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INTEGRATION BY PARTS FORMULA ON SOLUTIONS TO

STOCHASTIC DIFFERENTIAL EQUATIONS WITH JUMPS

ON RIEMANNIAN MANIFOLDS

HIROTAKA KAI AND ATSUSHI TAKEUCHI*

Dedicated to the memory of Professor Hiroshi Kunita

Abstract. Consider solutions to Marcus-type stochastic differential equa-

tions with jumps on the bundle of orthonormal frames O(M) over a Riemann-
ian manifold M , and define the M -valued process by its canonical projection,

which is parallel to the Eells-Elworthy-Malliavin construction of Brownian

motions on M . In the present paper, the integration by parts formula for
such jump processes is studied, and the strategy is based upon the calculus

on Brownian motions via the Kolmogorov backward equations. The cele-
brated Bismut formula can be also obtained in our setting.

1. Introduction

Let T > 0 be fixed throughout the paper, and write Rm
0 := Rm\{0}. Denote by

ν(dz) a Lévy measure over Rm
0 such that the function |z|2 ∧ 1 is integrable with

respect to the measure ν(dz). On a probability space
(
Ω,F ,P, {Ft}t∈[0,T ]

)
with a

filtration, let us introduce the following notations:

• the process B =
{
Bt = (B1

t , . . . , B
m
t ) ; t ∈ [0, T ]

}
is an m-dimensional

Brownian motion starting from 0 ∈ Rm,
• N(dt, dz) is a Poisson random measure over [0, T ]×Rm

0 with the intensity

measure N̂(dt, dz) := dt ν(dz),

• Ñ(dt, dz) = N(dt, dz) − N̂(dt, dz) is the compensated Poisson random
measure.

For simplicity of notations, we shall write K1 =
{
z ∈ Rm

0 ; |z| ≤ 1
}
and

N(dt, dz) := Ñ(dt, dz) IK1
(z) +N(dt, dz) IKc

1
(z).

Now, we shall introduce our framework of the differential geometry. Let (M, g)
be a connected, compact and smooth Riemannian manifold of dimension m with
the Levi-Civita connection ∇ =

{
Γi
jk ; 1 ≤ i, j, k ≤ m

}
. Let GL(M) be the bundle
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2 HIROTAKA KAI AND ATSUSHI TAKEUCHI

of linear frames on M , and O(M) the submanifold of GL(M) defined by

O(M) =
{
r = (x, e) ; x ∈ M, e = (e1, . . . , em) : an orthonormal basis in TxM

}
which is called the bundle of orthonormal frames on M . The canonical projection
π : O(M) → M is defined by π(r) = x for r = (x, e) ∈ O(M). Let H1, . . . , Hm be
the vector fields over GL(M) such that the tangent vector Hi(r) is the horizontal
lift of ei ∈ TxM for each r = (x, e). These are called the canonical horizontal
vector fields. In a local coordinate

(
xi, e

α
i ; 1 ≤ i, α ≤ m

)
, the vector field Hi can

be expressed as

Hi =

m∑
α=1

eαi
∂

∂xα
−

m∑
α,β,p,q=1

Γq
αβ(x) e

α
i eβp

∂

∂eqp
. (1.1)

Write H =
(
H1, H2, . . . , Hm

)
. Remark that the vector fields Hi (1 ≤ i ≤ m) are

tangent to O(M). Details on the differential geometry can be seen in Kobayashi
and Nomizu [10].

Now, we shall construct stochastic processes on the manifold M . As for dif-
fusion processes on M , especially, the Brownian motions on M , there are several
approaches to do it. One of them has been known as the Eells-Elworthy-Malliavin
construction. Let r = (x, e) ∈ O(M), and R =

{
Rt ; t ∈ [0, T ]

}
be the O(M)-

valued process determined by the Stratonovich-type stochastic differential equation
without any jumps of the form:

dRt = H(Rt) ◦ dBt, R0 = r, (1.2)

which is the diffusion process on O(M) with the infinitesimal generator

L =
1

2

m∑
i=1

HiHi. (1.3)

