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Abstract—Wireless community networks (CNs) are large-scale,
self-organized and decentralized communication infrastructures
built and operated by citizens for citizens. Community network
cloud infrastructures have been recently introduced to run
services inside the network, without the need to consume them
from the Internet. We have developed a Linux-based distribution
code-named Cloudy, which fosters the service deployment and
automation in community network clouds. In this paper we
present two ways provisioned by Cloudy to integrate the services
and improve the users QoS in these clouds. First, we present
a distributed service discovery mechanism that helps users with
service quality metrics to choose the best service from a pool
of instances. Second, we experiment with a live video streaming
service deployed in CN environments, using more than 50 real
CN nodes across Europe for the evaluation. Our analysis shows
that tuning the vital parameters of this service as neighborhood
peer selection strategies, and source node dispersion strategy,
improves the video streaming QoS in the CNs. Our results
indicate that both ways help the user to experience improved
service performance. Automated service selection, needed once
the number of micro service providers becomes larger, is the
next step that can be built upon our results.

Index Terms—community network cloud; p2p live streaming;
service discovery

I . I N T R O D U C T I O N

Wireless community networks (CNs) are large scale, self-

organized and decentralized networks, which are deployed and

maintained by their own users. Different from the traditional

business-focused model of telecommunication operators, each

user in community networks is owner of a part of the total

infrastructure. Community networks are normally open, free

and neutral. Local stakeholders develop community services,

mainly local networking and Internet access [1]. There are

several large community networks in Europe having from

500 to more than 28.000 nodes, such as Guifi.net1 in Spain,

AWMN2 in Greece, Ninux3 in Italy, Seattle Wireless4 in USA

and many more worldwide. Most of them are based on Wi-

Fi technology (ad-hoc networks, IEEE 802.11a/b/g/n access

points in the first hop, long-distance point-to-point Wi-Fi links

for the trunk network), but also optical fiber links have become

1http://guifi.net
2http://www.awmn.gr
3http://wiki.ninux.org/
4http://seattlewireless.net/

used in some areas. Guifi.net is considered to be the largest

CN worldwide having today more than 28.000 operational

nodes [2].
Resource sharing in CNs from the equipment perspective

refers in practice to the sharing of the nodes bandwidth. This

enables the traffic from other nodes to be routed over those

of different node owners. This is done in a reciprocal manner

which allows CNs to successfully operate as IP networks. The

sharing of other services like storage, video streaming, VoIP,

which is now common practice in today’s Internet through

cloud computing, hardly exists in CNs. We argue however

that it can be made possible through clouds in community

networks, i.e. community network clouds, a cloud deployment

model in which a cloud infrastructure is built and provisioned

for an exclusive use by a specific community of consumers

with shared concerns and interests.
Deployment of services in CNs allows to offer resources

and applications, which are of value for the users and meet

their particular needs and interests. Among the services that are

very appealing, P2P live streaming is an important candidate, as

can be seen by the growing success and usage of commercial

systems such as PPLive, SopCast. P2P live streaming systems

allow to watch live streams such as events or television

channels over a network, granting anyone to become a content

provider.
To enable these types of services within CN nodes is

very challenging, since community networks are diverse and

dynamic networks with limited capacity of wireless links and

often low-resource and cheap devices. Streaming applications,

however, have high demands of bandwidth, they require low

and stable latency and only withstand low packet loss.
Our motivation begins with the integration of a cloud-

like system in community networks which gives users the

opportunity to use services (e.g. video streaming) in their

constraint devices (home gateways), without relying on the

commercial clouds. Furthermore, we extend our motivation

towards providing the service ease of usage and optimization

of QoS on the challenging environment of CNs.
The contributions of this paper are the followings:



• We integrate the P2P live streaming service in the Cloudy

distribution5, and enable the automation and provision of

this service in community network clouds.

• We implement a search service based on Serf6 that

allows the P2P live streaming service to be published

and discovered by users in the community network cloud.

Furthermore, we add a QoS-aware service selection algo-

rithm that allows users to choose the best service from a

pool of instances, according to network metrics.

• We evaluate the performance of PeerStreamer as a P2P

live streaming service deployed over 55 geographically

distributed real community network nodes. We then study

the effects of different parameters of PeerStreamer on its

performance in the community network environment.

