to be off-line integration strategies analogous to the off-
line test sequencing algorithms described in Section 4.2. It could be investigated
if on-line integration strategies are beneficial for the performance of integration
(and test) sequences.
The third research direction that could be investigated further is the applica-

tion of business process modeling to derive business process models for integra-
tion and test sequences. For this purpose, logs need to be produced by systems
that are integrated and tested. A research project has been performed to analyze
the logs of executed test sequences in the ASML factory [Rozinat et al., 2007]. In
this project, a business process model of the executed test sequence was derived
and compared with a ‘reference business process model’. The diagnose, fix tasks
and integration tasks were not recorded and therefore not taken into account.
The test-business process model was rather complex and large. Abstractions on
the test-business processmodel were required, such that the results could be an-
alyzed. Further research should focus on the analysis of logs where integration,
diagnosis and fix tasks are included. The resulting business process models are
expected to be even more complex than the derived business process models
from test logs. Consequently, additional abstractions and analysis techniques
need to be investigated.
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APPENDIX A

This appendix explains the relation between the reliability qualification method
according to the SEMI-E10 standard and the qualification method that is intro-
duced in Section 4.3.

SEMI-E10 reliability qualification method

The reliability qualification method in the SEMI-E10 standard relies on Table
A1-4 to determine the test duration. The so-called k-factor in Table A1-4 must be
multiplied with the target mean-time-between-failure to obtain the test duration:
The test duration Φ that is required to reach the confidence level is determined
according to:

ΦSEMI = k ·MTBFtarget (A.1)

The k-factors in Table A1-4 can be derived manually using a χ2 distribu-
tion [NIST/SEMATECH, 2003-2006]. The required ‘confidence’-level and the
number of degrees of freedom are used as inputs for the χ2 distribution. The
number of degrees of freedom ν is determined using the maximum allowed
number of failures r. Thus, ν = 2(r + 1).
The relation between the SEMI-E10 standard and our reliability qualification

method is defined for the maximum allowed number of failures of 0 (and any
confidence level). In this specific situation, the number of degrees of freedom
equals 2(0 + 1) = 2. The situation where r > 0 is explained at the end of this
appendix.
A χ2 distribution with 2 degrees of freedom is equal to the exponential distribu-
tion. The relation between the remaining uncertaintyUR = 1−α and the k-factor
for an exponential distribution is:

1 − α = UR = λe−λk = e−k (A.2)

because the initial uncertainty equals 1, λ = 1 . Note that the remaining uncer-
tainty level is described here as 1 −α, where α is the confidence level that is to be
reached. The k-factor that is required such that the remaining uncertainty level
is reached is derived from Equation (A.2):

k = − lnUR (A.3)

The test duration ΦSEMI that is required to reach the confidence level is deter-
mined according to:

ΦSEMI = k ·MTBFtarget = − lnUR ·MTBFtarget (A.4)
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Reliability qualification method according to Section 4.3

We relate the SEMI-E10 standard to our method using a system test model D
that contains a single reliability test case, which corresponds to the ‘run produc-
tion’ test case in the SEMI-E10 standard. A single fault state is used tomodel that
the system possibly does not meet the reliability specification. This single test
case is repeated n times, such that the remaining uncertainty level is reached.
The uncertainty reduction due to the single execution of a test case is defined

in Equation (4.35):

U(s, Gt) = U(s, G)(1 − Rts(t, s))

where Gt describes test sequence G followed by test case t and Rts =
1

MTBFtarget

as described in Section 4.3.2. We assume that all test cases have a duration of
1 hour. If this is not the case, the coverage relations of the test cases need to
be updated to model the uncertainty reduction such that the test case duration
equals one hour. This way, the duration of n executions of a single test case is
equal to the test duration ΦD. Where, ΦD represents the duration of the reliabil-
ity qualification phase using system test model D. The uncertainty reduction due
to n executions of the same test case according to Equation (4.37) equals :

U(s, G) = (1 − Rts(t, s))
n (A.5)

The number of test cases to execute, such that the uncertainty level is reached
is derived by rearranging Equation (A.5) into:

n = log1− 1
MTBFtarget

U(s, G) = ΦD (A.6)

Relating SEMI-E10 to our method

The SEMI-E10 standard and our method for the single test case system test
model are related if Equations (A.4) and (A.6) are equal:

ΦSEMI = ΦD (A.7)

− ln β ·MTBFtarget = log1− 1
MTBFtarget

β (A.8)

where, β = UR = U(s, G), because the same target uncertainty level is to be
reached for both methods.
The following steps rewrite Equation (A.8):

− ln β =
ln β

MTBFtarget ln(1 −
1

MTBFtarget
)

(A.9)

−1 =
1

MTBFtarget ln (1 − 1
MTBFtarget

)
(A.10)
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ln (1 −
1

MTBFtarget
) = −

1

MTBFtarget
(A.11)

After rewriting Equation (A.10) into Equation (A.11), it appears that the target
uncertainty is not relevant anymore for the relation of both functions.
Applying Taylor series (ln(1 − z) = −z − z2

2 − z3

3 − z4

4 − ...) to the left side of the

equation results in:

−
1

MTBFtarget
−
( 1
MTBFtarget

)2

2
−
( 1
MTBFtarget

)3

3
−
( 1
MTBFtarget

)4

4
−... = −

1

MTBFtarget
(A.12)

Therefore the difference between both methods is:

ΦSEMI − ΦD = −
( 1
MTBFtarget

)2

2
−
( 1
MTBFtarget

)3

3
−
( 1
MTBFtarget

)4

4
− ... (A.13)

For higher MTBF targets this difference between both methods can be ne-
glected. A typical MTBF target for production systems is 300 hours. The dif-
ference between both methods is −5 · 10−6 in this case.

