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INTEGRATION BY PARTS FORMULAS INVOLVING
GENERALIZED FOURIER-FEYNMAN TRANSFORMS

ON FUNCTION SPACE

SEUNG JUN CHANG, JAE GIL CHOI, AND DAVID SKOUG

Abstract. In an upcoming paper, Chang and Skoug used a generalized Brow-
nian motion process to define a generalized analytic Feynman integral and a
generalized analytic Fourier-Feynman transform. In this paper we establish
several integration by parts formulas involving generalized Feynman integrals,
generalized Fourier-Feynman transforms, and the first variation of functionals
of the form F (x) = f(〈α1, x〉, . . . , 〈αn, x〉) where 〈α, x〉 denotes the Paley-

Wiener-Zygmund stochastic integral
∫ T
0 α(t)dx(t).

1. Introduction

In [11], Park and Skoug, working in the setting of one-parameter Wiener space
C0[0, T ] established several integration by parts formulas involving analytic Feyn-
man integrals, Fourier-Feynman transforms, and the first variation of functionals
of the form

(1.1) F (x) = f(〈α1, x〉, · · · , 〈αn, x〉)

where 〈α, x〉 denotes the Paley-Wiener-Zygmund stochastic integral
∫ T

0 α(t)dx(t).
In this paper, we also study functionals of the form (1.1) but with x in a very

general function space Ca,b[0, T ] rather than in the Wiener space C0[0, T ]. The
Wiener process used in [11] is free of drift and is stationary in time while the
stochastic process used in this paper is nonstationary in time, is subject to a drift
a(t), and can be used to explain the position of the Ornstein-Uhlenbeck process
in an external force field [10]. It turns out, as noted in Remark 3.1 below, that
including a drift term a(t) makes establishing various integration by parts formulas
for Fourier-Feynman transforms very difficult.

By choosing a(t) = 0 and b(t) = t on [0, T ], the function space Ca,b[0, T ] reduces
to the Wiener space C0[0, T ], and so the results in [11] are immediate corollaries of
the results in this paper. For related work see [3], [4], and [6].
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2. Definitions and preliminaries

In this section we list the appropriate preliminaries and definitions from [5] that
are needed to establish our parts formulas in Sections 3, 4 and 5 below.

Let D = [0, T ] and let (Ω,B, P ) be a probability measure space. A real-valued
stochastic process Y on (Ω,B, P ) and D is called a generalized Brownian motion
process if Y (0, ω) = 0 almost everywhere and for 0 = t0 < t1 < · · · < tn ≤ T , the
n-dimensional random vector (Y (t1, ω), · · · , Y (tn, ω)) is normally distributed with
the density function

K(~t, ~η) =
(
(2π)n

n∏
j=1

(b(tj)− b(tj−1))
)−1/2

· exp
{
−1

2

n∑
j=1

((ηj − a(tj))− (ηj−1 − a(tj−1)))2

b(tj)− b(tj−1)

}(2.1)

where ~η = (η1, · · ·, ηn), η0 = 0, ~t = (t1, · · · , tn), a(t) is an absolutely continuous
real-valued function on [0, T ] with a(0) = 0, a′(t) ∈ L2[0, T ], and b(t) is a strictly
increasing, continuously differentiable real-valued function with b(0) = 0 and b′(t) >
0 for each t ∈ [0, T ].

As explained in [13, pp. 18–20], Y induces a probability measure µ on the measur-
able space (RD,BD) where RD is the space of all real-valued functions x(t), t ∈ D,
and BD is the smallest σ-algebra of subsets of RD with respect to which all the
coordinate evaluation maps et(x) = x(t) defined on RD are measurable. The triple
(RD,BD, µ) is a probability measure space. This measure space is called the func-
tion space induced by the generalized Brownian motion process Y determined by
a(·) and b(·).

We note that the generalized Brownian motion process Y determined by a(·) and
b(·) is a Gaussian process with mean function a(t) and covariance function r(s, t) =
min{b(s), b(t)}. By Theorem 14.2, [13, p. 187], the probability measure µ induced
by Y , taking a separable version, is supported by Ca,b[0, T ] (which is equivalent
to the Banach space of continuous functions x on [0, T ] with x(0) = 0 under the
sup norm). Hence (Ca,b[0, T ],B(Ca,b[0, T ]), µ) is the function space induced by Y
where B(Ca,b[0, T ]) is the Borel σ-algebra of Ca,b[0, T ].

A subset B of Ca,b[0, T ] is said to be scale-invariant measurable [9] provided ρB
is B(Ca,b[0, T ])-measurable for all ρ > 0, and a scale-invariant measurable set N is
said to be a scale-invariant null set provided µ(ρN) = 0 for all ρ > 0. A property
that holds except on a scale-invariant null set is said to hold scale-invariant almost
everywhere (s-a.e.).

Let L2
a,b[0, T ] be the Hilbert space of functions on [0, T ] that are Lebesgue mea-

surable and square integrable with respect to the Lebesgue-Stieltjes measures on
[0, T ] induced by a(·) and b(·); i.e.,

(2.2) L2
a,b[0, T ] =

{
v :
∫ T

0

v2(s)db(s) <∞ and
∫ T

0

v2(s)d|a|(s) <∞
}

where |a|(t) denotes the total variation of the function a on the interval [0, t].
For u, v ∈ L2

a,b[0, T ], let

(2.3) (u, v)a,b =
∫ T

0

u(t)v(t)d[b(t) + |a|(t)].
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Then (·, ·)a,b is an inner product on L2
a,b[0, T ] and ‖u‖a,b =

√
(u, u)a,b is a norm on

L2
a,b[0, T ]. In particular, note that ‖u‖a,b = 0 if and only if u(t) = 0 a.e. on [0, T ].

Furthermore, (L2
a,b[0, T ], ‖ · ‖a,b) is a separable Hilbert space.

Let {φj}∞j=1 be a complete orthogonal set of real-valued functions of bounded
variation on [0, T ] such that

(φj , φk)a,b =

{
0, j 6= k,

1, j = k,

and for each v ∈ L2
a,b[0, T ], let

(2.4) vn(t) =
n∑
j=1

(v, φj)a,bφj(t)

for n = 1, 2, · · · . Then for each v ∈ L2
a,b[0, T ], the Paley-Wiener-Zygmund (PWZ)

stochastic integral 〈v, x〉 is defined by the formula

(2.5) 〈v, x〉 = lim
n→∞

∫ T

0

vn(t)dx(t)

for all x ∈ Ca,b[0, T ] for which the limit exists; one can show that for each v ∈
L2
a,b[0, T ], the PWZ integral 〈v, x〉 exists for µ-a.e. x ∈ Ca,b[0, T ].
We denote the function space integral of a B(Ca,b[0, T ])-measurable functional

F by

(2.6) E[F ] =
∫
Ca,b[0,T ]

F (x)dµ(x)

whenever the integral exists.
We are now ready to state the definition of the generalized analytic Feynman

integral.

Definition 2.1. Let C denote the complex numbers. Let C+ = {λ ∈ C : Reλ > 0}
and C̃+ = {λ ∈ C : λ 6= 0 and Reλ ≥ 0}. Let F : Ca,b[0, T ] −→ C be such that for
each λ > 0, the function space integral

J(λ) =
∫
Ca,b[0,T ]

F (λ−
1
2x)dµ(x)

exists for all λ > 0. If there exists a function J∗(λ) analytic in C+ such that
J∗(λ) = J(λ) for all λ > 0, then J∗(λ) is defined to be the analytic function space
integral of F over Ca,b[0, T ] with parameter λ, and for λ ∈ C+ we write

(2.7) Eanλ [F ] ≡ Eanλ
x [F (x)] = J∗(λ).

Let q 6= 0 be a real number and let F be a functional such that Eanλ [F ] exists for
all λ ∈ C+. If the following limit exists, we call it the generalized analytic Feynman
integral of F with parameter q and we write

(2.8) Eanfq [F ] ≡ Eanfq
x [F (x)] = lim

λ→−iq
Eanλ [F ]

where λ approaches −iq through values in C+.

Next (see [5], [7], [1], [8], and [6]) we state the definition of the generalized
analytic Fourier-Feynman transform (GFFT).
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Definition 2.2. For λ ∈ C+ and y ∈ Ca,b[0, T ], let

(2.9) Tλ(F )(y) = Eanλ
x [F (y + x)].