The rest of the paper is organized as follows. Section II

defines the community networks clouds and describes the

Cloudy distribution. Section III explains the live streaming

service and its integration in the Cloudy distribution. In section

IV we explain the Serf service discovery implementation and

we show how it is used to publish and discover live streaming

services in community network clouds. Section V describes

the experimental setup. In section VI we analyze and discuss

our results. Section VII describes related work and section VIII

concludes and indicates future research directions.

I I . C O M M U N I T Y N E T W O R K S C L O U D S

Our proposition is to deploy the PeerStreamer7 service

on cloud-based resources within community networks (CNs).

These resources are given as CN clouds. CN users con-

tribute computing resources to the cloud. The resources are

therefore heterogeneous, geographically distributed, and often

with resource constraints. Home gateways located in user

homes can become cloud resources and they are integrated as

Community Home Gateways (CHGs). From an administrative

perspective, these CHGs are peer-to-peer infrastructures. The

community network cloud we envisioned consists therefore

of user-contributed infrastructures, such as home gateways,

connected to the cloud in a peer-to-peer fashion, used for

the collective provision of services that are of interest for the

community.
Our model fits to the general cloud computing deployment

categories. Besides public, private and hybrid models of cloud

computing, a community network cloud differs from the others

in that it is designed with a specific community in mind,

and where costs and responsibilities are shared among the

community members. Such community network cloud model

assumes that cloud users can be classified into communities,

where each community of users has specific needs in terms

of services. We identify in CN such a community as a micro-

cloud. A micro-cloud has a reduced number of nodes which

are close as in Figure 1. This closeness in the context of CNs

can be of technical and social nature. Cloud nodes within a

micro-cloud announce their services and discover other nodes

within the micro-cloud they belong to.

5http://cloudy.community/
6https://www.serfdom.io/
7http://peerstreamer.org/
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Figure 1. Community network cloud nodes, grouped into micro-clouds. The
nodes of micro-clouds are spread on different locations inside the CNs, forming
a meta cloud environment (community network cloud).

A. Cloudy

Cloudy is a Linux distribution containing open-source

software services for our cloud platform for CNs. Cloudy

also integrates platform services that were developed for

CN users, including decentralized storage (a key-value store),

video streaming, video-on-demand, search services and service

discovery. Cloudy’s main components can be considered a

layered stack with services residing both inside the kernel

and the user-level. Figure 2 indicates some of the already

integrated types of services on the Cloudy CN distribution. An

example of these services are the ones we consider in this

paper, the video streaming service such as PeerStreamer, and

the discovery service named Serf.

Key-value store     |    L2 over L3

Service announcement

Console

Community Network

Service discovery

Web interface

D
a
ta

b
a
s
e

D
is

trib
u

te
d

 
s
to

ra
g

e

V
o

IP

C
o

n
ta

in
e
r 

v
irtu

a
liz

a
tio

n

P
ro

x
y

S
N

P
 S

e
rv

ic
e
s

D
N

S
 S

e
rv

ic
e
s

V
id

e
o

 
s
tre

a
m

in
g

V
id

e
o

 o
n

 
d

e
m

a
n

d
 

User

Plugs

Figure 2. Cloudy architecture

1) Cloudy architecture: The internal architecture of the

Cloudy distribution is depicted in Figure 2, inside the central

rectangle. On the bottom part, the virtual Layer 2 over Layer

3 network provides the overlay to interconnect all the servers

(nodes) in a micro-cloud. This overlay network is used in the

service announcement and discovery processes, that respec-

tively publish local information to the cloud and receive data

from other cloud nodes.
Another special service module in the Cloudy instance is the



distributed announcement and discovery of services. On the

lower layer it provides the mechanisms and the infrastructure to

other services to publish their information all over the CN. This

is a valuable resource to orchestrate the CN cloud itself as it

allows room for self-discovery, management and federation of

services and resources. On the user interaction layer, the DADS

allows the end user to discover the available cloud services in

the CN and decide which service provider to choose according

to certain metrics (e.g. network round-trip time (RTT) to the

services and number of hops).
The main block of Cloudy comprehends the CN services,

stressing the important role of cloud services in the center of

the diagram (see Figure 2). These services are the ones that

benefit from or embrace the CN cloud environment to operate

or offer a richer quality of experience (the list in the diagram

is non-exhaustive, but mentions key services like distributed

storage or different ways to reach video contents). Among

them, virtualization is a special case. While other services

focus on interaction and contents for the end user, provision of

Infrastructure as a Service (IaaS) by means of virtual machines

focuses on fostering the deployment of other services that run

on top of this infrastructure.

