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Integration of Alzheimer’s disease genetics and
myeloid genomics identifies disease risk regulatory
elements and genes
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Steven X. Chen 5,6, Haoxiang Cheng 2, John F. Fullard2,7, Jaroslav Bendl 2,7, Yiyuan Liu1,

Panos Roussos 2,7, Johan LM Björkegren 2,8, Yunlong Liu5,6, Wayne W. Poon 9, Ke Hao 2,

Edoardo Marcora 1,2,10✉ & Alison M. Goate 1,2,10✉

Genome-wide association studies (GWAS) have identified more than 40 loci associated with

Alzheimer’s disease (AD), but the causal variants, regulatory elements, genes and pathways

remain largely unknown, impeding a mechanistic understanding of AD pathogenesis. Pre-

viously, we showed that AD risk alleles are enriched in myeloid-specific epigenomic anno-

tations. Here, we show that they are specifically enriched in active enhancers of monocytes,

macrophages and microglia. We integrated AD GWAS with myeloid epigenomic and tran-

scriptomic datasets using analytical approaches to link myeloid enhancer activity to target

gene expression regulation and AD risk modification. We identify AD risk enhancers and

nominate candidate causal genes among their likely targets (including AP4E1, AP4M1, APBB3,

BIN1, MS4A4A, MS4A6A, PILRA, RABEP1, SPI1, TP53INP1, and ZYX) in twenty loci. Fine-

mapping of these enhancers nominates candidate functional variants that likely modify AD

risk by regulating gene expression in myeloid cells. In the MS4A locus we identified a single

candidate functional variant and validated it in human induced pluripotent stem cell (hiPSC)-

derived microglia and brain. Taken together, this study integrates AD GWAS with multiple

myeloid genomic datasets to investigate the mechanisms of AD risk alleles and nominates

candidate functional variants, regulatory elements and genes that likely modulate disease

susceptibility.
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A
lzheimer’s disease (AD) is the most common type of
dementia with a global burden of approximately 50 million
people and no disease-modifying treatments available1.

Several lines of genetic evidence implicate myeloid cells in the
etiology of AD2. Whole-exome sequencing and microarray studies
have identified rare coding variants associated with AD in genes
(e.g., TREM23, SORL14, ABI35, PLCG25 and ABCA76) that play
important roles in myeloid cells of the brain (microglia) and
peripheral tissues (e.g., monocytes and macrophages) and have
high relative expression levels in microglia compared to other brain
cell types7. Genome-wide association studies (GWAS) have iden-
tified common non-coding variants associated with AD in more
than 40 loci8, but the identification of the functional variants and
causal genes underlying these statistical associations has been
lacking. Earlier studies have focused on mapping candidate causal
genes to AD risk loci using whole-blood and brain expression
quantitative trait loci (eQTL) datasets9–11. However, using tissue-
level data poses obstacles to identifying myeloid-specific signals,
because myeloid cells (microglia and monocytes) represent small
fractions (~10%) of the total cell population in their respective
tissues (brain and peripheral blood). More importantly, given the
strong enrichment of AD risk alleles in myeloid-specific epige-
nomic annotations and expressed genes12,13, it is imperative to
investigate their impact on myeloid epigenomes and tran-
scriptomes in the modulation of AD susceptibility.

Here, we show that AD risk alleles are specifically enriched in
active enhancers of monocytes, macrophages and microglia and
identify transcription factor binding motifs (TFBMs) over-
represented within these regulatory elements. We further identify
myeloid transcription factors (TFs) whose binding sites at active
enhancers are likely burdened by AD risk variants. Given the
selective enrichment of AD risk alleles in myeloid active enhancers,
we sought to link the activity of myeloid enhancers that contain
AD risk variants to target gene expression regulation and AD risk
modification. To accomplish this we use two complementary
approaches. First, we map myeloid active enhancers that contain
AD risk alleles (AD risk enhancers) to their target genes by inte-
grating chromatin interactions (promoter-capture Hi–C) and
eQTL datasets from monocytes and macrophages. This approach
allows us to nominate candidate causal genes in eleven genome-
wide significant and five suggestive AD risk loci, including
TP53INP1, APBB3, RABEP1, and SPPL2A. In our second
approach, we use Summary data-based Mendelian Randomization
(SMR)14 to investigate the causal relationship between chromatin
activity, target gene expression, and AD risk modification. This
approach allows us to identify specific active chromatin regions
that likely modify AD risk by regulating the expression of one or
more of their target genes in 12 loci. Importantly, the target genes
of the myeloid active enhancers identified by these two analytical
approaches are highly consistent and implicate the endolysosomal
system of myeloid cells in the etiology of AD. We further fine-map
AD risk enhancers to identify candidate functional variants that
likely affect TF binding and regulate gene expression in seven
loci, and validate one of these variants in the MS4A locus in
human induced pluripotent stem cell (hiPSC)-derived microglia
and brain.

Results
AD risk alleles are specifically enriched in active enhancers of
monocytes, macrophages, and microglia. Our earlier analyses
showed a significant enrichment of AD risk alleles in several
myeloid-specific epigenomic annotations, but not in brain or other
tissues/cell types (with the exception of liver and B-lymphoid
cells)12. To further dissect this enrichment, we used ChIP-Seq pro-
files of histone modifications that define the chromatin signatures of
regulatory elements (H3K27ac for active enhancers and promoters,

H3K4me1 for enhancers, and H3K4me2 for enhancers and pro-
moters and H3K4me3 for promoters) from monocytes, macro-
phages, and microglia to annotate the genome with myeloid active
enhancers (AE), active promoters (AP), primed enhancers (PE) and
primed promoters (PP) (see Methods)15. We identified 37246,
48242, and 34014 active enhancers, 7871, 13979, and 8284 active
promoters, 11534, 34623, and 52360 primed enhancers and 3107,
4028, and 3112 primed promoters in monocytes, macrophages, and
microglia, respectively. To identify which of these myeloid regulatory
elements are enriched for AD risk alleles, we performed stratified LD
score regression (LDSC)16 of AD single nucleotide polymorphism
(SNP) heritability partitioned by the aforementioned epigenomic
annotations using the International Genomics of Alzheimer’s Project
(IGAP) AD GWAS dataset17. This analysis revealed selective
enrichment of AD risk alleles in active enhancers of monocytes,
macrophages, and microglia (Fig. 1a). In contrast, schizophrenia
SNP heritability (using the Psychiatric Genomics Consortium SCZ
GWAS dataset as control18) was not enriched in any of these
myeloid regulatory elements (Fig. 1a).

To identify TFs that likely regulate the activity of myeloid
enhancers, we performed de novo motif analysis19 in open
chromatin regions (identified by ATAC-Seq) that overlap with
active enhancers in all three cell types (Supplementary Data 1).
The binding motif for PU.1 (a transcription factor critical for
myeloid and B-lymphoid cell development and function and an
AD risk gene (SPI1)12) was the best match for the most highly
overrepresented sequence motif in active enhancers across all
three cell types, followed by AP-1, C/EBP, CTCF, and RUNX
binding motifs. The binding motif for MEF2 family TFs (which
includes MEF2C in another AD risk locus17) was the best match
for highly overrepresented sequence motif in active enhancers of
human microglia, consistent with findings in mouse microglia20.
To test whether the binding sites of TFs that likely regulate active
myeloid enhancers are enriched for AD risk variants, we stratified
ATAC-Seq regions in all three cell types by the presence of the
binding motifs of the TFs that were found to be overrepresented
in active myeloid enhancers and expressed in monocytes,
macrophages and microglia (TPM ≥ 1), and applied LDSC to
quantify the enrichment of AD SNP heritability partitioned by
these subsets of ATAC-Seq regions (Fig. 1b). ATAC-Seq regions
overlapping with active enhancers that were positive for the PU.1
binding motif in all three cell types were enriched for AD risk
alleles. MAF binding motif-positive ATAC-Seq regions were
enriched for AD risk alleles in macrophage and microglial active
enhancers. SMAD, USF, and SP binding motif-positive ATAC-
Seq regions were enriched for AD risk alleles only in microglial
active enhancers. Interestingly, a study comparing two mouse
strains reported that genetic variants in Mafb, Smad3, and Usf1
binding sites affected PU.1 binding specifically in microglia,
suggesting that these TFs could be binding partners of PU.1 in
microglia21. These results show that AD risk alleles are
specifically enriched in active enhancers of monocytes, macro-
phages, and microglia, and nominate shared and cell-type specific
TFs that likely regulate the activity of these regulatory elements.
Additionally, these results implicate TFs whose binding to
myeloid active enhancers is likely to be affected by AD risk
alleles. These results support our hypothesis that TF binding sites
might be altered by AD risk variants to affect myeloid enhancer
activity and gene expression, which in turn modulate disease
susceptibility by altering the biology of myeloid cells.

