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Abstract

This work is motivated by the need for tighter integration of industrial processes
in an attempt to improve process sustainability. To this end, this work considers
a interesting case study around which different systematic approaches are used or
developed to achieve the above goal. The thesis is concerned with the understanding
of an integrated bioreactor and electrically driven membrane separation processes for
lactic acid fermentation. This is achieved through a model based investigation of the
individual units and the integrated system. Development of system understanding
is the key to reveal how the system should be designed and operated in accordance
with different production goals.

The selected case includes a fermenter and a two stage membrane separation. In
the first membrane stage the lactate is exchanged by hydroxide by means of anion
exchange membranes, in a process referred to as Reverse Electro-Enhanced Dial-
ysis (REED). Unconsumed substrate and biomass are effectively recycled to the
fermenter. In the second membrane separation stage, the lactate is recovered and
concentrated as lactic acid using Electrodialysis with bipolar membranes (EDBM),
while sodium hydroxide is regenerated and recirculated. The novelty of the process
relies in the specialized design and operation of the Reverse Electro-Enhanced Dial-
ysis module. The REED design allows removal of the lactate from the fermentation
broth and simultaneously facilitates pH control in the fermenter using hydroxide.
Additionally, the periodic operation of the REED mitigates the adverse influence of
the formation of a fouling layer at the membrane surface.

A first principles dynamic model is derived for the REED module to describe the
transport of multiple ions through ion exchange membranes and adjacent boundary
layers in a dialytic module. The unknown model parameters are regressed from
experimental data for Donnan Dialysis recovery of different monoprotic carboxylic
acids. Static simulation results agree with previously qualitative predictions of con-
centration profiles during Donnan Dialysis separation. Further static simulations
under current load conditions are used to evaluate the influence of imposing an
external electrical potential gradient on the ion fluxes and concentration profiles.
Results demonstrate the development of asymmetric concentration profiles, the po-
tential ion fluxes enhancement and the limiting current density constraint. Through
dynamic simulations, the system behavior is investigated under current reversal con-
ditions. Several phenomena are predicted such as preferable ion transport at the
interfaces, transient flux inversion and accumulation/depletion of ions within the
membranes. The combination of those phenomena can explain a loss of current ef-
ficiency, which has been experimentally demonstrated. Diverse numerical issues are
encountered during the different type of simulations, and solutions are proposed.

A bioreactor model with unstructured kinetics is proposed which is suitable for
integration with the Reverse Electro-Enhanced Dialysis process. An identifiable set
of parameters are estimated from experimental data. The identifiability analysis is
supported by mathematical and statistical tools.

In order to investigate the operability of the REED module, a methodology for
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control structure design is extended to handle periodically operated systems. As case
study, the pH regulation of the outlet stream of the membrane unit is addressed.
Based upon the goal driven analysis, a non conventional input resetting control
structure is designed. The control performance is evaluated through a set point
tracking test. Satisfactory results are obtained regulating the pH and managing the
input constraints.

The design and operability of the integrated bioreactor and REED module are
investigated using the developed models and control structure. The study involves
two different case studies: continuous lactic acid production and batch production
of a starter culture. Substantial improvements are predicted in productivity and
substrate utilization, while design and operability limitations are discussed.

The investigated integrated system is a clear example where a model based ap-
proach, supported by experimental evidence, can bring improvements in the system
understanding, and therefore promote the development of goal driven process design
and the process control discipline.

vi



Resumé

Dette arbejde er motiveret af behovet for tættere integration af industrielle processer
i et forsøg p̊a at forbedre processens bæredygtighed. Med henblik herp̊a behandles
et interessant proceseksempel ved hjælp af de systematiske metoder, som er ud-
viklet for at opn̊a ovennævnte m̊al. Afhandlingen beskæftiger sig med forst̊aelsen
af en integreret bio-reaktor med elektrisk drevet membranseparation til produktion
af mælkesyre. Dette opn̊as gennem en model baseret undersøgelse af de enkelte
enheder og det integrerede system. Udvikling af system forst̊aelse er nøglen til at
forst̊a hvordan systemet bør udformes og drives i overensstemmelse med forskellige
produktions-mål.

Den udvalgte proces omfatter en fermentering og en to-trins membranseparation.
I den første membran separation bliver laktat udvekslet med hydroxid ved hjælp
af en anionbytter membran. Processen kaldes Reverse Electro-Enhanced Dialyse
(REED). Uomdannet substrat og biomasse bliver effektivt recirkuleret og genbrugt i
fermenteringstanken. I den anden membranseparation udvindes laktat og opkoncen-
treres som mælkesyre ved hjælp af elektrodialyse og bipolare membraner (EDBM). I
dette trin bliver natriumhydroxid regenereret og recirkuleres til det første trin. Det
nye i denne proces er det specialiserede design og driften af REED modulet. Dette
REED design tillader fjernelse af laktat fra gærings processen og giver mulighed for
pH kontrol af fermenteringstanken ved hjælp af hydroxid. Derudover bevirker den
periodiske drift af REED at den uhensigtsmæssige dannelse af et voksende lag af
biologisk materiale p̊a membranoverfladen mindskes.

En dynamisk model baseret p̊a massebalancer er udledt for REED modulet for
at beskrive transporten af ioner gennem membranerne og det tilstødende grænse-
lag i dialysemodulet. De ukendte modelparametre er estimeret baseret p̊a eksperi-
mentelle data for Donnan dialytisk udvinding af en række monoprotiske kulstofsyrer.
Statistiske simuleringer underbygger tidligere kvalitative forudsigelser af koncentra-
tion profiler ved separation med Donnan dialyse. Yderligere statistiske beregninger
er benyttet til at undersøge indflydelsen af en ekstern elektrisk spændingsgradi-
ent p̊a ion-strømme og koncentrations-profiler. Resultaterne viser udviklingen af
asymmetriske koncentrationsprofiler, øgning af de potentielle ion-strømme og be-
græ ænsningen for strømtætheden. Gennem dynamiske simuleringer er systemets
adfærd undersøgt for betingelser hvor det elektriske felt skifter. Flere fænomener
er forudsagt s̊asom den dominerende ion transport i grænsefladerne, transiente ion-
fluks-inversioner og akkumulering/udtømning af ioner i membraner. Kombinatio-
nen af disse fænomener kan forklare det tab af effektivitet af spændingsfeltet, som
er blevet eksperimentelt p̊avist. En række numeriske vanskeligheder har optr̊adt i
forbindelse med disse simuleringer, og løsningsforslag er blevet præsenteret.

En bio-reaktor model med ustruktureret kinetik er blevet foresl̊aet, som er egnet
til integration med REED processen. Et identificerbart sæt af parametre er es-
timeret ud fra eksperimentelle data. Identificerbarhedsanalysen er understøttet af
matematiske og statistiske værktøjer.

For at undersøge driften af REED-modulet, er en metode til kontrolstruktur-
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design blevet udvidet til at h̊andtere periodiske systemer. pH regulering af pro-
duktstrømmen fra membran-enheden er blevet studeret. En ikke-konventionel input
resetting kontrolstruktur er designet. Kvaliteten af styringen er vurderet efter hvor
effektivt systemet følger set-punkterne for en række tests. Der er opn̊aet tilfredsstil-
lende resultater hvor pH er reguleret uden overtrædelse af inputbegrænsninger.

Udformningen og driften af den integrerede bio-reaktor og REED-modulet er un-
dersøgt ved hjælp af de udviklede modeller og kontrolstrukturen. Analysen omfatter
to forskellige undersøgelser: Kontinuerlig mælkesyre produktion samt batch produk-
tion af en opstarts-kultur. Væsentlige forbedringer forudsiges for produktivitet og
substrat-udnyttelse, og design og drifts-begrænsninger diskuteres.

Det undersøgte integrerede system er et klart eksempel p̊a hvordan en model-
baseret tilgang støttet af eksperimentelt bevismateriale, kan bringe forbedringer af
systemforst̊aelsen og derfor fremme udviklingen af proces-design og procesregulering.
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1

Introduction

The product consumption due to rapidly increasing world population possess the
challenge of providing necessary raw material for any industry. In particular, prod-
ucts obtained from non renewable sources, such as fossil fuels, are compromised
since their depletion is imminent. Therefore, research has been focus to propose
sustainable process alternatives that diminish our dependency on fossil feedstock.

This work is part of a bigger project for sustainable bioproduction of functional
materials. The main interest is to investigate the Polylactic acid (PLA) production
and its potential applications. In order to make the PLA production economically
feasible, and then substitute their chemical or petrochemical based competitors, op-
timization of the design and operation of the existing production technologies is
necessary. This project role within the macro-project is in the lactic acid biopro-
duction, as main feedstock for PLA production.

This work is focused on the investigation of a novel process for lactic acid produc-
tion, where the fermentation and the product removal are tightly integrated. The
process consists of a bioreactor and two stages of membrane based separation pro-
cesses. This intensified process can be used for a variety of applications in biotech-
nology, where the fermentation production rate is limited by ionic species. The
novelty of the intensified process lies in the first electrically driven membrane sepa-
ration process employed, referred to as Reverse Electro-Enhanced Dialysis (REED).
Through this technology, the bioproduction of lactic acid is intensified by the con-
tinuous removal of the biotoxic carboxylic anions from the cultivation broth and
the recycling of biomass and unconsumed substrate. At the same time, the adverse
influence of the membrane fouling is reduced by periodically reversing the imposed
current density.

Conventional process engineering problems involve the process and control struc-
tures design for single processing units, including from single to multiple control
loops. However, more realistic industrial applications include multiple processing
units that usually interact with each other.

The design and operability of an integrated plant are complex mainly due to the
units interaction. Therefore, it is crucial to reveal the interactions between the
units. Based on that understanding, ways to mitigate or exploit those interactions
can be proposed to achieve a more effective plant operation. Conventionally, the
main purpose of using an integrated reactor and separation process is to have a
material recycle and in that way increase the reaction conversion or yield. Although
the recycle stream can significantly reduce operation cost, the integration increases
the interaction between the processing units and move the degrees of freedom for
control. Therefore, the control structure design becomes non trivial (Luyben, 1993).

Plantwide control deals with the selection of appropriate measured and manipu-
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lated variables to achieve the defined process goals. Additionally, the implementa-
tion of the control strategy that ensure the achievement of the goals. A plantwide
control methodology employs model based tools combined with heuristic approaches
to design the control structure. Steady state and dynamic models are used plus an
understanding of the plant behavior (Skogestad, 2000, 2004; Jørgensen, 2006).

A first characteristic for interacting systems control, specially the ones having
an internal feedback of material or energy, is the so called snowball effect. The
snowball effect is a static problem that arises when one output is very sensitive to
small disturbances in an input variable. This problem can be attenuated by a proper
system design or an appropriate control structure.