I I I . L I V E S T R E A M I N G S E RV I C E

PeerStreamer is an open source live P2P video streaming

service, and mainly used in our Cloudy distribution as the live

streaming service example. This service is built on a chunk-

based stream diffusion, where peers offer a selection of the

chunks that they own to some peers in their neighbourhood.

The receiving peer acknowledges the chunks it is interested

in, thus minimizing multiple transmissions of the same chunk

to the same peer. Chunks consists of parts of the video to

be streamed (by default, this is one frame of the video). At

the beginning of the streaming process, these chunks are all

from the same peer (since only one peer is the source), then

the source sends m copies of the chunks to random peers

(m = 3 by default), creating an overlay topology with all

peers [3] in order to exchange chunks between them. The

whole architecture and vision of PeerStreamer is described in

detail in [4].

A. PeerStreamer Assumptions and Notation

We call the community network the underlay to distinguish

it from the overlay network which is built by PeerStreamer.

The underlay network is supposed to be connected and we

assume each node knows whether other nodes can be reached

(next hop is known). We can model the underlay graph as:

Gug = (S,Lug) (1)

where S is the set of super nodes present in community

network and Lug is the set of wireless links that connect them.

This is the global level.
In the micro-cloud level we have a set of outdoor routers

(OR) that are connected to each other in the same micro-cloud

as shown in Figure 1,

Gum = (OR,Lum) (2)

where OR is the set of outdoor routers present in the micro-

clouds of the CNs and Lum is the set of wireless links that

connects them.
The nodes of the underlay (connected to super nodes through

outdoor routers) run an instance of the PeerStreamer and are

called peers. Each peer Pi at time t chooses a subset of the

other peers as a set of neighbours that are called Ni(t). The peer

Pi exchange video frames (chunks) only with peers in Ni(t),
and the union of all the Ni(t) and the related links defines

the network topology of the application, also represented as

graph and called overlay. The overlay built by PeerStreamer

is a directed graph:

Gog(t) = (Pset, L
og(t)) (3)

where Pset is the set of peers and

Log(t) = (Pi, Pj) : Pj ∈ Ni(t) (4)

is the set of edges that connect a peer to its neighbours.

The main difference between the overlay and the underlay

is that the underlay is determined by the network topology, on

which PeerStreamer does not have control, while the overlay

is generated by PeerStreamer.

B. PeerStreamer integration in Cloudy

The version of PeerStreamer that is bundled with Cloudy,

only features UDP streaming for video input, which is an

acceptable transport protocol for video streaming. Therefore,

we need to consider this fact in our stream provision. Either an

online stream can be used (with the help of other applications)

or a local video streamed to a local port is used. However,

most of the video streams in the Internet do not use directly

the network-level UDP protocol, instead it is more common to

use an application-level protocol, such as RTSP/RTP8. In order

to include PeerStreamer in Cloudy we choose the lightweight

PeerStreamer version since we have low-resource machines in

our community cloud deployment.

I V. S E RV I C E D I S C O V E RY

Cloud services in the context of CNs are built and operated

in a decentralized way, and need a common place for both

providers and users respectively, to publish their services

and learn about their availability. In Guifi.net, the available

network services are normally declared on the web page, by

manually submitting the details (type of service and specific

characteristics, location, IP address, terms of usage, etc.). The

lack of automated methods for publishing services, and also

for conveniently finding out which are the ones closest to the

user, has led to a couple of drawbacks: not all the services

are declared on the website (although they are announced by

other means, like users mailing lists) and when a service is

temporarily or permanently unavailable, it still appears on the

website as online until it is manually removed from the list. In

this section we show how we implement and use the automatic

service discovery based on Serf to discover services such as

PeerStreamer in Cloudy instances.

8http://www.ietf.org/rfc/rfc2326.txt



A. Serf Implementation

The distributed announcement and discovery of services

(DADS) operates in parallel at both the global community

network cloud level and at the micro-cloud level. On each of

these two levels a different technological approach is used.

Cloudy includes a tool to announce and discover services

in the CN clouds based on Serf, a decentralized solution

for cluster membership, failure detection, and orchestration.