Failures during test execution

SEMI-E10 handles failures during test execution in Table A1-4. The number of
‘allowed’ failures can be chosen and the corresponding k-factor can be derived
using χ2 distribution or looked up in Table A1-4. The degrees of freedom are
increased whenmore fault states are allowed. This way the χ2 distribution shifts,
resulting in higher k-factors and therefore in higher test durations.
Failures are modeled explicitly in our method. Once a failure occurs, the un-

certainty of the corresponding fault state is increased to 1.0 indicating that the
previous knowledge is not valid anymore. Modeling the failure explicitly is con-
servative if compared with the χ2 distribution with r > 0, because the SEMI-E10
method assumes that r failures occur according to a certain failure distribution.
In the worst case situation this is an exponential, or memoryless, distribution.
Our method does not assume a distribution, but in the best case failures occur
with the same exponential distribution as the SEMI-E10 method. In the worst
case the failures occur at the end of the test period, which corresponds with a
very skewed Gamma distribution. In this worst case, more test cases need to be
executed in our method to reduce the uncertainty. Our approach is therefore
more conservative and could require more executed test cases until the uncer-
tainty target is met.
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APPENDIX B

SYSTEM TEST MODELS USED IN SECT IONS 4.1 AND 4.2

S / T t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 t13 P I CF ϕF

s1 0 0 0 0 1.0 0 0 0 0 0 0 0 0 0.1 100.0 70.0 70.0
s2 0 0 0 1.0 0 0 0 0 0 0 0 0 0 0.01 100.0 70.0 70.0
s3 0 0 0 0 0 0 0 0 1.0 1.0 0 0 0 0.02 100.0 70.0 70.0
s4 0 0 0 1.0 0 0 0 0 0 0 0 0 0 0.05 100.0 70.0 70.0
s5 0 0 0 0 1.0 0 0 0 1.0 1.0 0 0 0 0.05 100.0 70.0 70.0
s6 0 0 0 0 1.0 1.0 1.0 1.0 0 0 0 1.0 0 0.2 100.0 70.0 70.0
s7 1.0 0 1.0 0 0 0 0 0 0 0 0 0 1.0 0.05 100.0 70.0 70.0
s8 0 1.0 0 0 0 1.0 0 0 0 0 0 0 1.0 0.02 100.0 70.0 70.0
s9 1.0 0 0 0 0 0 0 0 0 0 0 0 0 0.02 100.0 70.0 70.0
s10 1.0 1.0 1.0 0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.07 100.0 70.0 70.0
s11 1.0 0 0 0 0 0 0 0 0 0 0 0 0 0.02 100.0 70.0 70.0
s12 0 0 0 0 0 1.0 0 0 0 0 0 0 1.0 0.99 100.0 70.0 70.0
s13 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.1 100.0 70.0 70.0
s14 1.0 0 0 0 0 1.0 1.0 1.0 1.0 1.0 0 0 0 0.01 100.0 70.0 70.0
s15 0 0 0 0 1.0 0 0 0 0 0 0 0 0 0.99 100.0 70.0 70.0
s16 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.99 100.0 70.0 70.0
s17 0 1.0 0 0 0 1.0 0 0 0 0 0 0 1.0 0.99 100.0 70.0 70.0
s18 0 0 1.0 0 0 0 0 0 0 0 0 0 0 0.5 100.0 70.0 70.0
s19 0 0 0 1.0 1.0 0 0 0 0 0 0 0 0 0.02 100.0 70.0 70.0
s20 0 0 0 0 1.0 0 0 0 0 0 0 0 0 0.99 100.0 70.0 70.0
s21 0 0 0 0 0 1.0 0 1.0 0 0 0 0 0 0.99 100.0 70.0 70.0
s22 0 0 0 0 0 0 1.0 1.0 0 0 0 0 0 0.99 100.0 70.0 70.0
s23 0 0 0 0 0 0 0 1.0 0 0 0 0 0 0.1 100.0 70.0 70.0
s24 0 0 0 0 0 0 0 0 1.0 0 0 0 0 0.99 100.0 70.0 70.0
s25 0 0 0 0 0 0 0 0 0 1.0 0 0 0 0.25 100.0 70.0 70.0
s26 0 0 0 0 0 0 0 0 0 0 1.0 0 0 0.99 100.0 70.0 70.0
s27 0 0 0 0 0 0 0 0 0 0 0 1.0 0 0.05 100.0 70.0 70.0
s28 0 0 0 0 0 0 0 0 0 0 0 0 1.0 0.25 100.0 70.0 70.0
s29 1.0 0 0 0 0 0 0 0 0 0 0 0 0 0.02 100.0 70.0 70.0

CT 30.0 15.0 5.0 10.0 10.0 10.0 20.0 10.0 10.0 10.0 10.0 5.0 40.0
CD 70.0 70.0 70.0 70.0 70.0 70.0 70.0 70.0 70.0 70.0 70.0 70.0 70.0
ϕD 70.0 70.0 70.0 70.0 70.0 70.0 70.0 70.0 70.0 70.0 70.0 70.0 70.0

Table 39. System test model of case study 3 in Section 4.3
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