A second characteristic of a recycle system is that the plant may respond more
slowly than anticipated based on the time constants of an individual units. If there
are considerable differences between the units time constants, the plant is likely to
have a larger time constant than the individual units. Meaning that the plant has
slower dynamics than the individual units due to the positive material feedback
(Kapoor and McAvoy, 1987).

The third characteristic and major concern is the propagation and recirculation of
disturbances. The disturbances can be damped by surge tanks between units. How-
ever, this design solution should be avoided due to the extra capital and operating
cost. New plants have little surge capacity and then unattenuated disturbances
propagate around internal process flow paths. In order to control these complex
systems, advanced control strategies may be required.

A model based investigation, supported by experimental evidence, can provide the
system understanding which is vital for the integrated system design and operation.
Due to the novelty of the Reverse Electro-Enhanced Dialysis process, it is specially
interesting to reveal the process behavior under different operation modes. The
modeling, operation and optimization of integrated biological reactive systems and
membrane separation processes are challenging due to their complexity over the
space and time which leads to a highly nonlinear behavior.

1.1 Lactic acid fermentation

Lactic acid bacteria (LAB) refer to a large group of gram-positive bacteria that have
similar properties and all produce lactic acid as major or sole fermentation product.
They are widespread in nature and are also found in our digestive systems. Although
they are best known for their role in the preparation of fermented dairy products,
they are also used for pickling of vegetables, baking, winemaking, curing fish, meats
and sausages. Lactic acid bacteria are able to grow in presence or absence of oxygen
and thus so called aerotolerant anaerobes (Madigan et al., 2003).

Lactic acid bacteria have a limited biosynthetic ability, thus they often grow on a
medium rich in aminoacids, vitamins, purines and pyrimidines. Besides, Lactic acid
bacteria mainly obtain energy through the metabolism of sugars, which is considered
decoupled of from growth, and therefore analyzed separately (Stephanopoulos et al.,
1998).

Lactic acid bacteria have been divided into two groups, homofermentative and
heterofermentaive. Homofermentaive bacteria produce a single fermentation prod-
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uct, lactic acid. Whereas heterofermentative bacteria produce other products such
as ethanol, carbon dioxide and lactate. The difference in the fermentation patters
is determined by the presence of the enzyme aldolase (Madigan et al., 2003).

1.1.1 Fermentation products

Since lactic acid was discovered, it has been utilized in the leather and textile in-
dustries. Recently, it is widely used in the food industry as a pH regulator, sol-
vent, preservative, electrolyte and precursor for lactate ester, propylene glycol, 2,3-
pentanedione, propionic acid, acrylic acid, acetaldehyde, and dilactide (Varadarajan
and Miller, 1999; Åkerberg and Zacchi, 2000). A detailed list of lactic acid and its
salt applications is shown in Fig. 1.1. Perhaps its greatest industrial potential is for
sustainable production of polymers such as Polylactic acid (PLA). Lactic acid con-
sumption for industrial applications has surpassed the food and beverages industry
as the leading market for lactic acid. This is a result of the continued high growth of
PLA applications. It is expected that by 2013, industrial applications will account
for more than half of global lactic acid use (SRI-Consulting, 2010). PLA is being
promoted due to its environmentally friendly characteristics such as: biodegradabil-
ity, composting of waste by-products from PLA production, sustainable production
of the main feedstock and the potential energy saved versus conventional polymer
production.

Figure 1.1: List of commercial uses and applications of lactic acid and its salt. Adapted
from Young-Jung et al. (2006)

High molecular weight PLA is obtained catalytically through the cyclic lactide
ring-opening polymerization. The later cyclic component is produced in a two steps
process. Lactic acid is firstly oligomerized and then catalytically dimerized to gener-
ate the required cyclic lactide. PLA have already been used in packaging, biomedical
applications and textiles (Kharas et al., 1996). PLA production is presently more
expensive than petrochemical based polymers. Therefore, it can only substitute its
competitors through optimization of its production, including the main feed stock
i.e. Lactic acid. However as oil prices are expected to continue to increase, there
seems to be a very good market potential for sustainable lactic acid based products.
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Other application of the lactic acid fermentation is the production of biomass as
probiotic culture or starter culture for food industry. Lactic acid bacteria have been
used for over five thousand years in food preparations. They are employed in par-
ticular in fermented dairy products such as yoghurt, cheese and butter (Stiles and
Holzapfel, 1997). The concept of the lactic acid bacteria as a group of organisms was
developed at the beginning of the 1900s, and almost simultaneously their industrial
exploitation. More recently, the concept of probiotic cultures has encouraged re-
search in this area. Probiotics have been defined as “living micro-organisms, which
upon ingestion in certain numbers, exert health benefits beyond inherent basic nu-
trition”(Guarner and Schaafsma, 1998). Several lines of evidence have established
the benefits of ingestion of lactic acid bacteria on lactose digestion, some diarrheal
illnesses, small bowel overgrowth associated with chronic kidney disease, and reduc-
tion of fecal enzymes that may play a role in colon cancer (Sanders, 1993). Further
potential benefits are expected in fields such as modulation of blood cholesterol lev-
els and competitive exclusion of intestinal pathogens. A number of Lactobacillus
species, Bifidobacterium sp, Saccharomyces boulardii, and some other microbes have
been proposed as and are used as probiotic strains (Ljungh and Wadström, 2006).

1.1.2 Lactic acid fermentation challenge

The bottleneck of lactic acid fermentation is that LAB are normally impaired by
product inhibition, like many other fermentation processes, at a certain concentra-
tion level of the main metabolic product or one of the bi-products (Nielsen et al.,
2003). Hongo et al. (1986) studied the inhibition of Lactobacillus delbrueckii by the
presence of different lactates with and without pH control, concluding that even
neutralized lactates generate inhibition and the strongest effect is observed by lac-
tate. The inhibitory effect generated by the presence of lactates and low pH can be
potentially diminished by continuous removal of lactate from the fermenter and pH
control, this will result in a higher productivity and product yield. On the other
hand, continuous recycle of biomass will allow obtaining higher cell densities that
minimizes the risk of a cell wash-out, thereby the continuous fermentation can be
operated at high dilution rates greater than the specific growth rate of the organism.

Due to the lactic acid properties, conventional continuous separation operations
such as distillation have limitations to be used. Usually, the lactate separation is
done by precipitation, where the precipitated calcium lactate must be recovered
employing strong acid. This procedure implies a high chemical cost and waste
generation. For this reason, other options for lactate recovery have been studied
such as solvent extraction, adsorption, direct distillation and membrane separation
processes (Lee et al., 1998a). It has been estimated that the cost of recovery and
concentration of lactate from the cultivation broth can be up to 80% of the total pro-
duction cost, then research has been focused developing alternatives for downstream
processing (Hulse, 2004). Membrane based separation processes are attractive since
they can selectively separate the lactate, are capable of being operated aseptically
and basically there are no by-products generation.
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1.2 Membrane based technologies for lactic acid

recovery

Since 1960’s, membrane separation processes have been suggested as an alternative
for lactic acid extraction and biomass confinement or recycling. The application of
processes as Dialysis, Donnan Dialysis, Electodialysis, Ultrafiltration, Nanofiltration
and Reverse Osmosis is well documented, but only few will be quoted herein.

Probably one of the first evidences of utilizing membranes to concentrate cultures
of microorganisms, including LAB, is proposed by Gerhardt and Gallup (1963).
High density populations of microorganisms and their extracellular products were
obtained in a dialysis flask. Since that time, it was evidenced that continuous re-
moval of lactic acid from the fermentation broth by diffusion into a reservoir dimin-
ished the product inhibition, therefore enhanced the product yield. Few years later,
Friedman and Gaden (1970) studied and modeled the growth and acid production
by L. delbrueckii in a dialysis fermentation system using mainly ultrafiltration mem-
branes. The results corroborate the earlier observations, where the microorganism
exhibits higher production rates and cell concentrations than non-dialysis experi-
ments. The main drawback of utilizing dialysis fermentation is the low diffusion
efficiency.

In 1980’s, Ohleyer et al. (1985) used a cell-recycle fermentation system where a
bioreactor was coupled to a cross-flow filtration module. The continuous L. del-
brueckii growth was investigated employing different substrates. Stability of long
term fermentations was achieved and the maximum lactic acid concentration before
complete inhibition was estimated. Electrodialysis was suggested by Hongo et al.
(1986) as a potential in situ separation method since lactate can be selectively re-
moved by ion exchange membranes. In the paper, the inhibitory effect of lactates
on L. delbrueckii growth is studied. Besides, the advantages and potential problems
of applying electrochemically pH-controlled electrodialysis fermentation are pointed
out.

A combination of ultrafiltration and electrodialysis is used later by Boyaval et al.
(1987) and Raucourt et al. (1989). This integrated bioreactor and purification sys-
tem appears as an alternative to reduce fouling problems when only electrodialysis is
used. The fouling issue is handled by the intermediate ultrafiltration stage since the
cells are retained and recycled. Subsequently, lactate is recovered from the permeate
by electrodialysis.

A process for producing and concentrating lactic acid is patented by Glassner and
Datta (1990). The fermentation broth is fed to an electrodialysis unit to recover a
lactate salt in an aqueous stream which is subjected to water-splitting electrodialysis
to form base and a lactic acid product. Finally, the lactic acid product is treated
with ion exchangers in different steps to remove any cations, sulfate ions or sulfuric
acid.

Studies on electrodialysis were continued by Heriban et al. (1993), where double
exchange reaction electrodialysis was employed for the isolation and concentration
of lactic acid. Double exchange reaction electrodialysis uses a conventional elec-
trodialysis module with alternating anion and cation exchange membranes plus an
inorganic acid. This technology has been used to exchange ions between salts and
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then obtain a higher value product. In their best scenario the lactic acid concen-
tration was increased up to 4 times. The authors suggested the implementation of
ultrafiltration module and to use bipolar membranes coupled to electrodialysis.

Despite in 1970’s some drawbacks of applying reverse osmosis to lactic acid sep-
aration were mentioned, Timmer et al. (1994) took again the idea of recovering
lactic acid from a fermentation without pH control. The low pH obtained after the
fermentation enhances the selectivity of cellulose acetate membranes to lactic acid.
A further concentration of lactic acid is carried out in nanofiltration module. At
the same time, ultrafiltration is employed in a continuous membrane bioreactor by
Zhang and Cheryan (1994) to guarantee long stable operation and high productivity
of the cultivation. This is done by maintaining high cell densities, removing lactate
and recirculating the substrate (starch). The bioprocess is carried out as a constant
volume pH controlled fermentation.

Two step electrodialysis is investigated and modelled by Lee et al. (1998a), special
attention was paid to the limiting current density in order to determine the switching
condition from constant-current mode to constant-voltage mode in desalting electro-
dialysis. Predictions for lactate concentration, volume changes, switching times and
energy consumption were validated experimentally. Zheleznov et al. (1998) were
studying the transport of some carboxylic acids, usually found in fermentations,
across anion exchange membranes during Donnan dialysis operation. They pointed
out the benefits of this method and its potential. Therein, the influence of base
concentration in the dialysate channel was correlated to the carboxylic anions flux
using simple steady state relations.