Serf relies on an efficient and lightweight gossip protocol

to communicate with other nodes that periodically exchange

messages between each other. This protocol is, in practice, a

very fast and extremely efficient way to share small pieces

of information. An additional byproduct is the possibility of

evaluating the quality of the point-to-point connection between

different Cloudy instances. This way, Cloudy users can decide

which service provider to choose based on network metrics

like RTT, number of hops or packet loss (Algorithm 1). The

second level of DADS occurs in the micro-cloud, where a

number of Cloudy instances are federated and share a common,

private Layer 2 over Layer 3 network built with Getinconf9.

At that level, Avahi10 is used for announcement and discovery.

Originally this solution was to be applied to the whole CN but

as more Cloudy instances started to appear it became clear that

the solution would not scale further than the tens of nodes as we

explain in [5]. However, in the context of an orchestrated micro-

cloud, it can be used not only for publishing cloud services

but also other resources like network folder shares, etc.

When Serf finds different services (including services of

the same type) we need to provide a QoS-aware service

selection approach that will help users to choose the best

quality of service among all instances. It is worth noting

that a service with consistently good QoS performance is

typically more desirable than a service with a large variance

on its QoS performance. This would allow users to choose

the best service available ranked according to some important

community network parameters.

When a Cloudy client issues a find service request, Serf

obtains the service list available and related service availability

degree. Service availability may include many aspects to

service i as Si, we denote as Ai1, Ai2, Ai3,...Aij ,..., Aim,

where m is the attribute number of each service. The services

can have attributes as RTT, packet loss, throughput etc. We

use Wij to denote the importance weight of every attribute of

service i, where j=1, 2, 3 ...,m and ǫ as a preference weight of

the user for a given type of service. Taking into account this,

the service availability can be described as Ai, in Equation

5. We specify also a service availability threshold λ, which

denotes that if a service with Ai is greater than specified λ,

then the service is available and it is added to the available

service list set.

Ai =
∑

j=1..m

(WijAij)− λ (5)

9https://github.com/Clommunity/getinconf/
10https://avahi.org

Algorithm 1 ServiceSelection(Si, Wij , Aij)

1: // Si ← service in the cloud, Aij ← the jth attribute value

of service i, Wij ← the weight of importance degree, ǫ

← user preference weight, λ ← the availability threshold;

2: procedure S – S E L E C T I O N

3: AvSet={};

4: for each Si in the Community Cloud do

5: if Si is in Micro-Cloud then

6: Wi * ǫ where ǫ > 0 ;

7: end if

8: calculate Ai with equation (5);

9: if Ai ≥ 0 then AvSet = AvSet U {(Si,Ai)}

10: end for

11: sort(AvSet) order by descending;

12: end procedure

By default, Serf is used in Cloudy in order to simplify the

process of service discovery for the users by utilizing the QoS-

aware service selection algorithm (Algorithm 1).

V. E X P E R I M E N T S E T U P

For the experimental research, our main configuration in-

cludes geographically distributed CN nodes from Guifi.net in

Spain, AWMN in Greece and Ninux in Italy. These nodes

are co-located in either users homes (as home gateways, set-

top-boxes etc) or within other infrastructures around each

city. Nodes are deployed to use the wireless links of each

community network that operate in the ISM frequency bands

at 2.4 GHz and 5 GHz. The connectivity between CN nodes

varies significantly. Two CNs (Guifi.net and AWMN) are

connected on the IP layer via the FEDERICA11 (Federated

E-infrastructure Dedicated to European Researchers) infrastruc-

ture, enabling network federation. The nodes of Ninux CN in

Italy are not connected to FEDERICA, therefore we experiment

with them separately (without including other CN nodes). In

our experiments the nodes from UPC (Technical University

of Catalonia) are a subset of Guifi.net CN nodes which are

distributed in our UPC campus in Barcelona. We use these

nodes as a baseline in order to be able to better understand

the effects of the network given by the statistical data gathered

from the community networks.
In order to deploy the PeerStreamer application in a realistic

community network cloud setting, we use the Community-Lab

[1] infrastructure which is a distributed infrastructure provided

by the CONFINE12 project, where researchers can deploy

experimental services and perform experiments in a real and

production CN.
Our experimental evaluation is comprised of 55 physical

nodes distributed across Europe, among the working nodes

available from the three CNs. Most of the nodes are built with

an Intel Jetway device equipped with an Intel Atom N2600

CPU (2 cores), 4GB of RAM and 120GB SSD and running

a custom Linux OS (based on OpenWRT),13 which makes

them resource constrained devices at the edges of the network.

