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Abstract: We introduce an algebro-geometrically motived integration-by-parts (IBP) re-

duction method for multi-loop and multi-scale Feynman integrals, using a framework for

massively parallel computations in computer algebra. This framework combines the com-

puter algebra system Singular with the workflow management system GPI-Space, which

are being developed at the TU Kaiserslautern and the Fraunhofer Institute for Industrial

Mathematics (ITWM), respectively. In our approach, the IBP relations are first trimmed

by modern tools from computational algebraic geometry and then solved by sparse linear

algebra and our new interpolation method. Modelled in terms of Petri nets, these steps

are efficiently automatized and automatically parallelized by GPI-Space. We demonstrate

the potential of our method at the nontrivial example of reducing two-loop five-point non-

planar double-pentagon integrals. We also use GPI-Space to convert the basis of IBP

reductions, and discuss the possible simplification of master-integral coefficients in a uni-

formly transcendental basis.
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1 Introduction

With the success of Large Hadron Collider (LHC) Run II and the upcoming LHC run III,

high precision background computation, especially next-to-next-to-leading-order (NNLO)

scattering computation, is crucial for the interpretation of experimental results. In recent

years, great progress has been made in multi-loop scattering amplitude calculations, for

instance, in the case of 2 → 3 processes [1–15]. The progress is due to modern develop-

ments of scattering amplitudes, like the integrand construction method [16, 17], canonical

integrals [18, 19], numeric unitarity [20, 21], bootstrap methods [22–29], reconstruction

using finite fields [30–33] and new ideas in the integration-by-parts (IBP) reduction. The

latter is the main topic to be discussed in this paper.
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Frequently, when computing scattering amplitudes, IBP reduction is a crucial and

bottleneck step. It is a fundamental tool for both the reduction of integrals to master

integrals (MIs), and for computing the master integrals themselves using the differential

equation method. IBP relations (IBPs) are derived from integrating a total derivative in a

Feynman loop integral [34],

0 =

∫

dDℓ1

iπD/2
. . .

dDℓL
iπD/2

L
∑

j=1

∂

∂ℓµj

vµj
Dn1

1 · · ·Dnm
m

, (1.1)

where ℓ’s are dimensionally regularized loop momenta and D is the spacetime dimen-

sion. The Di’s are the denominators of propagators in Feynman integrals. The vectors

vµi are linearly spanned by the loop momenta as well as the external momenta. By ex-

panding the integrand inside (1.1), we are able to obtain IBP relations between different

Feynman integrals.

The standard approach to obtain IBP reductions, by which we are able to express

an integral as a linear combination of a finite number of MIs, is to generate sufficiently

many IBP relations, and then use the Laporta algorithm [35] to solve the associated linear

system. The algorithm works by imposing an ordering on the different integral families

and solving recursively. There exist multiple public and private implementations of this

approach [32, 36–41], which usually generates a large linear system to be solved.

In the case of a system of IBPs which does not have double propagators [42–44],

however, we obtain a much smaller linear system. The IBPs without double propagators

are physically related to dual conformal symmetries [45]. A significant simplification can

be made by using unitarity methods, where by considering a spanning set of generating

cuts it is possible to reduce the size of the IBP system. This requires prior knowledge of a

basis of MIs. Such a basis can be obtained by running the Laporta algorithm with constant

kinematics, or by using specialized programs such as Mint [46] or Azurite [47]. (Note

that the dimension of a basis of integrals can also be obtained by studying the parametric

annihilators [48].) There is also the important technique [49] of simultaneously nullifying

all master integrals except one, which often makes large-scale linear reductions feasable.

Besides the advances in purely analytical methods in recent years, there has been a

lot of work towards numerical implementations of the generation of IBPs. The idea is to

utilize either integer values or finite-field values for the kinematical invariants [30, 31, 38],

depending on the difficulty of the problem, and then to run the same reduction several times

for reconstruction. This method has been very successful in tackling difficult problems.

Furthermore, it is possible to numerically generate and reduce the IBP relations, and,

while skipping the master-integral coefficient reconstruction in IBP identities, directly carry

out an amplitude reconstruction. (For examples, see [9, 10, 13, 50]). In this paper, we

in particular present our own implementation of a semi-numeric rational interpolation

method, see appendix A for more details.

Furthermore, new approaches were developed recently to obtain the reduction directly,

without generating IBP relations from total derivatives. In [51], the direct solution method

was presented to derive recurrence relations for Feynman integrals and solve them analyt-
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ically with arbitrary numerator degree. One very promising progress is based on the in-

tersection theory of differential forms in the Baikov representation [52–54]. This approach

calculates the master integral coefficients from intersection numbers. There is also a very

intuitive approach to reduce Feynman integrals by considering the η expansion of the Feyn-

man prescription [55–57]. Using this approach, the scaling of the reduction computation

depends only linearly on the number of master integrals. Furthermore, it is possible to

determine two-loop planar diagram master-integral coefficients directly from the Baikov

representation [58].

In this paper, we present our new powerful IBP reduction method based on:

1. Computational algebraic geometry. Computational algebraic geometry method was

used in [42] for generating IBP without double propagators via syzygy computations.

The geometric integrand decomposition method [20] has been successfully developed

for constructing multi-loop integrand and IBP reduction [4, 6, 21].

In this paper, we apply the module intersection method from [59–61], modified by

using a suitably chosen degree bound for the Gröbner basis computation, to efficiently

generate a small IBP system, without double propagators (or IBPs with a given

bound on the propagator exponents). Like [42], this method also restrict the degree

of propagator. However module intersection method uses the Baikov presentation

instead of the Feynman momentum representation. We find it is easy to generate

trimmed IBPs in Baikov representation and apply cuts, with our module intersection

representation.

2. A modern framework of massively parallel computations in computer algebra which

combines the computer algebra system Singular [62] with the workflow management

system GPI-Space [63]. We have completely automatized our approach and make

our algorithms run automatically in parallel on high performance computing clusters.

In this way, IBP results can be obtained in an efficient, reliable and scalable way. Our

implementation can automatically determine the minimal number of points needed

for interpolating the master-integral coefficients, it can identify possible “bad” points,

add more points, if necessary, and interpolate the final result.

We demonstrate the power of our method by reducing the two-loop five-point nonplanar

double pentagon diagram analytically, up to numerator degree 4. This is a nontrivial test

since the diagram has a complicated topology and there are five symbolic Mandelstam

variables as well as the spacetime variable D.

Furthermore, we start to look at the possible simplification of master-integral coeffi-

cients by converting the master integral basis. In this paper, we test the conversion to a

“dlog” basis [64], a special case of the canonical basis [19]. We find that for the double

pentagon diagram above, the size of the master integral coefficients reduces significantly

from the byte size ∼ 2.0G in the Laporta basis to ∼ 0.48G in the dlog basis on disk, that

is, by 76%. The master integral basis conversion computation is also automated by the

Singular-GPI-Space framework.

– 3 –
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Our paper is structured as follows. In section 2, we present the general background on

how to generate simple and trimmed IBP systems using computational algebraic geometry

and finite-field methods, as well as the improvement on the algorithm in [60]. In section 3,

we give a short overview on how we use Singular in conjunction with GPI-Space. In

section 4, we describe how to model our algorithm in the Singular-GPI-Space framework,

and discuss timings and scaling of the algorithm, focusing on the double pentagon diagram.

This, in particular, demonstrates the potential of the Singular-GPI-Space framework for

applications in high-energy physics. In section 5, we review the algorithmic computation of

a dlog basis which has uniform transcendental weight, and we comment on how to convert

coefficients from the Laporta basis to the dlog basis. In section 6, we study the working

example of our implementation, the double pentagon graph, in detail. We discuss the

analytic IBP reduction and the conversion of master integral coefficients to the dlog basis.

Finally we present a summary and conclusion of this paper.

The result of our IBP reductions can be downloaded from the following links: whereas

https://www.dropbox.com/s/1ubdhcyhe8e4pwy/IBPmatrix_Laporta_basis.tar.gz

provides the master integral coefficients in the Laporta basis with the scale s12 = 1,

https://www.dropbox.com/s/e6t4evftkfo95pr/IBPmatrix_dlog_basis.tar.gz

contains the master-integral coefficients in the dlog basis with the scale s12 = 1.