For p ∈ (1, 2], we define the Lp analytic GFFT, Tq(p;F ) of F , by the formula
(λ ∈ C+),

(2.10) Tq(p;F )(y) = lim
λ→−iq

Tλ(F )(y)

if it exists; i.e., for each ρ > 0,

lim
λ→−iq

∫
Ca,b[0,T ]

∣∣Tλ(F )(ρy)− Tq(p;F )(ρy)
∣∣p′dµ(y) = 0

where 1/p + 1/p′ = 1. We define the L1 analytic GFFT, Tq(1;F ) of F , by the
formula (λ ∈ C+)

(2.11) Tq(1;F )(y) = lim
λ→−iq

Tλ(F )(y)

if it exists.

We note that for 1 ≤ p ≤ 2, Tq(p;F ) is only defined as s-a.e. We also note that
if Tq(p;F ) exists and if F ≈ G, then Tq(p;G) exists and Tq(p;G) ≈ Tq(p;F ).

Next we give the definition of the first variation of a functional F on Ca,b[0, T ]
followed by a very fundamental Cameron-Storvick type theorem [2] which was es-
tablished in [5, Theorem 3.5].

Definition 2.3. Let F be a B(Ca,b[0, T ])-measurable functional on Ca,b[0, T ] and
let w ∈ Ca,b[0, T ]. Then

(2.12) δF (x|w) =
∂

∂h
F (x+ hw)

∣∣∣∣
h=0

(if it exists) is called the first variation of F .

Throughout this paper, when working with δF (x|w), we will always require w
to be an element of A where

(2.13) A = {w ∈ Ca,b[0, T ] : w(t) =
∫ t

0

z(s)db(s) for some z ∈ L2
a,b[0, T ]}.

Note that for F (x) of the form (1.1), δF (x|w) acts like a directional derivative
in the direction of w. For example, if f(u1, u2) = exp{3u1 + 4u2} and F (x) =
f(〈α1, x〉, 〈α2, x〉), then

δF (x|w) = [3〈α1, w〉+ 4〈α2, w〉] exp{3〈α1, x〉+ 4〈α2, x〉}
= 〈α1, w〉f1(〈α1, x〉, 〈α2, x〉) + 〈α2, w〉f2(〈α1, x〉, 〈α2, x〉).

The following notation is used throughout the paper:

(2.14) (u, a′) =
∫ T

0

u(t)a′(t)dt =
∫ T

0

u(t)da(t)

and

(2.15) (u2, b′) =
∫ T

0

u2(t)b′(t)dt =
∫ T

0

u2(t)db(t)

for u ∈ L2
a,b[0, T ]. Furthermore, for all λ ∈ C̃+,

√
λ is always chosen to have positive

real part.
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Theorem 2.1. Let z ∈ L2
a,b[0, T ] be given and for t ∈ [0, T ], let w(t) =

∫ t
0
z(s)db(s).

For each ρ > 0, let F (ρx) be µ-integrable on Ca,b[0, T ] and let F (ρx) have a first
variation δF (ρx|ρw) for all x ∈ Ca,b[0, T ] such that for some positive function η(ρ),

sup
|h|≤η(ρ)

|δF (ρx+ ρhw|ρw)|

is µ-integrable. Then if any two of the three generalized analytic Feynman integrals
in the following equation exist, then the third one also exists, and equality holds:

(2.16) Eanfq
x [δF (x|w)] = −iqEanfq

x [F (x)〈z, x〉]− (−iq) 1
2 (z, a′)Eanfq

x [F (x)].

In fact, for each λ ∈ C+, the above conclusions also hold for analytic function space
integrals,

(2.17) Eanλ
x [δF (x|w)] = λEanλ

x [F (x)〈z, x〉]−
√
λ(z, a′)Eanλ

x [F (x)].

We finish this section by stating a very fundamental integration formula for the
function space Ca,b[0, T ].

Let {α1, · · · , αn} be an orthonormal set of functions from (L2
a,b[0, T ], ‖ · ‖a,b),

and for j ∈ {1, · · · , n} let

(2.18) Aj ≡ (αj , a′) =
∫ T

0

αj(t)da(t)

and

(2.19) Bj ≡ (α2
j , b
′) =

∫ T

0

α2
j (t)db(t).

Note that Bj > 0 for each j ∈ {1, 2, · · · , n}, while for each j, Aj may be positive,
negative or zero.

Let f : Rn → R be Lebesgue measurable, and let F (x) = f(〈α1, x〉, · · · , 〈αn, x〉).
Then

E[F ] ≡
∫
Ca,b[0,T ]

f(〈α1, x〉, · · · , 〈αn, x〉)dµ(x)

=
( n∏
j=1

2πBj

)− 1
2
∫
Rn
f(u1, · · · , un) exp

{
−

n∑
j=1

(uj −Aj)2

2Bj

}
du1 · · · dun

(2.20)

in the sense that if either side exists, both sides exist and equality holds.

3. Integration by parts formulas on function space

Let n be a positive integer (fixed throughout this paper) and let {α1, · · · , αn} be
an orthonormal set of functions from (L2

a,b[0, T ], || · ||a,b). Let m be a nonnegative
integer. Then for 1 ≤ p < ∞, let B(p;m) be the space of all functionals of the
form (1.1) for s-a.e. x ∈ Ca,b[0, T ] where all of the kth-order partial derivatives
fj1,··· ,jk(u1, · · · , un) = fj1,··· ,jk(~u) of f : Rn → R are continuous and in Lp(Rn) for
k ∈ {0, 1, · · · ,m} and each ji ∈ {1, · · · , n}. Also, let B(∞;m) be the space of all
functionals of the form (1.1) for s-a.e. x ∈ Ca,b[0, T ] where for k = 0, 1, · · · ,m,
all of the kth-order partial derivatives fj1,··· ,jk(~u) of f are in C0(Rn), the space of
bounded continuous functions on Rn that vanish at infinity.

Our first lemma follows directly from the definitions of δF (x|w) and B(p;m).
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Lemma 3.1. Let 1 ≤ p ≤ ∞ be given, let m be a positive integer, let F ∈ B(p;m)
be given by equation (1.1) and let w be an element of A. Then

(3.1) δF (x|w) =
n∑
j=1

〈αj , w〉fj(〈α1, x〉, · · · , 〈αn, x〉)

for s-a.e. x ∈ Ca,b[0, T ]. Furthermore, as a function of x, δF (·|w) ∈ B(p;m− 1).

Lemma 3.2. Let p,m and F be as in Lemma 3.1. Let z ∈ L2
a,b[0, T ] be given, and

for t ∈ [0, T ], let w(t) =
∫ t

0
z(s)db(s). Let G ∈ B(p′;m) be given by

(3.2) G(x) = g(〈α1, x〉, · · · , 〈αn, x〉)
for s-a.e. x ∈ Ca,b[0, T ]. Define R(x) = F (x)G(x) for x ∈ Ca,b[0, T ]. Then
R ∈ B(1;m), and as a function of x, δR(·|w) ∈ B(1;m− 1).

Proof. Let r(u1, · · · , un) = f(u1, · · · , un)g(u1, · · · , un). Then R(x) = r(〈α1, x〉,
· · · , 〈αn, x〉) is an element of B(1;m) since all of the kth-order partial derivatives of
r are continuous and in L1(R) for k = 0, 1, · · · ,m. Applying Lemma 3.1 we obtain
that δR(x|w), as a function of x, belongs to B(1;m− 1). �

Remark 3.1. Let F , G and R be as in Lemma 3.2 above. In evaluating E[F (λ−
1
2 x)],

E[R(λ−
1
2x)], and E[δR(λ−

1
2x|w)] for λ > 0, the expression

(3.3) H(λ;u1, · · · , un) ≡ H(λ; ~u) = exp
{
−

n∑
j=1

(
√
λuj −Aj)2

2Bj

}
occurs, where Aj and Bj are given by equations (2.18) and (2.19) above. Clearly,
for λ > 0, |H(λ; ~u)| ≤ 1 for all ~u ∈ Rn since Bj > 0 for all j = 1, · · · , n. But for
λ ∈ C̃+, |H(λ; ~u)| is not necessarily bounded by 1. Note that for each λ ∈ C̃+,√
λ = c+ id with c ≥ |d| ≥ 0. Hence, for each λ ∈ C̃+,

H(λ; ~u) = exp
{
−

n∑
j=1

(
√
λuj −Aj)2

2Bj

}

= exp
{
−

n∑
j=1

[(c2 − d2 + 2cdi)u2
j − 2(c+ di)Ajuj +A2

j ]
2Bj

}
,

(3.4)

and so

(3.5)
∣∣H(λ; ~u)

∣∣ = exp
{
−

n∑
j=1

[(c2 − d2)u2
j − 2cAjuj +A2

j ]
2Bj

}
.