11http://www.fp7-federica.eu/
12https://confine-project.eu
13https://openwrt.org



Table I shows the number of nodes used in three community

networks, their location and type of devices deployed.
In our experiments we connect a live streaming camera

(maximum 512 kbps bitrate, 30 fps) to a local PeerStreamer

instance which acts as the source for the P2P streaming. We

choose as a source a stable node with good connectivity and

bandwidth to the camera in order to minimize the video frame

loss from the networked camera. The source is responsible for

converting the video stream into chunk data that is sent to the

peers. In the default configurations of PeerStreamer a single

chunk is comprised of one frame of the streaming video. Also,

the source PeerStreamer node sends three copies (m = 3) of

the same chunk to the peers, meaning that only three peers

receive the chunks directly from the source at a given time.

Thus, each peer that receives the chunks exchange with other

peers in order to form the P2P exchange network.
The evaluation metrics presented were chosen in order

to understand the network behavior, quality of service and

quality of experience. Thus, for network behavior section VI-A

explains in details the network measurements obtained. On the

quality of service side, we measure the number of chunks that

are received by peers and the chunk loss percentage in order to

understand the impact of the network on the reliable operation

of this type of service. On the quality of experience, we gather

statistical data from the chunks that are played out locally by

each of the peers to understand the quality of the images that

the edges show to the users. These metrics, show the impact

of such networks when using streaming services while also

guaranteeing the image quality that each node can display on

average. Regarding the network interference issues of other

users’ concurrent activity which can impact the results of the

experiments, we reference to [6] and is out of the scope of

this paper.

Table I
N O D E S I N T H E C L U S T E R A N D T H E I R L O C AT I O N

Nr. of nodes Cat. Location Type

23 UPC Barcelona, Spain Physical nodes and VMs

8 Guifi.net Catalonia, Spain Physical nodes

12 AWMN Athens, Greece Physical nodes

12 Ninux Rome, Italy Physical nodes

A. Scenarios

To assess the applicability of PeerStreamer in CNs, the

following describes a chosen scenario that reflects a use case

of live video streaming in CNs. Also, we augment our findings

with a scenario reflecting different parameters of PeerStreamer

usage, in order to understand possible improvements of the

overlay network created by the PeerStreamer instances. The

parameters used in the scenarios are summarized in Table II.
For the first scenario we choose the default parameters of

PeerStreamer and run in the challenging environment of CNs.

One of the nodes, which has the best connectivity to the camera

stream is chosen to be the source peer, while the rest of the

available nodes will initially contact the source in order to

enter the P2P network for chunk exchange. Since the Ninux

group of nodes do not have connectivity in IPv4 to other CNs

Table II
S U M M A RY O F O U R S C E N A R I O PA R A M E T E R S

Scenario 1 and 2

Total number of nodes 55

Groups of nodes UPC, Guifi.net, AWMN, Ninux

Tests time-frame T1 = 30m | T2 = 1h | T3 = 2h

Source 1 Send Rate (chps) T1 = 31 | T2 = 32 | T3 = 31

Source 2 Send Rate (chps) T1 = 55 | T2 = 55 | T3 = 49

Metrics
Peer Receive Ratio, Chunk Loss

Chunk Playout, Neighborhood Size

(they are not part of FEDERICA), we deliberately executed the

experiment apart from the other CNs, in order to understand

different CNs network behaviors. The experiment ran on this

group was different because of the non-connectivity to the

camera stream, therefore another solution was devised. We

introduced a live TV streaming channel as the streaming source,

transcoded to 512 kbps bitrate, 30 fps on average similar to

the camera stream. However, this stream also included audio,

which made the exchange of data between peers higher than the

peers of other CNs. Each experiment is composed of 20 runs,

where each run has 10 repetitions, and averaged over all the

successful runs (90% of the runs were successful). In the 10%

of the runs the source was not able to get the stream from the

camera, so peers did not receive the data. The measurements

we present consists of 3 weeks of experiments, with roughly

300 hours of actual live video distribution and several MBytes

of logged data.