For the convenience of the reader, we also present the master-integral coefficients in

the dlog basis with the full scale dependence:

https://www.dropbox.com/s/dnkr6h5t3vik2r0/IBPmatrix_dlog_basis_scaled.tar.gz

We encourage researchers in the high energy community to send us IBP reduction prob-

lems (mailto: alessandro.georgoudis@physics.uu.se) for cutting-edge precision calculations

and the further sharpening of our new reduction method.

2 The module intersection method reloaded

In this section, we present a refined version of the approach of using module intersections to

trim IBP systems. We refer to [42] for the original idea of generating IBP without double

propagator, and [6] for the recent development of the geometric integrand decomposition

and numeric unitarity method.

For the detailed account of the module intersection IBP reduction method, we re-

fer to [60].

2.1 Module intersection

The Feynman integrals with dimensional regularization under consideration are labeled as

I[n1, . . . , nm] =

∫

dDℓ1

iπD/2
. . .

dDℓL
iπD/2

1

Dn1
1 · · ·Dnm

m
, ni ∈ Z, i = 1, . . .m (2.1)
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where L is the loop order and the li’s are the dimensional regularized loop momenta. Di’s

are the denominators of propagators in the momentum representation. We have E linearly

independent external momenta that we label as p1, . . . , pE . We assume that the Feynman

integrals have been reduced on the integrand level, and thus set m = LE + L(L + 1)/2

which equals the number of reducible + irreducible scalar products in the configuration.

For us, it is convenient to use the Baikov representation [46, 65] for IBP reductions,

I[n1, . . . , nm] = CL
E U

E−D+1
2

∫

Ω
dz1 · · · dzmP

D−L−E−1
2

1

zn1
1 · · · znm

m
. (2.2)

Here, we redefined the scalar products zi ≡ Di, i = 1, . . .m. P is the Baikov polynomial,

which can be written as a Gram determinant,

P = detG

(

l1, . . . lL, p1, . . . pE
l1, . . . lL, p1, . . . pE

)

. (2.3)

Since P only consists of reducible and irreducible scalar products, P can be reformulated

as a polynomial explicitly in zi’s.

Moreover, U and CL
E are respectively the Gram determinant and a constant factor

below:

U = detG

(

p1, . . . pE
p1, . . . pE

)

, CL
E = J

π
L−m

2

Γ(D−E−L+1
2 ) . . .Γ(D−E

2 )
, (2.4)

where J is a constant Jacobian. The factors U and CL
E are irrelevant for deriving the IBP

relations.

As in [20, 44, 66], the IBP relations in the Baikov representation are of type

0 =

∫

dz1 · · · dzm

m
∑

i=1

∂

∂zi

(

ai(z)P
D−L−E−1

2
1

zn1
1 · · · znm

m

)

, (2.5)

where each ai(z) is a polynomial in the variables z1, . . . , zm. Note that P vanishes on the

boundary of the Baikov integration domain, so this form of IBP identities does not have

surface terms.

Suppose we wish to reduce an integral family with nj ≤ 0, j = κ + 1, . . . ,m, for

some κ. That is, we face integrals with the inverse propagator product 1/(D1 . . . Dκ) and

the sub-topology integrals. We use the idea of restricting to IBP systems without double

propagators [42], choosing suitable ai(z) to prevent the appearance of double propagators

in (2.5). In the Baikov representation, we also need to avoid total derivatives with dimen-

sion shifts [20, 44]. These constraints translate into syzygy equations of the following type:

( m
∑

i=1

ai(z)
∂P

∂zi

)

+ b(z)P = 0 , (2.6)

ai(z) = bi(z)zi , i = 1, . . . , κ , (2.7)

where b(z) and the bi(z) are also polynomials in zi’s. Relation (2.6) avoids dimension shifts

of the integrals, while (2.7) ensures that there is no double propagator for Di if the initial

– 5 –
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index ni = 1 in (2.5). The goal is to find such polynomials ai(z), b(z), and bi(z). Since

we require polynomial solutions, this is not a linear algebra problem, but a computational

algebraic geometry problem.

We use the module intersection method from [59, 60] to solve (2.6) and (2.7) simulta-

neously. Note that the analytic generators of all solutions of (2.6) can be directly written

down via either the canonical IBP vector method [20] or the Gram matrix Laplace expan-

sion method [61].1 We remark that the Gram matrix Laplace expansion method does not

provide more relations beyond the IBP formalism with loop momenta and other vectors.

This Laplace expansion procedure is to convert the standard IBP to the Baikov represen-

tation. Ref. [6] achieved the conversion without resorting to a Laplacian representation.

The relations in (2.7) can be trivially expressed as a module membership condition.

Hence without any algorithmic computation, we know the individual solutions for (2.6)

and (2.7), respectively.

These form polynomial submodules M1 respectively M2 of Rm over the polynomial

ring R = Q(c1, . . . , ck)[z1, . . . , zm] (where the variables c1, . . . ck collect the Mandelstam

variables and the mass parameters). The task is then to compute

M1 ∩M2 . (2.8)

This module intersection can be obtained by computing a module Gröbner basis in a

particular ordering [60]. One decisive strategy is the localization technique, which allows

us to compute M1 ∩ M2 over the polynomial ring R̃ = Q[c1, . . . , ck, z1, . . . , zm]. In this

manner, we treat kinematic variables in the same way as the Baikov variables. This greatly

speeds up the intersection computation for multi-scale problems, but results in a redundant

generating system. The latter can be trimmed further by importing the result back to Rm

and removing redundant generators by checking the leading monomials. This is powered

by Singular’s command simplify. Once M1 ∩M2 is obtained, we know all simultaneous

solutions for (2.6) and (2.7), and can use (2.5) to get IBPs without double propagators.

We emphasize that, although (2.6) and (2.7) were originally designed for IBPs without

double propagators, the solutions of (2.6) and (2.7) can be used to simplify IBP systems

with double or multiple propagators. Using these solutions ai(z), the resulting IBP system

does not introduce integrals with higher powers of propagators, and hence also greatly

decreases the size of the IBP system.

Frequently, instead of computing IBPs directly, we compute IBPs on spanning cuts and

assemble the full IBPs afterwards. This amounts to setting some of the zi to zero in (2.6)

and (2.7). For details on IBPs on cuts using the Baikov representation, we refer to [60].

Compared to the approach in [60], in this paper we use the following improvements

for the module intersection method. These ideas have been used in [6].

• When we compute the intersection M1 ∩M2, instead of finding a full generating sys-

tem, we heuristically impose a polynomial degree bound in the computation. Then

we reduce the resulting IBPs over finite fields to test if we already have all the IBP

1We learned the Laplace expansion method from Roman Lee, and proved its completeness via the

Gulliksen-Negard/Jozefiak exact sequence in [61].

– 6 –
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relations needed. If the IBP relations are insufficient, we increase the degree bound

and repeat the computation. This approach speeds up the intersection computa-

tion dramatically in many cases. In practice, we use the option degbound in the

computer algebra software Singular to set the degree bound.

• In the approach of [60], the module intersection was only computed for the top

sector, which, for the hexagon box diagram, turned out to be sufficient for reducing

integrals to a master integral basis. However, in this paper, we compute the module

intersection for the top sector and also all subsectors. This approach may, in general,

generate more IBP relations. Via linear algebra trimming as discussed in the next

subsection, this approach eventually gives a block triangular linear system and makes

the linear reduction easier.

2.2 Linear reduction

For the simplified IBP system arising from the module-intersection method, we use our

own linear reduction algorithm to reduce the IBP system. The steps are:

1. Trim the linear system in two stages: (a) Set all the kinematic variables to integer

values, and use linear algebra over a finite field to find the independent IBP relations.

(b) Again over a finite field, carry out the reduction. From the intermediate steps,

determine a sufficient subset of IBP relations for reducing the target integrals. These

operations are powered by the finite field computation tool SpaSM [67].

2. Remove the overlap between two different cuts and simplify the linear system: if two

cuts have a common master integral, use the idea from [49] to set the master integral

to zero in the IBP system of one of the two cuts. This will later on dramatically

simplify the IBP reduction for the cut.

3. For the linear system simplified by the first two steps, we use our own Singular row

reduce echelon form (RREF) code over function fields to reduce the target integrals

to master integrals. Our code applies both row and column swaps for finding the

optimal pivots. Note that column swaps change the set of master integrals. After

the RREF computation, we convert the new master integrals to the original master

integrals. We have observed that this approach is in general much faster than fixing

the column ordering and directly reducing the target integrals to the original master

integrals.

