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Integration of an interpretable machine
learning algorithm to identify early life risk
factors of childhood obesity among
preterm infants: a prospective birth cohort
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Abstract

Background: The early life risk factors of childhood obesity among preterm infants are unclear and little is known

about the influence of the feeding practices. We aimed to identify early life risk factors for childhood overweight/

obesity among preterm infants and to determine feeding practices that could modify the identified risk factors.

Methods: A total of 338,413 mother-child pairs were enrolled in the Jiaxing Birth Cohort (1999 to 2013), and 2125 eligible

singleton preterm born children were included for analyses. We obtained data on health examination, anthropometric

measurement, lifestyle, and dietary habits of each participant at their visits to clinics. An interpretable machine learning-

based analytic framework was used to identify early life predictors for childhood overweight/obesity, and Poisson

regression was used to examine the associations between feeding practices and the identified leading predictor.

Results: Of the eligible 2125 preterm infants (863 [40.6%] girls), 274 (12.9%) developed overweight/obesity at age 4–7 years.

We summarized early life variables into 25 features and identified two most important features as predictors for childhood

overweight/obesity: trajectory of infant BMI (body mass index) Z-score change during the first year of corrected age and

maternal BMI at enrollment. According to the impacts of different BMI Z-score trajectories on the outcome, we classified

this feature into the favored and unfavored trajectories. Compared with early introduction of solid foods (≤ 3months of

corrected age), introducing solid foods after 6months of corrected age was significantly associated with 11% lower risk (risk

ratio, 0.89; 95% CI, 0.82 to 0.97) of being in the unfavored trajectory.
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Conclusions: The trajectory of BMI Z-score change within the first year of life is the most important predictor for childhood

overweight/obesity among preterm infants. Introducing solid foods after 6months of corrected age is a recommended

feeding practice for mitigating the risk of being in the unfavored trajectory.
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Background
Over the past decades, about 1 in 10 of the babies were

born preterm (defined as delivery at < 37 completed

weeks of gestation) every year globally and more than

80% of the preterm births occurred in Asia and sub-

Saharan Africa [1]. China was one of the top 5 countries

for estimated number of preterm births and accounted

for 7.8% of preterm births globally in 2014 [1]. As the

quality of care for preterm infants improves and preterm

survival rates increase [2], maintenance of a healthy

metabolic status for the preterm infants over time has

become a common research interest.

Preterm infants are at a higher risk of developing

childhood obesity compared with term infants [3]. How-

ever, risk factors of childhood obesity among this spe-

cific population of infants are still unclear [4–7].

Prospective birth cohort study with a large sample size

and a long follow-up period are undoubtedly ideal for

addressing the question. However, the abundant, com-

plex, high-dimensional, and heterogeneous health care

data (e.g., biomedical and lifestyle data) pose a challenge

to traditional data processing, statistical analysis based

on a priori assumption, and result interpretation. Ma-

chine learning can help reveal relationships from the

data without the need to define them a priori and derive

predictive models without a need for strong assumptions

about the underlying mechanisms [8, 9]. Furthermore,

understanding why a predictive model made a specific

prediction or explaining the specific features that lead to

the prediction is even more clinically meaningful as

some factors may be modifiable.

In the present study, we used an interpretable machine

learning tool to identify early life risk factors of future

overweight/obesity among singleton prematurely born

children based on data collected over 14 years in a Chin-

ese prospective birth cohort. As a secondary objective,

we explored the associations between children’s feeding

practices and the identified risk factors.

Methods
Study population

The Jiaxing Birth Cohort is a prospective cohort involv-

ing 338,413 mother-child pairs from Jiaxing, Zhejiang

province (a middle-income area in southeast China),

who were enrolled between 1999 and 2013. The enrolled

women were followed up via visiting clinics until the

birth of their children, and the children were continued

to be followed up at ages 3, 6, 9, and 12months during

infancy stage, every 6 months between ages 12 and 36

months during toddler stage, and thereafter every year

before they went to school (6–7 years of age) [10].

A total of 8269 singleton children who were born be-

fore 37 completed weeks of gestation were screened

from all 338,413 children in the Jiaxing Birth Cohort.

We then retrieved classical items of anthropometric pa-

rameters, lifestyle factors and medical history, and ex-

cluded the mother-child pairs’ missing complete data to

define childhood (at age 4–7 years) overweight/obesity

(n = 4823) and those who lacked the data on any ex-

tracted item (n = 1321). Thus, the dataset from the

remaining 2125 mother-child pairs were included in the

present analyses (Fig. 1).

Measurement of pre- and postnatal antecedents and

ascertainment of overweight and obesity

Maternal demographic characteristics (e.g., age, educa-

tion, occupation), maternal anthropometrics (e.g., body

weight, height, blood pressure), perinatal clinical history

(e.g., delivery mode, gestational age, birth weight, birth

length), laboratory tests (e.g., hemoglobin concentra-

tion), postnatal feeding practices (e.g., duration of

breast-feeding, use of formula, and timing of introducing

solid foods), and growth patterns were recorded at their

visits to local clinics.