We then establish three experiments shown for 30 minutes,

1 hour and 2 hours of continuous live streaming from the

PeerStreamer source. This was done in order to gather statis-

tical information within different time-frames and to use as

initial step towards live events coverage on CNs. Other nodes

were started at the same moment in time, 10 seconds after the

source started, in order for the source to gather enough data

to be able to exchange with the peers. This also allows the

randomization of the nodes that the source PeerStreamer will

first push the chunks to, and thus on all experiments the peers

that begin receiving chunks from the source will be different

(PeerStreamer overlay topology changes in every run of exper-

iments). In all experiments we try to guarantee the number of

nodes to remain constant. However, since we are dealing with

a very dynamic and challenging environment, there is an issue

of churn rate of nodes. This happens in the CNs because most

of the nodes are connected wirelessly and their connectivity

depends on many factors (such as weather, electric failures,

router connectivity, among others). PeerStreamer for its own

overlay performs operations to manage the peer churn rate

by constantly updating each peer neighborhood, an important

feature for the potentially unstable and dynamic nodes that we

find in community networks.

For our second scenario, the evaluation performed includes

the findings of different configuration parameters of Peer-

Streamer, which results in better quality streaming. This was

done in order to understand the different behaviors of the

PeerStreamer algorithms such that the overlay network that it

constructs can be optimized. The different parameters chosen
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Figure 3. Average throughput and RTT to the gateway/Internet and number
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include sending different amount of copies of the chunks from

the PeerStreamer source (m = 5, m = 1); keeping the best

peers in the neighborhood in between topology updates of the

overlay that PeerStreamer creates (TopoKeepBest); and the

addition of the peers that can be selected to the neighborhood

by extending the default RTT (10 ms) of the peer selection

metric [4] to 20 ms .

V I . R E S U LT S

A. Characterizing the Network Performance

Typically, CN users have an outdoor router (OR) with

a Wi-Fi interface on the roof, connected through Ethernet

to an indoor AP (access point) as a premises network. In

Guifi.net where nodes are located, OSPF, BGP, BMX6 [7] or

combination of them is used as a routing protocol. In AWMN

and Ninux BGP and OSPF are mainly used between outdoor

routers. Most of the super nodes (the ones routing the traffic

between the different zones) are working in AP mode. The

nodes (home gateways) where the PeerStreamer application

is running are connected to these super nodes through their

outdoor routers. A few super nodes are placed strategically on

third party locations, e.g. telecommunication installations of

municipalities, to improve the community network’s backbone.

In order to gain insight for network behavior in community

networks we monitored the network for a period of 30 days.
Figure 3 shows the average throughput and RTT to the

gateway (proxy) and the Internet, and the number of hops to

the gateway obtained for every OR. The values are sorted by

the throughput to the gateway. Standard deviation error bars

are also given. Internet values are measured using a server

located outside of Guifi.net. The figure also reveals that the

throughput to the Internet and the gateway are not linearly

correlated. The average throughput to gateway is 17.4 Mbps

and to the Internet 6.3 Mbps. This is because one of the

gateways in CNs has a better connection to the Internet. Thus,

even if the throughput to the gateway is high, those nodes using

the second gateway in other parts of the network have a low

throughput to the Internet. Furthermore, it demonstrates that the

RTT has a stronger correlation with the number of hops than

the throughput (average RTT to the gateway is 9.26 ms and to

the Internet 56.3 ms). Error bars reveals that some nodes have

an average number of hops with noticeable deviations. This

variability has two causes: change in the routes, and selection

of a different gateway.

B. Scenario Results

Figure 4 depicts the amount of chunks on average the peers

receive. Knowing that Source 1, sends out to the peers around

31 chunks per second (chps), we notice that the distant groups

(Guifi.net and AWMN) in relation to the source, receive less

chunks than the closer group (UPC), in relation to the source.