The operator L is often called the horizontal Laplacian in the Bochner sense.
Then, we shall define the M -valued process X =

{
Xt ; t ∈ [0, T ]

}
by projection as

Xt := π(Rt), (1.4)

which satisfies the equation of the form:

dXt = (dπ)Rt

(
H(Rt)

)
◦ dBt, X0 = x. (1.5)

Here, dπ : T GL(M) → TM is the tangent map of π. Denote the Laplace-Beltrami
operator on M by ∆M . Since

(Af)(x) :=
(
L(f ◦ π)

)
(r) =

1

2
(∆Mf)(x) (1.6)

for f ∈ C∞(M ; R), and is independent of the choice of r satisfying π(r) = x, the
M -valued process X is the diffusion process with the infinitesimal generator A by
using the rotational invariance of the m-dimensional Brownian motion B. The
M -valued process X is called the Brownian motion on M . Details can be seen in
Hsu [6], and Ikeda and Watanabe [8].

On the other hand, it would be a natural question how we should define Lévy
processes on the manifold M . There have been some works to attack such a
question. Hunt [7] studied Lévy processes on Lie groups from the viewpoint of
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functional analysis. Moreover, Applebaum and Kunita [3] constructed the M -
valued process as the solutions to jump-type stochastic differential equations driven
by Lévy processes. Their equation is so-called the Marcus type one based upon
the jumps by the exponential maps. See also Kunita’s last book [12] in 2019.
Applebaum and Estrade [2] discussed the Eells-Elworthy-Malliavin construction
of an M -valued process by the canonical projection of the O(M)-valued process.
They mentioned that the isotropic property on the Lèvy measure is one of the
sufficient conditions in order to gurantee the Markovian property of the M -valued
process.

In the present paper, let us consider an O(M)-valued process defined as the
solution to Marcus-type stochastic differential equations in which jumps are de-
termined through exponential maps on O(M). Then, the M -valued process can be
defined as the projection of the O(M)-valued process constructed above, which is
almost parallel to the Eells-Elworthy-Malliavin approach on the diffusion process
on M . As given a remark in Applebaum and Estrade [2], the obtained M -valued
process is not always Markovian, because the process depends on the choice of the
frames. The present paper shall focus on the following topics:

(i) the revisit of the work by Applebaum and Estrade [2] in order to construct
the Markov process with jumps on M ,

(ii) the integration by parts formula on the M -valued Lévy process.

As stated above, such kind of studies in the case without any jumps seems to be
very classical, which can be seen in Hsu [6], and Ikeda andWatanabe [8]. Moreover,
the detailed study with its integration by parts formula has been already done by
Bismut (cf. Bismut [4] and Hsu [6]), which is called the Bismut formula after his
great contribution. A similar study on the integration by parts formula for jump
processes in the Euclidean space has been already obtained in Takeuchi [14]. Since
the process in our situation has the Brownian part and the jump part, we have
two approaches in the study of stochastic calculus : one of them is based upon
the Brownian motion, and the other is to focus on the jump part. The present
paper will pay attention to the effect from the diffusion terms of the equation,
only. The obtained formula is quite similar to the celebrated Bismut formula for
the diffusion process on M . This paper is the survey of Kai and Takeuchi [9] only
on the effect from the diffusion coefficients of the equation. The formula with the
effects from the jump terms, or the ones from the diffusion and the jump terms,
can be seen in Kai and Takeuchi [9].

2. Jump-type Stochastic Differential Equations on Manifolds

In this section, we shall define the M -valued jump process based upon the
Eells-Elworthy-Malliavin construction. For z ∈ Rm

0 , we shall introduce the one
parameter group of diffeomorphisms ξz =

{
ξzσ(r) ; σ ∈ [0, 1], r ∈ O(M)

}
given by

the ordinary differential equation on O(M) of the form:

d

dσ
ξzσ(r) = H

(
ξzσ(r)

)
z, ξz0(r) = r. (2.1)

The solution can be also denoted by

ξzσ(r) = Exp(σHz)(r). (2.2)
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Then, for r = (x, e) ∈ O(M), let us consider the O(M)-valued process R ={
Rt ; t ∈ [0, T ]

}
determined by the Marcus-type stochastic differential equation

on O(M) formally given bydRt = H(Rt) ◦ dBt +

∫
Rm

0

{
ξz1(Rt−)−Rt−

}
N(dt, dz),

R0 = r.