For children at corrected ages between 4 and 5 years,

Z-scores of body mass index (BMI)-for-age were calcu-

lated according to the 2006 WHO Child Growth Stan-

dards, and overweight and obesity were defined as the

BMI Z-score between 2 and 3 and > 3, respectively [11,

12]. The 2007 WHO Child Growth standards were used

to calculate Z-scores of BMI-for-age for children older

than 5 years (corrected age), and overweight and obesity

were defined as the BMI Z-score between 1 and 2 and >

2, respectively [12, 13].

Data integration and predictor implementation

As the collected early healthcare data may have a variety

of complex nonlinear interactions, we used a model

based on a gradient boosting framework—LightGBM—

to link input features with future overweight or obesity.

LightGBM was developed to improve the efficiency and

scalability of the gradient boosting machines (GBM)
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[14]. By adopting two novel techniques, Gradient-based

One-Side Sampling (GOSS) and Exclusive Feature Bund-

ling (EFB), LightGBM had a faster training speed, better

accuracy, and higher efficiency compared to traditional

gradient-boosting machines. With GOSS, a significant

proportion of data instances with small gradients were

excluded, and only the rest were used to estimate the in-

formation gain. GOSS was verified obtaining quite ac-

curate estimation of the information gain with a much

smaller data size. EFB was used to bundle mutually ex-

clusive features, which was proven to reduce the number

of features without hurting the accuracy of split deter-

mination by much [14].

Model interpretation

Machine learning method usually only informs the results

without telling us how it makes a certain decision. To

solve this problem, we used a novel unified framework,

SHAP (Shapley Additive exPlanations), to interpret pre-

dictions [15]. The impact of each feature on the model is

represented using Shapley values, which are from coali-

tional game theory and consider all possible predictions

for an instance using all possible combinations of inputs,

and the average contribution of a feature value to the pre-

diction is calculated in different coalitions [15].

Statistical analysis

We used a latent-class growth model to track the

changes of infant BMI Z-score during the first year of

corrected age and cluster the pattern of changes into

three distinct trajectories [16, 17]. Similarly, the maternal

BMI changes, blood pressure changes, and hemoglobin

concentration changes during pregnancy were all clus-

tered into three distinct trajectories using the same

method. Collectively, the retrieved items, including in-

fant and maternal variables and clustered trajectories,

were summarized into 25 features (Supplemental

Table 1), which were subsequently used to construct the

machine learning prediction model.

To ensure stability and extrapolation of the machine

learning model, we randomly divided the dataset into

separate training (n = 1143), validation (n = 381), and test

sets (n = 382) at a ratio of 6:2:2. After fitting the parame-

ters of the LightGBM model using the training set, we

then validated and tuned the model among the valid-

ation set and evaluated the final performance using the

independent test set. Receiver operating characteristic

(ROC) curves were derived based on the validation and

testing set, and the area under the curve (AUC) with

95% CI was calculated to evaluate the performance of

the model.

We used the Tree SHAP implementation integrated

into LightGBM to interpret the entire dataset. Features

were sorted by the mean absolute SHAP values, across

all samples. We selected features with an average abso-

lute SHAP value greater than 0 as predictor variables.

DeLong’s test for correlated ROC curves was used to as-

sess the differences between models including all fea-

tures and selected features only [18]. R package pROC

was used for ROC curve analyses [19]. Then, we exam-

ined the marginal effect of each selected feature on pre-

diction outcome after accounting for the average effect

Fig. 1 Flowchart of selection process of eligible participants from the Jiaxing Birth Cohort
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of all other features, as to investigate how the changes in

a single selected feature affected the output of the ma-

chine learning model. As the SHAP value represents a

feature’s responsibility for a change in the model output,

we created a SHAP dependence plot to show the effect

of a single feature across the whole dataset.

In order to examine the influence of overweight/obes-

ity definition on the performance of our model, we per-

formed sensitivity analyses by repeating our analyses

after redefining the childhood overweight/obesity ac-

cording to criteria which was used to screen overweight

and obesity in Chinese children [20]. To further explore

the potential feature selection bias, we also repeated the

feature selection analysis using an ensemble feature se-

lection tool (EFS), which made use of multiple feature

selection methods and combined their normalized out-

puts to quantitative ensemble importance [21].

We then examined whether the machine learning-

identified early life risk factor (i.e., trajectories of BMI Z-

score) could be used as a preventive target of childhood

overweight/obesity by improving infant feeding practices

(e.g., duration of breast-feeding and timing of introducing

solid foods). To this end, we examined the association be-

tween modifiable feeding practices and trajectories of BMI

Z- score change, adjusted for mode of delivery, age at

birth of offspring, gestational age, maternal education sta-

tus, occupation, parity, maternal BMI at enrollment, ma-

ternal smoking status, maternal drinking status, and

newborn birth weight. RR (95% CI) of unfavored BMI Z-

score trajectories (defined as the trajectories that have a

positive SHAP value, which corresponds to a higher risk

of childhood overweight/obesity than those with a nega-

tive SHAP value) with the feeding practices (treated as

categorical variables) were assessed by using a Poisson re-

gression model.