This is because of the network impact on the delivery time of

the chunks. Thus, more chunks arrive out of the time allotted,

the farther the chunks have to travel. We also notice that the

number of chunks received on average increases with longer

time-frames, this occurs because the peers can gather more

statistical information about each other and therefore update

their neighboring peers accordingly, while securing a subset

of peers in which they can rely on to receive the chunks in

the time allotted to be displayed. We also show that on Ninux

Figure 4. Average Peer Receive Ratio

side the amount of chunks received tends to be higher that of

the other CNs. This is due to the fact that we use a different

stream (Live TV channel stream), in which Source 2 sends

around 55 chps instead (accounting with the added audio part

of the stream). We also notice a drop of receiving chunks for

longer times, because of the inherited instability of this group

of nodes, where the loss of data is more constant/visible when

dealing with longer times.
Figure 5 shows the average chunk loss for each group of

peers. We can see that the loss is greater for shorter time-

frames (loss in UPC 7%, Guifi.net 9% and AWMN 13%) and

are amortized for longer time-frames (loss in UPC 2%, Guifi.net

3% and AWMN 7%). We also notice that distant groups (distant

from the source stream) are more affected by the diminished

rate of chunks received, which demonstrates the influence the

network has to the amount of data that is lost (either by losses

on the network or by not arriving on time to be displayed).

As for the Ninux group, as previously mentioned, the network

behavior is more volatile since there is a higher packet loss.

Therefore, we notice that since Source 2 sends more chunks

per second (around 55) than Source 1, the loss of chunks in

the peers is greater than in other groups and in longer time-

frames the network instability has a higher impact on the data

exchanged (34% loss).
Figure 6 illustrates the quality (chunks played) of video

offered on the peers side. The closer groups display more



Figure 5. Average Chunk Loss

chunks, because the loss between farther nodes is greater than

closer nodes and since the network plays a big role on the

delivery of chunks. We also notice that the longer time-frames

have on average a better chunk playout because more chunks

arrive on time to be displayed (UPC 98%, Guifi.net 98%,

AWMN 92%). For the Ninux group we see a more stable chunk

playout for each of the time-frames, which means that since the

network instability occurs during the whole evaluation the same

amount of chunks (on average 71%) arrive to be displayed,

also meaning that the network bandwidth/throughput between

nodes (on average) is lower than on other CNs and remains

constant over time.

Figure 7 demonstrates the chunk loss gathered during

30 minutes experiment, with different parameters given to

the PeerStreamer. The parameters shown (TopoKeepBest,

RTT = 20ms and m = 5) have been selected in order to

predict the behavior and improvements that PeerStreamer can

have when executed in CNs. We notice that increasing the

Figure 6. Average Chunk Playout

RTT for the overlay topology gives the peers higher probability

to receive chunks in time and therefore decreasing the chunk

loss in each of the groups. The other parameters have a higher

impact on losing chunks, especially when the source only sends

one copy (m = 1) of the chunks to peers (not shown in

the figure). We also notice that keeping the best neighbors

on topology overlay updates, lowers groups loss chunks (as

in UPC case) that have nodes closer to each other, in which

the selection of peers for exchanging chunks will have higher

probability to choose the best nodes from previous topology

updates. For the Ninux group we notice that when keeping the

best nodes on topology updates there is a greater improvement

(23% in loss, comparing with default parameters where we

got 32% loss), because the probability of choosing the best

nodes will be higher, since the nodes on this CN have worst

connectivity. Also for Ninux, giving a RTT of 20 ms has

mostly the same average as the previous experiments (with

default parameters) since the nodes are farther apart (in RTT

terms), meaning that there will be no significant changes in the

neighborhood created for these peers. We also show that there

is improvement when changing the number of chunk copies

Source 2 sends to peers (m = 5). This is because of the

resources that Source 2 has at its disposal, which makes it able

to send more copies without losing bandwidth and computation

time (against Source 1 as a low-power device); and also, since

the network has more packet loss than in other CNs, flooding

the network with more copies makes a higher probability for

peers to be able to receive more chunks on time.

Figure 7. Average Chunk Loss with different parameters

C. Discussion

We started our evaluation by demonstrating the performance

PeerStreamer has on CNs, with the default parameters, in order

to understand what improvements can be achieved in CNs. We

found that PeerStreamer neighborhood selection lacks account-

ability for network instability and therefore PeerStreamer can

perform poorly in CNs. The metric for randomly selecting a

subset of peers for the neighborhood reduces the probability

to receive chunks in time, since peers can select the worst

neighbors. This metric can be good for reducing time spent

on initial costs however over time the CN selected peers need

to be within either the best or with a greater range in RTT ,

as shown with different parameters scenario in Figure 7. We

also found that while modifying the number of chunk copies

that the source sends, can have beneficial results, guaranteeing

that the chunks will travel to more nodes and be available to

be traded in the P2P network over more peers. However, since

the wireless links of CNs have a high diversity in bandwidth,

this issue can arise and should be studied more thoroughly.