Note that for λ ∈ C+, the case we consider throughout Section 3, Re(
√
λ) =

c > |d| = |Im(
√
λ)| ≥ 0, which implies that c2 − d2 > 0. Hence, for each λ ∈ C+,

H(λ; ~u), as a function of ~u, is an element of Lp(Rn) for all p ∈ [1,+∞]; in fact,
H(λ; ~u) also belongs to C0(Rn). These observations are critical to the development
of the integration by parts formulas throughout Section 3.

In Sections 4 and 5 below we consider the case where λ = −iq ∈ C̃+−C+. In this
case,

√
λ =
√
−iq = c+ id with c =

√
|q|/2 = |d|. Hence, for λ = −iq, q ∈ R−{0},

c2 − d2 = 0, and so

(3.6)
∣∣H(−iq; ~u)

∣∣ = exp
{ n∑
j=1

[
√

2|q|Ajuj −A2
j ]

2Bj

}
,
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which is not necessarily in Lp(Rn) for any p ∈ [1,+∞]. Thus, in Sections 4 and 5
we will need to put additional restrictions on the functionals F and G in order to
obtain the corresponding parts formulas involving Fourier-Feynman transforms.

Remark 3.2. Note that in the setting of [11], a(t) = 0 and b(t) = t on [0, T ] and
so Aj = (αj , a′) = 0 and Bj = (α2

j , b
′) = 1 for all j ∈ {1, 2, · · · , n}. Hence, for all

λ ∈ C̃+,

|H(λ; ~u)| =
∣∣∣∣ exp

{
− λ

2

n∑
j=1

u2
j

}∣∣∣∣ = exp
{
− Re(λ)

2

n∑
j=1

u2
j

}
≤ 1.

Theorem 3.3. Let z ∈ L2
a,b[0, T ] be given and for t ∈ [0, T ], let w(t) =

∫ t
0
z(s)db(s).

Let p, m, F and G be as in Lemma 3.2. Then for all λ ∈ C+,

Eanλ
x [F (x)δG(x|w) + δF (x|w)G(x)]

= λEanλ
x [F (x)G(x)〈z, x〉]−

√
λ(z, a′)Eanλ

x [F (x)G(x)]
(3.7)

where
√
λ is chosen to have positive real part.

Proof. First define R(x) = F (x)G(x) and let

r(u1, · · · , un) = f(u1, · · · , un)g(u1, · · · , un).

Then by Lemma 3.2, R ∈ B(1;m) and δR(·|w) ∈ B(1;m−1). Furthermore, all of the
kth-order partial derivatives of r are continuous and in L1(Rn) for k = 0, 1, · · · ,m.
Hence, R(ρx) is µ-integrable on Ca,b[0, T ] for each ρ > 0. In addition, for s-a.e.
x ∈ Ca,b[0, T ],

δR(x|w) = F (x)δG(x|w) + δF (x|w)G(x)

= f(〈α1, x〉, · · · , 〈αn, x〉)
n∑
j=1

〈αj , w〉gj(〈α1, x〉, · · · , 〈αn, x〉)

+ g(〈α1, x〉, · · · , 〈αn, x〉)
n∑
j=1

〈αj , w〉fj(〈α1, x〉, · · · , 〈αn, x〉) .

(3.8)

But for all u ∈ L2
a,b[0, T ],

|〈u,w〉| =
∣∣∣∣ ∫ T

0

u(s)dw(s)
∣∣∣∣

=
∣∣∣∣ ∫ T

0

u(s)z(s)db(s)
∣∣∣∣

≤
∫ T

0

|u(s)z(s)|d[b(s) + |a|(s)]

= (|u|, |z|)a,b
≤ ‖u‖a,b‖z‖a,b.

(3.9)

In particular, since {α1, · · · , αn} are orthonormal, |〈αj , w〉| ≤ ‖z‖a,b for each j ∈
{1, 2, · · · , n}.
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Next, using (3.8) and (3.9), we see that for ρ > 0 and h > 0,∣∣δR(ρx+ ρhw|ρw)
∣∣

≤ ρ‖z‖a,b
∣∣f(〈α1, ρx+ ρhw〉, · · · , 〈αn, ρx+ ρhw〉)

∣∣
·
n∑
j=1

∣∣gj(〈α1, ρx+ ρhw〉, · · · , 〈αn, ρx+ ρhw〉)|

+ ρ‖z‖a,b
∣∣g(〈α1, ρx+ ρhw〉, · · · , 〈αn, ρx+ ρhw〉)

∣∣
·
n∑
j=1

∣∣fj(〈α1, ρx+ ρhw〉, · · · , 〈αn, ρx+ ρhw〉)
∣∣.

(3.10)

But this implies that δR(ρx + ρhw|ρw), as a function of x, is µ-integrable for all
ρ > 0 and h > 0. This can be seen by integrating the right-hand side of (3.10) term
by term. For example, using (2.20), we see that for any l ∈ {1, · · · , n},

E[|f(〈α1, ρx+ ρhw〉, · · · , 〈αn, ρx+ ρhw〉)|
· |gl(〈α1, ρx+ ρhw〉, · · · , 〈αn, ρx+ ρhw〉)|]

=
( n∏
j=1

2πρ2Bj

)−1/2 ∫
Rn
|f(u1, · · · , un)gl(u1, · · · , un)|

· exp
{
−

n∑
j=1

[uj − ρ(Aj + h〈αj , w〉)]2
2ρ2Bj

}
du1 · · ·dun

≤
( n∏
j=1

2πρ2Bj

)−1/2

‖f‖p‖gl‖p′ <∞.

(3.11)

Thus, using (3.10) and (3.11), we obtain that for ρ > 0 and h > 0,

E[|δR(ρx+ ρhw|ρw)|]

≤ ρ‖z‖a,b
( n∏
j=1

2πρ2Bj

)−1/2[
‖f‖p

n∑
l=1

‖gl‖p′ + ‖g‖p′
n∑
l=1

‖fl‖p
]
<∞.

Next, using (3.8), (2.19), (3.3), and (3.4), we see that for all λ > 0,

E[F (λ−
1
2x)δG(λ−

1
2x|w) + δF (λ−

1
2x|w)G(x)]

=
( n∏
j=1

λ

2πBj

)1/2 ∫
Rn

[
f(~u)

n∑
l=1

〈αl, w〉gl(~u)

+ g(~u)
n∑
l=1

〈αl, w〉fl(~u)
]
H(λ; ~u)d~u.

(3.12)

But, as noted in Remark 3.1 above, for each λ ∈ C+, H(λ; ~u) is an element of
C0(Rn), and so the integrand on the right-hand side of (3.12) is in L1(Rn). Hence,

Eanλ
x [δR(x|w)] = Eanλ

x [F (x)δG(x|w) + δF (x|w)G(x)]

exists for all λ ∈ C+. A similar argument shows that the analytic function space
integral Eanλ

x [F (x)G(x)] also exists for all λ ∈ C+. Equation (3.7) now follows
from Theorem 2.1 above; in particular, from equation (2.17) with F (x) replaced
with R(x). �
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The following two corollaries are special cases of Theorem 3.3.

Corollary 3.4. Let z, w, and m be as in Theorem 3.3. Let F ∈ B(2;m) be given
by (1.1). Then for all λ ∈ C+,

Eanλ
x [F (x)δF (x|w)]

=
λ

2
Eanλ
x [(F (x))2〈z, x〉]−

√
λ

2
(z, a′)Eanλ

x [(F (x))2].
(3.13)

Proof. In Theorem 3.3, choose p = 2 and G(x) = F (x). �

Corollary 3.5. Let z1 and z2 be elements of L2
a,b[0, T ], and for t ∈ [0, T ], let

wj(t) =
∫ t

0 zj(s)db(s) for j ∈ {1, 2}. Let F ∈ B(2;m) be given by equation (1.1).
Then for all λ ∈ C+,

Eanλ
x [F (x)δ2F (·|w1)(x|w2) + δF (x|w2)δF (x|w1)]

= λEanλ
x [F (x)δF (x|w1)〈z2, x〉]−

√
λ(z2, a

′)Eanλ
x [F (x)δF (x|w1)].

(3.14)

Proof. Let p = 2 and G(x) = δF (x|w1) in Theorem 3.3. �

Lemma 3.6. Let p,m and F be as in Lemma 3.1 above. Then for all λ ∈ C+,

(3.15) Tλ(F )(y) = Eanλ
x [F (y + x)] = φ0(λ; 〈α1, y〉, · · · , 〈αn, y〉)

for s-a.e. y ∈ Ca,b[0, T ] where

(3.16) φ0(λ; ξ1, · · · , ξn) =
( n∏
j=1

λ

2πBj

)1/2 ∫
Rn
f(~u+ ~ξ)H(λ; ~u)d~u

with Bj and H given by equations (2.19) and (3.4) respectively.