Garde (2002) and Rype (2003) introduced a device referred to as Reverse Electro-
Enhanced Dialysis (REED), this technology was proposed to overcome some of the
drawbacks of Donnan dialysis and electrodialysis such as fouling and scaling. The
REED design emerges as a method to enhance the lactate fluxes in conventional
Donnan dialysis operation, this is done by imposing an external potential gradi-
ent. The REED module combines elements from electrodialysis reversal (EDR) and
Donnan dialysis (DD) operations (Strathmann, 2004).

A more detailed process for lactic acid recovery from fermentation broths is de-
scribed by Hábová et al. (2004). The entire process is composed by ultrafiltration,
decolourisation, removal of multivalent ions as pretreatment of the fermentation
broth and desalting electrodialysis and water splitting electrodialysis for the further
lactic acid recovery and concentration.

1.3 Reverse Electro-Enhanced Dialysis process

The Reverse Electro-Enhanced Dialysis proposes itself to directly coupling with the
lactic acid fermentation. The integrated system is composed of the fermenter and
two electrically driven membrane separation modules (as shown in Fig. 1.2). In the
first membrane separation process the lactate is separated from the fermentation
broth by Reverse Electro-Enhanced Dialysis (REED). The supernatant stream is
recycled to the bioreactor. In the second stage, lactic acid is recovered from the
dialysate and concentrated using bipolar membranes in an Electrodialysis process
with Bipolar Membranes (EDBM).
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1.3. REED process introduction

Figure 1.2: Sketch of the integrated membrane bioreactor for organic acid production.
Adapted from Rype (2003)

The core and novelty of the process is the Reverse Electro-Enhanced Dialysis
separation unit. The REED module is composed of several cells assembled in a
plate-and-frame stack. A cell consists of feed and dialysate channels separated by
anion exchange membranes. A schematic draw of REED module is depicted in Fig.
1.3.

Figure 1.3: Sketch of REED module. Section in the module and flow distribution are
shown. Taken from Jurag-Separation (2009)

1.3.1 Potential problems during in situ lactate recovery

The motivation to propose the Reverse Electro-Enhanced Dialysis is the potential
problems evidenced when electrically driven membrane separation processes were
proposed (Grossman and Sonin, 1973; Hongo et al., 1986; Heriban et al., 1993;
Garde, 2002; Rype, 2003):
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- Membrane fouling: this problem is probably the biggest obstacle when ion
exchange membranes are used. Fouling can be generated by bacterial attach-
ment, extracellular protein adsorption or colloidal particle deposition on the
membrane surface. This is due to the fact that biomass, some proteins and
colloids have local charged groups which are attracted by the ion exchange
membranes.

- Scaling: certain multivalent ions such as Calcium and Magnesium contained
in the feed solution are allowed to pass through cation exchange membranes.
Those ions form salts that precipitate on the membrane surface.

- Bipolar membrane degradation: this kind of membrane is commonly used for
the further recovery and concentration of lactic acid. The presence of Calcium,
Magnesium and Iron can damage or destroy these membranes, even if they are
present in small amounts.

Some solutions to the above issues have been proposed in order to reduce the ad-
verse influence of the listed problems. Electrodialysis has been coupled with other
separation processes, as pretreatments, such as activated carbon, ion exchangers,
ultrafiltration, nanofiltration and reverse osmosis. In addition, the product from
electrodialysis module requires further purification processes such as water splitting
electrodialysis (electrodialysis with bipolar membranes), carbon adsorption, extrac-
tion, evaporation and pervaporation/distillation (Rype, 2003). From the technical
point of view, it is possible to meet the product requirements by employing a dif-
ferent combination of processes. However, for commercial applications the process
investment and operational costs must be minimized to make the process economi-
cally feasible.

1.3.2 Donnan dialysis recovery

For organic acid recovery, Donnan dialysis is a promising process where the scaling
and bipolar membranes degradation problems are avoided since only anion exchange
membranes (AEM) are used. Besides, the fouling problem is reduced due to high flow
velocities and a destabilization mechanism generated by the hydroxide flow through
the membrane in the opposite direction than fouling layer formation. Hydroxide has
been used to clean fouled membranes (Zheleznov et al., 1998).

Fig. 1.4 depicts the Donnan dialysis process for extraction of lactic acid from a
fermentation broth. In this process, the fermentation broth is fed to every even
channel in the membrane stack (feed channels). A concentrated sodium hydroxide
solution is fed in the remaining channels (dialysate compartments). The feed from
the fermenter has a low pH compared to the alkaline solution, therefore the hydroxide
is transported through the AEM due to the large concentration gradient between
the two solutions. The hydroxide flux is leading the lactate flux in the opposite
direction. The fastest ion (OH− in this case) induces a potential gradient which
drives the lactate flux out of the feed channel (Mulder, 1997; Strathmann, 2004).
Those fluxes are coupled since electroneutrality condition and Faraday’s law must
be fulfilled.
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Figure 1.4: Schematic drawing illustrating lactic acid extraction by Donnan Dialysis
employing only anion exchange membranes (AEM), adapted from Møllerhøj (2006)

The main disadvantage using Donnan dialysis for lactate recovery from the culti-
vation broth is a rather low lactate flux, since the driving force behind the lactate
transport is the hydroxide concentration gradient in the opposite direction, which
implies larger membrane area and concentration gradients.

1.3.3 Reverse electro-Enhanced Dialysis design

The REED design emerges as a potential method to enhance the lactate fluxes
in conventional Donnan dialysis operation. This is done by imposing an electrical
field, then fluxes can be potentially increased by several order of magnitude. Fig. 1.5
shows the expected ions transport through anion exchange membranes in parallel
under current load conditions. Imposing an external potential gradient, the trans-
port mechanism changes from counter ion transfer to a competitive ion transport.
Rype (2003) used a simply model to show how lactate is preferably transported
when the pH is below 11, meanwhile for pH higher than 12.5 hydroxide is carrying
an increasing amount of current. Assuming that the solution in the feed channel
stays at pH below 11, the lactate extraction from the feed stream is favored.

1.3.4 Electrodialysis with bipolar membranes

The solution containing the lactate extracted from the cultivation broth in the REED
module is fed to the Electrodialysis with Bipolar Membranes (EDBM). The purposes
of this operation are to recover and concentrate the lactic acid while the alkaline
solution is regenerated and recycled to the REED unit.

The salt of a week acid can be converted in the corresponding acid employing a
two compartment cell with bipolar membranes (BM) plus either cation or anion
exchange membranes (CEM/AEM). A Bipolar membrane is composed of an anion
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Figure 1.5: Schematic drawing illustrating the expected competitive lactate and hydrox-
ide transport through anion exchange membrane (AEM), solid lines correspond to
the favored fluxes, adapted from Møllerhøj (2006)

exchange membrane (AEM), a cation exchange membrane (CEM) and a contact
region between the two ion exchange membranes. The water from outside solutions
diffuses across both membranes and reaches the interface. Under an electrical field,
the water is split into hydrogen ion (H+) and hydroxide ion (OH−). The generated
hydrogen and hydroxide ions are used to combine with the anion (L−) and the cation
(Na+) coming from the REED module. In order to separate the anion and the cation
of sodium lactate, an ion exchange layer is placed in between two bipolar membranes.
Schematic representation of the two compartment EDBM is depicted in Fig. 1.6.
The difference between the two configurations is the separation purpose less than
100% efficient operation. Configuration (a) recovers and concentrates lactate as
lactic acid in the acid chamber, while sodium hydroxide and sodium lactate remains
in the base channel. Configuration (b) regenerates the sodium hydroxide in the base
chamber, while lactic acid and sodium lactate remains in the acid channel.

In order to remove other inorganic acids present in the feed and purify the lactic
acid, a subsequent electrodialysis unit can be used since at very low pH the lactic
acid stays in its undissociated form.

1.4 Research motivation and objectives

Many biochemical products are obtained in bioprocesses where the reactions are
kinetically and/or equilibrium controlled and overall process productivity depends
on process conditions like pH, temperature, substrates concentration, etc. In recent
years, there has been an increasing interest in fermentations processes since the main
raw materials are renewable and products obtained in these processes are widely used
in the fine chemical, pharmaceutical and food industry. However, a main difficulty
of obtaining a high productivity in fermentation may be the product inhibition of
microbial growth. Therefore, continuous removal of lactic acid from the fermenter
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(a) BM+AEM

(b) BM+CEM

Figure 1.6: Ions transport in a 100% efficient two compartment cell bipolar membranes
(BM) for weak acid recovery. (a) with anion exchange membrane (AEM) and (b)
with cation exchange membrane (CEM).

will result in a higher productivity and product yield.
Recently, the application of an electrically driven membrane separation techniques

has shown promising performance for continuous removal of lactic acid during fer-
mentation, referred to as Reverse Electro-Enhanced Dialysis (REED) (Garde, 2002;
Rype, 2003).

The key idea of this project is to use software tools in order to develop a com-
bined knowledge-based and data-driven approach for design, operation, control and
optimization of the integrated bioreactor and Reverse Electro-Enhanced Dialysis
process for lactic acid fermentation. It is believed that this approach will bring new
prospects for substantial improvements in production efficiency and product quality.
This investigation objective is based on the following hypotheses:

• Through modeling and simulation, it is possible to contribute in the under-
standing: of Donnan dialysis separation, ion transport through anion exchange
membranes under current load conditions (Electro-Enhanced Dialysis) and
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current reversal conditions (Reverse Electro-Enhanced Dialysis).

• It is possible to extend the concepts behind a goal driven control structure
design for integrated systems, which are partially operated periodically.

1.5 Thesis organization

This thesis has been organized into two main parts covering the contributions in
membrane and process system engineering fields. These parts exclude this introduc-
tion chapter, final conclusions, suggestions for future work, appendices and refer-
ences. This document is the compilation of journal papers, scientific conference con-
tributions and technical reports, which have been developed/presented/submitted
within the scope of this project. The content of each chapter reflects the content or
extended version of the content of a contribution formatted to fit this thesis. Hence,
relevant information may be repeated along the thesis since each contribution aims
at being self explanatory. The title of the chapters have been adapted to give a
sequence in the thesis. The references given in these papers are collected at the end
of the thesis.

Part I - Modeling ion transport in a Dialytic module
This part of the thesis is aimed to provide understanding of the key electrically
driven membrane separation unit in the integrated system, which is the Re-
verse Electro-Enhanced Dialysis. This process understanding is the pillar for
the remaining parts of the thesis. This part of the work is based on two paper
conference contributions, one published journal paper, two papers submitted
for publication journal and a Master thesis.

