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INTEGRATION BY SUBSTITUTION

GERALD S. GOODMAN

Abstract. The author shows how ^-functions provide a natural setting in

which to establish the change of variables formula for Lebesgue or

Denjoy/Perron integrals. By abolishing the need to pass to the limit under

the integral sign, the validity of the classical formula is significantly exten-

ded, yielding new results even in the case of Lebesgue integrals.

1. N-functions. A real-valued function on a finite interval is, by definition,

an AZ-function if it carries null sets into null sets, the measure being Lebesgue

measure (both here and in what follows).

By a theorem of Banach ([1, p. 169]), any continuous A'-function possesses

a finite derivative at each point of a set of positive measure. If this derivative,

when extended by assigning it the value zero wherever it is not defined,

happens to be Denjoy/Perron integrable, then its indefinite integral differs

from the associated A'-function at most by a constant. This remarkable result

is due to S. Saks [5, p. 145f.], extending Bary [2, p. 199f.], who had proved it

for the Lebesgue integral.

2. The chain rule. Serrin and Varberg [7] have shown that a chain rule

applies to the composition of two a.e. differentiable functions when the outer

function is an A-function. A slight reformulation of their result brings out a

useful extension property of the chain rule derivative.

Extended chain rule. Let g be an a.e. differentiable real-valued function

on the interval [a, b], and let F be an a.e. differentiable N-function defined on

some interval which contains the range of g. Suppose that f is any function

equivalent to F'. Then the function (f ° g)- g' agrees with (F ° g)' a.e. on the

set where the latter exists and vanishes a.e. on the remainder of [a, b].

Proof. Exactly the proof of Serrin and Varberg's Theorem 2, [7, p. 516],

when their assumption of the a.e. differentiability of F ° g is dropped.

3. The change of variables formula. The foregoing considerations provide

the basis for a transparent proof of a general

Change of variables formula. Let g be a continuous, a.e. differentiable

N-function on [a, b], and let F be a continuous, a.e differentiable N-function
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defined on an interval which contains the range ofg. Suppose that fis equivalent

to F'. Then there holds

cb
F ° g(b) - F o g(a) =      (/o g), g'

J a

whenever the integrand is Lebesgue or Denjoy / Perron integrable, and the

analogous formula holds on every subinterval of [a, b].

Proof. By the Extended Chain Rule, the integrand is equivalent to the

function which extends (F ° g)' to all of [a, b] in the trivial way. Noting that

F ° g is a continuous N-function, Saks's Theorem applies: F ° g is the

integral of its derivative so extended, plus a constant. This yields, by equiva-

lence, the displayed formula. The same reasoning applies on any subinterval

of [a, b].

Scholium. Take g as above and let f be Denjoy / Perron integrable, or just

Lebesgue integrable, on the range of g, with indefinite integral F. Then, by [6, p.

251], F is a continuous, a.e. differentiable N-function, and we have the classical

formula

fsib)f=ft' (f°g)-g' (cv)
Jg(a) Ja

whenever the integral at right exists in the Lebesgue or Denjoy / Perron sense.

Remark. Note that the Scholium covers the case where / is Lebesgue

integrable but (f ° g) ■ g' is only Denjoy/Perron integrable, as in the example

of McShane [4, p. 214].

Note added in proof. Priority for (CV) must be assigned to K. Krzy-

zewski, On change of variable in the Denjoy-Perron integral. I, Colloq. Math. 9

(1962), 99-104, who also established the main result of [7].

4. A more general formula. Continuous, a.e. differentiable /V-functions

belong to a more extensive class of continuous functions which have the

property of transforming their set of points of nondifferentiability into a set

of measure zero (which depends upon the function). This larger class has

been studied by Bary and Menchoff [2], who showed that any such function

g can be decomposed into g = « ° k, where « is increasing and absolutely

continuous and k is Lipschitzian. These functions g need not be differentiable

a.e.; nevertheless, we have the

Generalized change of variables formula. Let F and f be as in the

Scholium, and let g be a continuous function on [a, b] which carries its set of

points of nondifferentiabiltiy into a set of measure zero. Set g* = g' wherever g'

exists, and zero elsewhere. Then

(      f=f  (f°g)-g* (GCV)
Jg(a) Ja

whenever the integral at right exists.
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Proof. Set g = h ° k as above, and apply (CV) first in the case of

increasing absolutely continuous functions (for which it is always valid: [7,

Corollary 6] or [8, p. 19]), and then apply (CV) in the form of the Scholium,

or [7, Corollary 8], to get

rg(b) rk(b) .b

\       /=/       (f°h)-h' = [  (f°h°k)(h' °k)-k'
Jg(a) Jk(a) Ja

if the last integral exists. Now the Extended Chain Rule applied to h ° k

assures that (h! ° k) • k! = g* a.e., and (GCV) emerges.

Remark. Actually, (GCV) is valid when g is ¿7«y continuous A-function on

[¿7, b], provided both integrals exist. For a proof, see [3].
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