For difficult IBP reduction computations, we use a “semi-numeric” approach: this

approach sets several but usually not all of the kinematic variables for the reduction com-

putation to numeric values (that is, to constant integers). Without loss of generality, for

the kinematic variables (c1, . . . , ck), we set

ci 7→ ai, 1 ≤ i ≤ k1, (2.9)

for some k1 < k and some ai ∈ Z.

– 7 –
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The actual degree of the coefficients in these variables can be decided by a univariate

analytic computation (that is, we set all but one of the ci to constant values). For example,

we may pick the dimension D and all parameters ci except c1 as random integers, and then

carry out the reduction. This computation is much easier than the actual IBP reduction

with fully analytic parameters. From the reduction, we determine the degree of c1 in the

final IBP reduction coefficients. Proceeding similarly for each i, we find the degree of

each ci. This determines the minimal number of semi-numeric points for the subsequent

interpolation step. (See [31] for an alternative way of finding the degree of each parameter

in a rational function.)

After accumulating enough points, we collect the semi-numeric reduction results and

interpolate to get the final IBP reduction coefficients. To do this, we first run step 3 above

for a semi-numeric set of parameters, find the optimal pivots and record the row/column

swap history as a trace of our computation. For other numeric values, we always use the

same trace to ensure the relatively uniform running time of the computation.

In practice, we use our rational function interpolation algorithm described in ap-

pendix A. We do a reduction computation, with a carefully chosen semi-numeric refer-

ence point,

cj 7→ bj , bj ∈ Z, k1 < j ≤ k, (2.10)

and c1, . . . ck1 symbolic. Using the reference point result, we convert the rational function

interpolation problem to individual polynomial interpolation problems for the numerators

and denominators. With this approach, the number of “semi-numeric” computations is

(d1 + 1)× (d2 + 1)× . . .× (dk1 + 1), (2.11)

where the di, for 1 ≤ i ≤ k1, are the maximal degrees of the ci in the numerator and

denominator polynomials in the RREF matrix. This algorithm is also implemented in Sin-

gular.

For the semi-numerical reduction and interpolation, we need to parallelize our com-

putations in an efficient way. Furthermore, with semi-numeric points, we may have some

bad points in the reduction or interpolation. In order to make use of massively parallel

computations in an efficient way, and to automize the workflow for the replacement of bad

points, we use the modern workflow management system GPI-Space, in conjunction with

the computer algebra system Singular. We will discuss the ideas behind this approach

in the subsequent section.

3 Massively parallel computations using Singular and GPI space

Large scale calculations such as row reductions of IBP identities in the case of Feynman

diagrams which are relevant to current research in high-energy physics, are only feasible

by using parallel computing on high-performance clusters. The computer algebra methods

applied in this context require to model algorithms which rely on sub-computations with

time and memory requirements that are difficult to predict. This is due, for example, to the

behaviour of Buchberger’s algorithm for finding Gröbner bases: although this algorithm

– 8 –
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7−→

Figure 1. An enabled transition and its firing.

Figure 2. A transition which is not enabled.

performs well in many practical examples of interest, its worst case complexity is doubly

exponential in the number of variables [68]. Nevertheless it turned out recently [69, 70] that

massively parallel methods, which have been a standard tool in numerical simulation for

many years, can also be applied successfully in symbolic computation. Proposing the gen-

eral use of massively parallel methods in computer algebra, we describe our ongoing effort

in this direction which is based on connecting the computer algebra system Singular for

polynomial calculations with the workflow management GPI-Space (for an introduction

see [71]). The latter consists of a scheduler distributing the actual computations to workers

in the cluster, a virtual memory layer to facilitate communication between the workers, and

a workflow management system which relies on modeling algorithms in terms of Petri nets.

In its basic form, a Petri net is a directed bipartite graph with two kinds of nodes:

while a place can hold a number of indistinguishable (structure-less) tokens, a transition

may fire if each input place contains at least one token (we then say that the transition

is enabled). When fired, a transition consumes one token from each input place and puts

one token on each output place. See figure 1 for an enabled transition and its firing, and

figure 2 for a transition which is not enabled. In the figures, places are shown as circles,

transitions as rectangles, and tokens as black dots.

The execution of a Petri net is non-deterministic: at each step, a single random en-

abled transition is chosen to fire. We have observed that the randomized reformulation

of deterministic algorithms in computer algebra in terms of Petri nets can lead to a more

consistent and predictable behavior throughout the course of the computation.

In our approach, we model the coarse-grained structure of an algorithm in terms of a

Petri net. The transitions call procedures from the C-library version of Singular to do the

actual computations. The result of this setup is a flexible framework for massively parallel

computations in computational algebraic geometry (similar setups are possible using C-

libraries of computer algebra systems aiming at possibly different application areas). Our

framework has, for example, already been used to implement a non-singularity test for

algebraic varieties [69, 72], the computation of combinatorial objects in geometric invariant

theory [73], and the computation of tropical varieties associated to algebraic varieties [74].

For the efficient use in practical programming, the basic concept of a Petri net has to

be extended. Here, GPI-Space provides multiple additional features:

– 9 –
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f1

f2

Figure 3. Task and data parallelism in a Petri net.

• Modeling complex algorithms just by the use of structure-less tokens is not very

efficient. In GPI-Space, tokens can have a data type and hold actual data. In fact,

it is often more efficient if the tokens just hold a reference to a storage place for

the data (in memory or in the file system). Using the shared memory subsystem

of GPI-Space or the powerful file systems of modern high-performance clusters,

computations can then scale far beyond the limitations of a single machine.

• The firing of a transition may be subject to conditions which have to be fulfilled by

the input tokens.

• Transitions in practice involve computations which take time. The properties of

Petri nets allow us to execute different enabled transitions at the same time (task

parallelism) and to execute multiple instances of the same transition in parallel,

provided the input places hold multiple tokens (data parallelism). In figure 3, the

transitions f1 and f2 can fire in parallel, and, if the input place of fi holds multiple

tokens, then fi can fire in multiple instances.

We have observed that some algorithms in computer algebra scale in a superlinear way

when implemented in parallel as a Petri net. The reason is that then, at run time, the

algorithms can automatically determine from a given set of paths a path which leads to

the solution in the fastest possible way (see [69, section 6.2]).

In the next section, we illustrate the use of the Singular-GPI-Space framework for

applications in high-energy physics by modeling our IBP reduction algorithm.

4 Parallel matrix reduction as a Petri net

In this section, we first describe how to model the parallel IBP reduction algorithm in

terms of a Petri net. Focusing on the cut {1, 3, 4, 5} of the two-loop five-point nonplanar

double pentagon diagram, we then discuss timings and scaling of the algorithm to indicate

the practical use and significant potential of the Singular-GPI-Space framework for

algorithmic problems in high-energy physics.

4.1 General structure of the algorithm

Our approach includes a massively parallel execution of row-reductions over function fields,

where a number of parameters has been replaced by integers, followed by a parallel inter-

polation step to reconstruct the dependency on these parameters.

So the task is to find the reduced row-echelon form Mred of a large linear system

of equations, given as a matrix M over the rational function field Q(c1, . . . , ck). Since
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applying Gaussian elimination directly is not feasible, we instead proceed by substituting,

say, the first r parameters by the coordinates of a point a ∈ Zr, and then by computing

the reduction

(M |c1 7→a1,...,cr 7→ar)red.

We refer to section 2.2 above for details on how we handle this reduction step. To determine

the number of interpolation points required to reconstruct the dependency on c1, . . . , cr, we

find bounds for the degrees of numerators and denominators for each parameter by doing

a univariate row reduction (that is, all but one of the parameters are set to be numeric).

After the reduction, we check that the resulting matrix is equal to the desired result

Mred|c1 7→a1,...,cr 7→ar

by normalizing it relative to a previously computed reference matrix with cr+1, . . . , ck con-

stant, and performing degree checks using the exact degrees obtained from the univariate

calculations. These steps are described in more detail in appendix A. The final result Mred

is then found by iteratively combining the reduced matrices via univariate interpolation

(see again appendix A).