Proof. For λ > 0, equation (3.15) follows easily from equation (2.20). But for
each λ ∈ C+, as shown in Remark 3.1 above, H(λ;u1, · · · , un) is an element of
Lp(Rn)∩C0(Rn) for all p ∈ [1,∞]. Hence, for each λ ∈ C+ and s-a.e. y ∈ Ca,b[0, T ],

f(u1 + 〈α1, y〉, · · · , un + 〈αn, y〉)H(λ;u1, · · · , un)

belongs to L1(Rn) and so equation (3.15) holds throughout C+. �

Our next lemma follows from standard results for convolution products. The
key is that for each λ ∈ C+, H(λ; ~u) is an element of Lp(Rn) ∩ C0(Rn) for all
1 ≤ p ≤ +∞.

Lemma 3.7. Let φ0 be given by equation (3.16) above.
(a) If f ∈ L1(Rn), then φ0(λ; ·) ∈ C0(Rn) for all λ ∈ C+.
(b) If f ∈ Lp(Rn) for some p ∈ (1,∞), then φ0(λ; ·) ∈ Lp′(Rn) for all λ ∈ C+

where p′ = p
p−1 .

(c) If f ∈ C0(Rn), then φ0(λ; ·) ∈ L1(Rn) for all λ ∈ C+.

Our next theorem follows immediately from Lemma 3.7.

Theorem 3.8. Let 1 ≤ p ≤ ∞ be given. If F ∈ B(p;m), then Tλ(F ) ∈ B(p′;m).
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Theorem 3.9. Let 1 ≤ p ≤ ∞ and w ∈ A be given. Let F ∈ B(p;m) be given by
equation (1.1). Then for all λ ∈ C+ and s-a.e. y ∈ Ca,b[0, T ],

δTλ(F )(y|w)

=
( n∏
j=1

λ

2πBj

)1/2 ∫
Rn

n∑
l=1

〈αl, w〉fl(u1 + 〈α1, y〉, · · · , un + 〈αn, y〉)

·H(λ;u1, · · · , un)du1 · · · dun
= Tλ(δF (·|w))(y),

(3.17)

which, as a function of y, is an element of B(p′;m− 1).

Proof. The fact that δTλ(F )(y|w) is an element of B(p′;m − 1) follows directly
from Theorem 3.8 and Lemma 3.1. To establish equation (3.17) for λ > 0, simply
calculate δTλ(F )(y|w) using equation (3.15), and then calculate Tλ(δF (·|w))(y)
using equations (3.1) and (2.9). Finally, equation (3.17) holds throughout C+ by
analytic continuation in λ. �

In our next theorem we obtain an integration by parts formula involving Tλ(F )
and Tλ(G).

Theorem 3.10. Let p,m, z, w, F and G be as in Theorem 3.3. Then for all λ ∈ C+,

(3.18)

Eanλ
x [Tλ(F )(x)δTλ(G)(x|w) + δTλ(F )(x|w)Tλ(G)(x)]

= λEanλ
λ [Tλ(F )(x)Tλ(G)(x)〈z, x〉]−

√
λ(z, a′)Eanλ

x [Tλ(F )(x)Tλ(G)(x)].

Proof. For x ∈ Ca,b[0, T ], let R(x) = Tλ(F )(x)Tλ(G)(x). Then by Theorem 3.8,
Tλ(F ) ∈ B(p′;m) and Tλ(G) ∈ B(p;m). Hence, by Lemma 3.2, R belongs to
B(1;m), and so by Lemma 3.1, δR(x|w), as a function of x, belongs to B(1;m− 1).
Thus, equation (3.18) follows from Theorem 3.3 with F and G replaced by Tλ(F )
and Tλ(G) respectively. �

Theorem 3.11. Let m, z and w be as in Lemma 3.2. Let p ∈ [1, 2] and let F
and G in B(p;m) be given by equations (1.1) and (3.2) respectively. Then for all
λ ∈ C+,

Eanλ
x [F (x)δTλ(G)(x|w) + δF (x|w)Tλ(G)(x)]

= λEanλ
x [F (x)Tλ(G)(x)〈z, x〉]−

√
λ(z, a′)Eanλ

x [F (x)Tλ(G)(x)].
(3.19)

Proof. Let R(x) = F (x)Tλ(G)(x) for x ∈ Ca,b[0, T ]. By Theorem 3.8, Tλ(G) is an
element of B(p′;m) and hence by Lemma 3.2, R belongs to B(1;m). Hence, by
Lemma 3.1, δR(x|w), as a function of x, belongs to B(1;m − 1). Thus, equation
(3.19) follows from Theorem 3.3 with G replaced by Tλ(G). �

Corollary 3.12. Let m, z, w, p and F be as in Theorem 3.11. Then for all λ ∈ C+,

Eanλ
x [F (x)δTλ(F )(x|w) + δF (x|w)Tλ(F )(x)]

= λEanλ
x [F (x)Tλ(F )(x)〈z, x〉]−

√
λ(z, a′)Eanλ

x [F (x)Tλ(F )(x)].
(3.20)

Proof. Simply choose G = F in Theorem 3.11. �
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Corollary 3.13. Let m, z and w be as in Lemma 3.2. Let F ∈ B(2;m) be given
by equation (1.1). Then for all λ ∈ C+,

Eanλ
x [Tλ(F )(x)δTλ(F )(x|w)]

=
λ

2
Eanλ
x [(Tλ(F )(x))2〈z, x〉]−

√
λ(z, a′)

2
Eanλ
x [(Tλ(F )(x))2].

(3.21)

Proof. Simply choose p = 2 and G = F in Theorem 3.10. �

4. Parts formulas involving Tq(1;F ) and Tq(1;G)

In this section we obtain various integration by parts formulas involving the
analytic GFFTs Tq(1;F ) and Tq(1;G). In view of equation (3.6) above, we clearly
need to impose additional restrictions on the functionals F and G than were needed
throughout Section 3.

Fix q ∈ R−{0}. Then as λ→ −iq through values in C+, c = Re(
√
λ)→

√
|q|/2

and |d| →
√
|q|/2 where d = Im(

√
λ).

Next using equations (3.3) through (3.6) we see that for all λ ∈ C̃+ with c =
Re(
√
λ) < ((1 + |q|)/2)

1
2 ,∣∣H(λ; ~u)
∣∣ = exp

{
−

n∑
j=1

[(c2 − d2)u2
j − 2cAjuj +A2

j ]
2Bj

}

≤ exp
{ n∑
j=1

cAjuj
Bj

}

≤ exp
{(

1 + |q|
2

) 1
2 n∑
j=1

|Ajuj|
Bj

}
.

(4.1)

In addition, ∫
Rn

∣∣f(~ξ + ~u)H(λ; ~u)
∣∣d~u

=
∫
Rn

∣∣f(~u)H(λ; ~u − ~ξ)
∣∣d~u

≤ exp
{
− Re(

√
λ)

n∑
j=1

Ajξj
Bj

}

·
∫
Rn

∣∣f(~u)
∣∣ exp

{(
1 + |q|

2

) 1
2 n∑
j=1

|Ajuj|
Bj

}
d~u.

(4.2)

For f ∈ L1(Rn) let

(4.3) F(f)(~ξ) = (2π)−
n
2

∫
Rn
f(~u) exp

{
i

n∑
j=1

ujξj
}
d~u

denote the Fourier transform of f .

Theorem 4.1. Let q ∈ R − {0} be given. Let F ∈ B(1;m) be given by equation
(1.1) with

(4.4)
∫
Rn

∣∣fj1,··· ,jk(~u)
∣∣ exp

{(
1 + |q|

2

) 1
2 n∑
j=1

|Ajuj |
Bj

}
d~u <∞
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for all k ∈ {0, 1, · · · ,m} and each ji ∈ {1, · · · , n}. Furthermore, assume that

(4.5) exp
{
−

n∑
j=1

√
2|q|Ajξj
2Bj

}
F(f(·)H(−iq; ·))

(
− qξ1
B1

, · · · ,−qξn
Bn

)
belongs to C0(Rn). Then

(4.6) φ0(−iq; ~ξ) ≡
( n∏
j=1

−iq
2πBj

) 1
2
∫
Rn
f(~ξ + ~u)H(−iq; ~u)d~u

is an element of C0(Rn). Furthermore, the L1 analytic GFFT, Tq(1;F ) exists as
an element of B(∞;m) and for s-a.e. y ∈ Ca,b[0, T ] is given by the formula

(4.7) Tq(1;F )(y) = φ0(−iq; 〈α1, y〉, · · · , 〈αn, y〉).