In Chapter 2, a first principles dynamic model is developed to describe simul-
taneous ion transport in a Dialytic separation, for carboxylic anion recovery.
Then, Donnan dialysis separation is studied. A detailed description of the
model derivation, implementation and solution is presented. The model struc-
ture is tested using experimental data for Donnan dialysis recovery of several
monoprotic carboxylic acids reported in the literature.

A static investigation of the competitive ion transport under current load con-
ditions is performed in Chapter 3. Therefore, this chapter is focused studying
why the ion fluxes are enhanced by imposing an external potential gradient
to a dialytic module. The results are compared to Donnan Dialysis operation
for lactate recovery. The system operating under current reversal conditions is
studied in Chapter 4. The investigation aims to predict transient phenomena
that are able to explain the loss of current efficiency during current reversal
operation, which has been experimentally demonstrated. In the Chapters 3
and 4, an overview of the model equations and their solution is presented.

The derived dynamic model, for ion transport in the dialytic module, is mod-
ified to have a simple representation of an ideal two compartments Electro-
dialysis with bipolar membranes module. This is an extension to the work
presented in this part of the thesis which has been carried out in collaboration
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with MSc. student Sijing Liu during her master thesis. The most relevant
achievements of her thesis are shown in appendix E.

Part II - Integrated system analysis
The second part of the thesis is aimed develop the necessary models and tools
required to investigate the operability of the integrated system. This work is
based on two conference paper contributions.

In Chapter 5, an unstructured model for lactic acid fermentation is proposed
which is suitable for integration with the model for Reverse Electro-Enhanced
Dialysis derived in part I. This model should be able to describe batch as well
as continuous fermentations. Due to the model structure, it is particularly
interesting to investigate the model parameter identifiability. A methodology
is employed to estimate the kinetic parameters using experimental literature
data and mathematical and statistical tools. The employed methods and tools
are evaluated and discussed.

In order to facilitate the fermenter and REED models integration, a goal driven
methodology for control system development is extended to deal with this par-
ticular periodically operating system in Chapter 6. A control structure in the
REED module is investigated which can facilitate the pH control in the fer-
mentation. The designed control structure is implemented and its performance
evaluated.

In Chapter 7, the design and operation of the integrated fermenter and REED
separation system are investigated using two different production goals. The
productivity results are compared with those of a conventional fermentation.
Potential problems in the design and controllability of the integrated system
are discussed.

Concluding remarks and future work are presented in Chapter 8.

1.6 Contributions

The following is a list of the main contributions within this project. The follow-
ing is divided into journal papers, peer reviewed conference proceedings, conference
oral presentations and conference poster presentations. These contributions compile
the present understanding of the Reverse Electro-Enhanced Dialysis process under
no current/current/reversal current conditions. Additionally, an extended method-
ology for goal driven control structure design in a periodically operated system.
Finally, the strategy for design of operation of the integrated system according to a
fermentation objective is presented.

1.6.1 Journal papers

• Prado-Rubio, O.A., Møllerhøj, M., Jørgensen, S.B. and Jonsson, G. (2010).
Modeling Donnan Dialysis Separation for Carboxylic Anion Recovery. Com-
puters & Chemical Engineering, (ESCAPE 19th - selected paper), 34, 1567-
1579.

13



Chapter 1. Introduction

• Prado-Rubio, O.A., Jørgensen, S.B. and Jonsson, G. (2011). Model based
investigation of the potential lactate recovery using Electro-Enhanced Dialysis
- Static analysis. Separation and Purification Technology Journal, 78, 113-124.

• Prado-Rubio, O.A., Jørgensen, S.B. and Jonsson, G. (2011). Reverse Electro-
Enhanced Dialysis for lactate recovery from a fermentation broth. Journal of
Membrane Science, 374, 2032.

1.6.2 Peer reviewed conference proceedings

• Prado-Rubio, O., Jørgensen, S., and Jonsson, G. (2010). Systematic Procedure
for Integrated Process Operation: Reverse Electro-Enhanced Dialysis during
Lactic Acid Fermentation. 21th European Symposium on Computer Aided
Process Engineering - ESCAPE21. (Accepted).

• Prado-Rubio, O., Jørgensen, S., and Jonsson, G. (2010). Control System
Development for Integrated Bioreactor and Membrane Separation Process.
S. Pierucci and G. Buzzi Ferraris (Editors). 20th European Symposium on
Computer Aided Process Engineering - ESCAPE20. Computer-Aided Chem-
ical Engineering (ISBN: 978-0-444-53569-6), volume 28, pages 289-294. Great
Britain: Elsevier.

• Prado-Rubio, O., Jørgensen, S., and Jonsson, G. (2009). Tool for Optimizing
the Design and Operation of Reverse Electro-Enhanced Dialysis of Monopro-
tic Carboxylic Acids. Rita Maria de Brito Alves, Claudio Augusto Oller do
Nascimento and Evaristo Chalbaud Biscaia Jr. (Editors). 10th International
Symposium on Process Systems Engineering - PSE2009. Computer-Aided
Chemical Engineering (ISSN: 1570-7946), volume 27A, pages 663-668. The
Netherlands: Elsevier.

• Oscar A. Prado Rubio, Sten B. Jørgensen, Gunnar E. Jonsson. (2009). Lactic
acid recovery in electro-enhanced dialysis: Modelling and validation. In Je-
zowski, J. and Thullie, J. (Editors). 19th European Symposium on Computer
Aided Process Engineering - ESCAPE19. Computer-Aided Chemical Engi-
neering (ISBN:978-0-444-53433-0), volume 26, pages 773-779. The Nether-
lands: Elsevier.

1.6.3 Conference oral presentations

• Prado-Rubio, O., Jørgensen, S., and Jonsson, G. Control System Development
for Integrated Bioreactor and Membrane Separation Process. Presented at 20th
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Part I

Modeling ion transport in a
Dialytic module
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2

Model development and regression

2.1 Abstract

A dynamic model for transport of multiple ions through an anion exchange mem-
brane is derived based on the Nernst-Planck approach. This model accounts for the
convective transport of the dissociated and undissociated species in the channels
with diffusion and migration across the boundary layers and membranes. Donnan
equilibrium, flux continuity of the transported ions, the electroneutrality condition
and Faraday’s law are employed to describe the electrical potential and concentra-
tion discontinuities at the interfaces. The Nernst-Planck equation is used to model
the ion transport though boundary layers and membranes. The model consists of a
system of partial differential equations that are solved numerically. The aim of this
paper is to corroborate this general model for several monoprotic carboxylic acids
reported in the literature. The model reproduces satisfactorily experimental fluxes
for monoprotic ions. Additionally, previously qualitatively estimated concentration
profiles within the boundary layers and membranes are predicted.

2.2 Introduction

Presently, economical and sustainability issues are the main driving forces to gen-
erate improvements in process design and operation. Bioproduction of commodity
chemicals is particularly necessary in order to substitute their chemical or petro-
chemical based synthesis. There has been a constant interest in biotechnological
production of carboxylic acids due to their well known industrial applications. Re-
cently, there is a growing interest in lactic acid since it is the main feedstock for
Polylactic acid (PLA) production. Polymers derived from PLA can substitute petro-
chemically based polymers in several applications and thus reduce our dependency
on fossil feedstock. In order to make the PLA production economically viable, op-
timization of the design and operation of the developing production technologies is
necessary.

Probably the main in limitation producing carboxylic acids by fermentation is that
microorganisms are normally impaired by product inhibition and low pH (Nielsen
et al., 2003). Investigations on lactic acid bacteria cultivations without pH control
have shown that the inhibition is generated by the presence of different lactates,
and even neutralized lactates provoke inhibition. The strongest adverse influence
has been seen in the presence of pure lactate (Hongo et al., 1986). Therefore, a
higher productivity and product yield can be achieved by the continuous removal
of lactate from the fermenter and pH control. However, it has been seen that lac-
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tate recovery from the diluted cultivation broth constitutes a challenging separation
problem (Lee et al., 1998a). Usually, the lactate separation is by precipitation, where
the precipitated calcium lactate must be recovered by employing a strong acid. This
procedure implies high chemical cost and waste generation. For this reason, alterna-
tives for lactate recovery have been studied such as solvent extraction, adsorption,
direct distillation and membrane separation processes (Lee et al., 1998a). From this
list of options, membrane separation processes are attractive since they can be very
selective and capable of being operated aseptically without by-product generation.
Additionally, if biomass can be recycled, it would allow obtaining higher cell densi-
ties to minimize the risk of cell wash-out, thereby the continuous fermentation can
be operated at higher dilution rates than the specific growth rate of the organism.
Thus providing even higher productivity. The potential recycling of biomass would
still render membrane separation a promising alternative even if product inhibition
was minimized genetically.

Electrically driven membrane separation processes have shown to be very selective
for recovery of ion species. Among all alternatives, Donnan dialysis lactate recov-
ery has experimentally shown promising performance (Narbȩska and Staniszewski,
1998a; Zheleznov et al., 1998). This process is attractive since the separation is
driven by the electrochemical potential gradient across the membrane. Therefore,
the energy consumption is only due to pumping the solutions through the module.
In this separation process, only anion exchange membranes (AEMs) are employed
and the stripping agent is an aqueous base. Employing this technology, conventional
problems found in electrodialysis are reduced. Scaling problems are avoided due to
the absence of cation exchange membranes. Besides, fouling is minimized due to
high flow velocities and a destabilization mechanism, where the latter is generated
by the hydroxide flux through the membrane in the opposite direction than the
fouling layer formation.

Previously, mainly static models have been proposed for modeling the ion transport
in Donnan dialysis. Different approaches have been used from mechanistic to first
principles models in diverse geometries. The set of assumptions define the model
structure in dependence of the model purpose. Most of the models were developed
to investigate metal ion transport through cation exchange membranes.

In late 70’s, a simple model characterized by mass transfer coefficients and Don-
nan equilibrium was proposed (Lake and Melsheimer, 1978). The importance of
boundary layer and membrane resistances was recognized. However, this kind of
model neglects the coupling between fluxes by the electrical potential gradient and
osmotic flow. Therefore, it can not predict the dependence on ion type and ion
concentration in the feed and dialysate channels. This situation can be overcome
by employing the Nernst-Plank equation for the ion fluxes, e.g. to investigate: the
transport of cations in charged pores in the membrane control regime (Cwirko and
Carbonell, 1989, 1990), the neutralization of waste water considering the boundary
layer resistance Starov et al. (1990), mono and polyvalent ion fluxes through diverse
cation exchange membranes and their respective boundary layers (Miyoshi, 1997).
These models are different mainly because they account for different terms in the
Nernst-Plank equation, due to the system geometry and the way to model the con-
centration and potential discontinuities at the membrane-boundary layer interfaces.
Despite the differences, these approaches account for the effect of ion bulk concen-
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trations on the ion transport. After some assumptions, it has been shown that the
steady state fluxes can be estimated using simple algebraic equations according to
the dominant transport resistance (Starov et al., 1990) and reproduce to some extent
the experimental data for Donnan dialysis recovery of carboxylic anions (Zheleznov
et al., 1998). However, the predictive power of those models is very limited.