Let d1, . . . , dr be degree bounds for the entries of Mred in the parameters c1, . . . , cr,

respectively. To obtain Mred by interpolation, we need d1 + 1 matrices over Q(c2, . . . , ck)

of the form

Mred|c1 7→a
(0)
1

, . . . ,Mred|c1 7→a
(d1)
1

, (4.1)

for d1 + 1 values a
(0)
1 , . . . , a

(d1)
1 ∈ Z. Similarly, to obtain any one of the above matrices,

we need d2 + 1 matrices over Q(c3, . . . , ck). Continuing inductively, this process ends with

matrices defined over Q(cr+1, . . . , ck), which are then computed by reduction with c1, . . . , cr
numeric. This tree-like dependency structure is depicted in figure 4.

4.2 Managing the interpolation

We model the current status of the interpolation process in a tree-like data structure cor-

responding to that from figure 4, with references to the reduction results at the leaves, and

references to the interpolation results at the other nodes. Within GPI-Space, reductions

and interpolations are executed according to this data structure. The tree is generated as

soon as the degree bounds d1, . . . , dr are known, and it is extended if the algorithm requires

additional data points due to the occurrence of bad interpolation points.

4.3 Description of the Petri net

Figure 5 depicts the Petri net that implements the complete reduction algorithm. Going

beyond the standard syntax introduced in section 3, dashed arrows stand for read-only

access, that is, the data in the respective places is not consumed. The dotted arrows illus-

trate read and write access to the interpolation tree described in section 4.2. A transition

can be annotated by conditions which indicate that the transition can only fire by con-
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Mred

c1 7→ a
(0)
1 c1 7→ a

(d1)
1

...
...

...

...
...

...
...

...
...

c1 7→ a
(0)
1 , . . . , cr 7→ a

(0)
r c1 7→ a

(0)
1 , . . . , cr 7→ a

(dr)
r c1 7→ a

(d1)
1 , . . . , cr 7→ a

(0)
rc1 7→ a

(d1)
1 , . . . , cr 7→ a

(dr)
r

Figure 4. The structure of the interpolation tree.

suming tokens for which the conditions evaluate to true.2 In the following, we describe the

individual structures of the net:

Input token: The net is initialized with one token: a token on the place I, which holds

references to the following input data:

• The input linear relations, which are given as a matrix M over the rational function

field Q(c1, . . . , ck).

• The vector of indices of the parameters which will be interpolated (in the following

we assume that these indices are 1, . . . , r).

• The vector of indices of the target variables.

• Optionally: a precomputed trace for the reduction step (consistent with the targets).

In the Petri net, the trace is referred to as I.trace (we use the usual dot-notation

for sub-data structures). Note that the trace fixes the variables corresponding to the

master integrals.

Transition trace: If the token on I does not contain a trace, then trace is enabled,

computes a trace for the linear reduction (recall that trace is the optimal pivot strategy

and the row/column swap history, and see section 2.2 for the discussion there) and returns

a copy of I with the trace included.

Transition copy: If the token on I already contains a trace, then copy is enabled and

simply passes the token on I through.

Transition init: This transition takes the input token, which was produced by either

trace or copy, and pushes it onto It. This way, the input data on It is guaranteed to

contain trace data. It additionally enables the transitions degrees and reference.

2When formulating conditions in the Petri net, we use the name of a place and a token on the place

interchangeably.
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I

trace

if not I.trace exists

copy

if I.trace exists

init

Itdegrees reference

normalize

if m.valid

dv dm

interpolation tree

points p reduce m

replace failure

if not m.valid

n
replace invalid

if not n.valid

store normalized

if n.valid

i
discard

if not i.valid

interpolate

if i.valid

store interpolated

Figure 5. The Petri net for row reduction via interpolation. A description of the syntax is given

in the first paragraph of section 4.3.

Transition reference: This generates a random substitution point q = (qr+1, . . . , qk)

with values for all parameters which will not be interpolated, substitutes the qi for the ci,

and runs the row reduction step (see section 2.2), that is, computes

Mref := (M |cr+1 7→qr+1,...,ck 7→qk)red.

The transition then stores the actual result in the file-system and produces an output token

which contains both a reference to the result and the point q. The stored data will be used

later in the normalization step of the interpolation (see above).
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Transition degree: This generates a substitution point p(j) ∈ Z{1,...,j−1,j+1,...,k} for each

1 ≤ j ≤ k yielding a matrix

M (j) := M |
c1 7→p

(j)
1 ,...,cj−1 7→p

(j)
j−1,cj+1 7→p

(j)
j+1,...,ck 7→p

(j)
k

over the field Q(cj). After applying the row reduction, M
(j)
red can be used to determine

degree bounds for the numerator and denominator of each entry of the final result Mred as

a polynomial in cj .

For j ≤ r, we need a global degree bound to determine the number of interpolation points.

We thus take the maximum of all numerator and denominator degrees of entries of M
(j)
red,

and store these as a vector in N
{1,...,r}
0 , which is put on the place dv.

If j > r, two integer matrices will be produced, which store the degrees of the numerators

and denominators of each entry of Mred, respectively. This information will be used later to

filter out bad interpolation points, that is, points at which polynomial cancellation occurs

(see appendix A). The result is stored in the file system and a token with a reference to

the result is put on the place dm.

Note that degree is in fact modeled by a sub-Petri net which behaves in a hierarchical

manner as a transition. In practice, we actually compute multiple matrices M (j) per

parameter to reduce the probability of a bad point producing wrong degree bounds.

Transition points: This transition takes the degree data in dv and initializes the inter-

polation tree described in section 4.2 and depicted in figure 4. This, in turn, produces the

corresponding set of interpolation points, which are put as separate tokens on the place p.

Transition reduce: This transition consumes a point p′ ∈ Z{1,...,r} from the place p and

computes

(Mc1 7→p′1,...,cm 7→p′r
)|red.

The resulting matrix together with its interpolation point are put on the place m. Since

reduce performs parameter substitutions in rational function expressions, the computation

may fail due to division by zero. If this happens, m.valid is set to false, otherwise it is

set to true.

Transition replace failure: An input token for which m.valid is false is consumed

by the transition replace failure, which marks the respective interpolation point as

failed in the interpolation tree. If necessary, the interpolation tree is extended by additional

interpolation points, which are also put on the place p.

Transition normalize: An input token for which m.valid is true is consumed by the

transition normalize. This transition readsMref and multiplies the input matrix referenced

by m with a suitable constant factor. It also compares the entries with the degree matrices

in dm to identify bad interpolation points. The result is put on the place n. If the

corresponding point was bad, n.valid is set to false, otherwise to true.
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Transition replace invalid: For an input token for which n.valid is false, the tran-

sition generates new interpolation points in a fashion similar to that in replace failure.

Transition store normalized: For an input token for which n.valid is true, the tran-

sition marks the corresponding interpolation point as successful in the external storage.

If enough interpolation points for a given parameter have been marked as successful, the

storage produces a token on place i, which triggers the respective interpolation. If the

point (p′1, . . . , p
′
r) triggers the interpolation (which will then use further points of the

form (p′1, . . . , p
′
r−1, p

′′
r )), the result of the interpolation will be associated to the point

(p′1, . . . , p
′
r−1) in the interpolation tree. If there are not yet enough interpolation points,

the transition produces a token which only contains i.valid with value false.

Transition discard: This transition discards tokens with i.valid equal to false.

Transition interpolate: Tokens with i.valid equal to true are consumed by this tran-

sition, which then retrieves the references to the input data for the interpolation from

the interpolation tree, loads the respective data from the file system, and executes the

interpolation. If (in the above notation) the token holds (p′1, . . . , p
′
r−1), then for (dv)r + 1

many points the corresponding row reduced matrices are retrieved from the storage. Note

that due to the tree structure of the interpolation tree, all these points must have the first

r − 1 coordinates equal to (p′1, . . . , p
′
r−1). The interpolation is then performed entry-wise

as explained in appendix A.

Transition store interpolated: This transition marks the current point (p′1, . . . , p
′
r−1)

in the interpolation tree as processed. If r > 1, just like in store normalized, the transi-

tion produces an interpolation token for the next parameter. If r = 1, we have arrived at

the final result, and a token with i.valid equal to false is produced, which will then be

discarded.

The Petri net contains additional infrastructure (not described here) which terminates the

execution once no tokens exist any more on the places i and p.