We performed a mediation analysis to examine

whether the trajectories of BMI Z- score change medi-

ated the association between timing of introducing solid

foods and childhood BMI Z-scores. We tested the asso-

ciations of the trajectories of BMI Z- score change with

the timing of introducing solid foods and childhood

BMI Z-scores, using a linear regression model. A sgme-

diation command in STATA was used to calculate total,

direct, and indirect effects, and the Sobel test was used

to test the significance of indirect effect [22]. We used

bootstrapping with 1000 sampling replications to esti-

mate the 95% CI and calculate the proportion of the

total effect of the timing of introducing solid foods on

the childhood BMI Z-scores that was mediated by the

trajectories of BMI Z-score change. The mediation

models were adjusted for mode of delivery, gestational

age, age at birth of offspring, maternal education status,

occupation, parity, maternal BMI at enrollment, mater-

nal smoking status, maternal drinking status, and

newborn birth weight. Statistical analyses were done in

STATA (version 15, Stata Corp, College Station, TX,

USA), and a two-tailed p value < 0.05 was considered

statistically significant.

Results
Population characteristics

A total of 2125 preterm infants with a median gestational

age of 36 weeks (IQR 35–36) and a median follow-up of

6.4 years (IQR 5.8 to 6.8) were included in the final ana-

lyses. Two hundred seventy-four (12.9%) preterm infants

developed overweight/obesity at 4–7 years old, and the

number of cases increased from 13 at 4–5 years to 156 at

6–7 years (Supplemental Figure 1). Mothers of the chil-

dren who progressed to childhood overweight/obesity had

a younger age of menarche, higher BMI at enrollment,

and distinct pattern of BMI changes compared with their

counterparts (Table 1). Overweight/obese children were

more likely to be boys, were delivered by cesarean section,

and had heavier birth weight and distinct trajectory of

BMI Z-scores during the first year of corrected age com-

pared with those with normal weight (Table 1). Compared

to excluded mother-child pairs, mothers included in the

analysis were less likely multiparous, and the characteris-

tics were generally balanced between the two datasets

(Supplemental Table 2).

Maternal and early life risk factors of childhood

overweight/obesity identified by machine learning

Figure 2a showed the ROC curve with an AUC of 0.74

(95% CI 0.68 to 0.79) in the validation set, which reflected

the accuracy of the prediction model with all inputted fea-

tures in the model. Two most important features, trajec-

tory of infant BMI Z-score change and maternal BMI at

enrollment, were identified from the machine learning al-

gorithm (Fig. 2b). Figure 2c showed the performances of

the model in the test set, and the selected features showed

similar predictive capacity compared with all features

(AUC 0.68 vs. 0.68; p = 0.83, DeLong’s test).

The sensitivity analyses identified the same two fea-

tures (i.e., trajectory of infant BMI Z-score change and

maternal BMI at enrollment), and the ranking of the two

features’ SHAP value was unchanged (Fig. 2b). In the in-

dependent test cohort, the AUC for childhood over-

weight/obesity classification using the two features was

0.71 (95% CI 0.66 to 0.76), which was comparable to that

yielded based on all features (0.72, 95%, 0.67 to 0.76,

Fig. 2d). Moreover, using the EFS tool, we also success-

fully replicated our results, which consistently showed

the trajectory of infant BMI Z-score change during

the first year of corrected age and maternal BMI at

enrollment were the top two important features de-

pending on the ensemble importance (Supplemental

Figure 2a and b).
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Table 1 Characteristics of preterm infants and their mothers by future childhood adiposity status at age 4 to 7 years

Characteristics Offspring without overweight/obesity
(n = 1851)

Offspring with overweight/obesity
(n = 274)

p
§

Boys 1076 (58.1) 186 (67.9) < 0.01

Median (IQR) gestational weeks 36 (35–36) 36 (35–36) 0.89

Mean (SD) fetal heart rate at the last assessment 140.9 (6.3) 141.4 (5.7) 0.17

Cesarean delivery 1087 (58.7) 181 (66.1) 0.02

Mean (SD) birth weight 2.7 (0.5) 2.9 (0.5) < 0.01

Mean (SD) birth length 48.2 (2.4) 48.6 (2.5) 0.02

Mean (SD) Apgar score at 1 min 8.5 (1.5) 8.6 (1.6) 0.37

Mean (SD) Apgar score at 5 min 9.1(1.1) 9.3 (1.0) 0.08

Duration of breast-feeding 0.06

< 1month 735 (39.7) 94 (34.3)

1–3 months 397 (21.4) 78 (28.5)