Proof. By (4.1) and (4.4) we know that f(·)H(−iq; ·) ∈ L1(Rn), and so its Fourier
transform, F(f(·)H(−iq; ·))(~ξ) exists and belongs to C0(Rn). Furthermore, by
equations (4.6) and (3.4) and the fact that

√
−iq = c+ di =

√
|q|/2 + di, we obtain

φ0(−iq; ~ξ)

=
( n∏
j=1

− iq

2πBj

) 1
2
∫
Rn
f(~ξ + ~u)H(−iq; ~u)d~u

=
( n∏
j=1

− iq

2πBj

) 1
2
∫
Rn
f(~ξ + ~u) exp

{
−

n∑
j=1

[
√
−iquj −Aj ]2

2Bj

}
d~u

=
( n∏
j=1

− iq

2πBj

) 1
2
∫
Rn
f(~u) exp

{
−

n∑
j=1

[
√
−iq(uj − ξj)−Aj ]2

2Bj

}
d~u

=
( n∏
j=1

− iq

Bj

) 1
2

exp
{
−

n∑
j=1

[2
√
−iqAjξj − iqξ2

j ]
2Bj

}

· (2π)−n/2
∫
Rn
f(~u)H(−iq; ~u) exp

{
− iq

n∑
j=1

ujξj
Bj

}
d~u

=
( n∏
j=1

− iq

Bj

) 1
2

exp
{
−

n∑
j=1

[2
√
−iqAjξj − iqξ2

j ]
2Bj

}

· F(f(·)H(−iq; ·))
(
− qξ1
B1

, · · · ,−qξn
Bn

)
=
( n∏
j=1

− iq

Bj

) 1
2

exp
{
i

n∑
j=1

[qξ2
j − 2dAjξj ]

2Bj

}

· exp
{
−

n∑
j=1

√
2|q|Ajξj
2Bj

}
F(f(·)H(−iq; ·))

(
− qξ1
B1

, · · · ,−qξn
Bn

)
.

(4.8)

By assumption (4.5), it follows that φ0(−iq; ~ξ) is an element of C0(Rn).
Finally, by equations (2.11), (3.15), (3.16), (4.8) and the dominated convergence

theorem (the use of which is justified by (4.2)), it follows that for s-a.e. y ∈
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Ca,b[0, T ],

Tq(1;F )(y)

= lim
λ→−iq

Tλ(F )(y)

= lim
λ−→−iq

φ0(λ; 〈α1, y〉, · · · , 〈αn, y〉)

= lim
λ→−iq

( n∏
j=1

λ

2πBj

)1/2 ∫
Rn
f(u1 + 〈α1, y〉, · · · , un + 〈αn, y〉)H(λ; ~u)d~u

=
( n∏
j=1

− iq

2πBj

)1/2 ∫
Rn
f(u1 + 〈α1, y〉, · · · , un + 〈αn, y〉)H(−iq; ~u)d~u

= φ0(−iq; 〈α1, y〉, · · · , 〈αn, y〉)

(4.9)

as desired. �

Theorem 4.2. Let q ∈ R − {0} and F ∈ B(1;m) be as in Theorem 4.1. Further-
more, assume that for each l ∈ {1, 2, · · · , n},

(4.10) exp
{
−

n∑
j=1

√
2|q|Ajξj
2Bj

}
F(fl(·)H(−iq; ·))

(
− qξ1
B1

, · · · ,−qξn
Bn

)
belongs to C0(Rn). Then for each l ∈ {1, 2, · · · , n},

(4.11) φl(−iq; ~ξ) ≡
( n∏
j=1

−iq
2πBj

) 1
2
∫
Rn
fl(~ξ + ~u)H(−iq; ~u)d~u

is an element of C0(Rn). In addition, for each w ∈ A and s-a.e. y ∈ Ca,b[0, T ],

δTq(1;F )(y|w) =
n∑
l=1

〈αl, w〉φl(−iq; 〈α1, y〉, · · · , 〈αn, y〉)

= Tq(1; δF (·|w))(y),

(4.12)

which, as a function of y, is an element of B(∞;m− 1).

Proof. The proof that each φl(−iq; ·) belongs to C0(Rn) is the same as the proof in
Theorem 4.1 above showing that φ0(−iq; ·) ∈ C0(Rn). Equation (4.12) then follows
immediately using the definition of the first variation and equation (4.7). �

Our next theorem gives a parts formula involving F and Tq(1;G).

Theorem 4.3. Let q ∈ R − {0} be given and let F ∈ B(1;m) be as in Theorem
4.1. Let G ∈ B(1;m) be given by equation (3.2) with

(4.13)
∫
Rn

∣∣gj1,··· ,jk(~u)
∣∣ exp

{(
1 + |q|

2

) 1
2 n∑
j=1

|Ajuj|
Bj

}
d~u <∞

for all k ∈ {0, 1, · · · ,m} and each ji ∈ {1, · · · , n}. Furthermore, assume that

(4.14) exp
{
−

n∑
j=1

√
2|q|Ajξj
2Bj

}
F(gl(·)H(−iq; ·))

(
− qξ1
B1

, · · · ,−qξn
Bn

)
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belongs to C0(Rn) for all l ∈ {0, 1, · · · , n}. Let z ∈ L2
a,b[0, T ] be given and for

t ∈ [0, T ], let w(t) =
∫ t

0
z(s)db(s). Then

Eanfq
x [F (x)δTq(1;G)(x|w) + δF (x|w)Tq(1;G)(x)]

= −iqEanfq
x [F (x)Tq(1;G)(x)〈z, x〉]

− (−iq) 1
2 (z, a′)Eanfq

x [F (x)Tq(1;G)(x)].

(4.15)

Proof. Let R(x) = F (x)Tq(1;G)(x). By Theorem 4.1, Tq(1;G)(x) is an element of
B(∞;m) and so R(x) is an element of B(1;m). Also, by Theorem 4.1, Theorem 4.2
and Lemma 3.2,

δR(x|w) = F (x)δTq(1;G)(x|w) + δF (x|w)Tq(1;G)(x),

as a function of x, is an element of B(1;m− 1). In addition, we know that for each
l ∈ {0, 1, · · · , n},

ψl(−iq;~v) ≡
( n∏
j=1

−iq
2πBj

)1/2 ∫
Rn
gl(~u+ ~v)H(−iq; ~u)d~u

is an element of C0(Rn) with

Tq(1;G)(y) = ψ0(−iq; 〈α1, y〉, · · · , 〈αn, y〉)
and

δTq(1;G)(y|w) =
n∑
l=1

〈αl, w〉ψl(−iq; 〈α1, y〉, · · · , 〈αn, y〉)

for s-a.e. y ∈ Ca,b[0, T ]. Hence, both of the following analytic Feynman integrals
exist:

Eanfq
x [R(x)] = Eanfq

x [F (x)Tq(1;G)(x)]

=
( n∏
j=1

−iq
2πBj

)1/2 ∫
Rn
f(~u)ψ0(−iq; ~u)H(−iq; ~u)d~u

(4.16)

and

Eanfq
x [δR(x|w)] = Eanfq

x [F (x)δTq(1;G)(x|w) + δF (x|w)Tq(1;G)(x)]

=
( n∏
j=1

−iq
2πBj

)1/2 ∫
Rn

[
f(~u)

n∑
l=1

〈αl, w〉ψl(−iq; ~u)

+ ψ0(−iq; ~u)
n∑
l=1

〈αl, w〉fl(~u)
]
H(−iq; ~u)d~u.

(4.17)

Also, proceeding as in the proof of Theorem 3.3 above, it is easy to show that for
ρ > 0 and h > 0,

E[|δR(ρx+ ρhw|ρw)|]

≤ ρ‖z‖a,b
( n∏
j=1

2πρ2Bj

)−1/2[
‖f(·)‖1

n∑
l=1

‖ψl(−iq; ·)‖∞

+ ‖ψ0(−iq; ·)‖∞
n∑
l=1

‖fl(·)‖1
]
<∞.

(4.18)
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Hence, by Theorem 2.1 above, the analytic Feynman integral

Eanfq
x [R(x)〈z, x〉] = Eanfq

x [F (x)Tq(1;G)(x)〈z, x〉]
exists and equality (4.14) holds. �

Choosing G = F in Theorem 4.3 we get the following integration by parts for-
mula.