The objective of this contribution is to depict a general model describing the
simultaneous ion transport through ion exchange membranes, when the target ion
is recovered from a fermentation broth. The system is a dialysis module operating
at a variable imposed potential gradient. In the presented paper, the model is
adjusted to reproduce experimental data collected for monoprotic anion recovery
using Donnan dialysis. This model could be used to evaluate the potential anions
recovery under diverse operation modes and then provide a further understanding
of the limiting transport factors.

Even though ion exchange membranes have been widely used in industry, the
transport mechanism behind the separation has not yet been completely understood.
Thus, it is desirable to develop models which can provide a better understanding
of the transport phenomena in such electrochemical systems. Furthermore, models
will potentially enable optimization of the design and operation of the modules. Our
main modeling contributions are: to account for the carboxylic acid dissociation, to
include a pH buffer effect in the feed channel and to develop a dynamic model. The
dissociation reactions are important since the feed stream comes from a fermenter.
Besides, we have developed this dynamic model since our ultimate goal is to optimize
the operation of electrically driven separation processes.

The paper is structured as follows: the Donnan dialysis process for anion recov-
ery is introduced and the dynamic model is described. The experimental data are
presented and analyzed for Donnan dialysis recovery of some monoprotic carboxylic
anions. The unknown parameters in the first principles model are estimated using
simulations and a parameter estimation procedure. The developed model is shown
to reproduce experimental fluxes for several monoprotic carboxylic acids satisfacto-
rily. The model is used to predict concentration profiles under boundary layer and
membrane controlled transport conditions. Finally, the conclusions are drawn.

2.3 Model development

2.3.1 Process description

Fig. 2.1 depicts a section of the Donnan dialysis process for extraction of lactic
acid. In this process, the feed is introduced to every other channel in the membrane
stack. A concentrated sodium hydroxide solution is fed in the remaining channels
(dialysate compartments). The feed has a low pH compared to the alkaline solution,
therefore the hydroxide ion is transported through the anion exchange membrane
due to the large concentration difference between the two solutions. The hydrox-
ide flux induces an electrical potential gradient which drives the lactate ions out of
the feed channels (Mulder, 1997; Strathmann, 2004). Thus, the hydroxide flux is
effectively leading the lactate flux in the opposite direction across the membrane.
Those fluxes are coupled since the electroneutrality condition must be fulfilled as
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well as the Faraday’s law. Sodium fluxes, depicted with dashed arrows in Fig. 2.1,
are considerably lower than lactate and hydroxide fluxes due to Donnan exclusion.
However, the sodium flux is necessary to account for since it is coupled as well. It
has been seen that Donnan exclusion becomes less effective when the base concen-
tration in the dialysate channel increases.

Figure 2.1: Schematic drawing illustrating lactic acid extraction by Donnan dialysis
employing only anion exchange membranes (AEMs). Dominant fluxes are depicted
in solid lines

2.3.2 Static black box models

The carboxylic acid fluxes in Donnan dialysis are characterized by two limiting re-
gions, referred to as boundary layer and membrane controlled regions, according to
the prevailing transport resistance. Experimentally, it has been shown that the dom-
inant resistance depends on the concentration gradients and flow conditions (Lake
and Melsheimer, 1978). Previous work has derived simple mechanistic expressions
to reproduce experimental fluxes under the prevailing transport resistance. Under
boundary layer control, the main resistance for mass transport is in the liquid phase
adjacent to the membrane surface. In that case, the concentration gradient within
the membrane becomes negligible and anion fluxes are proportional to the base
concentration in dialysate channel, as it is shown in Eq. 2.1 (Starov et al., 1990).

JA− =
DA−DOH−

δBL (DOH− − DA−)

(

√

DOH−

DA−
− 1

)

COH− (2.1)

where δBL is the thickness of the boundary layer and Dk is the diffusion coefficient
for anion k in the aqueous solution. It can be seen in Eq. 2.1 that the anion
flux is independent of the membrane properties and acid concentration in the feed.
Therefore, an increment in the base concentration generates an increase in the anion
flux. When the base concentration in the dialysate channel is increased further, the
mass transport resistance within the membrane becomes important until the point
where the main resistance is determined by the membrane. Therefore, the so called
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membrane control has been achieved. In the limit of the membrane control region,
the concentration gradients inside the membrane are steep due to the high transport
resistance. Besides, the concentration profiles are fully developed. The anion flux is
independent of the base concentration in the dialysate channel as it is shown in Eq.
2.2 (Starov et al., 1990).

JA− =
QDA−DOH−

δm (DOH− − DA−)
ln

(

DOH−

DA−

)

(2.2)

where Q is the ion exchange capacity of the membrane, δm is the membrane thickness
and Dk is the diffusion coefficient of anion k within the membrane. The saturation of
the anion flux through the membrane is determined by the membrane thickness and
the diffusion coefficient of both anions in the membrane. The overall dependency of
the anion transport across the membrane, as a function of the base concentration
in the dialysate channel, can be represented by a Langmuir function (Eq. 2.3)
(Zheleznov et al., 1998). This is analogous to a reaction-diffusion mechanism, the
membrane is considered as an ideal reactive carrier and the fluxes are described
by Michaelis-Menten reaction type as function of concentration in the bulk channel
(Wódzki and Nowaczyk, 1999).

JA− =
abCOH−

1 + bCOH−
(2.3)

where a and b are characteristic parameters that depend on the anion, membrane
and experimental conditions. From the experimental data depicted in Fig. 2.4,
it can be seen that experimental fluxes for lactate and propionate do not achieve
a maximum value for the flux (Jmax) as it is predicted by the reaction-diffusion
model. This could be provoked by a measurement problem during the experiments
or most likely the evidence of a dual transport mechanism. A dual mechanism is
the combination of a reaction-diffusion and solution-diffusion mechanisms. During
solution-diffusion mechanism, the transported species are dissolved in the membrane
and then they can diffuse throughout it. The dual mechanism can be represented
by the following expression:

JA− = Jmax

(

kCOH−

1 + kCOH−

)

+ PCOH− (2.4)

We quantitatively confirmed that lactate and propionate fluxes are better described
by the dual mechanism, while acetate transport is well represented by pure reaction-
diffusion model (see Appendix B). Different contributions of both mechanisms have
been seen before, when the permeation of some carboxylic acids was studied in
dialysis using Neosepta-AMH (Wódzki and Nowaczyk, 1999). In that case, the
contribution of solution-diffusion flux became relevant for tartaric and oxalic acids
at high concentrations, while for lactic acid it is definitely dominant. On the other
hand, reaction-diffusion flux was more important for propionic, acetic and citric acid.
The different properties exhibited by lactic acid were explained by the fact that the
transport of lactic acid is reaction rate-determined. Therefore, it is possible that
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this facilitated transport is slower than the free diffusion. In contrast during Donnan
dialysis, reaction-diffusion fluxes for the monoprotic acids through Neosepta-AMH
are dominant with only a small influence of solution-diffusion fluxes, for lactic and
propionic acids, at high base concentrations in the dialysate channel. Therefore for
counter-ion diffusion, the reaction-diffusion transport is several times faster than
for solution-diffusion, especially for acetate. Based on these findings, we conclude
that experimental work is required to understand the transport mechanisms during
dialytic recovery of carboxylic anions with a specific membrane, and is absolutely
necessary if only black box models are used. However, the lack of predictive power
of the depicted models is a strong motivation to work with a first principles model.

2.3.3 Model assumptions

The transport of ions through a section of the Donnan dialysis unit is modeled. The
entire module can be composed by several cells in parallel assembled in a plate-and-
frame stack. This electrochemical system is characterized by several simultaneous
phenomena such as species dissociation and multicomponent mass transport through
different solution and membrane phases. A dynamic model is derived for transport
of multiple ions through anion exchange membranes and Nernst diffusion layers (ad-
jacent to the membranes). The model is based on first principles for dissociation,
diffusion, convection and migration of the main species found in a cultivation broth.
The modeled module section is composed of two feed channels with one dialysate
channel bounded by two anion exchange membranes. A detailed sketch is depicted
in Fig. 2.2, where the section is divided into different zones and the ions present
in each zone are shown. The zones are: three bulk channels, two membranes and
four boundary layers. The model accounts for the convective transport of different
species in the bulk channels (y-direction) and the diffusion and migration through
the membranes and boundary layers (x-direction). The Nernst-Planck approach is
used to describe the transport phenomena in the boundary layers and membranes.
Finally, assumptions GA1, GA2, GA10 and MA4 are used to model the concentra-
tion and potential discontinuities at the interfaces (Prado-Rubio et al., 2009a).

Due to the complexity of a real dialytic system, any theoretical analysis is of
necessity based on a simplified model of the actual process. In order to set-up the
model, the following main assumptions were made.

2.3.3.1 General assumptions (GA)

GA1. Electroneutrality condition must be fulfilled at any location in the system.

GA2. The electrical current is carried by ions (Faraday’s law).

GA3. The expected influence of temperature changes due to the combined resistance
of the cells is neglected.

GA4. Constant properties such as: diffusion coefficients (in the solution) and dis-
sociation constants. Variations of physicochemical properties as function of
temperature and concentration are neglected, because the expected changes
are small and information available is limited.
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Figure 2.2: Sketch of a section of the dialysis module for lactate recovery from a fermen-
tation broth. The zones in the section and ions present in each zone are depicted.
BL: boundary layer and AEM: anion exchange membrane. zj ∀ j=1,...,7 are the
interfaces

GA5. Ideal solution. For the sake of simplicity, the system is assumed ideal since
the introduction of activity coefficients increases substantially the complexity
of the model. At low carboxylic anion concentration in the aqueous system,
there are small deviations from ideal behavior.

GA6. An extra pH buffer effect in the fermentation broth feed channel is modeled by
the introduction of the species P− and HP. When the separation is performed
from a fermentation broth, an extra pH buffer effect which is not associated
to the acid dissociation is expected. This effect is apparently caused by amino
and carboxylic groups present in proteins and suspended colloidal material in
the cultivation broth. In order to model the extra pH buffer, a hypothetical
proton acceptor group on a protein is introduced in the model (HP and P).
If the separation is performed employing a pure carboxylic acid solution, the
extra buffer effect can be suppressed by fixing a negligible amount protein in
the feed stream.

GA7. Constant pH of the feed solution. This is reasonable if the feed stream is
coming from a fermenter, where a constant pH is required.

GA8. The transport through the membranes and boundary layers in the x-direction
is defined by multicomponent diffusive and electrophoretic transport, driven
by concentration and potential gradients. Ideal Nernst-Planck equation is em-
ployed, neglecting the convective transport. The pressure driven convective
transport in x-direction is neglected since in ion exchange membrane sepa-
ration processes the pressure differences are kept as low as possible (Wilson
et al., 2000).