4–5 months 678 (36.6) 95 (34.7)

> 6 months 41 (2.2) 7 (2.6)

Formula-feeding (ever) 1773 (95.8) 254 (92.7) 0.02

Timing of solid foods introduction 0.09

≤ 3 months 1235 (66.7) 180 (65.7)

4–6 months 554 (29.9) 91 (33.2)

> 6 months 62 (3.3) 3 (1.1)

Trajectory of BMI Z-score change during the first year of corrected age < 0.01

Trajectory 1 691 (37.3) 6 (2.2)

Trajectory 2 1131 (60.1) 38 (13.9)

Trajectory 3 47 (2.5) 230 (83.9)

Mean (SD) maternal age at pregnancy 25.3 (4.2) 24.9 (4.0) 0.12

Mean (SD) maternal age of menarche 14.7 (1.3) 14.5 (1.3) < 0.01

Parity (multiparous) 357 (19.3) 40 (14.6) 0.06

Maternal education 0.46

< High school 1357 (73.3) 191 (69.7)

High school 325 (17.6) 55 (20.1)

> High school 169 (9.1) 28 (10.2)

Maternal occupation 0.08

Farm work/housework 1225 (66.2) 170 (62.0)

Routine job 328 (17.7) 44 (16.1)

Temporary work 138 (7.5) 24 (8.8)

Others 160 (8.6) 36 (13.1)

Median (IQR) gestational age at enrollment 10.0 (8.3–12.3) 10.1 (8.1–12.1) 0.59

Mean (SD) maternal BMI at enrollment 20.9 (2.8) 22.0 (3.2) < 0.01

Trajectory of BMI change during pregnancy < 0.01

Trajectory 1 686 (37.1) 70 (25.5)

Trajectory 2 1008 (54.5) 143 (52.2)

Trajectory 3 157 (8.5) 61 (22.3)

Trajectory of diastolic blood pressure change during pregnancy 0.87

Trajectory 1 805 (43.5) 115 (42.0)

Trajectory 2 956 (51.6) 141 (51.5)
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Participants belonging to trajectory 2 or 3 of BMI Z-

score change have a positive SHAP value for this feature,

while others belonging to trajectory 1 have a negative

SHAP value (Supplemental Figure 3a). Therefore, we de-

fined trajectories 2 and 3 as unfavored patterns of BMI

Z-score change, while trajectory 1 was defined as a fa-

vored pattern. Similarly, positive SHAP values were

assigned to maternal BMI at enrollment if it was > 20.8

kg/m2 (Supplemental Figure 3b).

Association of early life feeding practice with trajectories

of BMI Z-score change among preterm infants

When combining the trajectories 2 and 3 as an unfa-

vored pattern of BMI Z-score change, our results

Table 1 Characteristics of preterm infants and their mothers by future childhood adiposity status at age 4 to 7 years (Continued)

Characteristics Offspring without overweight/obesity
(n = 1851)

Offspring with overweight/obesity
(n = 274)

p
§

Trajectory 3 90 (4.9) 18 (6.6)

Trajectory of systolic blood pressure change during pregnancy 0.16

Trajectory 1 871 (47.1) 115 (42.0)

Trajectory 2 895 (48.4) 141 (51.5)

Trajectory 3 85 (4.6) 18 (6.6)

Mean (SD) maternal hemoglobin concentration at enrollment 120.3 (28.6) 121.2 (14.7) 0.61

Trajectory of hemoglobin concentration change during pregnancy 0.79

Trajectory 1 304 (16.4) 47 (17.2)

Trajectory 2 1449 (78.3) 215 (78.5)

Trajectory 3 98 (5.3) 12 (4.4)

Values are numbers (percentages) unless stated otherwise
§Chi-square test, t test, and Wilcoxon rank-sum test were used as appropriate

Fig. 2 Machine learning-identified features effectively predict future childhood overweight/obesity. a Receiver operating characteristic curves

(ROC curves) of the predictive models based on all input features in the validation cohort (n = 381). b The average impact of individual features

on childhood overweight/obesity risk. We took the mean absolute value of SHAP values for the selected features to get their average impact on

predicting childhood overweight/obesity. c Comparison of the performance of the predictive model based on all features with that based on

selected features only in the test cohort (n = 382). d Comparison of the performance of the predictive model based on all features with that

based on selected features only in the sensitivity analysis (childhood overweight/obesity defined according to criteria based on data derived from

Chinese children)
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showed that introducing solid foods after 6 months of

corrected age was associated with a 11% lower risk (RR,

0.89; 95% CI, 0.82 to 0.97) of being in the unfavored tra-

jectory of BMI Z-score change, compared with early

introduction (≤ 3 months of corrected age, Fig. 3). When

treating trajectories 2 and 3 separately, the RR of unfa-

vored trajectory was 0.89 (95% CI, 0.81 to 0.97) and 0.79

(95% CI, 0.65 to 0.96), respectively (Supplemental Figure

4). We did not observe a significant association between

the duration of exclusively breast-feeding and the risk of

being in the unfavored trajectory (Fig. 3).