Corollary 4.4. Let q ∈ R − {0} be given and let F ∈ B(1;m) be as in Theorem
4.2. Let z and w be as in Theorem 4.3. Then

Eanfq
x [F (x)δTq(1;F )(x|w) + δF (x|w)Tq(1;F )(x)]

= −iqEanfq
x [F (x)Tq(1;F )(x)〈z, x〉]

− (−iq) 1
2 (z, a′)Eanfq

x [F (x)Tq(1;F )(x)].

(4.19)

Next we obtain a parts formula involving Tq(1;F ) and Tq(1;G).

Theorem 4.5. Let q ∈ R−{0}. Let F ∈ B(1;m) be as in Theorem 4.2 and let G ∈
B(1;m) be as in Theorem 4.3. Furthermore, assume that for each l ∈ {0, 1, · · · , n},

(4.20)
∫
Rn

∣∣ψl(−iq; ~u)H(−iq; ~u)
∣∣d~u <∞.

Then for w(t) =
∫ t

0 z(s)db(s) with z ∈ L2
a,b[0, T ],

Eanfq
x

[
Tq(1;F )(x)δTq(1;G)(x|w) + δTq(1;F )(x|w)Tq(1;G)(x)

]
= −iqEanfq

x

[
Tq(1;F )(x)Tq(1;G)(x)〈z, x〉

]
− (−iq) 1

2 (z, a′)Eanfq
x

[
Tq(1;F )(x)Tq(1;G)(x)

]
.

(4.21)

Proof. Let R(x) = Tq(1;F )(x)Tq(1;G)(x). Then R ∈ B(∞;m) and δR(x|w), as a
function of x, is an element of B(∞;m − 1). Hence, by (4.6), (4.11) and (4.20),
both of the following analytic Feynman integrals exist:

(4.22) Eanfq
x

[
R(x)

]
=
( n∏
j=1

−iq
2πBj

) 1
2
∫
Rn
φ0(−iq; ~u)ψ0(−iq; ~u)H(−iq; ~u)d~u

and
Eanfq
x

[
δR(x|w)

]
=
( n∏
j=1

−iq
2πBj

) 1
2
∫
Rn

[
φ0(−iq; ~u)

n∑
l=1

〈αl, w〉ψl(−iq; ~u)

+ ψ0(−iq; ~u)
n∑
l=1

〈αl, w〉φl(−iq; ~u)
]
H(−iq; ~u)d~u.

(4.23)

In addition, for ρ > 0 and h > 0,

E
[∣∣δR(ρx+ ρhw|ρw)

∣∣]
≤ ρ‖z‖a,b

[
‖φ0(−iq; ·)‖∞

n∑
l=1

‖ψl(−iq; ·)‖∞

+ ‖ψ0(−iq; ·)‖∞
n∑
l=1

‖φl(−iq; ·)‖∞
]
<∞.

(4.24)
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Hence, by Theorem 2.1, the analytic Feynman integral Eanfq
x [R(x)〈z, x〉] exists and

equality (4.21) holds. �
We finish this section with some examples which shed light upon the necessity

of conditions such as (4.4) and (4.5), and which also illustrate that the conclusions
of Lemma 3.7 are not necessarily valid for λ ∈ C̃+ with Re(λ) = 0.

In our first example we define a functional F of the form (1.1) with n = 1, such
that F is an element of B(p;m) for all p ∈ [1,+∞], f is an element of Lp(R) for
all p ∈ [1,+∞], and yet φ0(i; ·) given by (4.6) is not an element of C0(R). In fact,
|φ0(i; ξ1)| = +∞ for all ξ1 ∈ R.

Example 4.6. Let q = −1, let n = 1, let m be a nonnegative integer, and let α1

be an element of L2
a,b[0, T ] with ‖α1‖a,b = 1. Without loss of generality, we will

assume that A1 (see equation (2.18)) is positive.
Let f : R→ C be defined by the formula

(4.25) f(u1) ≡ um+1
1 χ[0,+∞)(u1) exp

{
iu2

1

2B1
− i
√

2A1u1

2B1
+

A2
1

2B1
−
√

2A1u1

4B1

}
.

We note that

|f(u1)| = um+1
1 χ[0,+∞)(u1) exp

{
A2

1

2B1
−
√

2A1u1

4B1

}
,

and hence f ∈ Lp(R) for all p ∈ [1,+∞]. In fact, f is also an element of C0(R).
We then define F : Ca,b[0, T ]→ C by the formula

(4.27) F (x) ≡ f(〈α1, x〉).
It is easy to see that F ∈ B(p;m) for all p ∈ [1,+∞].

Next, using equation (3.4) with n = 1, λ = i, and
√
i = 1+i√

2
, we observe that

(4.28) H(i;u1) = exp
{√

2A1u1 + i
√

2A1u1 −A2
1 − iu2

1

2B1

}
,

and hence

(4.29) f(u1)H(i;u1) = um+1
1 χ[0,+∞)(u1) exp

{√
2A1u1

4B1

}
,

which is not an element of Lp(R) for any p ∈ [1,+∞].
Then, using equation (4.6) with n = 1 and q = −1, equation (4.25) and equation

(4.28), we see that

φ0(i; ξ1) =
(

i

2πB1

) 1
2
∫
R
f(u1 + ξ1)H(i;u1)du1

=
(

i

2πB1

) 1
2

exp
{
iξ2

1

2B1
− i
√

2A1ξ1
2B1

−
√

2A1ξ1
4B1

}
·
∫
R
(u1 + ξ1)m+1χ[0,+∞)(u1 + ξ1) exp

{
iu1ξ1
B1

+
√

2A1u1

4B1

}
du1

=
(

i

2πB1

) 1
2

exp
{
iξ2

1

2B1
− i
√

2A1ξ1
2B1

−
√

2A1ξ1
4B1

}
·
∫ +∞

−ξ1
(u1 + ξ1)m+1 exp

{
iu1ξ1
B1

+
√

2A1u1

4B1

}
du1.

(4.30)
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Thus,

|φ0(i; ξ1)| = (2πB1)−
1
2 exp

{
−
√

2A1ξ1
4B1

}
·
∣∣∣∣ ∫ +∞

−ξ1
(u1 + ξ1)m+1 exp

{
iu1ξ1
B1

+
√

2A1u1

4B1

}
du1

∣∣∣∣.(4.31)

Hence, choosing ξ1 = 0, and using the fact that A1 is positive, we see that

|φ0(i; 0)| = (2πB1)−
1
2

∣∣∣∣ ∫ +∞

0

um+1 exp
{√

2A1u1

4B1

}
du1

∣∣∣∣
= (2πB1)−

1
2

∫ +∞

0

um+1 exp
{√

2A1u1

4B1

}
du1 = +∞,

which implies that φ0(i; ·) is not an element of C0(R). In fact, for each fixed ξ1 ∈ R,
we observe that

|φ0(i; ξ1)| = (2πB1)−
1
2 exp

{
−
√

2A1ξ1
4B1

}
·
∣∣∣∣ ∫ +∞

−ξ1
(u1 + ξ1)m+1 exp

{
iu1ξ1
B1

+
√

2A1u1

4B1

}
du1

∣∣∣∣ = +∞,
(4.32)

and so φ0(i; ·) is not an element of Lp(R) for any p ∈ [1,+∞] even though f(·) was
an element of Lp(R) for all p ∈ [1,+∞] and F was an element of B(p;m) for all
p ∈ [1,+∞]. Hence, the L1 analytic GFFT, T−1(1;F ) does not exist.

We also note that f does not satisfy condition (4.4) above since by equation
(4.26) (recall that q = −1 and so (1+|q|

2 )1/2 = 1),∫
R

∣∣f(u1)
∣∣ exp

{
|A1u1|
B1

}
du1

=
∫ ∞

0

um+1
1 exp

{
A2

1

2B1
−
√

2A1u1

4B1
+
A1u1

B1

}
du1 = +∞.

In our next example we exhibit a functional F of the form (1.1) that satisfies
conditions (4.4) and (4.5) above. Furthermore, we are able to evaluate the integral
in equation (4.6) and thus obtain a formula for φ0(i; ~ξ) which does not involve any
integrals.

Example 4.7. Let q = −1, let m be a nonnegative integer and let n be a posi-
tive integer. Let {α1, · · · , αn} be an orthonormal set of functions from (L2

a,b[0, T ],
‖ · ‖a,b), and for each j ∈ {1, · · · , n} let Aj and Bj be given by (2.18) and (2.19)
respectively. We define f : Rn → C by the formula

(4.33) f(~u) ≡ exp
{ n∑
j=1

[iu2
j − i

√
2Ajuj +A2

j − u2
j −
√

2Ajuj]
2Bj

}
.