GA9. In order to model the concentration profile in the feed and dialysate channels,
tanks in series approach in the y-direction is used. It is a simplification
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of the ideal plug flow model, where the concentrations are assumed to be
independent of position in the x-dimension.

GA10. There is not accumulation of the transported ions at the interfaces. For the
un-transported ions, the fluxes equal zero.

2.3.3.2 Membrane assumptions (MA)

MA1. The transport in the y-direction in the membranes is neglected. The concen-
tration and electrical potential gradients in the y-direction are significantly
smaller than in x-direction, then it is reasonable to neglect the transport in
y-direction.

MA2. Transport of water through the membrane by osmosis is neglected due to
the low pressures differences. In addition, electro-osmotic water transport
facilitated by ion movement is not investigated.

MA3. There is no transport of uncharged species or large molecules through the
membrane (P−, HL, HP). Both forms of the protein can not penetrate the
membrane due to their size. Besides the lactic acid (HL) is completely disso-
ciated at the membrane surface since the pH there is very high. The transport
of other low molecular weight ionic species that could be in the cultivation
broth is not investigated.

MA4. The ionic solution is in equilibrium with the adjacent membrane surface, it
means that electrochemical potential of each component in both phases are
identical. This situation is described by the Donnan equilibrium condition.

MA5. It is expected that the membrane water content changes with different average
pH, however the dimensions of the membrane are assumed constant.

2.3.3.3 Boundary layer assumptions (BLA)

BLA1. Convective transport in the y-direction in boundary layer is neglected. The
assumption of a stagnant liquid film adjacent to the membrane surface is
widely accepted in modeling of chemical systems.

BLA2. There are correlations in the literature to estimate the thickness of the
boundary layer in electrodialysis based on dimensionless numbers: Reynolds,
Schmidt and Sherwood (Moon et al., 2004). However, for a given flow con-
dition the thickness of the boundary layer is assumed constant.

2.3.4 Mass balances

In the model, the species and the zones are denoted by the subscripts k and p,
respectively. The zones are boundary layers and membranes.
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2.3.4.1 Transport through boundary layers and membranes

A dynamic mass balance for each species in the mentioned phases can be written as
follows (Taylor and Krishna, 1996):

∂Ck,p

∂t
+ ∇Jk,p − Rk = 0 (2.5)

where the component flux Jk,p is estimated using Nernst-Planck approach. From the
generalized Maxwell-Stefan formulation, the Nernst-Planck equation can be derived
for a multicomponent electrochemical system. This approach accounts for diffusion,
migration and convection of species (Taylor and Krishna, 1996). The general Nernst-
Planck equation is simplified for an ideal solution and neglecting convective transport
(Lakshminarayanaiah, 1969; Strathmann, 2004):

Jk,p = −Dk,p

(

∂Ck,p

∂x
+

zkFCk,p

RT

∂ψp

∂x

)

(2.6)

The reaction term Rk in Eq. 2.5 is used to introduce the carboxylic acid dissocia-
tion into the model and the pH buffer effect. In general, proteins are large molecules
that can contain several charged groups. If the protein dissociation is modeled as
a polyprotic acid reaction, the stiffness of the system of equations could increase
considerably. To overcome this situation, the proton acceptor groups in the pro-
tein are considered in terms of equivalents, i.e. the protein concentration is defined
as moles acid equivalents per volume. Therefore, the dissociation of a polyprotic
species is simplified to a monoprotic acid reaction. The protein species represents a
wide range of components in the fermentation broth from low molecular weight pro-
teins to colloidal material. The reaction system is given by the following equilibrium
expressions involving the dissociation of the carboxylic acid and the protein:

HA+OH−
k1−⇀↽−
k2

A−+H2O

HP +OH−
k3−⇀↽−
k4

P−+H2O

It can be demonstrated that the dissociation constants for each reaction in this
representation is related to the conventional Ka by the following expression:

Kd =
Ka

Kw

(2.7)

Introducing the Nernst-Planck equation and dimensionless time and position pa-
rameters (see section 2.7) into Eq. 2.5, the general mass balance equation can be
rewritten as Eq. 2.8.

∂Ck,p

∂τ
=

τn

τdiff

(

∂2Ck,p

∂z2
+ zk

(∂Ck,p

∂z

∂ϕp

∂z
+ Ck,p

∂2ϕp

∂z2

)

)

+ τnRk (2.8)
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The above equation is a general expression for all species. However, the migration
terms, i.e. the terms involving the electrical potential gradient, apply only for
dissociated species. The electrical potential gradient required in Eq. 2.8 is estimated
assuming that all the electrical current is carried by ions (Faraday’s law, GA2). This
assumption is represented by Eq. 2.9. In this way, the electric potential can be
eliminated from the mass balances (Starov et al., 1990).

Id = F
∑

k

zkJk,p (2.9)

Substituting the fluxes for each ion (Eq. 2.6) into Eq. 2.9, the potential gradient
can be estimated. Notice that k in this case refers only to the ionic species and that
not all species are present in every phase p.

∂ϕp

∂z
=

−Idδm/F −
∑

k zkDk,p∂Ck,p/∂z
∑

k z2
kDk,pCk,p

(2.10)

The second derivative of the potential is found from the potential gradient equation
(Eq. 2.10).

∂2ϕp

∂z2
=
−

∑

k zkDk,p∂
2Ck,p/∂z2

∑

k z2
kDk,pCk,p

+

Idδm/F +
∑

k zkDk,p∂Ck,p/∂z

(
∑

k z2
kDk,pCk,p)

2

(

∑

k

z2
kDk,p

∂Ck,p

∂z

)

(2.11)

How the boundary conditions of potential gradients and concentrations can be
estimated is explained in the following subsections. The schematic sketch of one
membrane and the corresponding type of equations used in each section are depicted
in Fig. 2.3. The boundary conditions for the mass balances are developed according
to the relations depicted in section 2.3.4.3. The number of relations required to solve
the model was determined using a degree of freedom analysis.

2.3.4.2 Bulk channel model

The concentration boundary conditions at the solution-boundary layer interfaces, in
the x-direction, are estimated using tanks in series approach. A system of differential
algebraic equations describe the convective transport along the bulk channels (y-
direction). In each tank there is mass exchange with the adjacent boundary layers
and the dissociation reactions are present. The dimensionless mass balances for each
tank in the feed and dialysate channels are depicted below:

dCfb
k

dτ
=

τn

τfeed

(

Cfbin
k − Cfb

k

)

+

τn

hfeed

(

Jk|z=z7
− Jk|z=z0

)

+ τnRk (2.12)
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Figure 2.3: Schematic sketch of one membrane with associated boundary layers. The
symbols: ‖ at the membrane surface indicates the concentration and potential dis-
continuities at the interfaces, © represents the bulk concentration. The model
employed within each zone is depicted. AE’s stands for Algebraic equations and
PDEs for partial differential equations.

dCdb
k

dτ
=

τn

τdia

(

Cdbin
k − Cdb

k

)

+
τn

hdia

(

Jk|z=z3
− Jk|z=z4

)

(2.13)

In the dialysate channel the reaction term can be neglected. The reason is that
the species are completely dissociated due to the high pH.

2.3.4.3 Algebraic relations at the interfaces

Algebraic expressions are employed to model the potential gradients and concentra-
tions discontinuities at the membrane-boundary layer interfaces (z1, z2, z5 and z6 in
Fig. 2.2). Additionally, the potential gradients in the bulk solution-boundary layer
interfaces. Donnan potential gives the potential build-up at membrane-solution in-
terfaces, which is determined by the ionic distribution of the transported ions.

(

Cs
k

Cm
k

) 1

zk

=

(

Cs
i

Cm
i

) 1

zi

= ... k �= i (2.14)

The Faraday’s law states that all the electrical current is carried by ions. Since
there is no current imposed on the system, the equation is reduced to:

F
∑

k

zkJk,p = 0

The fluxes at the interfaces solution-boundary layer and boundary layer-membrane
are continuous for the transported ions, that means that there is no accumulation
at the interfaces (Eq. 2.15). Points z−j and z+

j correspond to the left and right
side respectively of the interface located at zj. For the un-transported ions the flux
equals zero.
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Jk|z=z−j
= Jk|z=z+

j
(2.15)

The electroneutrality condition affects the concentration distribution in both the
solution and the membrane:

∑

k

zkC
s
k = 0 (2.16)

∑

k

zkC
m
k + zfixC

m
fix = 0 (2.17)

2.3.5 Diffusion model development

In Donnan dialysis, where polymeric membranes with fixed charged groups are used,
the transport mechanism is denoted as exchange-diffusion and the diffusion coeffi-
cients in the membrane are referred to as interdiffusion coefficients.

In the literature it has been suggested that the transport of carboxylic acids
through anion exchange membranes, during dialysis conditions, is facilitated by:
small size, high dissociation constant and high diffusion coefficient inside the mem-
brane (Palatý et al., 2006, 2007, 2009). When the stripping solution is water,
the mechanism of transport of carboxylic ions in Neosepta-AMH is assumed to
be solution-diffusion (Palatý et al., 2006, 2007). Nevertheless, there is evidence of
reaction-diffusion or dual mechanisms for the ion transport across the same mem-
brane in dependence of the base concentration, when the stripping solution is sodium
hydroxide (Zheleznov et al., 1998). Until now, it is known that the transport char-
acteristics depend largely on the interaction between carboxylic anion and anion
exchange membrane. Therefore, a general statement can not be formulated. Accord-
ing to experimental Donnan dialysis results, the monoprotic anion fluxes through
the membrane follow this order JAc− > JL− > JPr− , which can be compared to the
diffusion coefficients in solution DAc− > DL− > DPr− (Zheleznov et al., 1998). The
correlation is evident and suggests that the diffusion coefficient in the membrane
can be related to the value in solution by a tortuosity factor. This fact has been
seen when the permeation of some carboxylic acid through Neosepta AFN-7 was
investigated (Wódzki and Nowaczyk, 1999). The agreement between an increase
in Jk with Dk confirms that the transport rates in Neosepta-AMH, for those ions,
are limited by diffusion phenomena. A similar analysis was done for dissociation
constants (pKa) and molecular weight (MW). However, there is not a monotonous
correlation between the fluxes and those properties.

One of the most successfully used empirical correlation for tortuosity factor as a
function of porosity of the membrane was developed by Mackie and Meares (Eq.
2.18, cited by (Jonsson, 1980)). Despite the physical meaning of the tortuosity
factor, it has been used as a tunable parameter to correct model deficiencies (Iversen
et al., 1997). The smaller diffusion coefficient inside the membrane than in solution
is explained by the fact that the membrane has an structural resistance to the
transport. Besides, that relation accounts for the increasing diffusivity of the ion
when free volume in the membrane increases. However, it neglects the coupling effect
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due to interactions between molecules, which means, that diffusion coefficients of all
ions passing through the membrane are affected by the same factor.