Integration of AD GWAS signals with myeloid epigenomic
annotations, chromatin interactions (promoter-capture Hi–C),
and eQTL datasets identifies candidate causal genes in sixteen
AD risk loci. Promoter-enhancer interactions constitute one of

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-21823-y

2 NATURE COMMUNICATIONS |         (2021) 12:1610 | https://doi.org/10.1038/s41467-021-21823-y | www.nature.com/naturecommunications

www.nature.com/naturecommunications


the most fundamental mechanisms of gene expression regulation,
where enhancer elements are brought into close proximity to
cognate promoters to stimulate transcription of their target
genes19. Given the observed enrichment of AD risk alleles in
myeloid active enhancers, we reasoned that harnessing informa-
tion about the spatial organization of chromatin and integrating it
with epigenomic annotations and eQTLs in myeloid cells would
facilitate the identification of candidate causal genes regulated by
these elements in AD risk loci.

Chromatin interactions and eQTL datasets are currently not
available for human microglia. However, our partitioned AD
SNP heritability estimates suggest that active enhancers are
enriched in monocytes, macrophages, and microglia to a similar
extent, hence we used datasets from human peripheral blood
monocytes and monocyte-derived macrophages as we did
previously12. We first identified active enhancers in monocytes
and macrophages that contain AD risk alleles (P ≤ 1 × 10−6,
hereafter referred to as AD risk enhancers). Among these we
then selected those that interact with at least one gene promoter
and contain AD risk variants that are eQTLs for the same gene
in monocytes and macrophages (FDR ≤ 5%) using the Javierre
et al.19 promoter-capture Hi–C dataset and the Cardiogenics22,
Fairfax et al. 201423 and STARNET24 eQTL datasets. These
analyses were performed within a single cell type: monocyte
epigenomic marks were integrated with monocyte promoter
capture Hi–C and 2 independent monocyte eQTL datasets
(Cardiogenics and Fairfax). Similarly, macrophage epigenomic
annotations were integrated with macrophage promoter capture
Hi–C and 2 independent macrophage eQTL datasets (Cardio-
genics and STARNET). Using this approach we nominate
candidate causal genes in sixteen genome-wide significant and
suggestive AD risk loci (Table 1). In some loci, this analysis
identified genes that have known AD-associated coding variants
(ABCA725) and genes that have been identified as most likely
causal in previous studies (BIN126 and PTK2B27). In other loci,
we uncovered co-regulation of the expression of multiple target

genes by shared AD risk enhancers. For example, in the SPI1
locus, we identified AD risk enhancers shared by ACP2, MADD,
MYBPC3, NR1H3, NUP160, PSMC3, and SPI1 in monocytes,
and by NUP160, MYBPC3, and SPI1 in macrophages. Similarly,
in the PILRA locus (previously ZCWPW1), we identified AD
risk enhancers shared by AP4M1, PILRA, PILRB, and ZCWPW1
in monocytes, and by AP4M1, MCM7, PILRA, PILRB, PVRIG,
and STAG3 in macrophages. This could reflect the presence of
either multiple causal genes at these loci or a single causal gene
and several risk-neutral genes that show association by virtue of
expression co-regulation. Additional evidence is necessary to
distinguish between these two possibilities and prioritize one or
more genes in the locus as we have shown for SPI1 at the
respective (previously CELF1) locus12.

Additionally, these analyses revealed regulatory landscapes that
are shared across myeloid cell types or are cell type-specific. In
the BIN1 locus, we observed conserved AD risk enhancer-
promoter chromatin interactions and similar eQTL signal profiles
in monocytes and macrophages, suggesting that the AD risk
regulome is similar in these two cell types and points to BIN1 as
the strongest candidate causal gene at this locus (Fig. 2a).
Conversely, in the ZYX (previously EPHA1) locus, we observed
stronger chromatin interactions with a ZYX promoter in
macrophages (mean interaction score 3.3 and 7.0 in monocytes
and macrophages, respectively) and different eQTL signal profiles
between monocytes and macrophages, suggesting that the AD
risk regulome is different in these two cell types albeit pointing to
the same candidate causal gene (Supplementary Figure 1). Finally,
we identified candidate causal genes, such as RABEP1 (Fig. 2b),
TP53INP1 (Supplementary Figure 2) and APBB3 in suggestive
loci. We also found that many of the genes prioritized through
Hi–C in monocytes and macrophages are also associated with
disease risk (SMR), including ZYX, PILRA, AP4M1, RABEP1,
APBB3 and TP53INP1 (Table 1). In summary, this analytical
approach allowed us to nominate candidate causal genes in
sixteen AD risk loci.
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Fig. 1 AD risk alleles are specifically enriched in myeloid active enhancers and in putative transcription factor binding sites located in these enhancers.

a -Log10 of enrichment P-values obtained from stratified LD Score Regression (LDSC) analysis of AD SNP heritability partitioned by active enhancer (AE),

active promoter (AP), primed enhancer (PE) and primed promoter (PP) annotations in monocytes, macrophages, and microglia. Enr = Enrichment of AD

SNP heritability partitioned by active enhancer annotations. Dashed line indicates the Bonferroni-corrected significance threshold. The enrichment standard

errors for active enhancers are 3.8, 1.3, and 2.6 for monocytes, macrophages, and microglia, respectively. b -Log10 of enrichment P-values obtained from

stratified LD Score Regression (LDSC) analysis of AD SNP heritability partitioned by ATAC-Seq subsets. The subsets were obtained by stratifying ATAC-

Seq regions in monocytes, macrophages, and microglia by the presence of the binding motif of TFs (listed on the x-axis) that were found to be

overrepresented in active myeloid enhancers and expressed in monocytes, macrophages, and microglia, respectively (TPM≥ 1)15. Dashed line indicates the

nominal significance threshold.
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Integration of AD GWAS signals with myeloid epigenomic
annotations, chromatin activity (hQTL) and eQTL datasets
identifies candidate causal genes in twelve AD risk loci.
Although chromatin interactions between active enhancers and
gene promoters may suggest target gene expression regulation,
inferring causal relationships between chromatin activity at
enhancer elements and target gene expression can provide addi-
tional evidence for such regulation and help identify genetic
variants that mediate these relationships to modulate disease
susceptibility. We used SMR to explore the causal path that links
chromatin activity to target gene expression and AD risk mod-
ification. To accomplish this, we used datasets from monocytes28,
since chromatin activity QTLs (hQTLs) are currently not avail-
able for human microglia or other macrophages. We first iden-
tified chromatin regions that contain AD risk alleles and overlap
an active enhancer and used coloc29 to select those with evidence
of independent or colocalized AD GWAS and hQTL signals (PP.
H3.abf + PP.H4.abf ≥ 0.8) (Supplementary Data 2). To investi-
gate the link between chromatin activity and target gene
expression regulation, we used SMR to test for causal association
between hQTL and eQTL effects in monocytes at the 26 regions
selected using coloc as described above. We identified multiple
genes that are likely regulated by the active enhancers in these
regions (Fig. 3a, Table 2, Supplementary Data 3), including BIN1,
CD2AP, GPR141, MS4A4A, MS4A6A, RABEP1, SPI1, TP53INP1
and ZYX. We then used SMR to test for causal association
between the expression of these genes and disease susceptibility.
These analyses revealed specific active chromatin regions in
monocytes, whose activity is causally associated with expression
of their target genes, which in turn is causally associated with AD
risk, including BIN1, GPR141, MS4A4A, MS4A6A, RABEP1, SPI1,
TP53INP1, and ZYX (Fig. 3b, Supplementary Data 4). Seventeen
of twenty-six genes nominated through causal associations
between chromatin activity and gene expression and eight of
fourteen genes nominated through causal associations between
gene expression and disease susceptibility identified using the
Cardiogenics monocyte eQTL dataset were replicated using the
Fairfax monocyte eQTL dataset (Supplementary Data 5-6). Since
the replication cohort is smaller, we expect that a larger number

of associations would replicate in a larger cohort, given the fact
that almost all genes found through associations using the Fairfax
dataset were significant in the main analysis using the Cardio-
genics dataset. Additionally, in MS4A, SPI1, TP53INP1 and ZYX
loci both computational approaches pointed to the same candi-
date causal genes (albeit nominating different enhancers), while
in BIN1 and RABEP1 loci both approaches pointed to the same
AD risk enhancers and target gene (Fig. 2a). Hence, these results
provide converging evidence for target gene expression regulation
by active enhancers in these regions.