We note that

(4.34) |f(~u)| = exp
{ n∑
j=1

[A2
j − u2

j −
√

2Ajuj ]
2Bj

}
,

and hence f ∈ Lp(Rn) for all p ∈ [1,+∞]. Also, f ∈ C0(Rn).
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Let F : Ca,b[0, T ]→ C be given by

(4.35) F (x) ≡ f(〈α1, x〉, · · · , 〈αn, x〉).

It is easy to show that F ∈ B(p;m) for all p ∈ [1,+∞].
Next, using equation (4.33), together with equation (3.4) with λ = i and

√
i =

1+i√
2

, it follows that

(4.36) f(~u)H(i; ~u) = exp
{
−

n∑
j=1

u2
j

2Bj

}
.

Now clearly f(·)H(i; ·) is an element of Lp(Rn)∩C0(Rn) for all p ∈ [1,+∞]. Next,
using equations (4.6), (3.4) and (4.33) we obtain

φ0(i; ~ξ) =
( n∏
j=1

i

2πBj

) 1
2
∫
Rn
f(~u+ ~ξ)H(i; ~u)d~u

=
( n∏
j=1

i

2πBj

) 1
2

exp
{ n∑
j=1

[iξ2
j − i

√
2Ajξj −

√
2Ajξj ]

2Bj

}

·
∫
Rn

exp
{
i

n∑
j=1

ujξj
Bj
−

n∑
j=1

(uj + ξj)2

2Bj

}
d~u

=
( n∏
j=1

i

2πBj

) 1
2

exp
{
−

n∑
j=1

[iξ2
j + i

√
2Ajξj +

√
2Ajξj ]

2Bj

}

·
∫
Rn

exp
{
i

n∑
j=1

ujξj
Bj
−

n∑
j=1

u2
j

2Bj

}
d~u

= (i)
n
2 exp

{
−

n∑
j=1

[iξ2
j + i

√
2Ajξj +

√
2Ajξj + ξ2

j ]
2Bj

}
,

(4.37)

because ∫
Rn

exp
{
i
n∑
j=1

ujξj
Bj
−

n∑
j=1

u2
j

2Bj

}
d~u

=
( n∏
j=1

2πBj

) 1
2

exp
{
−

n∑
j=1

ξ2
j

2Bj

}

= (2π)
n
2 F(f(·)H(i; ·))

(
ξ1
B1

, · · · , ξn
Bn

)
.

(4.38)

Hence,

(4.39)
∣∣φ0(i; ~ξ)

∣∣ = exp
{
−

n∑
j=1

[
√

2Ajξj + ξ2
j ]

2Bj

}
,

and so φ0(i; ·) is an element of C0(Rn) ∩ Lp(Rn) for all p ∈ [1,+∞].

We also note that because of the factor exp{− u2
j

2Bj
} in the definition of f(~u)

given by equation (4.33), condition (4.4) certainly holds. In addition, condition
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(4.5) holds because (recall q = −1)

exp
{
−

n∑
j=1

√
2Ajξj
2Bj

}
F(f(·)H(i; ·))

(
ξ1
B1

, · · · , ξn
Bn

)

= exp
{
−

n∑
j=1

√
2Ajξj
2Bj

}( n∏
j=1

Bj

) 1
2

exp
{
−

n∑
j=1

ξ2
j

2Bj

}

=
( n∏
j=1

Bj

) 1
2

exp
{
−

n∑
j=1

[
√

2Ajξj + ξ2
j ]

2Bj

}

=
( n∏
j=1

Bj

) 1
2

|φ0(i; ~ξ)|

(4.40)

is an element of C0(Rn) as was shown above. Hence, by Theorem 4.1, the L1

analytic GFFT, T−1(1;F ) exists as an element of B(∞;m) and for s-a.e. y ∈
Ca,b[0, T ] is given by the formula

T−1(1;F )(y)

= φ0(i; 〈α1, y〉, · · · , 〈αn, y〉)

= (i)
n
2 exp

{
−

n∑
j=1

[(1 + i)〈αj , y〉2 + (1 + i)
√

2Aj〈αj , y〉]
2Bj

}
.

(4.41)

5. Parts formulas involving Tq(2;F ) and Tq(2;G)

Note that in our first theorem below we replace conditions (4.4) and (4.5) with
condition (5.1). This condition is used to obtain a dominating function in order to
apply the dominated convergence theorem.

Theorem 5.1. Let q ∈ R − {0} be given. Let F ∈ B(2;m) be given by equation
(1.1) with

(5.1)
∫
Rn

[ ∫
Rn

∣∣fj1,··· ,jk(~ξ + ~u)
∣∣ exp

{(
1 + |q|

2

) 1
2 n∑
j=1

|Ajuj |
Bj

}
d~u

]2

d~ξ <∞

for all k ∈ {0, 1, · · · ,m} and each ji ∈ {1, · · · , n}. Then

(5.2) φ0(−iq; ~ξ) ≡
( n∏
j=1

−iq
2πBj

) 1
2
∫
Rn
f(~ξ + ~u)H(−iq; ~u)d~u

is an element of L2(Rn). Furthermore, the L2 analytic GFFT, Tq(2;F ) exists as
an element of B(2;m) and for s-a.e. y ∈ Ca,b[0, T ] is given by the formula

(5.3) Tq(2;F )(y) = φ0(−iq; 〈α1, y〉, · · · , 〈αn, y〉).

Proof. Using (4.1) we first note that∣∣φ0(−iq; ~ξ)
∣∣ ≤ ( n∏

j=1

|q|
2πBj

) 1
2
∫
Rn

∣∣f(~ξ + ~u)H(−iq; ~u)
∣∣d~u

≤
( n∏
j=1

|q|
2πBj

) 1
2
∫
Rn

∣∣f(~ξ + ~u)
∣∣ exp

{(
1 + |q|

2

) 1
2 n∑
j=1

|Ajuj |
Bj

}
d~u.
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Hence, by (5.1) with k = 0,

‖φ0(−iq; ·)‖22 =
∫
Rn

∣∣φ0(−iq; ~ξ)
∣∣2d~ξ

≤
( n∏
j=1

|q|
2πBj

)∫
Rn

[ ∫
Rn

∣∣f(~ξ + ~u)
∣∣ exp

{(
1 + |q|

2

) 1
2 n∑
j=1

|Ajuj |
Bj

}
d~u

]2

d~ξ <∞

and so φ0(−iq; ~ξ) is an element of L2(Rn).
To show that Tq(2;F ) exists and is given by equation (5.3) it suffices to show

that for each ρ > 0,

lim
λ→−iq

∫
Ca,b[0,T ]

∣∣Tλ(ρy)− φ0(−iq; 〈α1, ρy〉, · · · , 〈αn, ρy〉)
∣∣2dµ(y) = 0.

But∫
Ca,b[0,T ]

∣∣Tλ(ρy)− φ0(−iq; 〈α1, ρy〉, · · · , 〈αn, ρy〉)
∣∣2dµ(y)

=
∫
Ca,b[0,T ]

∣∣φ0(λ; 〈α1, ρy〉, · · · , 〈αn, ρy〉)

− φ0(−iq; 〈α1, ρy〉, · · · , 〈αn, ρy〉)
∣∣2dµ(y)

=
( n∏
j=1

2πBjρ2
)− 1

2

∫
Rn

∣∣φ0(λ; ~u)− φ0(−iq; ~u)
∣∣2 exp

{
−

n∑
j=1

(uj − ρAj)2

2ρ2Bj

}
d~u

≤
( n∏
j=1

2πBjρ2
)− 1

2 ‖φ0(λ; ·)− φ0(−iq; ·)‖22.

Now clearly φ0(λ; ~ξ) → φ0(−iq; ~ξ) a.e. on Rn as λ → −iq through values in C+.
Thus, to show that

‖φ0(λ; ·) − φ0(−iq; ·)‖2 → 0,

it suffices [11, p. 126] to show that

‖φ0(λ; ·)‖2 → ‖φ0(−iq; ·)‖2

as λ→ −iq through values in C+. But for all λ ∈ C+ with Re(
√
λ) < ((1+ |q|)/2)

1
2 ,

∫
Rn

∣∣∣∣ ∫
Rn
f(~ξ + ~u)H(λ; ~u)d~u

∣∣∣∣2d~ξ
≤
∫
Rn

[ ∫
Rn

∣∣f(~ξ + ~u)
∣∣ exp

{(
1 + |q|

2

) 1
2 n∑
j=1

|Ajuj|
Bj

}
d~u

]2

d~ξ <∞.
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Hence, by the dominated convergence theorem,

lim
λ→−iq

‖φ0(λ; ·)‖22

= lim
λ→−iq

∫
Rn

∣∣∣∣( n∏
j=1

λ

2πBj

) 1
2
∫
Rn
f(~u+ ~ξ)H(λ; ~u)d~u

∣∣∣∣2d~ξ
= lim

λ→−iq

( n∏
j=1

|λ|
2πBj

)∫
Rn

∣∣∣∣ ∫
Rn
f(~u+ ~ξ)H(λ; ~u)d~u

∣∣∣∣2d~ξ
=
( n∏
j=1

|q|
2πBj

)∫
Rn

∣∣∣∣ ∫
Rn
f(~u+ ~ξ)H(−iq; ~u)d~u

∣∣∣∣2d~ξ
= ‖φ0(−iq; ·)‖22.