4.4 Parallel timings

To illustrate the efficiency of our approach, we consider the cut {1, 3, 4, 5} of the double

pentagon diagram (see section 6 for a discussion of all possible cuts). Choosing this partic-

ular cut, which is less complex than others, our computations finish even when only a small

number of cores is involed. This is necessary to analyze the scaling of our algorithm. In

table 1, we give timings for different numbers of cores. All timings are in seconds, taken on

the high performance compute cluster at the Fraunhofer Institute for Industrial Mathemat-

ics (ITWM). Each compute node provides two Xeon E5-2670 processors, which amounts

to 16 cores3 running at a base clock speed of 2.6GHz. Each node has 64GB of memory.

For all runs with more than 15 cores, on each node we ran 15 compute jobs and one job

for interfacing with the storage system. Since the storage jobs use negligible computation

time, we omit them from the CPU core count when determining speedup and efficiency.

3Hyperthreading is disabled.
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relative

nodes cores runtime speedup efficiency

1 1 122857.6 1.201 1.201

1 15 9837.8 15.000 1.000

2 30 4954.8 29.7822 0.992

4 60 2625.4 56.2058 0.936

8 120 1341.3 110.014 0.916

14 210 952.3 154.958 0.737

15 225 705.6 209.132 0.929

16 240 694.3 212.514 0.885

29 435 611.8 241.199 0.554

30 450 385.4 382.856 0.850

32 480 379.9 388.336 0.809

40 600 367.7 401.307 0.668

48 720 363.2 406.195 0.564

Table 1. Timings and efficiency for the cut {1, 3, 4, 5}. We use the same algorithm for all core

counts. The single core run serves as a reference.

Apart from the running time T (n) of the algorithm on a total of n cores, we also

give the speedup S(n) = T (1)
T (n) and the efficiency E(n) = T (1)

nT (n) , which measure how “well”

the algorithm parallelizes with increasing core counts. Note that the single-core timing is

somewhat special: as experiments have shown, the performance per core decreases with

the number of cores used on a given node. This effect has been investigated in [69] (see in

particular [69, figure 5]). Thus, for the analysis of the expected run-time below, we rather

consider the relative speedup and efficiency with respect to the 15-core timing. This in

particular makes the assumption that the 15-core speedup is 15.

The saw-tooth shape of the efficiency graph in figure 6 (and the corresponding behavior

in the timing and speedup graphs) is due to the fact that the number of reductions to

execute is usually not divisible by the number of cores utilized. Since in our test problem

approximately 450 reductions are required to enable the final interpolation, the running

time of the full algorithm is roughly
⌈

450

number of CPUs

⌉

. (4.2)

This effect can be avoided by a more fine-grained structuring of the problem (for instance

by interpolating more parameters). Note, however, that increasing the number of processes

in this way will lead to more overhead via inter-process communication and disk accesses.

Thus, dividing the algorithm into very small parts may in fact slow down the overall

computation.

Figure 6 also depicts the ideal expected runtime, speedup and efficiency. These ideal

graphs stem from the simple assumption, called Amdahl’s law, that an algorithm can be

divided up into a part that is ideally parallelizable and a part which is not parallelizable

at all. Denoting the parallelizable fraction by f , the expected runtime Tideal(n) on n cores
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Figure 6. Running time, relative speedup and efficiency graphs for cut {1, 3, 4, 5}.
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is not T (1)
n , but rather

Tideal(n) = (1− f) · T (1) +
f · T (1)

n
, (4.3)

which yields the ideal speedup and efficiency

Sideal(n) =
n

(1− f) · n+ f
, Eideal(n) =

1

(1− f) · n+ f
. (4.4)

Using the experimental values for 15 and 30 cores, we arrive at a value f ≈ 0.999748, that

is, only 0.025% of the algorithm is not parallelizable.

As we can see, the ideal curves give a fairly tight bound on the actual timings, at least

in the cases where the core count is properly aligned to the number of reductions. This

indicates that our approach for parallelization not only provides an automatic and fast

solution to a tedious and complicated task, but stays highly efficient even when used with

a large amount of computing power.

5 IBP conversion between different integral bases

It is well known that after the IBP reduction, the master-integral coefficient size may vary

significantly if we choose different master integral bases.

We prefer the IBP reduction to a uniformly transcendental (UT) basis as introduced

in [18], for several reasons: a) The differential equations satisfied by a UT integral basis

have a particularly simple form [18] which allows for the integrals to be solved analytically

in terms of polylogarithms. There is also evidence that for numerical computations, a UT

basis is more convenient to evaluate.4 So the IBP reduction to a UT basis greatly simplifies

the amplitude computations after the IBP reduction. b) We observe that, in the case of

the double pentagon, the master-integral coefficients in a UT basis are significantly simpler

than those in a traditional Laporta basis. This makes the IBP relations easier to use.

In practice, we consider special forms of UT bases, the so-called dlog bases, which will

be introduced in the next subsection.

5.1 Dlog bases and the dlog algorithm

We call a Feynman integral a dlog integral if its four dimensional integrand can be written

as a sum of dlog forms [75] with constant coefficients. For the construction of a dlog

basis we additionally demand the integrals to be UT functions. Depending on the integral

family under consideration this additional requiremet is automatically fulfilled for Feynman

integrals up to a certain numerator power which makes the dlog criterium a very strong tool

to construct UT integrals. Beyond this numerator power an extended approach as in [76]

using the Baikov parametrization can be applied to construct UT integrals. The approach

outlined here can be applied to Feynman integrals evaluating to muliple polylogarithms.

For an integrand

dI = dx1 ∧ dx2 ∧ . . . ∧ dxnR(x1, . . . , xn), (5.1)

4Private communication with Yang Gang.
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where R(x1, . . . , x2) is a rational function in x1, . . . , xn we say dI has a dlog form if it can

be written as

dI =
∑

i

ci dlogfi,1 ∧ . . . ∧ dlogfi,n, (5.2)

with fi,j being algebraic functions of x1, . . . , xn. This is only possible if the integrand has

at most simple poles, including points at infinity. For example, both forms dx
x2 and dx

admit no dlog form because of the double poles at zero respectively infinity.

The coefficients ci in equation (5.2) are called leading singularities [77]. For Feynman

integrals, that are not of the elliptic type, they are in general algebraic functions of the

external variables. By choosing an appropriate parametrization of the external variables,

the leading singularities are typically rational functions. This is, in particular, true for the

two-loop five-point integrals that are discussed in the next section. The leading singular-

ities can also be understood as integrals over the original integrand where the integration

contour is localized around the poles of the integrand. Leading singularities and the in-

tegrals integrated on the real contour have analytic properties in common. So, integrals

with leading singularities that are just constant numbers are particularly useful, most im-

portantly because they fulfill differential equations in the canonical form [18]. This implies

that they have the property of uniform transcendental weight, which means that if the

series is expanded in ǫ, the parameter of dimensional regularization, the coefficients have

homogeneous transcendental weight and the weight increases by one for each order in ǫ.

Next, we recall from [64] how to transform a given integrand into dlog form, in case

this is possible. Given an integrand in n integration variables, we choose, if possible, one

variable x that is linear in all denominator factors and do a partial fraction decomposition

while treating all other variables as constants. In this way, we obtain a sum of integrands

of the form
dx

x− a
∧ Ω = d log(x− a) ∧ Ω, (5.3)

where Ω is an (n−1)-form, independent of x, and a is a polynomial that may depend on the

other integration variables. Then we iterate this procedure taking Ω as our new integrand

until no integration variables are left. If in any intermediate step a pole of degree two or

higher is encountered, then the integrand does not admit a dlog form. There are cases

where no variable exists that is linear in all denominator factors. One way to proceed in

such a case is to make a variable transformation such that at least one of the new variables

is linear in all denominator factors.

With the help of an algorithm based on the approach described in this section a

complete basis of dlog master integrals with constant leading singularities for all two-loop

five point integral families were constructed [76, 78]. The denominator structure for each

integral family is given by the propagators. To construct the dlog integrals we make

a general numerator ansatz. We write the numerator as a linear combination of terms

that are products of inverse propagators and irreducible scalar products. Each term is

multiplied by a free parameter, and by applying the algorithm to this general integrand,

we can determine values of the free parameters such that the integrand has a dlog form
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and constant leading singularities. In this way, we obtain a set of dlog integrals that form

a basis of dlog master integrals.