Dm
k = Ds

k

(

E

τf

)

= Ds
k

(

E

2 − E

)2

(2.18)

where Dm
k and Ds

k are the diffusion coefficients of ion i in the membrane and solution,
respectively, τf is the tortuosity factor and E is equals the fractional water content
of the membrane. From Eq. 2.18 the influence of the membrane water content on
the ion diffusion inside the membrane is clear.

The diffusion coefficients of some cations with the same valency have been studied
under Donnan dialysis conditions (Miyoshi, 1997). The most important conclusion
is that the ratio Ds

k/D
m
k equals a constant value for ions of the same valency. The

resistance factor changes when different membranes are used, however all values are
of the same order of magnitude for monovalent cations. Using the same order of
magnitude of the resistance factors for monovalent ions reported by in the litera-
ture, we found the Mackie and Meares expression provides reasonably good agree-
ment with the range of water content reported for Neosepta-AMH (see Table 2.2).
Another proposed model in the literature is based on free volume theory (FVT)
(Abdekhodaie and Wu, 2005). However, the agreement between the Mackie and
Meares equation and experimental evidence was considered satisfactory to employ
that approximation.

The water content of a membrane, referred to as membrane swelling as well, is
a variable. This process is defined as the dissolution of a polymer in a solvent.
The membrane swelling depends on conditions such as: Ion exchange capacity, pH,
temperature and intrinsic properties of the membrane (i.e. ion exchange groups,
species of reinforcing fabric, degree of cross-linkage, ionic form, membrane pretreat-
ment and solvents). Swelling phenomena can be isotropic (i.e. membrane swells
in the same ratio in all directions) or anisotropic. There are different models to
predict the swelling process in membranes. In Two-phase and Core-shell models the
water absorption is assumed to be spherical, where the expansion in one dimension
is proportional to the cube root of the volume fraction of absorbed water. Besides,
the lamellar model treats the swelling in one dimension, then the lateral swelling is
proportional to volume fraction of the absorbed water. The cluster-network model
proposes a large scale cluster organization which is formed when water is absorbed
(James et al., 2000). To understand the swelling process, is it required to know mem-
brane structural organization during rehydration and how that structure regulates
the solvent penetration and solvation (Mauritz and Moore, 2004). Unfortunately,
this information is not available for Neosepta-AMH. Therefore, the membrane di-
mensions are assumed constant even though the water content of the membrane
could change as function of the factors listed above. In this study, a mathematical
black box model is proposed for the membrane water content as function of the
concentration of hydroxide ions at the inlet of dialysate channel. In that way, the
diffusion coefficient model accounts for changes in water content due to variations
in average pH across the membrane.
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2.3.6 Model input parameters

The first principles model was derived for a situation where the feed stream is a
cultivation broth. Species included in the model are: target carboxylic anion (A−),
hydroxide (OH−), sodium (Na+), dissociated protein (P−), carboxylic acid (HA) and
undissociated protein (HP). In the experiments used for the model regression, solu-
tions of the carboxylic acids were investigated (see details in section 2.4.1) (Zheleznov
et al., 1998). The buffer effect is eliminated by fixing a negligible concentration of
the protein in the inlet stream to the feed channel. The physicochemical properties
required to solve the model are listed in Table 2.1. The availability of experimental
diffusion coefficients as a function of concentration and temperature is limited. The
values found were estimated at normal temperature and at concentrations close to
the values used in the Donnan dialysis experiments. The diffusion coefficient of the
hypothetical protein was considered equal to that of Bovine Serum Albumin (BSA),
which is a large protein (MW≈66500 g/mole). Besides, the protein dissociation
constant was fitted based on a previous attempt to validate the model (Møllerhøj,
2006).

Table 2.1: Species properties included in the implementation of the model

Parameter Value Units Source
pKa for HL 3.860 - (Lide, 2008)
pKa for HAc 4.756 - (Lide, 2008)
pKa for HPr 4.870 - (Lide, 2008)
pKa for HP 5.000 - (Møllerhøj, 2006)

DL− in solution 1.033x10−9 m2/s (Lide, 2008)
DAc− in solution 1.089x10−9 m2/s (Lide, 2008)
DPr− in solution 0.953x10−9 m2/s (Lide, 2008)
DOH− in solution 5.273x10−9 m2/s (Lide, 2008)
DNa+ in solution 1.334x10−9 m2/s (Lide, 2008)
DP− in solution 0.09 x10−9 m2/s (Bowen et al., 2000)
DHL in solution 0.848x10−9 m2/s (Ribeiro et al., 2005)
DHAc in solution 1.200x10−9 m2/s (Leaist and Lyons, 1984)
DHPr in solution 1.060x10−9 m2/s (Cussler, 1984)
DHP in solution 0.09 x10−9 m2/s (Bowen et al., 2000)

ρHL 0.1 M 1000.2 kg/m3 (Lide, 2008)
ρNaOH 1 M 1042.8 kg/m3 (Lide, 2008)
µHL 0.1 M 1.027x10−3 kg/m/s (Lide, 2008)
µNaOH 1 M 1.248x10−3 kg/m/s (Lide, 2008)

MWHP ≈66500 g/mol (Bowen et al., 2000)
MWHL 90.08 g/mol -
MWHAc 60.05 g/mol -
MWHPr 74.08 g/mol -
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2.3. Model development

The anion exchange membrane used in the experiments is Neosepta-AMH pro-
duced by Tokuyama Soda (Tokyo Japan). This is a strongly basic membrane with
-NC7H

+
7 as active groups (Ayyildiz and Kara, 2005). The characteristic properties

are presented in Table 2.2.

Table 2.2: Properties of the Neosepta-AMH membrane (Ayyildiz and Kara, 2005; Palatý
et al., 2006)

Parameter Range Value Units
Thickness 0.25-0.28 0.27 mm
Water content 17-22 estimated %
Ion exchange capacity 1.30-1.50 estimated meq/g

The operational conditions required to regress the model according to the experi-
ments are shown in the Table 2.3. The temperature, flow rates and concentration of
carboxylic acid and sodium hydroxide were taken from the Donnan dialysis exper-
imental data (Zheleznov et al., 1998). The membrane separation unit employed in
the publication is a two compartment cell for cross flow dialysis. Keeping the same
flow conditions, the model is solved using the dimensions of a rectangular dialysis
module, according to the proposed geometry (Møllerhøj, 2006).

2.3.7 Model solution

The dynamic model described above consists of a system of stiff partial differential
and algebraic equations that must be solved simultaneously. The method of lines
is used to discretize the partial differential equations in the x-direction. In order
to diminish the simulation time a sixth order Taylor expansion with asymmetric
centered differences is used, thereby reducing the number of spatial discretization
steps required to achieve a desired accuracy. The resulting index-1 differential alge-
braic equations are integrated employing a variable order multistep solver based on
the numerical differentiation formulas (NDFs) (Shampine et al., 1999). Due to the
complexity of the model, an inconsistent set of initial conditions leads to numerical
problems. Therefore, an initialization procedure was used in order to guarantee
convergence in all evaluated scenarios. The concentrations in the bulk channels are
initially assumed to be equal to the inlet values, which fulfill the electroneutrality
condition. Experimental data are used for the procedure with a high pH value of the
feed solution (pH=10). The concentration inside the membrane is assumed constant
and almost evenly distributed between hydroxide and the target anion, a negligible
concentration of sodium is fixed. The electroneutrality condition is fulfilled inside
the membrane as well. A first simulation is performed and when the steady state
is achieved, the pH value is reduced to 5.75, corresponding to an experimental data
for a fermentation broth. After this step change, there is a fast change in pH. This
transient period is the most time consuming part of the initialization procedure.
Reasonable changes in parameters such as input concentrations, liquid flow rates,
boundary layer thickness and membrane water content do not require a new initial-
ization. However, changes in the dissociation constants or fixed charge concentration
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Table 2.3: Operational parameters for Donnan dialysis operation mode

Parameter Value Units
Channels length 0.373 m
Channels width 0.15 m
Channels height 6x10−4 m
Temperature 308 K
Current density 0 A/m2

qfeed 120 l/h
qdia 120 l/h

Cfbin
HA + Cfbin

A− 100 mol/m3

Cdbin
NaOH ≈0-2000 mol/m3

Cdbin
A− 0 mol/m3

Cfbin
HP + Cfbin

P− 1x10−7 mol/m3

pHin feed 5.75 -

of the membrane demand the estimation of a new initial concentration profile. The
dynamic nature of the model facilitates obtaining static solutions, thereby avoiding
convergence issues associated to the solution of steady state models.

2.4 Results and Discussion

The model is solved and regressed to reproduce experimental ion fluxes for Donnan
Dialysis recovery of some monoprotic carboxylic acids. This is done through a
sensitivity analysis and parameter estimation procedure.

2.4.1 Experimental data

Data are reported for the transport of carboxylic anions through an anion exchange
membrane (Zheleznov et al., 1998). In that publication, the fluxes of carboxylic
acids are investigated and modeled for Donnan dialysis operation. The anion ex-
change membrane studied is Neosepta-AMH produced by Tokuyama Soda. This
membrane was selected using a preliminary test for stability toward alkaline solu-
tions, since the pH in the dialysate channel can change over a wide range. Transport
of acids was investigated using a two compartment cross flow dialysis cell with 100
cm2 of membrane area. Feed and dialysate solutions were circulated at equal flow
rates and the temperature was controlled at 50◦C. The experiment is carried out
employing different NaOH concentrations in the dialysate channel, from 0 to 2 M.
The carboxylic acids studied were: acetic, propionic, lactic, oxalic and citric.

2.4.2 First principles model approach

In this regression, only one tank in the y-dimension was used. This is a reasonable
approach since the concentration gradients in the bulk channels are not very large,
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due to the small membrane area. If a larger separation module is used, then more
sections in the y-dimension are required. The module section was divided into nine
zones as depicted in Fig. 2.2. Those zones correspond to: three bulk channels, four
boundary layers and 2 anion exchange membranes. In total, there are six zones
in the REED cell where numerical approximation is required corresponding to the
boundary layers and membranes, they are organized as follow: boundary layer 1
(BL1), anion exchange membrane 1 (AEM1), boundary layer 2 (BL2), boundary
layer 3 (BL3), anion exchange membrane 2 (AEM2) and boundary layer 4 (BL4).
The number of discretization points used in each zone are [12 30 8 8 30 12], respec-
tively. It can be seen that the highest number of discretization points are employed
for the membranes, since the largest concentration gradients are expected there.
Besides, the boundary layers in the feed channels have slightly higher number of
discretization points than the stagnant layers in the dialysate channel. During sim-
ulations, it was noticed that the deviation from electroneutrality condition in the
feed boundary layers is larger than in other sections. Therefore, a higher number
of nodes where used. The selection of the number of nodes is a trade off between
accuracy and computational time since the simulation time increases exponentially
with the number of discretization points (Møllerhøj, 2006).