The mediation analysis confirmed that there was a sig-

nificant indirect effect of timing of introducing solid

foods via trajectory of BMI Z-score change early in life

on the future childhood BMI Z-scores after adjusting for

potential confounders (beta = − 0.09, 95% CI, − 0.17 to −

0.01, p < 0.05). The effect ratio indicated that the trajec-

tory of BMI Z-score change early in life explained 80%

of the total effect of timing of introducing solid foods on

childhood BMI Z-scores (Table 2).

Discussion
Our findings suggest that 12.9% of the prematurely born

infants progress to overweight or obesity at age 4–7

years. The trajectory of BMI Z-score change during the

first year of corrected age is the most important

predictor for childhood overweight/obesity, and introdu-

cing solid foods after 6 months of corrected age is a rec-

ommended feeding practice that could potentially lower

the risk of unfavored trajectories of BMI Z-score change.

Accumulating evidence has demonstrated an increas-

ing prevalence of overweight and obesity among preterm

born children over the past decades [23, 24]. The accu-

mulated proportion of children with childhood over-

weight/obesity was 12.9% in the present study, which

was higher than the overweight/obesity rate for term

peers in the same cohort at ages 4–7 years [25]. There-

fore, premature birth might not only lead to well-known

short-term morbidities but also to later overweight/obes-

ity. A recent study by Nicole and colleagues suggested

that birth weight played critical roles in later weight gain

and reported a U-shaped relationship between birth

weight and future obesity [26]. Therefore, low birth

weight may partially explain the high risk of childhood

overweight/obesity for preterm infants. However, it re-

mains inconsistent among prior studies about the early

life risk factors of the childhood overweight/obesity

among preterm children [4, 5, 23, 26, 27].

To the best of our knowledge, previous studies on this

topic exclusively used a linear or logistic regression to

evaluate the relationships between risk factors of interest

and later overweight/obesity based on a priori assumption

Fig. 3 Association of the feeding practices with trajectory of BMI Z-score change early in life. Trajectory 2 and trajectory 3 were combined as an

unfavored trajectory. Poisson regression was used to estimate the risk ratio (RR) and 95% confidence interval (CI) of unfavored trajectories,

adjusted for mode of delivery, age at birth of offspring, maternal education status, occupation, parity, maternal BMI at enrollment, maternal

smoking status, maternal drinking status, and newborn birth weight. For the three modifiable feeding practices, the reference group was ≤ 3

months, < 1 month, and never, respectively
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among preterm born children [4, 5, 26]. The

LightGBM model used in the present study took ad-

vantages of artificial intelligence and learned the re-

lationship between all collected features and

outcomes without any assumption [9]. The risk fac-

tors for childhood overweight/obesity that had been

widely identified using traditional statistical analyses

were high birth weight, rapid postnatal weight gain,

and pre-pregnancy maternal BMI [4, 5, 23, 27]. In

the present study, we identified the trajectory of

BMI Z-score during the first year of corrected age as

a leading predictor. Treating the infant BMI Z-score

as a trajectory over time could enable a more com-

prehensive understanding of infant BMI measures

(e.g., birth weight, birth length, postnatal weight gain

and its velocity) and how they may jointly influence

the development of child obesity. Additionally, al-

though the information on pre-pregnancy BMI was

not available, the maternal BMI at enrollment was

included in our model and was identified as an im-

portant predictor. Notably, the median gestation

weeks at enrollment in the present study is 10 weeks

(IQR 8.3 to 12.3), at which time point the BMI is

generally similar to that before pregnancy. Collect-

ively, these results suggest the model construction

and interpretation are reliable.

Interestingly, the trajectory of BMI Z-score is the

only one feature identified in the present study that

could be potentially modified by feeding practices,

such as the timing of introducing solid foods. The en-

couragement of breast-feeding has been a universal

agreement across guidelines and recommendations;

however, the timing to introduce solid foods for pre-

term infants is under debate. For term infants, both

the WHO and American Academy of Pediatrics

(AAP) recommended exclusive breast-feeding for the

first 6 months, while the European Society for

Pediatric Gastroenterology, Hepatology and Nutrition

(ESPGHAN) recommended the introduction of com-

plementary foods be started until at least 17 weeks of

age, but no later than 26 weeks [28–32]. Moreover,

direct translation of these recommendations into pre-

term guidelines is challenging. In contrast, the present

study with a large sample size and a long follow-up

period demonstrated that preterm infants may benefit

from delayed introduction of solid foods to 6 com-

pleted months corrected age or later.