(2.3)

Precisely, the equation (2.3) means that

F (Rt) = F (r) +

∫ t

0

(HF )(Rs) ◦ dBs

+

∫ t+

0

∫
Rm

0

{
F
(
ξz1(Rs−)

)
− F (Rs−)

}
N(ds, dz)

+

∫ t

0

∫
K1

{
F
(
ξz1(Rs)

)
− F (Rs)− (HF )(Rs) z

}
N̂(ds, dz)

for all F ∈ C∞(
O(M) ; R

)
with a compact support.

Proposition 2.1. The process R lies in O(M).

Proof. For 1 ≤ i, j ≤ m, define

Fij(r̃) = ⟨ẽi, ẽj⟩Tx̃M , r̃ =
(
x̃, ẽ = (ẽ1, . . . , ẽm)

)
∈ GL(M),

where ⟨·, ·⟩Tx̃M is the inner product on each tangent space Tx̃M , that is,

⟨ẽi, ẽj⟩Tx̃M =

m∑
α, β=1

gαβ(x̃) ẽ
α
i ẽβj

in a local coordinate
(
x̃i, ẽ

α
i ; 1 ≤ i, α ≤ m

)
. Since

(HkFij)(r̃) =

m∑
α=1

ẽαk
∂Fij

∂x̃α
(r̃)−

m∑
α, β, p, q=1

Γq
αβ(x̃) ẽ

α
k ẽβp

∂Fij

∂ẽqp
(r̃) = 0

for 1 ≤ i, j, k ≤ m, and the initial point r = (x, e) of the process R lies in O(M),
we can derive that

Fij(Rt) = Fij(r) +

∫ t

0

(HFij)(Rs) ◦ dBs

+

∫ t+

0

∫
Rm

0

{
Fij

(
ξz1(Rs−)

)
− Fij(Rs−)

}
N(ds, dz)

+

∫ t

0

∫
K1

{
Fij

(
ξz1(Rs)

)
− Fij(Rs)− (HFij)(Rs) z

}
N̂(ds, dz)

= δij

for 1 ≤ i, j ≤ m. The proof is completed. □
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The detailed studies can be seen in Applebaum and Estrade [2], Applebaum
and Kunita [3], Fujiwara [5] and Kunita [12] on the detailed studies. Moreover,
the process R is Markovian, and its infinitesimal generator J is

(JF )(r) = (LF
)
(r) +

∫
Rm

0

{
F
(
ξz1(r)

)
− F (r)− (HF )(r) z IK1

(z)
}
ν(dz) (2.4)

for F ∈ C∞(
O(M) ; R

)
with a compact support.

Define the M -valued process X =
{
Xt ; t ∈ [0, T ]

}
by Xt = π(Rt) for t ∈ [0, T ].

Then, it can be easily checked that the process X satisfies the following equation:dXt = (dπ)Rt

(
H(Rt)

)
◦ dBt +

∫
Rm

0

{
ζz1 (Xt−)−Xt−

}
N(dt, dz),

X0 = x.

(2.5)

Here, dπ : T GL(M) → TM is the tangent map of π, and

ζzσ(r) := π
(
Exp(σHz)(r)

)
= Exp

(
σ
(
(dπ)H

)
z
)
(x)

for z ∈ Rm
0 and σ ∈ [0, 1]. The last equality can be justified, because(

Hi(f ◦ π)
)
(r) =

((
(dπ)rHi

)
f
)(

π(r)
)

for f ∈ C∞(M ; R). As pointed out in Applebaum and Estrade [2], in general, the
M -valued process X is not always Markovian, because it depends on the choice of
the frame, which can be seen from the equation (2.5).