5.2 IBP reduction with a dlog basis

Given a dlog basis, we discuss the IBP reduction in two settings:

1. When both the master-integral coefficients in the Laporta basis and the dlog basis

are needed, we first compute the reduction in the Laporta basis I with our module

intersection and GPI-Space reduction algorithm,

F = AI, (5.4)

where F is the list of target integrals as a column vector. Then we reduce the dlog

basis Ĩ to the Laporta basis I,

Ĩ = TI. (5.5)

Note that since the dlog basis construction has a restriction on the numerator degree,

this reduction is usually easy. Terms exceeding the allowed numerator degree have

double poles at infinity. This can be seen by inverting the loop momenta kµi → kµi /k
2
i .

Using our Singular RREF code, with a good pivot strategy, we can analytically

find the inverse T−1. The matrix product AT−1 contains the coefficients of an IBP

reduction to the dlog basis.

We remark that the product AT−1 can be difficult to calculate even if T−1 has a

relative small size. Instead of computing the product directly, we again use the semi-

numerical approach, setting several of the kinematic values to be integers, computing

the product several times, and then using our interpolation program to get the fully

analytical matrix product AT−1. This is again implemented using our Singular-

GPI-Space framework.

2. When only the master-integral coefficients in a dlog basis are needed, we apply our

semi-numerical reduction method to a set of numeric master-integral coefficients in

the Laporta basis. Instead of interpolating these coefficients, we use the semi-numeric

points to interpolate the product AT−1, not calculating the analytic form of A.

In the next section, we illustrate our approach by considering a non-trivial example, the

two-loop five-point nonplanar double pentagon diagram. This includes the IBP generation

via the module intersection method, the massively parallel reduction of the IBP system

and the basis conversion.

6 The two-loop five-point nonplanar double pentagon example

In this section, we illustrate our IBP reduction method by applying it to a nontrivial

example, the two-loop five-point nonplanar double pentagon. Note that a symbolic UT

basis for this example was found in [5, 11]. Furthermore, UT bases in terms of polylogarithm
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Figure 7. We depict the two-loop five-point nonplanar double pentagon diagram, writing zi for

the Baikov variables, which are equal to the inverse propagators. In particular, z1 = l21 and z4 = l22.

We also draw the 11 spanning cuts of this integral family. These correspond to the non-collapsible

master integrals, before using symmetries.

functions for the double pentagon and other two-loop five-point nonplanar massless integral

families were analytically calculated in [76].

For the diagram in figure 7, we chose the following labeling for the propagators:

D1 = l21 D2 = (l1 − p1)
2 D3 = (l1 − p12)

2 D4 = l22

D5 = (l2 − p123)
2 D6 = (l2 − p1234)

2 D7 = (l1 − l2)
2 D8 = (l1 − l2 + p3)

2

D9 = (l1 − p1234)
2 D10 = (l2 − p1)

2 D11 = (l2 − p12)
2 , (6.1)

where the li represent the loop momenta, the pi represent external momenta, and pi···j =
∑j

i pi. The first 8 propagators represent the topology and the last three ones the irreducible

scalar products.

This is a complicated integral family for IBP reduction, due to the number of inde-

pendent scalars, which are s12, s23, s34, s45, s45, s15 and the spacetime dimension D, and
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I[1, 1, 1, 1, 1, 1, 1, 1, 0, 0,−4], I[1, 1, 1, 1, 1, 1, 1, 1, 0,−1,−3], I[1, 1, 1, 1, 1, 1, 1, 1, 0,−2,−2],

I[1, 1, 1, 1, 1, 1, 1, 1, 0,−3,−1], I[1, 1, 1, 1, 1, 1, 1, 1, 0,−4, 0], I[1, 1, 1, 1, 1, 1, 1, 1,−1, 0,−3],

I[1, 1, 1, 1, 1, 1, 1, 1,−1,−1,−2], I[1, 1, 1, 1, 1, 1, 1, 1,−1,−2,−1], I[1, 1, 1, 1, 1, 1, 1, 1,−1,−3, 0],

I[1, 1, 1, 1, 1, 1, 1, 1,−2, 0,−2], I[1, 1, 1, 1, 1, 1, 1, 1,−2,−1,−1], I[1, 1, 1, 1, 1, 1, 1, 1,−2,−2, 0],

I[1, 1, 1, 1, 1, 1, 1, 1,−3, 0,−1], I[1, 1, 1, 1, 1, 1, 1, 1,−3,−1, 0], I[1, 1, 1, 1, 1, 1, 1, 1,−4, 0, 0],

I[1, 1, 1, 1, 1, 1, 1, 1, 0, 0,−3], I[1, 1, 1, 1, 1, 1, 1, 1, 0,−1,−2], I[1, 1, 1, 1, 1, 1, 1, 1, 0,−2,−1],

I[1, 1, 1, 1, 1, 1, 1, 1, 0,−3, 0], I[1, 1, 1, 1, 1, 1, 1, 1,−1, 0,−2], I[1, 1, 1, 1, 1, 1, 1, 1,−1,−1,−1],

I[1, 1, 1, 1, 1, 1, 1, 1,−1,−2, 0], I[1, 1, 1, 1, 1, 1, 1, 1,−2, 0,−1], I[1, 1, 1, 1, 1, 1, 1, 1,−2,−1, 0],

I[1, 1, 1, 1, 1, 1, 1, 1,−3, 0, 0], I[1, 1, 1, 1, 1, 1, 1, 1, 0, 0,−2]

Figure 8. Integrals up to numerator degree 4 without double propagators for the nonplanar double

pentagon diagram.

due to the nonplanar topology with two pentagons inside. We demonstrate our method by

reducing the 26 integrals listed in figure 8 to a master integral basis in the fashion of La-

porta. Furthermore, we convert the master-integral coefficients to the coefficients of a dlog

basis given in [76]. In this base change, we observe a significant coefficient size reduction.

6.1 Module intersection with cuts

First, we use Azurite [47] to find an integral basis. Without considering symmetries,

there are 113 irreducible integrals, and with symmetries, there are 108 master integrals.

Note that due to the number of master integrals, this IBP reduction is significantly more

complicated than the reduction of the hexagon-box diagram in [60], which has only 73

master integrals.

We can then construct the set of spanning cuts of this integral family. Each spanning

cut corresponds to a “non-collapsible” master integral [47]. There are 11 spanning cuts

(without considering symmetries),

{1, 5, 7}, {1, 5, 8}, {1, 6, 8}, {2, 4, 8}, {2, 5, 7}, {2, 6, 7},

{2, 6, 8}, {3, 4, 7}, {3, 4, 8}, {3, 6, 7}, {1, 3, 4, 5}, (6.2)

where the numbers indicate the propagators on cut. For example, {3, 4, 7} means that

D3 7→ 0, D4 7→ 0, D7 7→ 0.

For each cut, we can apply our module intersection method to generate IBPs without

double propagators. In [60], the IBPs are generated only from the top sector. Here, for

each cut, we generate the IBPs from both the top sector and lower sectors. For example,

for the cut {1, 5, 7}, we consider the 32 sectors supported on cut {1, 5, 7}, and compute

all the module intersections. This approach will generate more IBPs but make the IBP

system more block-triangular and easier for linear reduction.

With the degbound option in Singular, it is easy to generate all the module intersec-

tions. For this integral family, choosing the degree bound 5, and using one core for each

cut, it takes less than 5 minutes in total to solve all the module intersection problems an-

alytically. Later on, by finite-field methods, we find that with this choice of degree bound,

we obtain sufficiently many IBPs for our problem.
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Cut # relations # integrals size d2 d3

{1,5,7} 1134 1182 0.77 MB 21 22

{1,5,8} 1141 1192 0.85 MB 18 18

{1,6,8} 1203 1205 1.1 MB 19 30

{2,4,8} 1245 1247 1.1 MB 35 24

{2,5,7} 1164 1211 0.84 MB 26 18

{2,6,7} 1147 1206 0.62 MB 16 17

{2,6,8} 1126 1177 0.83 MB 16 18

{3,4,7} 1172 1221 0.78 MB 19 18

{3,4,8} 1180 1226 1.0 MB 19 22

{3,6,7} 1115 1165 0.82 MB 21 28

{1,3,4,5} 721 762 0.43MB 14 14

Table 2. The IBP relations generated on each cut by the module intersection method. We used

finite-field methods to pick linearly independent and necessary IBP relations to reduce all target

integrals. The size is the output file size on disk before reduction. The numbers d2 and d3 are the

maximal degrees in the reduced IBP relations for c2 and c3, respectively.