Although we observed a global enrichment of AD risk alleles in
myeloid active enhancers across the human genome (Fig. 1a), we
discovered a small subset of loci where the regulatory elements
associated with causal gene expression regulation are either not
active enhancers and/or do not themselves contain AD risk
alleles. For example, we identified multiple primed enhancers in
monocytes that do not contain AD risk alleles but whose hQTLs
are causally associated with expression of PILRA, AP4M1 and
ZKSCAN1, which is in turn causally associated with AD risk
(Fig. 3c). Moreover, we identified an active enhancer element
whose activity is regulated by AD risk alleles located at a distance
from it and which is strongly associated with expression of AP4E1
and SPPL2A in monocytes (Fig. 3c). In turn, expression of
SPPL2A is causally associated with AD risk. Furthermore, this
chromatin region interacts with the promoter of SPPL2A,
providing converging evidence for regulation of SPPL2A expres-
sion by this regulatory element. Therefore, it is possible that AD
risk alleles indirectly affect the activity of this regulatory element
by functional coupling through chromatin looping or another
mechanism. In summary, this analytical approach allowed us to
nominate candidate causal genes in twelve AD risk loci.

Fine-mapping using myeloid epigenomic annotations identi-
fies candidate causal variants in seven AD risk loci. To prior-
itize candidate causal variants in myeloid enhancers we selected
loci where we discovered significant associations between chro-
matin activity, gene expression and AD risk (i.e. BIN1, GPR141,
MS4A, PILRA, RABEP1, SPI1, SPPL2A, TP53INP1, and ZYX). We

Table 1 Candidate causal genes identified through integration of AD GWAS signals with myeloid active enhancer annotations,

promoter-capture Hi–C, and eQTLs datasets.

Locus Monocytes Monocyte-derived macrophages

BIN1 BIN1 BIN1

SPI1 (previously CELF1) ACP2, FNBP4, MADD, MYBPC3, MTCH2, NR1H3,

NUP160, PSMC3, SPI1

CELF1, MTCH2, MYBPC3, NUP160, PSMC3, SPI1

ZYX (previously EPHA1) ZYX CLCN1*, EPHA1*, FAM131B, TAS2R41*, TAS2R60*, ZYX

MS4A MS4A6A, MS4A6E* MS4A6A

PILRA (previously ZCWPW1) AP4M1, GATS, PILRA, PILRB, ZKSCAN1, ZCWPW1 AP4M1, GATS, LAMTOR4, MCM7, PILRA, PILRB, PVRIG,

STAG3, TRIM4, ZKSCAN1

TP53INP1 (previously

NDUFAF6)

CCNE2, INTS8, TP53INP1 INTS8, NDUFAF6, TP53INP1

SPPL2A — AP4E1, TRPM7

RIN3 (previously SLC24A4) RIN3 —

ABCA7 ABCA7,CNN2,CIRBP ABCA7, CNN2, GPX4

APBB3 (previously HBEGF) — APBB3, PFDN1

RABEP1 (previously SCIMP) NUP88, RABEP1 CHRNE, NUP88, RABEP1

PTK2B PTK2B PTK2B

CD55 (previously CR1) — CD55

CASS4 AURKA —

TREM2 NFYA TREML2*

PICALM — CCDC83*

Genes highlighted in bold show a significant association between gene expression and disease risk.

*Not expressed in microglia.
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first selected variants in high to moderate LD (R2 ≥ 0.8) with the
tagging variant in each locus and queried them in Haploreg30 to
identify coding variants. We identified a missense variant
(rs1859788-G) in PILRA that is in high LD with the tagging
variant (R2= 0.86, Alzheimer’s Disease Genetics Consortium
case-control cohort (ADGC) reference panel was used to compute
LD as described previously)12 and was previously shown to alter
the ligand binding affinity of PILRA31. Conditioning on this
variant eliminates the AD GWAS signal at this locus (Supple-
mentary Figure 3). The other eight AD risk loci did not contain
coding variants in high LD with the tagging variant, prompting us
to proceed with fine-mapping to prioritize candidate non-coding
functional variants. To accomplish this we used PAINTOR, a
Bayesian fine-mapping method that allows for integration of
epigenomic annotations32. Due to the inflation of posterior
probabilities when individuals in GWAS and LD reference panel
are not well matched33, we used GWAS and LD statistics

calculated using the ADGC cohort12. Although this approach
reduces the number of loci that can be statistically fine-mapped
due to the smaller sample size in ADGC, the results are more
stable. We obtained and reprocessed 38 myeloid epigenomic
annotations15,34–38, selected the ones that overlapped with active
enhancers in myeloid cells and quantified their enrichment in
each locus (Supplementary Figure 4). We then used PAINTOR
with significantly enriched annotations (see Methods) to prior-
itize candidate causal variants and selected those with posterior
probabilities of at least 0.1. To probe the likely effects of these
variants on transcription factor binding, we screened for dis-
ruption or creation of binding motifs for TFs expressed in
monocytes, macrophage and/or human microglia (TPM ≥ 1)15

using motifbreakR39.
We identified candidate non-coding functional variants in the

BIN1, MS4A and ZYX loci and proposed their likely mechanism
of action (Supplementary Data 7). Additionally, we employed an

Fig. 2 AD risk enhancers spatially interact with the promoters of BIN1 and RABEP1 and regulate their expression in myeloid cells. a. (i) AD GWAS

association signal in the BIN1 locus. (ii) eQTL signal for BIN1 in monocytes obtained from the Cardiogenics study. (iii) Genes that reside in the locus are

plotted. Likely target genes of the highlighted AD risk enhancers are shown in red. The arrow indicates the direction of transcription, while the bar indicates

the gene body. (iv) Active enhancers in monocytes are plotted. The height of the bar is proportional to the strength of the epigenomic signal. AD risk

enhancers that are prioritized through both Hi–C and SMR approaches are highlighted in red. (v) Promoter-capture Hi–C interactions between the BIN1

promoter and the highlighted AD risk enhancers in monocytes. The depth of the arc is proportional to the strength of the interaction. (vi) AD risk enhancer-

target gene interactions predicted by SMR analysis of causal associations between chromatin activity and BIN1 expression in monocytes. The depth of the

arc is proportional to the strength of the association. (vii) eQTL signal for BIN1 in macrophages obtained from the Cardiogenics study. (viii) Genes that

reside in the locus are plotted. Likely target genes of the highlighted AD risk enhancers are shown in red. The arrow indicates the direction of transcription,

while the bar indicates the gene body. (ix) Active enhancer elements in macrophages are plotted. AD risk enhancers that interact with the gene promoter

are highlighted in red. (x) Promoter-capture Hi–C interactions between the BIN1 promoter and the highlighted AD risk enhancers in macrophages. The

depth of the arc is proportional to the strength of the interaction. Both Hi–C and SMR-predicted interactions are anchored at the AD risk enhancer

highlighted. b. (i) AD GWAS association signal in the RABEP1 locus. (ii) eQTL signal for RABEP1 in monocytes obtained from the Cardiogenics study. (iii)

Genes that reside in the locus are plotted. Likely target genes of the highlighted AD risk enhancers are shown in red. The arrow indicates the direction of

transcription, while the bar indicates the gene body. (iv) Active enhancers in monocytes are plotted. The height of the bar is proportional to the strength of

the epigenomic signal. AD risk enhancers that are prioritized through both Hi–C and SMR approaches are highlighted in red. (v) Promoter-capture Hi–C

interactions between the RABEP1 promoter and the highlighted AD risk enhancers in monocytes. The depth of the arc is proportional to the strength of the

interaction. (vi) AD risk enhancer-target gene interactions predicted by SMR analysis of causal associations between chromatin activity and RABEP1

expression in monocytes. The depth of the arc is proportional to the strength of the association. vii) eQTL signal for RABEP1 in macrophages obtained from

the Cardiogenics study. (viii) Genes that reside in the locus are plotted.Target genes of the highlighted AD risk enhancers are shown in red. The arrow

indicates the direction of transcription, while the bar indicates the gene body. (ix) Active enhancer elements in macrophages are plotted. AD risk enhancers

that interact with the gene promoter are highlighted in red. (x) Promoter-capture Hi–C interactions between the RABEP1 promoter and the highlighted AD

risk enhancers in macrophages. The depth of the arc is proportional to the strength of the interaction. Hi–C and SMR-predicted interactions are anchored at

the AD risk enhancers highlighted.
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alternative strategy for fine-mapping for the aforementioned loci
and the loci that were not significant in the ADGC GWAS (but
were significant in the IGAP GWAS). Briefly, using a block
partitioning algorithm40, conditional analyses41 and motif
disruption/creation analyses39 as well as integration of active
enhancer annotations and eQTL datasets in monocytes and
macrophages we were able to prioritize variants with regulatory

potential in seven AD risk loci (Supplementary Data 7, see
Methods). As an example, in the BIN1 locus we identified two
independent AD GWAS signals. One of these signals is associated
with rs6733839-T that is an eQTL for BIN1 in human
microglia42, resides in a PU.1 binding site in microglia and
creates a binding motif for the MEF2 transcription factor, likely
acting as a binding partner for PU.1 at that site. The other variant