The main strength of this study is that we apply a

machine learning algorithm to identify risk factors

contributing to childhood overweight or obesity

based on a large longitudinal study. This algorithm

takes advantages of artificial intelligence to process

complex, high-dimensional, and heterogeneous fea-

tures and addresses the relationships between all

collected features and outcomes without any as-

sumption. Furthermore, a novel unified framework,

SHAP, is used to interpret predictions and the iden-

tified predictive factors are robust. Additionally, we

have identified the best timing of solid food intro-

duction that may be informative for initiating early

intervention to prevent childhood overweight/obesity

among preterm infants.

The study has several limitations. First, many preterm

children are excluded from the primary analyses due to

missing follow-up data. Nevertheless, mother-child pairs

included in the primary analysis and those excluded are

balanced with respect to most characteristics. Second,

our study is based on data from only one study in a de-

veloping country, and approximately 99% of the included

infants were born at 32–36 weeks of gestation; therefore,

caution should be taken in extrapolating the findings to

other populations.

Conclusions
In summary, with a novel interpretable machine

learning algorithm, we find that the pattern of BMI

Z-score change during the first year is the most im-

portant predictor for childhood obesity. Introducing

solid foods at 6 months corrected age or later is a

recommended feeding practice for preterm infants to

mitigate the risk of unfavored pattern of BMI Z-score

change early in life. Our results provide important

public health message for preterm children that early

life growth trajectory is an important target for the

prevention of future overweight/obesity. Beyond feed-

ing practice, future research could further examine

the association of other maternal and infant factors

which could regulate the growth trajectory of the pre-

term infants.

Table 2 Mediation of the associations between timing of solid foods introduction and childhood BMI Z-score by trajectory of BMI Z-

score change during the first year of corrected age

Coefficient Standard error p values Bootstrap 95% CI Effect ratio

Total effect − 0.12 − 0.05 0.01 – –

Direct effect − 0.02 0.02 0.31 – –

Indirect effect − 0.09 0.04 0.02 (− 0.17, − 0.01) 0.80

Analyses are adjusted for mode of delivery, gestational age, age at birth of offspring, maternal education status, occupation, parity, maternal BMI at enrollment,

maternal smoking status, maternal drinking status, and newborn birth weight

Fu et al. BMC Medicine          (2020) 18:184 Page 8 of 10



Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.

1186/s12916-020-01642-6.

Additional file 1.

Abbreviations

AUC: Area under the curve; BMI: Body mass index; EFB: Exclusive Feature

Bundling; EFS: Ensemble feature selection; GBM: Gradient boosting machines;

GOSS: Gradient-based One-Side Sampling; ROC: Receiver operating

characteristic; SHAP: Shapley Additive exPlanations

Acknowledgements

We appreciate the faculty and staff in the department of obstetrics and

gynecology, Jiaxing Maternity and Child Health Care Hospital, for their

supports on this study.

Authors’ contributions

JSZ, DL, and HJL designed the research; WSH, YYM, and YHG conducted the

research; YQF and WLG analyzed the data and drafted the initial manuscript.

TH, KLL, XFG, YYT, and XXL critically revised the draft manuscript. JSZ had the

primary responsibility for final content. All authors read and approved the

final manuscript.

Funding

This study was funded by the Open Project Program of China-Canada Joint

Lab of Food Nutrition and Health, Beijing Technology and Business University

(BTBU) (KFKT-ZJ-201801), National Natural Science Foundation of China

(81903316), Major Science and Technology Program of Medicine and Health

of Zhejiang Province (grant WKJ-ZJ-1911), and Social Development Scientific

Research Projects of the Science and Technology Bureau of Hangzhou (grant

20180417A02 & 20180533B84).

Availability of data and materials

Data of the present research is available from the corresponding author on

reasonable request.

Ethics approval and consent to participate

The protocol for the present study was approved by the ethics committee at

Westlake University and College of Biosystem Engineering & Food Science at

Zhejiang University, and the study was conducted in accordance with the

principles of the Declaration of Helsinki. All participants provided written

information consent form.

Consent for publication

Not applicable

Competing interests

The authors declared they have no conflicts of interest.

Author details
1Institute of Basic Medical Sciences, Westlake Institute for Advanced Study,

School of Life Sciences, Westlake University, 18 Shilongshan Rd, Cloud Town,

Hangzhou 310024, China. 2China-Canada Joint Lab of Food Nutrition and

Health, Beijing Technology and Business University, Beijing, China.
3Department of Obstetrics and Gynecology, Hangzhou Women’s Hospital

(Hangzhou Maternity and Child Health Care Hospital), Hangzhou, China.
4Department of Epidemiology and Biostatistics, School of Public Health,

Zhejiang Chinese Medical University, Hangzhou, China. 5Jiaxing University

Affiliated Women and Children Hospital, Jiaxing, China. 6Department of

Epidemiology and Biostatistics, School of Public Health, Peking University,

Beijing, China. 7Institute of Nutrition and Health, Qingdao University, 308

Ningxia Road, Qingdao, China.

Received: 23 February 2020 Accepted: 19 May 2020

References

1. Chawanpaiboon S, Vogel JP, Moller AB, Lumbiganon P, Petzold M, Hogan D,

Landoulsi S, Jampathong N, Kongwattanakul K, Laopaiboon M, L, et al.