After generating the IBPs, we use the two-step trimming process described in sec-

tion 2.2 to select necessary IBPs for our targets. This computation is via finite-field meth-

ods and powered by the package SpaSM.

Note that different cuts can support the same master integral. We then speak of a

cut overlap. For example, the integral I[1, 1, 1, 1, 1, 0, 1, 1, 0, 0, 0] is supported by both cuts

{1, 5, 7} and {2, 4, 8}. The IBP reductions on these two cuts should give the same co-

efficients. To avoid redundant computations, we can apply the master integral removal

method [49], setting I[1, 1, 1, 1, 1, 0, 1, 1, 0, 0, 0] 7→ 0 either in cut {1, 5, 7} or in cut {2, 4, 8}.

Clearly there are many different removal strategies for master integral overlapping in dif-

ferent cuts, and different strategies result in different performances. In our computational

problem, we find that the cuts {1, 6, 8} and {2, 4, 8} are relatively “difficult” cuts for IBP

reduction. Hence, we set as many master integrals as possible in {1, 6, 8} and {2, 4, 8} to

zero, and later on recover the remaining master integral coefficients from other cuts via

cut overlap.

We compute the module intersections analytically. For the purpose of linear reduction,

we further set

s12 7→ 1, c2 ≡ s23/s12, c3 ≡ s34/s12, c4 ≡ s45/s12, c5 ≡ s15/s12 (6.3)

to dehomogenize the IBP relations and speed up the computation. The s12 dependence

can be recovered in the final step.

The resulting IBPs are summarized in table 2. Note that for the cut {1, 6, 8}, there

are 1203 independent relations and 1205 integrals after applying the idea of [49] to set

most master integrals supported on the cut {1, 6, 8} to zero. As a result we only have to

compute just two master integral coefficients.
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6.2 IBP reduction

We apply our reduction method via Singular andGPI-Space to reduce the linear systems

in table 2. We use a semi-numeric approach, choosing c4, c5 and the space-time dimension

D to be symbolic, and compute the linear reduction with integer-valued c2 and c3.

By a linear reduction with c2 (respectively c3) symbolic and all the other parameters

numeric, we easily determine the maximal degree of c2 (respectively c3) in the reduced

IBP relations. The degrees are listed in table 2 as d2 and d3, respectively. From this

information, we get the minimal number (d2 +1)× (d3 +1) of semi-numeric computations

for interpolating the analytic reduction result. For example, for the cut {1, 5, 7}, we need

to run semi-numeric computations at least 506 times. Of course, the cuts exhibit different

running times when performing the reductions: for instance, cut {1, 3, 4, 5}, which we

already considered as an example in section 4.4, is the easiest in terms of running time,

taking only about 11 minutes when using 384 CPU cores. In contrast, the cut {3, 4, 8} is

much more complex: its reduction took 12 hours and 21 minutes, using 384 cores.

After getting the analytic reduction of all the cuts, we merge them to get the full

IBP reduction to a 113-integral basis. Furthermore, we apply the symmetries, obtained

from [47],

I[0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0] = I[1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0] (6.4)

I[0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0] = I[1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0] (6.5)

I[1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0] = I[1, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0] (6.6)

I[0, 0, 1, 1, 1, 0, 1, 0, 0, 0, 0] = I[1, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0] (6.7)

I[1, 0, 1, 1, 1, 0, 0, 1, 0, 0, 0] = I[1, 0, 1, 1, 1, 0, 1, 0, 0, 0, 0] (6.8)

to reduce the 26 target integrals to a 108-integral Laporta basis I. We note that the

resulting file is large, with a size of ∼ 2.0 GB on disk.

By setting all Mandelstam variables to integers, we have verified that our result is

consistent with FIRE6 [38].

6.3 Master-integral coefficient conversion to a dlog basis

In this subsection, we discuss converting the master-integral coefficients for the Laporta

basis to the master-integral coefficients of the dlog basis found in [76].

For this conversion, we again use the semi-numeric approach, taking integer-valued c2,

c3, and symbolic c4, c5 and D, converting the coefficients and then interpolating. It is easy

to determine that the coefficients in the dlog basis have the following maximal degrees for

c2 and c3, respectively,

d′2 = 20, d′3 = 20. (6.9)

By comparing with table 2, where d2 can be as high as 35, we find that the maximal degree

drops. For the basis conversion, we carry out a semi-numeric matrix multiplication with

subsequent interpolation using Singular and GPI-Space.

After the computation, we see that the IBP reduction coefficients of figure 8 in this

dlog basis have size 480 MB on disk, which shows a significant 76% reduction of the
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master-integral coefficient size compared to what we have for the Laporta basis. On the

other hand, if only the master-integral coefficients in the dlog basis are needed, we can

skip the interpolation for the Laporta basis master-integral coefficients, and directly con-

vert the intermediate numerical results to dlog basis master-integral coefficients. Because

of the maximal degree drop, this shortcut reduces the required number of semi-numeric

computations.

For convenience, we also provide the master-integral coefficients in the dlog basis,

with the s12 scalar recovered. All these analytic results can be obtained via the links

presented in the introduction of this paper. Note that all files provided under the links

contain 26× 108 matrices. For each matrix, the entry in the ith row and jth column is the

corresponding master-integral coefficient for the ith target integral in figure 8, expanded on

the jth master integral. The Laporta basis and the dlog basis are included in the auxiliary

files of this paper.

7 Summary

In this paper, we present our powerful new IBP reduction method, which is based on

computational algebraic geometry powered by the computer algebra system Singular in

conjunction with the taskflow management system GPI-Space. Our method is suitable

for large scale IBP reduction problems with complicated Feynman diagrams and multiple

variables. We demonstrate the power of the new method by the analytic two-loop five-

point nonplanar double pentagon IBP computation. The computational result has been

cross-checked numerically using state-of-the-art IBP programs.

Our method is flexible and can be adapted in various different scenarios:

1. Modern methods for amplitude computation often follow the approach of numerically

or semi-numerically calculating the IBP relations in order to interpolate the amplitude

coefficient under consideration directly, instead of interpolating the analytic IBP

relations. Our method can efficiently compute the reduced numeric or semi-numeric

IBP relations and, hence, perfectly fits into this purpose.

2. Our module intersection method can also be used for integrals with double propa-

gators or multiple-power propagators since this IBP generating method avoids the

increase of propagator exponents and significantly reduces the size of the IBP system.

3. Although our method is currently based on semi-numerical parallelizations with

integer-valued numerics, it clearly can be extended to finite-field linear reduction,

if necessary.

4. More generally, our linear reduction parallelization method can be used for compu-

tational problems other than IBP reduction. For example, in recent years, it was

found that the Bethe Ansatz equation of integrable spin chains can be analytically

computed by algebraic geometry methods [79, 80]. Often, this involves large-scale

linear algebra computations with symbolic parameters, and our parallelization via

the Singular-GPI-Space framework can greatly speed up the computation. We
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also expect that our reduction method can be used more generally for Gröbner basis

computations with parameters.

In the future, we will develop our code into an automated software package, powered

by Singular and GPI-Space, for solving large-scale IBP or amplitude problems. The

possible simplification of master integral coefficients in a UT/dlog basis will be further

investigated. We expect that this method will provide a boost for the current NNLO

precision computations.
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A Rational function interpolation

In this appendix, we introduce our simple approach to rational function interpolation.

Although this algorithm is rather straight-forward compared to other more involved tech-

niques available (see, for example, [81–83]), we have found that it is more suitable for our

setup. The idea is to heuristically convert a rational function interpolation problem to a

polynomial function interpolation problem.

We focus on a general computational process with symbolic variables x1, . . . xk which

would give the final result as a rational function

F (x1, . . . , xk)

G(x1, . . . , xk)
. (A.1)
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Here, F and G are integer valued polynomials with gcd(F,G) = 1. Suppose we are in a

situation where it is difficult to perform this process with all parameters x1, . . . , xk symbolic,

but where it is feasible to obtain results when some of the parameters are set to be general

integer values, and only the remaining parameters are symbolic. Then our approach is to

repeat such semi-numeric computations sufficiently often, and interpolate to get (A.1).