Fig. 3 Putative causal associations between chromatin activity, target gene expression regulation and AD risk modification point to candidate causal

genes in myeloid cells. a -Log10 of causal association probabilities between chromatin activity and gene expression in monocytes obtained through SMR

analysis for each probe are plotted for each chromatin region. Probes (labeled by the respective gene) in blue indicate significant associations, while grey

bars indicate non-significant associations based on a 5% FDR threshold. b -Log10 of causal association probabilities between gene expression and AD risk.

Probes (labeled by their respective gene) in purple indicate significant associations, while grey bars indicate non-significant associations based on a 5%

FDR threshold. c -Log10 of causal association probabilities between activity of two active chromatin regions in the PILRA locus and one active chromatin

region in the SPPL2A locus and gene expression in monocytes obtained through SMR analysis for each probe are plotted. Probes (labeled by the respective

gene) in red indicate significant associations, while grey bars indicate non-significant associations based on a 5% FDR threshold.

Table 2 Candidate causal genes identified through integration of AD GWAS signals with myeloid active enhancer annotations,

hQTL, and eQTL datasets.

Locus Genes implicated through enhancer activity to gene

expression associations

Genes implicated through enhancer activity to gene

expression to disease risk associations

BIN1 BIN1 BIN1

SPI1 ACP2, CELF1, DDB2, MADD, MYBPC3, NR1H3, NUP160,

PSMC3

CELF1, MADD, MYBPC3, NUP160, SPI1

CD2AP CD2AP —

ZYX (previously EPHA1) ZYX ZYX

GPR141 (previously NME8) NME8, GPR141 GPR141

TP53INP1 INTS8, TP53INP1 INTS8, TP53INP1

MS4A MS4A4A, MS4A6A, MS4A6E* MS4A4A, MS4A6A

RABEP1 (previously SCIMP) NUP88, RABEP1, SCIMP, SPAG7 NUP88, RABEP1, SCIMP

EIF2B2 ACYP1, EIF2B2, MLH3 —

POLR2L POLR2L, RPLP2 POLR2L

PILRA a (previously

ZCWPW1)

AP4M1, TRIM4, PILRA, PILRB, ZKSCAN1 AP4M1, PILRA, ZKSCAN1

SPPL2A a AP4E1, SPPL2A SPPL2A

aAssociation reported with a distal enhancer that does not contain AD risk variants, but whose hQTLs colocalize with AD risk alleles.
*Not expressed in microglia.
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(rs13025717-T) also resides in a PU.1 binding site, is an eQTL for
BIN1 in monocytes and a binding QTL for PU.1 in a B-
lymphoblastoid cell line (GM12878). This variant likely affects
PU.1 binding by disrupting motifs of its binding partners, such as
SP1 and KLF443,44. Both of these variants demonstrated a
significant difference in open chromatin accessibility in the brain
between homozygotes for reference and alternative alleles,
suggesting functional impact of these variants on the microglial
epigenome (Supplementary Figure 6). Our findings in this locus
are also supported by a recent study that nominated both
rs6733839 and rs13025717 as candidate causal variants in the
BIN1 locus through integration of single-cell epigenomics and a
machine learning approach for variant effect prediction45.
Another recent preprint provided more promising independently
derived data that demonstrated a significant allelic imbalance at
rs6733839 in iPSC-derived macrophages, further supporting its
functional impact on the myeloid epigenome42. Additionally, the
microglial enhancer that harbors rs6733839 has been recently
validated in the BIN1 locus, where a CRISPR knockout of this
regulatory region leads to a microglia-specific reduction in BIN1
gene and protein expression46. We performed conditional
analyses using candidate functional variants as covariates and
confirmed that they do indeed tag the majority of AD GWAS
signal in their respective loci (Supplementary Figure 5). SNP-
targeted SMR analyses also confirmed that the prioritized
candidate functional variants drive the association between gene
expression levels in myeloid cells and AD risk in their respective
loci (Supplementary Data 8).

A candidate causal variant in the MS4A locus disrupts an
anchor CTCF binding site and is associated with reduced
chromatin accessibility and increased MS4A6A gene expres-
sion in myeloid cells. One of the prioritized candidate causal
variants in the MS4A locus, the rs636317-T AD risk-increasing
allele (11:60019150:C:T in GRCh37.p13 coordinates), resides in a
CTCF binding site (Fig. 4b (ii)). CTCF binding sites serve as
anchors for long-range chromatin loops and this protein plays a
pivotal role in determining the spatial organization of chromatin to
regulate gene expression47. The CTCF motif is highly evolutiona-
rily conserved, and previous studies have shown that single point
mutations in this motif can lead to a dramatic reduction of CTCF
binding and chromatin accessibility at the site as well as alteration
of chromatin looping and activity47. We further confirmed that
rs636317-T not only resides in a CTCF ChIP-Seq peak in mono-
cytes, but also breaks the CTCF binding consensus sequence
(Fig. 4b (iii) and is a binding QTL for CTCF in a B-lymphoblastoid
cell line (GM12878). Additionally, the CTCF binding QTL signal
in GM1287848 has a 97.6% probability of colocalization with AD
risk alleles at this locus. rs636317-T is a strong eQTL for MS4A6A
in monocytes and macrophages, and the risk increasing T allele is
associated with increased MS4A6A expression (Fig. 4g). Given that
rs636317-T is predicted to disrupt a CTCF binding site, a likely
scenario is that this SNP may destroy one of the two anchor CTCF
binding sites in a chromatin loop, leading to altered chromatin
architecture and activity in the locus, which in turn leads to
upregulation of MS4A6A expression and increased AD risk.
rs636317-T is an hQTL for multiple enhancers in monocytes and a
strong eQTL for MS4A6A in monocytes and macrophages, rein-
forcing the hypothesis that rs636317-T causes epigenetic dysre-
gulation in the locus, which in turn may lead to increased
expression of MS4A6A. Examination of promoter-capture Hi–C
interactions in this region in monocytes and macrophages identi-
fied chromatin loops that connect the MS4A6A promoter to reg-
ulatory elements approximately 360 kilobases away (Fig. 4a (vi)).
Importantly, examination of ChIA-PET interactions for CTCF and

RAD21 (a component of the cohesin complex often colocalized
with CTCF at anchor sites to form chromatin loops47) in
GM12878 identified a chromatin loop that contains the MS4A6A
promoter and connects two CTCF/RAD21 anchor sites, one of
which is likely disrupted by rs636317-T (Fig. 4a (vii-ix)). This
arrangement suggests that rs636317-T may alter chromatin
architecture in such a way that the promoter of MS4A6A may lose
its interaction with the regulatory elements mentioned above and
instead fall under the influence of other regulatory elements that
may boost MS4A6A expression in myeloid cells. Another estab-
lished role of CTCF is the separation of regions of inner condensed
chromatin and outer open chromatin domains, marking repressed
and active regions, respectively47. Hence, we examined the density
of epigenetic signals within and outside the CTCF/RAD21 loop
boundaries in monocytes, macrophages and microglia (Fig. 4a (ii-
iv)) and observed that chromatin activity within the loop is
repressed. To gather additional experimental evidence in support
of the epigenetic effects of this genetic polymorphism that we
predicted based on computational analysis of experimental data
obtained in a B-lymphoblastoid cell line or primary myeloid cells
from peripheral blood, we investigated whether the C to T varia-
tion at rs636317 results in differential chromatin accessibility at
this site in human microglia. To accomplish this, we generated
hiPSC-derived microglia (Fig. 4c) from 3 subjects, performed
ATAC-Seq and quantified the number of reads that correspond to
the protective and risk-increasing alleles. We observed a significant
difference in the number of normalized ATAC-Seq reads over-
lapping rs636317 with the protective allele (C) compared to the
risk-increasing allele (T) (P-value = 0.007, paired one-sided t-test)
(Fig. 4d). To test whether rs636317-T also leads to an increase in
MS4A6A expression, we performed RNA sequencing in 4 hiPSC-
derived microglia samples. We identified a single synonymous
exonic variant in the MS4A6A gene (rs12453-C) that is in high LD
with the risk variant in the CTCF binding site (rs636317-T, R2=
0.92, ADGC reference panel was used to compute LD). Allele
specific expression analysis revealed a difference in the number of
normalized reads aligned to the T allele versus the C allele that was
trending to significance (P-value= 0.088, one-sided paired t-test)
(Methods). The direction, however, was the opposite of what is
predicted by our analyses using primary myeloid cells from per-
ipheral blood. This phenomenon has also been observed in a recent
study showing that in another AD risk locus (PTK2B) the direction
of the eQTL effect is flipped in hiPSC-derived macrophages as
compared to primary blood monocytes and brain microglia42.
These observations suggest that hiPSC-derived microglia might not
be the best model for in-depth studies of the effects of genetic
variation on gene expression and chromatin architecture at the
MS4A and other AD risk loci.