Theorem 2.2 (cf. Applebaum [1], Applebaum and Estrade [2], Kai and Takeuchi
[9]). Suppose that the Lévy measure ν(dz) is rotationally invariant. Then, the
M -valued process X determined by the equation (2.5) is Markovian.

Proof. We shall give the sketch of the proof only. For an orthogonal matrix A ∈
Rm ⊗ Rm, let us write

eA =
(
(eA)1, . . . , (eA)m

)
, (eA)i =

m∑
j,k=1

eji Ajk
∂

∂xk
.

Remark that the fibrewise action of the orthogonal group O(m) to O(M) is tran-
sitive. Let Z =

{
Zt ; t ∈ [0, T ]

}
be the m-dimensional Lévy process given by

Zt = Bt +

∫ t+

0

∫
Rm

0

z N(ds, dz),

and denote the solution to the equation (2.5) by Xt

(
(x, e), Z), in order to empha-

size the dependence of the initial point (x, e) and the driving process Z. Then,
since the m-dimensional Brownian motion B and the Lévy measure ν(dz) over Rm

0

are rotationally invariant, the process AZ =
{
AZt ; t ∈ [0, T ]

}
has the same law

as the process Z, which implies that

Xt

(
(x, e), AZ)

d
= Xt

(
(x, e), Z).

On the other hand, the uniqueness of the solutions to the equation (2.5) leads us
to see that

Xt

(
(x, e), AZ)

d
= Xt

(
(x, eA), Z).
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So, we can get that Xt

(
(x, e), Z)

d
= Xt

(
(x, eA), Z), which completes the proof. □

3. Main Result

Now, let us study the integration by parts formula in our setting. Before doing
it, we shall prepare some studies. Suppose that the Lévy measure ν(dz) satisfies∫

Kc
1

|z|2 ν(dz) < +∞. (3.1)

Write H =
(
H1, . . . , Hm

)
, and let f ∈ C2(M ; R) with a compact support, and

and t ∈ [0, T ]. Define
Φ(s, r) := E

[
(f ◦ π)(Rt−s)

]
for s ∈ [0, t) and R0 = r ∈ O(M). Then, it is well known that the function Φ is in

C1,2
b

(
[0, t)×O(M) ; R

)
, and satisfies the Kolmogorov backward equation:
∂Φ

∂s
(s, r) + (JΦ)(s, r) = 0, s ∈ [0, t)

lim
s↗t

Φ(s, r) = (f ◦ π)(r),
(3.2)

where J is defined in (2.4). Then, the Itô formula leads us to obtain that

Φ(s,Rs) = Φ(0, r) +

∫ s

0

(HΦ)(u,Ru) dBu

+

∫ s+

0

∫
Rm

0

{
Φ
(
u, ξz1(Ru−)

)
− Φ(u,Ru−)

}
Ñ(du, dz)

(3.3)

for s ∈ [0, t), because the drift term is 0 by the equation (3.2). Hence, the limiting
procedure as s ↗ t leads us to see that

f(Xt) = E
[
f(Xt)

]
+

∫ t

0

(HΦ)(u,Ru) dBu

+

∫ t+

0

∫
Rm

0

{
Φ
(
u, ξ1z(Ru−)

)
− Φ(u,Ru−)

}
Ñ(du, dz).

(3.4)

The formula (3.4) can be also regarded as the martingale representation.
Similarly to the study stated above, we can derive from the Itô formula that,

for s ∈ [0, t) and 1 ≤ i ≤ m,

(HiΦ)(s,Rs) = (HiΦ)(0, r) +

∫ s

0

(HHiΦ)(u,Ru) dBu

+

∫ s+

0

∫
Rm

0

{
(HiΦ)

(
u, ξz1(Ru−)

)
− (HiΦ)(u,Ru−)

}
Ñ(du, dz)

+

∫ s

0

{
∂

∂u

(
(HiΦ)(u,Ru)

)
+ (JHiΦ)(u,Ru)

}
du.