To be specific, in such a situation, and for a fixed k1 < k, we refer to the computation

with xk1+1, . . . , xk symbolic, and the other parameters substituted by random integers,

x1 7→ a
(i)
1 , . . . , xk1+1 7→ a

(i)
k1+1, (A.2)

as the ith semi-numeric computation. We write the result of the ith semi-numeric compu-

tation as
fi(xk1+1, . . . , xk)

gi(xk1+1, . . . , xk)
. (A.3)

Note that, although computer algebra software can cancel the fraction to get polynomials

fi and gi with gcd(fi, gi) = 1, the relation between G and gi is not clear a priori. For

example, it may happen that

gi(xk1+1, . . . , xk) 6= G(a
(i)
1 , . . . , a

(i)
k , xk1+1, . . . , xk). (A.4)

Similarly, we may have that

fi(xk1+1, . . . , xk) 6= F (a
(i)
1 , . . . , a

(i)
k , xk1+1, . . . , xk). (A.5)

The reason for this is that after taking integer values a
(i)
1 , . . . , a

(i)
k for the first k variables,

there can be additional cancellations between F and G. This phenomenon makes the direct

polynomial interpolation of the gi and fi inapplicable.

We solve this cancellation problem in a heuristic way.

1. First, we compute a “reference” result with symbolic x1, . . . , xk and random integer

values for the other parameters, xk1+1 7→ bk1+1, . . . , xk 7→ bk:

p(x1, . . . , xk1)

q(x1, . . . , xk1)
, (A.6)

where p and q are integer valued polynomials with gcd(p, q) = 1. Generally, except

for a statistically very small set of points b = (bk1+1, . . . , bk), we can assume that

the two polynomials F (x1, . . . , xk1 , bk1+1, . . . , bk) and G(x1, . . . , xk1 , bk1+1, . . . , bk) are

coprime. Then, since

p(x1, . . . , xk1)

q(x1, . . . , xk1)
=

F (x1, . . . , xk1 , bk1+1, . . . , bk)

G(x1, . . . , xk1 , bk1+1, . . . , bk)
(A.7)

by the unique factorization domain (UFD) property,

G(x1, . . . , xk1 , bk1+1, . . . , bk) = µ · q(x1, . . . , xk1) , (A.8)

F (x1, . . . , xk1 , bk1+1, . . . , bk) = µ · p(x1, . . . , xk1) , (A.9)

for some integer µ. Note that our algorithm relies only on the existence of such a µ.
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2. Second, we do a “majority vote” selection from among the semi-numeric results:

for each of the polynomials, we record the leading exponent in xk+1, . . . , xk, and

determine the most frequently occurring exponent r. Then we drop all semi-

numeric result whose exponent is not equal to r. This step ensures that the gcd

of F (a
(i)
1 , . . . , a

(i)
k , ck1+1, . . . , ck) and G(a

(i)
1 , . . . , a

(i)
k , xk1+1, . . . , xk) is just an integer

instead of a non-constant polynomial in xk1+1, . . . , xk. Again by the UFD property,

G(a
(i)
1 , . . . , a

(i)
k , xk1+1, . . . , xk) = λi · gi(xk1+1, . . . , xk) , (A.10)

F (a
(i)
1 , . . . , a

(i)
k , xk1+1, . . . , xk) = λi · fi(xk1+1, . . . , xk) , (A.11)

where each λi is an integer. Setting x1 7→ a
(i)
1 , . . . , xk1+1 7→ a

(i)
k1+1 in (A.8) and

xk1+1 7→ bk1+1, . . . , xk 7→ bk in (A.10), we determine that

λi = µ
q(a

(i)
1 , . . . , a

(i)
k1
)

gi(bk1+1, . . . , bk)
. (A.12)

3. Define

g̃i(xk1+1, . . . , xk) ≡ λi

µ gi(xk1+1, . . . , xk) =
q(a

(i)
1 ,...,a

(i)
k1

)

gi(bk1+1,...,bk)
gi(xk1+1, . . . , xk) , (A.13)

f̃i(xk1+1, . . . , xk) ≡ λi

µ fi(xk1+1, . . . , xk) =
q(a

(i)
1 ,...,a

(i)
k1

)

gi(bk1+1,...,bk)
fi(xk1+1, . . . , xk) . (A.14)

Then interpolate both polynomials f̃i(xk1+1, . . . , xk) and g̃i(xk1+1, . . . , xk) for the se-

lected semi-numeric points by standard polynomial interpolation algorithms, say by

using Newton polynomials. From (A.12), we see that the resulting two polynomi-

als are

1

µ
F (x1, . . . , xk, xk1+1, . . . , xk),

1

µ
G(x1, . . . , xk, xk1+1, . . . , xk) , (A.15)

so that the ratio of the polynomials gives the desired fraction F/G, while the integer

factor µ is canceled out.

So with the compensation factors λi/µ, we can use simple polynomial interpolation

algorithms to interpolate rational functions at the extra cost of computing only one

additional reference point. If the degree of F and G in xj in is dj (1 ≤ j ≤ k1), for a

general choice of the interpolation points, we need to compute the semi-numeric result

(d1 + 1)× . . .× (dk1 + 1) (A.16)

times, plus one computation for the reference point.

The resulting algorithm is implemented using Singular in conjunction with

GPI-Space.

In practice, this algorithm is extendable in many ways. For example, instead of

splitting the variables x1, . . . xk into two groups (x1, . . . , xk1) and (xk1+1, . . . , xk),

we can split the variables in more groups and use our algorithm recursively. The

algorithm can also be combined with finite field reconstruction.

– 28 –



J
H
E
P
0
2
(
2
0
2
0
)
0
7
9

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.

References

[1] S. Badger, H. Frellesvig and Y. Zhang, A two-loop five-gluon helicity amplitude in QCD,

JHEP 12 (2013) 045 [arXiv:1310.1051] [INSPIRE].

[2] T. Gehrmann, J.M. Henn and N.A. Lo Presti, Analytic form of the two-loop planar five-gluon

all-plus-helicity amplitude in QCD, Phys. Rev. Lett. 116 (2016) 062001 [Erratum ibid. 116

(2016) 189903] [arXiv:1511.05409] [INSPIRE].

[3] S. Badger, C. Brønnum-Hansen, H.B. Hartanto and T. Peraro, First look at two-loop

five-gluon scattering in QCD, Phys. Rev. Lett. 120 (2018) 092001 [arXiv:1712.02229]

[INSPIRE].

[4] S. Abreu et al., Planar two-loop five-gluon amplitudes from numerical unitarity, Phys. Rev.

D 97 (2018) 116014 [arXiv:1712.03946] [INSPIRE].

[5] S. Abreu et al., The two-loop five-point amplitude in N = 4 super-Yang-Mills theory, Phys.

Rev. Lett. 122 (2019) 121603 [arXiv:1812.08941] [INSPIRE].

[6] S. Abreu et al., Planar two-loop five-parton amplitudes from numerical unitarity, JHEP 11

(2018) 116 [arXiv:1809.09067] [INSPIRE].
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[61] J. Böhm et al., Complete sets of logarithmic vector fields for integration-by-parts identities of

Feynman integrals, Phys. Rev. D 98 (2018) 025023 [arXiv:1712.09737] [INSPIRE].

[62] W. Decker, G.-M. Greuel, G. Pfister and H. Schönemann, Singular 4-1-1 — A computer

algebra system for polynomial computations, http://www.singular.uni-kl.de (2018).

[63] F.J. Pfreundt and M. Rahn, GPI-Space, Fraunhofer ITWM Kaiserslautern,

http://www.gpi-space.de/ (2018).

[64] P. Wasser, Analytic properties of Feynman integrals for scattering amplitudes, M.Sc.

thesis,Johannes Gutenberg-Universität Mainz, Mainz, Germany (2016).

[65] P.A. Baikov, Explicit solutions of the three loop vacuum integral recurrence relations, Phys.

Lett. B 385 (1996) 404 [hep-ph/9603267] [INSPIRE].

[66] R.N. Lee, Modern techniques of multiloop calculations, in the proceedings of the 49th

Rencontres de Moriond on QCD and High Energy Interactions, March 22–29, La Thuile,

Italy (2014), arXiv:1405.5616 [INSPIRE].

[67] The SpaSM group, SpaSM: a Sparse direct Solver Modulo p, v1.2 ed.,

http://github.com/cbouilla/spasm (2017).

[68] E.W. Mayr and A.R. Meyer, The complexity of the word problems for commutative

semigroups and polynomial ideals, Adv. Math. 46 (1982) 305.
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