Since a recent single-cell ATAC-seq study in the brain revealed
that rs636317 resides in a microglia specific ATAC-seq peak49, we
utilized brain ATAC-seq data from CommonMind50 to test if the
ATAC-seq imbalance that we observed in hiPSC-derived micro-
glia can be replicated in primary brain microglia. Indeed, we saw a
significant imbalance in normalized ATAC-seq reads consistent
with our computational and experimental data (P-value = 0.006,
one-sided paired t-test) (Fig. 4e). Since expression of MS4A6A is
also highly specific to microglia in the brain15, we performed
allele-specific gene expression analysis using brain RNA-seq data
from CommonMind (Methods). We observed a significant allelic
imbalance (P-value=0.002, one-sided paired t-test) that is
consistent with the direction of effect that we predicted using
primary myeloid cells from peripheral blood (Fig. 4f-g). We were
able to replicate this effect in the Mount Sinai Brainbank
(MSBB)51 RNA-seq dataset, where we also observed a significant
allelic imbalance (P-value = 3.0e-5, one-sided paired t-test). These
results are consistent with a model in which the presence of the
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rs636317-T AD risk-increasing allele leads to disruption of CTCF
binding, decreased chromatin accessibility at this site, altered
chromatin looping and activity in the locus, and increased
expression of MS4A6A in microglia. Further investigation of the
mechanistic details of this model will require better human
microglia culture systems or the use of acutely isolated primary
microglia from the brain of larger numbers of human subjects or
human-mouse chimeras46,52,53.

Discussion. In this study we report an integration of AD GWAS
with epigenomic and transcriptomic datasets from myeloid cells
to nominate candidate causal variants, regulatory elements, genes
and pathways and thus inform a mechanistic understanding of
AD genetics and pathobiology for the formulation of novel
therapeutic hypotheses (Supplementary Figure 7). Previous stu-
dies have shown that myeloid cells are the most disease-relevant
cell type for AD7,13 and our own earlier study showed an

Fig. 4 A candidate causal variant in the MS4A locus disrupts an anchor CTCF binding site and is associated with reduced chromatin accessibility and

increased MS4A6A gene expression in myeloid cells and in the brain. a (i) AD GWAS signal in the MS4A locus. (ii) H3K27ac peaks in microglia. (iii)

H3K4me2 peaks in microglia. (iv) ATAC-seq peaks in microglia. (v) Genes that reside in the locus are plotted. Putative AD risk genes are highlighted in red.

The arrow indicates the direction of transcription, while the bar indicates the gene body. (vi) Strongest promoter-capture Hi–C interactions between the

MS4A6A promoter and distal regulatory elements contained within the CTCF loop in monocytes (blue) and macrophages (red). (vii) CTCF ChIP-Seq peaks

in monocytes. The peaks highlighted in red are anchor CTCF binding sites for the chromatin loop. (viii) CTCF ChIA-PET interactions in GM12878. (ix)

RAD21 ChiA-PET interaction in GM12878. b (i) AD GWAS signal in the MS4A locus. (ii) CTCF ChIP-Seq peaks in monocytes. The peak highlighted in red is

an anchor CTCF binding site for a chromatin loop and contains the candidate causal variant (rs636317-T). (iii) A CTCF binding motif resides in the CTCF

ChIP peak highlighted in red in (ii). The candidate causal variant (rs636317-T) resides in position 7 (boxed) of this motif and is predicted to disrupt CTCF

binding. (iv) Genes that reside in the locus are plotted. Putative AD risk genes are highlighted in red. The arrow indicates the direction of transcription,

while the bar indicates the gene body. c Immunofluorescent images of microglial markers (CX3CR1, TREM2, P2RY12 and PU.1) confirming differentiation of

hiPSC-derived microglia. Scale bar= 100μm. d Allelic imbalance of chromatin accessibility at the rs636317 site is observed in hiPSC-derived microglia.

Mean normalized ATAC-Seq read counts are plotted for the protective (C) and risk-increasing (T) alleles; the dots represent each individual, centers for

the error bars represent mean normalized ATAC-seq read counts and error bars represent standard errors. The protective allele (C) shows significantly

more ATAC-Seq read counts than the risk-increasing allele (T) (P-value= 0.007, paired one-sided t-test), which is consistent with the hypothesis that the

presence of the rs636317 AD risk-increasing allele leads to disruption of CTCF binding. e Allelic imbalance of chromatin accessibility at the rs636317 site is

observed in the brain. Each pair of dots connected by a grey line represent an individual. The protective allele (C) shows significantly more ATAC-Seq read

counts than the risk-increasing allele (T) (P-value= 0.006, paired one-sided t-test, n= 32), which replicates our observations in hiPSC-derived microglia.

f Allelic imbalance in normalized brain RNA-seq reads at rs12453 site. Each pair of dots connected by a grey line represent an individual. The protective

allele (C) shows significantly less MS4A6A RNA-Seq read counts than the risk-increasing allele (T) (P-value= 0.002, paired one-sided t-test, n= 118),

which is consistent with our hypothesis. g Relative expression of MS4A6A in macrophages increases in a rs636317-T allele dose-dependent manner. Each

dot represents the relative expression level of MS4A6A in each individual, while the yellow dot represents the median. Horizontal lines in box plots depict

25%, 50%, and 75% quantiles; lower whisker = lower hinge - 1.5*IQR; upper whisker = upper hinge + 1.5*IQR.
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enrichment of AD SNP heritability in myeloid-specific epige-
nomic annotations including the PU.1 cistrome12. Here we have
extended these observations to demonstrate that AD risk alleles
are specifically enriched in active enhancers of monocytes,
monocyte-derived macrophages and microglia. Concordant with
previous studies15,20, we show that PU.1, AP-1, C/EBP, CTCF,
and RUNX binding motifs are overrepresented in open chro-
matin regions associated with active enhancers in all three mye-
loid cell types, while MEF2 transcription factor binding motifs are
highly overrepresented in open chromatin regions associated with
microglial active enhancers. To identify transcription factor
binding sites burdened by AD risk variants, we stratified open
chromatin regions that overlapped with myeloid active enhancers
by the presence of cognate consensus motifs for the TFs men-
tioned above and quantified the enrichment of AD risk alleles in
these subsets. A significant enrichment was observed in PU.1
binding motif-positive ATAC-Seq regions in all three myeloid cell
types, while MAF binding motif-positive open chromatin regions
were specifically enriched in macrophages and microglia. Fur-
thermore, a significant enrichment of AD risk alleles was
observed in SMAD, USF and SP binding motif-positive ATAC-
Seq regions in microglia. These results suggest that AD risk
variants are likely to modify disease susceptibility, at least in part,
by modulating the binding of TFs to their cognate sequences in
myeloid enhancers thus affecting their activity and in turn leading
to target gene expression dysregulation. Although the global
enrichment of AD risk alleles in active enhancers of myeloid cells
narrows the search space for causal regulatory elements, identi-
fying the target genes of these enhancers would directly point to
candidate causal genes in AD risk loci.