�

Corollary 5.2. Let q ∈ R− {0} and F ∈ B(2;m) be as in Theorem 5.1. Then for
each l ∈ {1, 2, · · · , n},

(5.4) φl(−iq; ~ξ) ≡
( n∏
j=1

−iq
2πBj

) 1
2
∫
Rn
fl(~ξ + ~u)H(−iq; ~u)d~u

is an element of L2(Rn). In addition, for each w ∈ A and s-a.e. y ∈ Ca,b[0, T ],

δTq(2;F )(y|w) =
n∑
l=1

〈αl, w〉φl(−iq; 〈α1, y〉, · · · , 〈αn, y〉)

= Tq(2; δF (·|w))(y),

(5.5)

which, as a function of y, is an element of B(2;m− 1).

Proof. The proof that each φl(−iq; ·) belongs to L2(Rn) is the same as the proof
in Theorem 5.1 above showing that φ0(−iq, ·) ∈ L2(Rn). Equation (5.5) then
follows immediately using the definition of the first variation and equations (5.2)
and (5.3). �

Theorem 5.3. Let q ∈ R − {0} be given and let F ∈ B(2;m) be as in Theorem
5.1. Furthermore, assume that

(5.6)
∫
Rn

∣∣fj1,··· ,jk(~u)H(−iq; ~u)
∣∣2d~u <∞

for all k ∈ {0, 1, · · · ,m} and each ji ∈ {1, 2, · · · , n}.
Let G ∈ B(2;m) be given by equation (3.2) with

(5.7)
∫
Rn

[∫
Rn

∣∣gj1,··· ,jk(~ξ + ~u)
∣∣ exp

{(
1 + |q|

2

) 1
2 n∑
j=1

|Ajuj|
Bj

}
d~u

]2

d~ξ <∞

for all k ∈ {0, 1, · · · ,m} and each ji ∈ {1, · · · , n}. Let z and w be as in Theorem
4.3. Then

Eanfq
x [F (x)δTq(2;G)(x|w) + δF (x|w)Tq(2;G)(x)]

= −iqEanfq
x [F (x)Tq(2;G)(x)〈z, x〉]

− (−iq) 1
2 (z, a′)Eanfq

x [F (x)Tq(2;G)(x)].

(5.8)
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Proof. By Theorem 5.1, for each l ∈ {0, 1, · · · , n},

(5.9) ψl(−iq; ~ξ) ≡
( n∏
j=1

−iq
2πBj

) 1
2
∫
Rn
gl(~ξ + ~u)H(−iq; ~u)d~u

is an element of L2(Rn). Furthermore,

(5.10) Tq(2;G)(x) = ψ0(−iq; 〈α1, x〉, · · · , 〈αn, x〉)
is an element of B(2;m), and as a function of x,

(5.11) δTq(2;G)(x|w) =
n∑
l=1

〈αl, w〉ψl(−iq; 〈α1, x〉, · · · , 〈αn, x〉)

belongs to B(2;m − 1). Hence, R(x) = F (x)Tq(2;G)(x) is an element of B(1;m)
and

δR(x|w) = F (x)δTq(2;G)(x|w) + δF (x|w)Tq(2;G)(x)
is an element of B(1;m− 1). Since

f(~u)H(−iq; ~u)ψl(−iq; ~u) and fl(~u)H(−iq; ~u)ψ0(−iq; ~u)

belong to L1(Rn) for each l ∈ {0, 1, · · · , n}, both of the following analytic Feynman
integrals exist:

Eanfq
x [R(x)] =

( n∏
j=1

−iq
2πBj

) 1
2
∫
Rn
f(~u)H(−iq; ~u)ψ0(−iq; ~u)d~u

and

Eanfq
x [δR(x|w)] =

( n∏
j=1

−iq
2πBj

) 1
2
∫
Rn

[
f(~u)

n∑
l=1

〈αl, w〉ψl(−iq; ~u)

+ ψ0(−iq; ~u)
n∑
l=1

〈αl, w〉fl(~u)
]
H(−iq; ~u)d~u.

Also, for ρ > 0 and h > 0,
E[|δR(ρx+ ρhw|ρw)|]

≤ ρ‖z‖a,b
( n∏
j=1

2πρ2Bj
)− 1

2

[
‖f‖2

n∑
l=1

‖ψl(−iq; ·)‖2

+ ‖ψ0(−iq; ·)‖2
n∑
l=1

‖fj‖2
]
<∞.

Hence, by Theorem 2.1, the analytic Feynman integral Eanfq
x [R(x)〈z, x〉] exists and

equality (5.8) holds. �
Next, choosing G = F in Theorem 5.3, we obtain the following integration by

parts formula.

Corollary 5.4. Let q, F ∈ B(2;m), z, and w be as in Theorem 5.3. Then

Eanfq
x [F (x)δTq(2;F )(x|w) + δF (x|w)Tq(2;F )(x)]

= −iqEanfq
x [F (x)Tq(2;F )(x)〈z, x〉]

− (−iq) 1
2 (z, a′)Eanfq

x [F (x)Tq(2;F )(x)].
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Our final theorem is a counterpart to Theorem 4.5 above.

Theorem 5.5. Let q ∈ R−{0} and let F and G be as in Theorem 5.3. Furthermore,
assume that for each l ∈ {0, 1, · · · , n},

(5.12)
∫
Rn

∣∣ψl(~u)H(−iq; ~u)
∣∣2d~u <∞.

Let z ∈ L2
a,b[0, T ] be given and for t ∈ [0, T ] let w(t) =

∫ t
0 z(s)db(s). Then

Eanfq
x [Tq(2;F )(x)δTq(2;G)(x|w) + δTq(2;F )(x|w)Tq(2;G)(x)]

= −iqEanfq
x [Tq(2;F )(x)Tq(2;G)(x)〈z, x〉]

− (−iq) 1
2 (z, a′)Eanfq

x [Tq(2;F )(x)Tq(2;G)(x)].

(5.13)

Proof. Let R(x) = Tq(2;F )(x)Tq(2;G)(x). Then R ∈ B(1;m) and δR(·|w) ∈
B(1;m − 1). Using (5.2), (5.4), (5.9) and (5.12), we see that Eanfq

x [R(x)] and
E

anfq
x [δR(x|w)] both exist and are given by equations (4.22) and (4,23) respec-

tively. Finally, we see that (5.13) follows from Theorem 2.1, since for ρ > 0 and
h > 0,

E[|δR(ρx+ ρhw|ρw)|]

≤ ρ‖z‖a,b
( n∏
j=1

2πρ2Bj
)− 1

2
[
‖φ0(−iq; ·)‖2

n∑
l=1

‖ψl(−iq; ·)‖2

+ ‖ψ0(−iq; ·)‖2
n∑
l=1

‖φl(−iq; ·)‖2
]
<∞.

�

We finish this paper with some very brief comments about the functionals defined
in Examples 4.6 and 4.7 for the case p = 2.

We first note that for the functional F (x) ∈ B(2;m) defined by equation (4.27)
with f(u1) ∈ L2(R) given by (4.25), the L2 analytic GFFT, T−1(2;F ) does not
exist because |φ0(i; ξ1)| = +∞ for each ξ1 ∈ R. In fact, the Lp analytic GFFT,
T−1(p;F ) does not exist for any p ∈ [1, 2].

On the other hand, it is quite easy to see that condition (5.1) holds for the
function f(~u) given by equation (4.33). Hence, for F (x) defined by equation (4.35),
the L2 analytic GFFT, T−1(2;F ) exists as an element of B(2;m) and for s-a.e.
y ∈ Ca,b[0, T ] is given by the right-hand side of equation (4.41). In fact, for all
p ∈ [1, 2], the Lp analytic GFFT, T−1(p;F ) exists as an element of B(p′;m) and is
given by the right-hand side of equation (4.41).
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