Here, we have to take care of the study on the last term, because JHiΦ is not
always equal to HiJΦ. In fact, we shall give a remark that

(the last term) =

∫ s

0

(
[L,Hi]Φ

)
(u,Ru) du
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+

∫ s

0

∫
Rm

0

{
(HiΦ)

(
u, ξz1(Ru)

)
−
(
Hi(Φ ◦ ξz1)

)
(u,Ru)

−
(
[Hz,Hi]Φ

)
(u,Ru) IK1

(z)
}
N̂(du, dz)

=

∫ s

0

(
[A,Hi]Φ

)
(u,Ru) du, (3.5)

where

A = L+

∫
Rm

0

{(ξz1)∗ −Hz IK1(z)} ν(dz).

Here, the symbol ”[ · , · ]” is the Lie bracket on vector fields over O(M) in the
usual sense, and (ξz1)

∗ is the pullback by the function ξz1 . The last equality in (3.5)
can be justified, because([

(ξz1)
∗,Hi

]
Φ
)
(u,Ru) =

(
(ξz1)

∗(HiΦ)
)
(u,Ru)−

(
Hi((ξ

z
1)

∗Φ)
)
(u,Ru)

= (HiΦ)
(
u, ξz1(Ru)

)
−
(
Hi(Φ ◦ ξz1)

)
(u,Ru),

and
(
[Hz,Hi]Φ

)
(u,Ru) = 0 for 1 ≤ i ≤ m. Thus, we have

(HiΦ)(s,Rs)

= (HiΦ)(0, r) +

∫ s

0

(HHiΦ)(u,Ru) dBu

+

∫ s+

0

∫
Rm

0

{
(HiΦ)

(
u, ξz1(Ru−)

)
− (HiΦ)(u,Ru−)

}
Ñ(du, dz)

+

∫ s

0

(
[A,Hi]Φ

)
(u,Ru) du

(3.6)

for s ∈ [0, t). Taking the limit as s ↗ t enables us to see that the equation (3.6) can
be justified for s ∈ [0, t], because the function f is in C2(M ; R) with a compact
support.

Let L =
{
Ls ; s ∈ [0, t]

}
be the solution to the following equation:

dLs

ds
= −Ls C(Rs), L0 = Im, (3.7)

where Im ∈ Rm ⊗ Rm is the identity, H∗
k(r) ∈ T ∗

r O(M) is the dual of Hk(r) ∈
TrO(M), and

C(r) =


(
H∗

1 ([J ,H1])
)
(r) · · ·

(
H∗

m([J ,H1])
)
(r)

...
...(

H∗
1 ([J ,Hm])

)
(r) · · ·

(
H∗

m([J ,Hm])
)
(r)


for r ∈ O(M). Remark that

(
V (f ◦ π)

)
(r) =

m∑
j=1

(
(H∗

j (V )Hj)(f ◦ π)
)
(r)
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for any smooth vector field V over O(M), and that

m∑
j=1

dLij
s

ds
(HjΦ)(s,Rs) = −

m∑
j=1

Lij
s

(
[J ,Hj ]Φ

)
(s,Rs)

for 1 ≤ i ≤ m. Thus, applying the Itô product formula tells us to see that

m∑
j=1

Lij
s (HjΦ)(s,Rs)

= (HiΦ)(0, r) +

∫ s

0

m∑
j,k=1

Lij
u (HkHjΦ)(u,Ru) dB

k
u

+

∫ s+

0

∫
Rm

0

m∑
j=1

Lij
u−

{
(HjΦ)

(
u, ξz1(Ru−)

)
− (HjΦ)(u,Ru−)

}
Ñ(du, dz)

(3.8)

for s ∈ [0, t].

Recall that ex =
(
(e1)x, . . . , (em)x

)
is the frame in the tangent space TxM at

x ∈ M . Then, we have

Theorem 3.1 (cf. Kai and Takeuchi [9]). Suppose that the Lévy measure satisfies
(3.1). Then, for all f ∈ C∞(M ; R), it holds that

ex
(
E
[
f(Xx

t )
])

= E
[
f(Xx

t )
1

t

∫ t

0

(Ls dBs)
∗
]
. (3.9)

Proof. Our strategy to get the formula (3.9) is almost parallel to the method in
Takeuchi [14] on the study of the integration by parts formula in the case of the
Euclidean space. At the beginning, let us write

Ns := Ls

 (H1Φ)(s,Rs)
...