In this study we used two complementary approaches to
prioritize candidate causal target genes of myeloid active
enhancers in AD risk loci. First, we mapped AD risk enhancers
to their target genes in myeloid cells using chromatin interactions
(Hi–C) and eQTL datasets from monocytes and macrophages.
Using this approach, we identified previously nominated AD risk
genes (BIN126, MS4A6A12, SPI112) as well as novel candidate
causal genes including AP4E1, APPB3, RIN3, TP53INP1, and
ZYX in sixteen loci. In a subset of AD risk loci we report shared
active enhancers that interact with multiple target gene promoters
to likely regulate their expression. This could reflect the presence
of either multiple causal genes at these loci or a single causal gene
and several risk neutral genes that show association by virtue of
expression co-regulation. Additional evidence will be necessary to
distinguish between these two possibilities and prioritize one or
more genes at these loci. Second, we used SMR to test the causal
relationships between activity at myeloid active chromatin
regions with target gene expression regulation and AD risk
modification. We sequentially studied the path linking active
chromatin region activity with gene expression in myeloid cells
using myeloid hQTLs as the exposure and myeloid eQTLs as the
outcome, followed by myeloid eQTLs as the exposure and AD
diagnosis as the outcome to identify regions that likely modulate
AD risk by regulating the expression of one or more of their
target genes in myeloid cells. Using this approach, we identified
previously nominated AD risk genes MS4A4A12, MS4A6A12,
SPI112, as well as novel candidate causal genes AP4E1, AP4M1,
PILRA, RABEP1, SPPL2A, TP53INP1, ZKSCAN1, and ZYX in
twelve loci. Importantly, these two analytical approaches yielded
largely overlapping results and led to the nomination of several
candidate causal genes in twenty loci (Fig. 5). In all twenty loci we
mapped candidate causal genes by identifying target genes of AD
risk enhancers either through Hi–C interactions or chromatin
activity to gene expression SMR associations. For those loci where
the gene expression to disease risk association was significant, we
were able to assign the directionality of AD risk gene expression

that is associated with increased disease susceptibility (blue for
lower expression and red for higher expression). The genes that
did not show a significant expression to disease risk association
but were prioritized through Hi–C interactions or chromatin
activity to gene expression SMR associations, are shown in gold,
since a causal association and its directionality cannot be robustly
inferred. Moreover, in some of these loci both analytical
approaches pointed to the same candidate causal genes (i.e.
BIN1, MS4A, SPI1, RABEP1, TP53INP1, and ZYX). Remarkably,
when a BIN1 enhancer prioritized through our approaches was
deleted in hiPSC-derived microglia, neurons and astrocytes, BIN1
expression and protein level dramatically decreased only in
microglia, underpinning cell type-specific regulatory potential of
a rather ubiquitously expressed gene and pointing to the
robustness of our findings46.

Notably, many of the candidate causal genes that we identified
in myeloid cells are functionally related to the endolysosomal
system. For example, ZYX encodes a zinc-binding phosphopro-
tein that localizes to early endosomes and phagosomes in IFN-γ-
activated macrophages54 and drives their intracellular movement
by assembling actin filament rocket tails55. RIN3 (Ras And Rab
Interactor 3) encodes a member of the RIN family of RAS and
RAB effectors that interacts and localizes with BIN1 to early
endosomes56. Like other RIN family members, RIN3 has guanine
nucleotide exchange factory (GEF) activity for RAB5 GTPases56,
which are required for early endosome and phagosome biogenesis
and function. Interestingly, RABEP1 (Rab-GTPase binding
effector protein 1) also encodes a RAB5 effector protein that is
required for early endosome membrane fusion and trafficking57.
Two other novel candidate AD risk genes that we nominated in
this study, AP4E1 and AP4M1, encode two of the four subunits of
the heterotetrameric adaptor protein complex 4 (AP-4), which is
required for the sorting of transmembrane proteins like APP
from the trans-Golgi network (TGN) to endosomes58. Interest-
ingly, APBB3 has also been shown to bind to the intracellular
domain of APP and is thought to play a role in the internalization
of APP from the cell surface into endosomes where it is cleaved
by membrane-embedded aspartyl proteases BACE1 and ɣ-
secretase to generate the amyloid β peptide59,60. Another novel
candidate AD risk gene that we nominate in this study, SPPL2A,
encodes a transmembrane aspartyl protease that localizes to late
endosomes and lysosomes and cleaves substrates involved in
immunity and neurodegeneration61–63. Finally, TP53INP1 reg-
ulates the stability and transcriptional activity of p53, and has
been implicated in the phagocytic clearance of apoptotic cells
(efferocytosis)64,65, a hallmark function of macrophages for the
maintenance of tissue homeostasis and immune tolerance, and
the resolution of inflammation. All of these genes are highly or
selectively expressed in microglia in the brain15. Taken together,
our findings implicate dysfunction of the endolysosomal system
in myeloid cells (as opposed to neurons66) in the etiology of AD.
Previous human genetic findings reinforce our conclusion. For
example, a rare variant in the 3′ UTR of RAB10, a member of the
RAB family of small GTPases that are critical regulators of
membrane trafficking and vesicular transport, confers resilience
to AD67. Furthermore, coding variants that increase risk for AD
have been identified in SORL14,68, a member of the vacuolar
protein sorting 10 (VPS10)- domain-containing receptor family
and the low density lipoprotein receptor (LDLR) family of APOE
receptors that is expressed primarily in microglia in the brain15

and plays important roles in the endolysosomal system and APP
processing66.

To fine-map the AD risk enhancers identified in this study and
thus nominate candidate causal variants, we conducted Bayesian
fine-mapping in the three loci that were significantly associated
with AD risk in the ADGC GWAS (BIN1, MS4A, and ZYX),
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followed by functional in silico screening of the candidate causal
variants for disruption/creation of TF binding motifs. We also
fine-mapped the loci that did not reach significance in the ADGC
GWAS (but were significant or suggestive in the IGAP GWAS)
and identified candidate causal variants in the GPR141, RABEP1,
SPI1, and SPPL2A loci. Taken together, we have identified
putative functional variants that tag the majority of AD GWAS
signals at these loci, and likely affect disease risk by altering the
DNA binding motifs of transcription factors that modulate the
activity of enhancers which in turn regulate the expression of
causal genes to ultimately steer myeloid cells like microglia
toward neurotoxic and/or away from neuroprotective pheno-
types. Finally, we experimentally validated one of these candidate
functional variants in the MS4A locus by showing allelic
imbalance in open chromatin in hiPSC-derived microglia as well
as in open chromatin and MS4A6A mRNA levels in the brain.
The epigenetic effects of this variant are likely mediated by the
disruption of CTCF binding at one of two anchor sites of a
repressive chromatin loop leading to increased MS4A6A expres-
sion and AD risk, although investigation of the mechanistic
details of this model will require further experimentation.

Our analyses demonstrate that active enhancers in monocytes,
macrophages and microglia are enriched significantly and to a
similar extent. These results provide evidence that AD risk alleles
burden regulatory sequences similarly across all three myeloid cell
types and that the basal state is, at least in part, relevant to the
study of regulatory variants that affect AD risk. Recent findings
that TREM2 loss of function similarly impacts the response of

both central nervous system (CNS) and peripheral macrophages
to lipid overload69–71 and that the activation state of human
macrophages does not have a major impact on AD heritability
enrichment72 could indicate that Alzheimer’s disease-associated
variants might regulate core functions of the macrophage lineage
(e.g., the phagocytic clearance of apoptotic cells and other lipid-
rich cellular debris). These results highlight the need to generate
additional large-scale human microglial/myeloid epigenomic and
transcriptomic datasets (e.g., in the context of immune and
metabolic stress) which will enable identification of the most
disease-relevant myeloid cell states and enable replication and
extension of our findings.