Global, regional, and national estimates of levels of preterm birth in 2014: a

systematic review and modelling analysis. Lancet Glob Health 2019;7:e37–

e46.

2. UNICEF, WHO, World Bank, UN-DESA Population Division. Levels and trends

in child mortality report 2018. https://www.who.int/maternal_child_

adolescent/documents/levels_trends_child_mortality_2018/en/. Accessed 11

Nov 2019.

3. Li P, Yang F, Xiong F, Huo T, Tong Y, Yang S, Mao M. Nutritional status and

risk factors of overweight and obesity for children aged 9-15 years in

Chengdu, Southwest China. BMC Public Health. 2012;12:636.

4. Wood CT, Linthavong O, Perrin EM, Leviton A, Allred EN, Kuban KCK, O'Shea

TM, ELGAN Study Investigators. Antecedents of obesity among children

born extremely preterm. Pediatrics. 2018;142:e20180519.

5. Vohr BR, Heyne R, Bann CM, Das A, Higgins RD, Hintz SR, Eunice Kennedy

Shriver National Institute of Child Health, and Development Neonatal

Research Network. Extreme preterm infant rates of overweight and obesity

at school age in the SUPPORT neuroimaging and neurodevelopmental

outcomes cohort. J Pediatr. 2018;200:132–9.

6. Villar J, Giuliani F, Figueras-Aloy J, Barros F, Bertino E, Bhutta ZA, Kennedy

SH. Growth of preterm infants at the time of global obesity. Arch Dis Child.

2019;104:725–7.

7. Gluckman PD, Hanson MA, Cooper C, Thornburg KL. Effect of in utero and

early-life conditions on adult health and disease. N Engl J Med. 2008;359:

61–73.

8. Miotto R, Wang F, Wang S, Jiang X, Dudley JT. Deep learning for healthcare:

review, opportunities and challenges. Brief Bioinform. 2018;19:1236–46.

9. Beam A, Kohane I. Big data and machine learning in health care. JAMA.

2018;319:1317–8.

10. Zheng JS, Liu H, Jiang J, Huang T, Wang F, Guan Y, Li D. Cohort profile: the

Jiaxing birth cohort in China. Int J Epidemiol. 2017;46:1382.

11. World Health Organization: Child growth standards-BMI-for-age. https://www.

who.int/childgrowth/standards/bmi_for_age/en/. Accessed 11 Nov 2019).

12. de Onis M, Lobstein T. Defining obesity risk status in the general childhood

population: which cut-offs should we use? Int J Pediatr Obes. 2010;5:458–60.

13. World Health Organization: Growth reference data for 5–19 years. https://www.

who.int/growthref/who2007_bmi_for_age/en/. Accessed 11 Nov 2019).

14. Ke G, Meng Q, Finley T. LightGBM: a highly efficient gradient boosting

decision tree. Long Beach: NIPS; 2017. https://papers.nips.cc/paper/6907-

lightgbm-a-highly-efficient-gradient-boosting-decision-tree.

15. Lundberg S, Lee S. A unified approach to interpreting model predictions.

Long Beach: NIPS; 2017. https://papers.nips.cc/paper/7062-a-unified-

approach-to-interpreting-model-predictions.

16. Andruff H, Carraro N, Thompson A, Gaudreau P, Louvet B. Latent class

growth modelling: a tutorial. Tutor Quant Methods Psychol. 2009;5:11–24.

17. Jones BL, Nagin DS. A note on a Stata plugin for estimating group-based

trajectory models. Soc Methods Res. 2013;42:608–13.

18. DeLong ER, Delong DM, Clarke-Pearson DL. Comparing the areas under two

or more correlated receiver operating characteristic curves: a nonparametric

approach. Biometrics. 1988;44:837–45.

19. Robin X, Turck N, Hainard A, Tiberti N, Lisacek F, Sanchez JC, Müller M.

pROC: an open-source package for R and S+ to analyze and compare ROC

curves. BMC Bioinformatics. 2011;12:77.

20. Li H, Zong XN, Ji CY, Mi J. Body mass index cut-offs for overweight and

obesity in Chinese children and adolescents aged 2-18 years. Chin J

Epidemiol. 2010;31(6):616–20.

21. Neumann U, Genze N, Heider D. EFS: an ensemble feature selection tool

implemented as R-package and web-application. BioData Min. 2017;10:21.

22. Sobel ME. Asymptotic confidence intervals for indirect effects in structural

equation models. Sociol Methodol. 1982;13:290–312.

23. Vasylyeva TL, Barche A, Chennasamudram SP, Sheehan C, Singh R, Okogbo

ME. Obesity in prematurely born children and adolescents: follow up in

pediatric clinic. Nutr J. 2013;12:150.