(HmΦ)(s,Rs)


for s ∈ [0, t]. Then, from the equality (3.8), we see that the process {Ns ; s ∈ [0, t]}
is an m-dimensional (Ft)-martingale, which implies that

ex

(
E
[
f(Xx

t )
])

= Hr

(
E
[
(f ◦ π)(Rr

t )
])

= (HΦ)(0, r) = N∗
0 = E

[
N∗

t

]
.

Here, we have used the notations Xx
t and Rr

t as seen in the above study, in order
to emphasize the dependence of the initial points x and r of the processes X and
R, respectively. Hence, for v ∈ Rm, the Itô product rule enables us to obtain that〈(

ex
(
E
[
f(Xx

t )
]) )∗

, v
〉
Rm

=
〈
E
[
Nt

]
, v
〉
Rm

=

〈
E
[
1

t

∫ t

0

Ns ds

]
, v

〉
Rm

=
1

t
E

∫ t

0

m∑
i,j=1

Lij
s (HjΦ)(s,Rs) vi ds
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=
1

t
E

[∫ t

0

m∑
i=1

(HiΦ)(s,Rs) dB
i
s

〈∫ t

0

Ls dBs, v

〉
Rm

]

=
1

t
E
[
f(Xt)

〈∫ t

0

Ls dBs, v

〉
Rm

]
=

〈
E
[
f(Xt)

1

t

∫ t

0

Ls dBs

]
, v

〉
Rm

,

where ⟨ · , · ⟩Rm is the inner product in Rm. Here, the fourth equality can be
justified by the computation of the quadratic variation on stochastic integrals with
respect to the Brownian motions. The proof is completed. □

Remark 3.2. The equation (3.9) in Theorem 3.1 is exactly the same representa-
tion as the celebrated Bismut formula for the Brownian motion on M (cf. Hsu
[6]). The obtained result seems to be natural, because the calculus in the present
paper is based upon the study focused only on the component of the Brownian
motion on the Euclidean space. Moreover, the formula (3.9) can be also obtained
from the viewpoint of the partial Malliavin calculus on the Wiener-Poisson space
focused only on the effects from the Brownian motions on the Euclidean space (cf.
Kohatsu-Higa and Takeuchi [11]).

On the other hand, under the further additional condition on the Lévy measure
ν(dz), we can also obtain other types of the integration by parts formulas, which
are focused on the jump term coefficients, or on the both components of the
Brownian motions and the jumps, in the equation (2.5). The detailed studies can
be seen in Kai and Takeuchi [9].

As one of the typical applications of Theorem 3.1, we have

Corollary 3.3. Suppose that the Lévy measure satisfies (3.1). Then, for each
0 < t ≤ T , the probability law of the solution Xt is absolutely continuous with
respect to the volume element on M .

Proof. From Theorem 3.1 and the Cauchy-Schwarz inequality, we see that∣∣∣ex(E[f(Xt)
])∣∣∣ = ∣∣∣∣E [

f(Xt)
1

t

∫ t

0

(Ls dBs)
∗
]∣∣∣∣

≤ ∥f∥∞ E

[∣∣∣∣ 1t
∫ t

0

(Ls dBs)
∗
∣∣∣∣2
]1/2

,

which implies that the probability law of the M -valued random variable Xt is
absolutely continuous with respect to the volume element on M , via the Sobolev-
type inequality. Here, | · | denotes the standard norm on Rm. □

Remark 3.4. We can also obtain the higher-order integration by parts formula,
similarly to the strategy stated in Theorem 3.1, or the simple computations in the
framework of the Malliavin calculus on the Wiener space, which implies that the
probability law of the M -valued random variable Xt admits a smooth density with
respect to the volume element on M .
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1. Applebaum, D.: A horizontal Lévy process on the bundle of orthonormal frames over a com-
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