The integrative genomic approaches presented here offer a
framework to identify regulatory elements, genes and variants
that are likely causal for AD. A potential limitation of our study is
that integration of epigenomic and transcriptomic datasets from
different studies using varying protocols for the isolation and
preparation of monocytes and macrophages, might lead to false
positive and negative results in some of our analyses. This
highlights the need for paired epigenomic and transcriptomic
datasets in myeloid cells to further validate and expand our
findings. Further experimental validation of the variants and
enhancers nominated in this manuscript will be needed to dissect
the molecular mechanism of action as well as downstream effects
in myeloid cells. Using our prediction as a guiding tool, CRISPR
experiments can be performed to test the effects of a single
variant or regulatory elements in isogenic lines on TF binding,
gene expression and downstream myeloid cell biology, e.g

Fig. 5 Candidate causal genes nominated through both Hi–C and SMR approaches in twenty loci. The Manhattan plot depicts the IGAP GWAS signal

with putative AD risk genes assigned to each locus through both Hi–C and SMR approaches. Red indicates that increased expression of the gene is

predicted to increase risk for AD. Blue indicates that decreased expression of the gene is predicted to increase risk for AD. Gold indicates that the

directionality of gene expression that is associated with increased disease susceptibility cannot be robustly inferred. These genes were prioritized if they

either a) interact with an AD risk enhancer that contains an eQTL for this gene or b) were implicated in enhancer activity to gene expression association,

but did not have significant expression to disease risk associations (SMR). ZYX and PTK2B showed opposite directions of expression associated with

disease risk in monocytes and macrophages. Strongest associations are reported (macrophages in ZYX locus and monocytes in PTK2B locus). The TREM2

locus is not shown since a well replicated rare loss-of-function mutations were found in TREM23. The PICALM locus is not shown since the prioritized gene

is not expressed in microglia.
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phagocytosis of lipid-rich debris. Additionally, recent studies have
demonstrated that iPSC-derived microglia can be transplanted
into the mouse brain while recapitulating expression profiles of
human primary microglia52. These advances can be utilized to
transplant iPSC-derived microglia lines with CRISPR induced
alterations to study the effects of non-coding AD risk variants and
regulatory elements in vivo.

In summary, this study reveals a link between chromatin
activity, gene expression and AD risk in myeloid cells, proposes
the molecular mechanism of action of candidate functional
variants in several AD risk loci, identifies specific AD risk
enhancers that are burdened by these variants and regulate target
gene expression, which in turn most likely modulates disease
susceptibility by altering the biology of myeloid cells. We
highlight the coalescence of candidate causal genes in the
endolysosomal system of myeloid cells and underscore its
importance in the etiology of AD.

Methods
Processing of ChIP-Seq and ATAC-Seq data and peak calling. Relevant ChIP-
Seq and ATAC-seq studies were found through Gene Expression Omnibus
(GEO)15,36,38,73. We selected studies that contained H3K4me1 (monocytes and
macrophages), H3K4me2 (monocytes and microglia) and/or H3K4me3 (macro-
phages) as well as H3K27ac (all cell types) and ATAC-seq (all cell types) data for
human monocytes, macrophages and microglia for our analyses. To generate the
epigenomic annotations FASTQ files were obtained from Sequence Read Archive
(SRA). Technical replicates were merged and Bowtie274 was used for alignment for
both single and paired-end files. FASTQC was used for quality control of the files.
Resulting SAM files were filtered by MAPQ score and duplicates were removed
using samtools75. MACS276 was used to call peaks for ATAC-seq and ChIP-seq
files. ATAC-Seq peaks were called using the following command: “callpeak -t file.
sam -f SAM --nomodel --shift -37 --extsize 73 -g hs -q 0.01 -n filename --outdir
output_dir/”. PU.1 ChIP-Seq peaks were called using the following command:
callpeak -t case.sam -c input.sam -f SAM -g hs -q 0.01 -n filename --outdir out-
put_dir/”. Histone modifications ChIP-Seq peaks were called using the following
command: “callpeak -t case.sam -c input.sam -f SAM --broad --broad-cutoff 0.01
-g hs -q 0.01 -n filename --outdir output_dir/”.

Stratification into promoter and enhancer regions and overlap with GWAS

and Hi–C data. To identify optimal distance from TSS we used ChromHMM
model of CD14+monocytes from Roadmap Epigenomics project (see URLs) to
visualize the distribution of active promoters around the TSS. We observed a
bimodal distribution around the TSS and found that −500 base pairs to 1000 base
pairs window captures more than 60% of active promoters. Based on previous
studies that have demonstrated a bimodal distribution of promoter epigenomic
marks around the TSS77,78, we established that the boundary of −500, 1000 bp
would appropriately mark active promoters, while also not misclassifying
H3K4me1 positive regions (enhancers) that are in close proximity to the TSS. To
annotate the peaks with distance from TSS we used HOMER. We then split the
H3K4me1/2/3 peaks into distal and proximal. We then used bedmap to filter
H3K4me1/2/3 peaks by the presence of H3K27ac peak such that proximal
H3K4me2/3 peaks with H3K27ac were classified as active promoters, distal
H3K4me1/2 peaks with H3K27ac were classified as active enhancers, proximal
H3K4me2/3 peaks without H3K27ac were classified as primed promoters and
distal H3K4me1/2 peaks without H3K27ac were classified as primed enhancers.
AD risk enhancers were identified by overlapping active enhancers (including a
500-bp flanking region on each side) with AD risk alleles (P ≤ 1 × 10−6). To
identify likely targets of AD risk enhancers, enhancers (including a 3000-bp
flanking region on each side) were overlapped with Hi–C target regions that
showed evidence of regulatory effect (eQTL FDR 5%).

Partitioned SNP-heritability analysis. We used LD Score regression to estimate
AD SNP heritability partitioned by epigenomic annotations using GWAS summary
statistics (excluding the APOE (chr19:45000000– 45800000) and MHC/HLA
(chr6:28477797–33448354) regions) in myeloid cells as described in the companion
website (see URLs), while controlling for the 53 functional annotation categories of
the full baseline model. GWAS summary statistics for AD17 and Schizophrenia18

(SCZ) were downloaded from the IGAP Consortium and Psychiatric Genomics
Consortium websites respectively (see URLs). All epigenomic annotations were
downloaded from SRA and processed as described in “Processing of ChIP-Seq and
ATAC-Seq data and peak calling”. Negative log10 p-values of enrichment were
reported, the p-values for annotations that had negative enrichments were not
displayed on the figures.

De novo motif discovery. We used HOMER to perform de novo motif discovery
in ATAC-Seq regions that reside in active enhancers in monocytes, macrophages
and microglia. The following command was used to identify enriched motif
sequences in these regions: findMotifsGenome.pl Peaks.bed hg19. -size given. To
identify regions that contained our motifs of interest, we used the following
commands: findMotifsGenome.pl Peaks.bed hg19. -find motif.motif -size given and
annotatePeaks.pl Peaks.bed hg19 -m motif.motif -size given.

Colocalization analysis. We used coloc (coloc.abf function) to perform colocali-
zation analyses between IGAP GWAS and hQTLs with default parameters29. We
used coloc in the following manner: coloc.abf(dataset1, dataset2, p1= 1e-04, p2=
1e-04, p12= 1e-05). We used a filter of PP.H3.abf + PP.H4.abf ≥ 0.8 to select
chromatin regions with evidence of independent or colocalized AD GWAS and
hQTL signals.

Causal association analysis. We used SMR to test for causal associations between
IGAP GWAS and QTL datasets14. We converted the summary statistics for
monocyte H3K4me1 hQTLs obtained from BLUEPRINT epigenome project
website (see URLs) and monocyte eQTLs from the Cardiogenics and Fairfax stu-
dies into BESD format (epi/esi/besd) as described in the SMR manual (see URLs).
Allele frequencies and LD were estimated from the ADGC GWAS cohort
individual-level genotype data using plink79. To conduct standard SMR analysis,
we ran the following command: “smr --bfile reference_file --beqtl-summary
Exposure_besd_file_prefix --beqtl-summary Outcome_besd_file_prefix --out out-
put_prefix”. The results were filtered for FDR of 5% calculated using the p.adjust
function in R. To conduct SNP-targeted SMR analysis, we ran the following
command: “smr --bfile reference_file --gwas-summary gwas_summary_file --beqtl-
summary eQTL_besd_file_prefix --target-snp rs12345 --out output_prefix”.

Conditional and haplotype analyses. We used GCTA-COJO41 to conduct con-
ditional analyses using IGAP GWAS summary statistics data and ADGC GWAS
cohort individual-level genotype data as a reference panel. To conduct the con-
ditional analysis we ran the following command: “gcta64 --bfile reference_file --maf
0.05 --cojo-file GWAS_summary_statistics --cojo-cond list_of_snps --out out-
put_prefix”. To construct haplotype blocks and examine SNP clustering, we used
Big-LD40 which is provided as an R package. We prepared the genotype file, which
contained genotypes of individuals for each SNP, and the SNP information file that
contained chromosome, position, reference and alternative allele information for
each SNP. We then used the CLQ algorithm provided within the Big-LD package
for SNP clustering and BigLD for haplotype block construction. We used the
following commands: CLQD(geno= genotype_data, SNPinfo= locus_snp_infor-
mation, hrstType= “fast”,CLQcut= 0.5) and Big_LD(genotype_data, SNPinfo=
locus_snp_information, chrN= chromosome_number, startbp= start_basepair,
endbp= end_basepair, appendRare= TRUE).