24. Vohr BR, Allan W, Katz KH, Schneider KC, Ment LR. Early predictors of

hypertension in prematurely born adolescents. Acta Paediatr. 2010;99:1812–8.

25. Zheng JS, Liu H, Ong KK, Huang T, Guan Y, Huang Y, Yang B, Wang F, Li D.

Maternal blood pressure rise during pregnancy and offspring obesity risk at

4 to 7 years old: the Jiaxing birth cohort. J Clin Endocrinol Metab. 2017;102:

4315–22.

26. Kapral N, Miller SE, Scharf RJ, Gurka MJ, DeBoer MD. Associations between

birthweight and overweight and obesity in school-age children. Pediatr

Obes. 2018;13:333–41.

Fu et al. BMC Medicine          (2020) 18:184 Page 9 of 10

https://doi.org/10.1186/s12916-020-01642-6
https://doi.org/10.1186/s12916-020-01642-6
https://www.who.int/maternal_child_adolescent/documents/levels_trends_child_mortality_2018/en/
https://www.who.int/maternal_child_adolescent/documents/levels_trends_child_mortality_2018/en/
https://www.who.int/childgrowth/standards/bmi_for_age/en/
https://www.who.int/childgrowth/standards/bmi_for_age/en/
https://www.who.int/growthref/who2007_bmi_for_age/en/
https://www.who.int/growthref/who2007_bmi_for_age/en/
https://papers.nips.cc/paper/6907-lightgbm-a-highly-efficient-gradient-boosting-decision-tree
https://papers.nips.cc/paper/6907-lightgbm-a-highly-efficient-gradient-boosting-decision-tree
https://papers.nips.cc/paper/7062-a-unified-approach-to-interpreting-model-predictions
https://papers.nips.cc/paper/7062-a-unified-approach-to-interpreting-model-predictions


27. Wang G, Johnson S, Gong Y, Polk S, Divall S, Radovick S, Moon M, Paige D,

Hong X, Caruso D, et al. Weight gain in infancy and overweight or obesity

in childhood across the gestational spectrum: a prospective birth cohort

study. Sci Rep. 2016;6:29867.

28. Eidelman AI. Breast-feeding and the use of human milk: an analysis of the

American Academy of Pediatrics 2012 Breast-feeding Policy Statement.

Breastfeed Med. 2012;7:323–4.

29. World Health Organization: Complementary Feeding – Report of the Global

Consultation. Summary of Guiding Principles. 2002. http://apps.who.int/iris/

bitstream/10665/42739/1/924154614X.pdf. Accessed 11 Nov 2019.

30. World Health Organization: The Optimal Duration of Exclusive Breast-

feeding – Report of an Expert Consultation, 2001. Internet: https://www.

who.int/nutrition/publications/optimal_duration_of_exc_bfeeding_report_

eng.pdf. Accessed 11 Nov 2019.

31. World Health Organization: Global Strategy for Infant and Young Child

Feeding. 2003. http://apps.who.int/iris/bitstream/10665/42590/1/924156221

8.pdf?ua=1&ua=1. Accessed 11 Nov 2019.

32. Fewtrell M, Bronsky J, Campoy C, Domellöf M, Embleton N, Fidler Mis N,

Hojsak I, Hulst JM, Indrio F, Lapillonne A, et al. Complementary feeding: a

position paper by the European Society for Paediatric Gastroenterology,

Hepatology, and Nutrition (ESPGHAN) committee on nutrition. J Pediatr

Gastroenterol Nutr. 2017;64:119–32.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in

published maps and institutional affiliations.

Fu et al. BMC Medicine          (2020) 18:184 Page 10 of 10

http://apps.who.int/iris/bitstream/10665/42739/1/924154614X.pdf
http://apps.who.int/iris/bitstream/10665/42739/1/924154614X.pdf
https://www.who.int/nutrition/publications/optimal_duration_of_exc_bfeeding_report_eng.pdf
https://www.who.int/nutrition/publications/optimal_duration_of_exc_bfeeding_report_eng.pdf
https://www.who.int/nutrition/publications/optimal_duration_of_exc_bfeeding_report_eng.pdf
http://apps.who.int/iris/bitstream/10665/42590/1/9241562218.pdf?ua=1&ua=1
http://apps.who.int/iris/bitstream/10665/42590/1/9241562218.pdf?ua=1&ua=1

	Abstract
	Background
	Methods
	Results
	Conclusions

	Background
	Methods
	Study population
	Measurement of pre- and postnatal antecedents and ascertainment of overweight and obesity
	Data integration and predictor implementation
	Model interpretation
	Statistical analysis

	Results
	Population characteristics
	Maternal and early life risk factors of childhood overweight/obesity identified by machine learning
	Association of early life feeding practice with trajectories of BMI Z-score change among preterm infants

	Discussion
	Conclusions
	Supplementary information
	Abbreviations
	Acknowledgements
	Authors’ contributions
	Funding
	Availability of data and materials
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Author details
	References
	Publisher’s Note