Regarding the amount of data exchanged between peers we

consider that in current wireless CNs and using P2P networks

the high quality video streams (i.e., 1080p) are affected by the

performance of the network links since more data or sizable

data needs to pass through the network to the peers, and may

even congest it. While using standard quality video streams,

as shown in our evaluation the amount of loss is lower and

more efficiently exchanged between peers in CNs.

Furthermore, by enhancing the performance of live video

streaming, with the opportunity for users to choose the prefer-

able services for them (based on the services’ attributes such

as RTT) can augment the probability for optimizing the QoE/S

in these environments and therefore the combination of our

contributions can achieve higher quality of service than an

ad-hoc solution.



V I I . R E L AT E D W O R K

In terms of evaluating the performance of PeerStreamer in

unreliable networks, the work of Baldesi et al. [8], [9] is the

most relevant to our work. The authors evaluate PeerStreamer,

a P2P video streaming platform, on the Community-Lab, the

wireless community network (WCN) testbed of the EU FIRE

project CONFINE. Their experiments highlight the feasibility

of P2P video streaming, but they also show that the streaming

platform must be tailored ad-hoc for the WCN itself to be

able to fully adapt and exploit its features and overcome its

limitations. However they evaluated with a limited number of

nodes (16 Guifi.net nodes), which were located in the city of

Barcelona and they do not use live video stream. A recent PhD

dissertation [10] includes some discussion on P2P streaming on

WCNs, but does not elaborate on live streaming, but consider

streaming of Video on Demand (VoD) retrieval.
Another work [11] studies different strategies to choose

neighbours in a P2P-TV system (PeerStreamer). The authors

evaluate PeerStreamer on a cluster and on Planetlab. In wireless

networks PULLCAST [12], is a cooperative protocol for multi-

cast systems, where nodes receive video chunks via multicast

from a streaming point, and cooperate at the application level,

by building a local, lightweight, P2P overlay that supports

unicast recovery of chunks not correctly received via multicast.
The impact of uncooperative peers on video discontinuity

and latency during live video streaming using PlanetLab is

studied in [13]. The paper in [14] investigates the impact of

peer bandwidth heterogeneity on the performance of a mesh

based P2P system for live streaming.
In our work we emphasis on studying the video streaming

applications in a real deployment scenario within community

networks, in order to understand their performance and oper-

ation feasibility under real network conditions. Furthermore,

we automate the PeerStreamer deployment using Cloudy dis-

tribution.

V I I I . C O N C L U S I O N A N D O U T L O O K

A distributed community network cloud was presented, as the

environment for the experimental evaluation of PeerStreamer, a

P2P live streaming service, integrated through the Cloudy distri-

bution. An important aspect for the ease of usage of community

network clouds is the automatic announcement of services, such

as PeerStreamer, and their discovery by other cloud nodes. A

service announcement mechanism based on Serf was used to

allow end users to discover active PeerStreamer instances in

the cloud and join a live streaming event. Furthermore, we

designed an algorithm to help users choose the service with

the better QoS available to them. This was our contribution

done on the users perspective, which improves the underlay

network. The service discovery and the ease of usage that the

Cloudy environment provides for end users, is considered an

important element that envisages the users to participate in the

streaming service.
On the overlay network level our goal was to have a feasible

system that can utilize the resources scattered on CNs in order

to achieve a live video streaming service. The part of Peer-

Streamer that can be modified is the construction of the overlay

network. Our evaluation showed that using PeerStreamer with

the default settings can achieve lower rating in terms of QoS in

the CN environment where the network instability is prominent.

We showed that in different CNs the results obtained in

terms of loss of data between peers is distinctive. For this

reason, we augmented our findings by running PeerStreamer

with different configuration of parameters so that we can

understand the best behaviour that PeerStreamer can provide

to its users. Our evaluation showed that modifying the number

of chunk copies that the source sends to peers and modifying

the neighbourhood selection policies such as metrics for peer

selection as RTT and keep best peers (TopoKeepBest) can

have beneficial results for live video streaming in the high

diversity environment of a CN.
Based on the successful operation and performance of

PeerStreamer in community networks and the service discovery

mechanism provided through community network clouds, our

experimental deployment of these applications should now

transform into a permanently available cloud-based streaming

service used by community network participants.
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