Prioritization of candidate causal variants. For each locus we constructed LD
blocks using Big-LD package40. We then selected variants that reside in active
enhancers in monocytes, macrophages and/or microglia (with the exception of the
SPPL2A locus, since these variants likely regulate a distal enhancer as reported in
Fig. 3c). We also conducted a motif disruption/creation analysis on these variants
and selected the variants that are predicted to strongly disrupt or create binding
sites of transcription factors that are expressed in myeloid cells (TPM ≥ 1)15. We
then screened the remaining variants for eQTLs in monocytes and macrophages
from the Cardiogenics and Fairfax studies. We also used PAINTOR to conduct
Bayesian fine-mapping in MS4A, ZYX and BIN1 loci. PAINTOR is a Bayesian fine-
mapping method that leverages functional annotations through an Empirical Bayes
prior32. The input files for PAINTOR (v3.1) were prepared as described on the
PAINTOR website and ADGC GWAS summary statistics along with individual-
level genotype data were used for fine-mapping (see URLs). The reprocessed epi-
genomic annotations were used to quantify enrichment at each locus. To quantify
the annotation enrichments the following command was used: “python Annota-
teLocus.py --input list_of_annotation_directories --locus locus_prefix --out out-
put_prefix --chr chr --pos pos”. To classify the annotations as enriched or not, we
computed the relative probability for a SNP to be causal given that it resides in the
annotation as described in the companion website (URLs). We deemed the
annotation to be significant if the relative probability of a SNP to be causal given
that it is in the annotation was greater than 1. To quantify the posterior prob-
abilities for variants to be causal, we used the following command: PAINTOR
-input input.file -Zhead Zscore -LDname ld -enumerate max_number_of_causal_
variants -annotations annotation_name -in in_dir -out out_dir. Once candidate
causal variants were selected through both approaches, we conducted conditional
analyses to make sure that they do indeed tag the majority of the GWAS signal in
the locus.

TF binding motif disruption/creation analysis. We used motifbreakR to predict
the impact of AD risk variants on transcription factor binding39. We used HOCO
MOCO to screen for TFBMs and a P-value significance threshold of 5 × 10−5. We
used the following command to do so: motifbreakR(snpList= variant_list, pwmList
= hocomoco, filterp= TRUE, threshold= 5e-5).
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Generation of hiPSC microglia for ATAC-Seq and RNA-seq analysis. hiPSC-
derived microglia were generated from patient lines following the protocol as
described80. For the ATAC-Seq analysis, hiPSC-derived microglia (50 K cells) from
each patient line were collected and processed as described81. Samples were either
processed at New York Genome Center or at UCI’s Genomics High-Throughput
Facility and sequenced as 50 bp paired-end reads on a HiSeq 2500 and 100 bp paired-
end reads on a HiSeq 4000, respectively. The consent for reprogramming patient
somatic cells to hiPSC was carried out on protocol 2013-9561 (UCI), laboratory
protocol 2017-1061 (UCI) and protocol ESCRO 19-04 (Mount Sinai). Microglia RNA
was isolated using a standard RNA isolation kit (Qiagen) and RNA quality (RIN)
assessed (Bioanalyzer 2100). PolyA-mRNA (200 ng) with a RIN score ≥ 9.5 was used
to assemble libraries in which ERCC spike-ins (Ambion) were included for down-
stream normalization. RNA-seq libraries were quantified and normalized using a
Library Quantification Kit (Kapa Biosystems) prior to sequencing (Illumina) by the
UCI Genomics High Throughput Facility as 100 bp paired-end reads.

Human iPSC cell lines were either generated by the University of California,
Irvine Alzheimer’s Disease Research Center (UCI ADRC) Induced Pluripotent
Stem Cell Core or by the Icahn School of Medicine at Mount Sinai Induced
Pluripotent Stem Cell Core. The iPSC lines generated by University of California,
Irvine and the Icahn School of Medicine at Mount Sinai were derived from subject
fibroblasts from either the University of California, Irvine or Washington
University in St. Louis, respectively, with approved Institutional Review Boards
(IRB) and human Stem Cell Research Oversight (hSCRO) committee protocols.
Informed consent was received by each of the participants who donated fibroblasts.

Allele specific expression and open chromatin analysis. In CommonMind and
Mount Sinai Biobank (MSBB) datasets we selected the RNA-seq samples that
contained at least 10 reads aligned to the SNP of interest. For CommonMind
ATAC-seq samples, we required at least 5 reads aligned to the SNP of interest. To
perform allele specific expression/open chromatin analyses, we have quantified the
number of reads overlapping the variant of interest using mpileup command in
samtools75. The CommonMind and MSBB reads were normalized to the number
of reads on chromosome 11 and were used to assess the significance of the allelic
imbalance using a paired t-test.

Immunocytochemistry. Cells were fixed with 4% paraformaldehyde in PBS at 4 °C
for 10 min. Cells were permeabilized with 1.0% Triton in PBS at room temperature
for 15 min and blocked in 5% donkey serum with 0.1% Triton in PBS at room
temperature for 30 min. Primary antibodies were used at 10 µg/mL anti-TREM2
(R&D, AF1828), 1:1,000 anti-P2RY12 (Sigma, HPA014518), 1:100 anti-PU.1 (Cell
Signaling, 2266) and anti-CX3CR1(Bio-Rad, AHP1589). Secondary antibodies were
used at 1:300 Alexa donkey 488 and 568 anti-rabbit, mouse, or chicken (Life
Technologies). DAPI (4′,6-diamidino-2-phenylindole, 0.5 μg/mL) was used to
visualize nuclei. Images were acquired using a Leica Fluorescence Microscope at
40× magnification.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The following studies obtained from GEO were used for the analyses presented in this
paper: GSE29611 (monocyte CTCF, H3K27ac and H3K4me1/2/3), GSE85245
(macrophage H3K27ac and H3K4me1/3), GSE100380 (monocyte and macrophage
ATAC-seq), GSE66594 (macrophage H3K4me1, H3K27ac and PU.1) and GSE98365
(macrophage ATAC-seq). Data generated in this study are available through accession
number GSE164315. DbGAP accession study number for the human microglia dataset is
phs001373.v2.p2. The genotype and phenotype data from ADGC are available under
phs000372.v1.p1 dbGAP study accession number. The Cardiogenics dataset can be
requested on EGA using accession number EGAS00001000411. DbGAP accession study
number for the STARNET eQTL dataset is phs001203.v1.p1. Summary statistics for
Fairfax eQTL data can be obtained from ArrayExpress using accession number E-
MTAB-2232. All data supporting the findings of this study are provided within the paper
and its supplementary information. All other relevant data are available from the authors
upon reasonable request.

Code availability
We provide commands for the tools that were used for the analyses presented in this
manuscript in the Methods section. Although we have used the software cited in this
manuscript with default parameters or minor changes, code for these analyses is available
upon request. Roadmap Epigenomics Project, http://www.roadmapepigenomics.org/ -
The dataset was used to examine the distribution of active promoters around the TSS in
the ChromHMM model of CD14+monocytes to identify an appropriate window to
stratify enhancers and promoters. LD Score Regression, https://github.com/bulik/ldsc; -
LDSC was used to quantify the enrichment of AD heritability in myeloid epigenomic
annotations. International Genomics of Alzheimer’s Project (IGAP), http://web.pasteur-
lille.fr/en/recherche/u744/igap/igap_download.php; - The summary statistics for AD
GWAS were obtained from IGAP. Psychiatric Genomics Consortium, https://www.med.

unc.edu/pgc/; - SCZ GWAS summary statistics were obtained from PGC. Blueprint
Consortium, http://www.blueprint-epigenome.eu/; - Monocyte hQTLs were obtained
from the Blueprint Consortium. SMR, https://cnsgenomics.com/software/smr/; - SMR
was used to test for candidate causal associations between chromatin activity, gene
expression and disease risk. COJO, https://cnsgenomics.com/software/gcta/#COJO; -
COJO was used to conduct conditional analyses. PAINTOR, https://github.com/
gkichaev/PAINTOR_V3.0; - PAINTOR was used to conduct Bayesian fine-mapping
analyses. ADGC, https://brightspotcdn.byu.edu/bf/be/75f2076b4241a30840eadda2c66c/
adgc-combined-1000g-09192014.pdf; - ADGC genotype data were used for fine-mapping
and as an LD reference panel. HOMER, http://homer.ucsd.edu/homer/; - HOMER was
used for de novo motif enrichment analyses.
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