A sensitivity analysis was performed in order to evaluate the influence of sev-
eral unknown parameters on the carboxylic ion fluxes. Those parameters are: an-
ion exchange capacity, the boundary layers thickness and the water content of the
membrane. The concentration of fixed ions in the membrane needs to be expressed
per volumetric aqueous phase in the porous membrane, instead of using the fixed
charge concentration per membrane weight as reported in the literature (Table 2.2).
However, the units conversion can not be performed if the membrane density is un-
known. Therefore, the concentration of fixed ions in Neosepta-AMH is assumed to
be close to that of the membrane Neosepta-ASM also produced by Tokuyama Soda.
Neosepta-ASM fixed ions concentration is Cm

fix = 6 mmol/ml (Møllerhøj, 2006), this
value is taken as initial guess for the investigated membrane. Through simulations,
it was observed that increments in Cm

fix lead mainly to higher fluxes. Significant
increments were evident in the membrane control region.

On the other hand, according to boundary layer theory, the film thickness is mainly
determined by hydrodynamics of the system, characterized by parameters such as
structure of the surface, flow velocity, solution properties and module shape and di-
mensions. In concentration polarization phenomena, where there is a concentration
gradient in an stagnant layer adjacent to the membrane surface, the mass transfer
coefficient has been defined as the ratio between the diffusion coefficient D and the
thickness of the boundary layer δBL (Mulder, 1997).

δBL =
D

kl

(2.19)

Estimating the mass transfer coefficient, the thickness of the boundary layer can
be calculated. The mass transfer coefficient depends strongly of the hydrodynamics
of the system, a correlation to estimate it in a electrodialysis stack, with a spacer
for flow distribution, is given by Goodrige and Scott (cited by Moon et al. (2004)):
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kl = 1.25Re0.46Sc1/3

(

Ds

dh

)

(150 < Re < 1500) (2.20)

where Ds is the salt solution diffusion coefficient and dh is the hydraulic diameter.
The hydraulic diameter in a rectangular slit (plate and frame) can be calculated by
the following equation (Mulder, 1997):

dh =
2Wh

W + h
(2.21)

where W and h are the channel width and height, respectively. Employing the
module dimensions, the experimental flow conditions and the species properties,
an estimation of the boundary layer thickness was performed. The thickness of
the boundary layers in feed channel is δBL1 = δBL4 = 0.8612x10−5 m; while the
boundary layers in dialysate channel δBL2 = δBL3 = 0.7795x10−5 m. The obtained
boundary layer thicknesses are very similar since the flow rates in both channels are
the same. In addition, the differences in rheological properties such as density and
viscosity of both solutions can be considered negligible. The estimated values were
used as initial values for the parameter tuning. The thicknesses are assumed to be
the same in both channels. Through simulations, it was observed that the thickness
of the boundary layer influences the magnitude of the fluxes as well as the size of the
boundary layer and membrane control regions. It means that the flux magnitude as
well as the shape of the flux profile were modified. A grid of the concentration of
fixed ions in the membrane and the boundary layer thickness was evaluated. The
most satisfactory representation of the experimental data was selected. The selected
values are δBL = 7x10−5 m and Cm

fix = 7.5 mmol/ml.
The previous simulations were preformed employing a constant membrane water

content. However, it was observed that this parameter has a significant influence
on the fluxes. The reason is that the diffusion coefficients within the membrane are
estimated using Eq. 2.18. By using a constant water content of the membrane,
the anion fluxes predicted by the model, as a function of the base concentration
in the dialysate channel, follow a Langmuir dependency. However, as discussed
above for lactate and propionate recovery, most likely there is a small contribution
of solution-diffusion mechanism at high sodium hydroxide concentrations. For that
reason, several black box functions for the membrane water content were tested to
reproduce the experimental data reported in the literature. The criteria to select
a black box function was to minimize the number of parameters. The independent
variable is the inlet base concentration of the dialysate channel, since average pH
is the main variable that could affect the membrane water content. Experimen-
tally, differences in the lactate fluxes through Neosepta AFN-7 have been found as a
function of the pH in the dialysate channel. These differences have been attributed
to the membrane capabilities and the water content (Narbȩska and Staniszewski,
1998a). When pH increases it is expected that water concentration in the mem-
brane increases as well following a non linear behavior. However, it is not a general
statement since membrane dehydration could happen if the hydroxide concentra-
tion is very high. That behavior has been seen in Nafion membranes, where there
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is a maximum swelling at an intermediate solute concentration (Izák et al., 2007).
Despite the fact that the hydroxide concentration in the dialysate channel is chang-
ing over a large range in the experiments, the dehydration effect is neglected. This
means the water content of the membrane is assumed to increase at higher hydroxide
concentrations. The selected back box model for water content of the membrane (E)
is depicted in Eq. 2.22. The membrane water content is related to the membrane
free volume by assuming that all the empty space in the membrane is filled.

E = γ (COH)σ (2.22)

The methodology used for the parameter regression is a numerical method for large
scale optimization. This algorithm is referred to as interior reflective Newton method
for a constrained non linear minimization (Coleman and Li, 1994; Mathworks, 2006).

After time consuming simulations, the parameters γ and σ in the Eq. 2.22 were
estimated by minimizing the residual fluxes. The predicted fluxes for lactate, pro-
pionate and acetate through the anion exchange membrane are shown in Fig. 2.4.
The estimated parameters are depicted in Table 2.4.

Figure 2.4: Experimental data for anion fluxes through Neosepta-AMH membrane as a
function of the inlet base concentration in the dialysate channel (Zheleznov et al.,
1998). Solid lines correspond to the predicted fluxes using first principles model
with optimal parameters for the membrane water absorption model in Table 2.4

Table 2.4: Estimated parameters for the water content model (the base concentration
must be introduced in mol/l)

Carboxylic ion γ σ
Lactate 0.240 0.1000
Acetate 0.240 0.1004

Propionate 0.185 0.0503
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The simulation results, display agreement between experimental data and the pre-
dicted fluxes. The largest deviations are evident at very low base concentrations
in the dialysate channel, when the process is towards dialysis conditions. It was
found that there is not a significant difference between the resistance factors for
lactate and acetate recovery. This finding means, that lactate and acetate fluxes
through the membrane can be described by differences in the diffusion coefficients
in the solution with the same membrane water content model. However, this model
could not predict the propionate fluxes since the obtained fluxes were higher than
the experimental data. For that reason, it was required to estimate a particular
water content model for propionate transport. Differences in the membrane affinity
towards propionate could be explained by the hydrophobic properties of the anions.
The hydrophobicity is quantified using the partition coefficient in the mixture 1-
octanol/water, displayed in Table 2.5. There is not a significant difference between
lactate and acetate. However, propionate is considerably more hydrophobic than
the other anions. It means that propionate ions would not be evenly distributed in
the membrane aqueous phase inside the membrane. A higher concentration will be
evident towards the internal liquid-membrane interface, where there is a larger fric-
tional transport resistance. This fact can explain why propionate has lower diffusion
coefficients inside the membrane than initially predicted.

Table 2.5: Partition coefficients in mixture 1-octanol/water of the investigated anions
(INCHEM, 2009)

Carboxylic ion log Pow Pow

Lactate -0.60 0.25
Acetate -0.31 0.49

Propionate 0.33 2.14

According to the estimated water content model, higher inlet base concentration
in the dialysate channel implies higher pH gradient across the membrane and there-
fore, a higher water content of the membrane. Introducing that variable into Eq.
2.18, the diffusion coefficients inside the membrane will change depending on the
hydroxide concentration at the inlet of the dialysate channel. The calculated values
are shown in Fig. 2.5. The diffusion coefficients inside the membrane are two orders
of magnitude lower than in solution. During dialytic recovery of carboxylic ions
using Neosepta-AMH the same difference has been shown (Palatý et al., 2009). The
apparent diffusion coefficients of lactate during dialytic recovery in Neosepta AFN-7
and Selemion DSV were estimated being of the order of ∼10−11 m2/s (Narbȩska
and Staniszewski, 1997). The diffusion coefficients for those membranes are higher
than the estimated for Neosepta-AMH. However, those membranes possess higher
ion exchange capacity and swelling than the Neosepta-AMH, so these results are not
surprising. In Table 2.6 the average diffusion coefficients estimated for the investi-
gated system (Zheleznov et al., 1998) and those calculated using the first principle
model are depicted. There is an excellent agreement for lactate and an acceptable
result for acetate and propionate.
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Figure 2.5: Estimated diffusion coefficients inside the Neosepta-AMH for lactate, acetate
and propionate

Table 2.6: Average diffusion coefficient for the monoprotic carboxylic anions reported in
the literature (Zheleznov et al., 1998) and the calculated using the herein presented
model, for Neosepta-AMH

Carboxylic Reported Dm
k Calculated Dm

k

ion m2/s m2/s

Lactate 1.70x10−11 1.70x10−11

Acetate 1.77x10−11 1.90x10−11

Propionate 0.98x10−11 0.89x10−11

2.4.3 Simulation results

A qualitative visualization of the concentration profiles for both boundary layer
and membrane control regions has been predicted (Zheleznov et al., 1998). Under
boundary layer control, it is predicted that the hydroxide concentration inside the
membrane is considerably lower than lactate concentration. Besides, the concentra-
tion gradients are nearly linear since the major resistance for mass transport is in
the boundary layer. During membrane control, the concentration profiles inside the
membrane are steep, indicating a high transport resistance inside the membrane.
Simulations were performed for low and high inlet concentrations of sodium hydrox-
ide in the dialysate channel. The steady state profiles are depicted in Fig. 2.6 and
2.7.

Simulating the first principles model, the lactate and hydroxide concentration pro-
files in the membrane are nearly linear as it was predicted under boundary control
conditions. Moreover, it is known that Donnan exclusion works very well at low
hydroxide concentrations in the dialysate channel, it was confirmed by simulations
since sodium ions were rejected, indicated by the negligible sodium concentration
inside the membrane. The effectiveness of the Donnan exclusion can be also seen
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(a) Concentration profile in a cell (b) Dialysate channel

(c) Feed channel ions (d) Feed channel pH

Figure 2.6: Steady state concentration profiles for Cdbin
OH−=5 mol/m3 (Boundary layer

control). Enlargement of the concentrations in the dialysate (b) and feed channels
(c,d)

in Fig. 2.8, where the sodium flux is negligible. It starts rising when the hydrox-
ide concentration gradient increases, but still the sodium fluxes are several orders
of magnitude smaller even at high inlet base concentrations. On the other hand,
neither the concentration gradients inside the membrane nor the hydroxide concen-
tration inside the membrane are as small as predicted. Unfortunately, a numerical
comparison can not be done since the results depicted in the literature are quali-
tative. Through simulations, it was corroborated that concentration gradients and
hydroxide concentration inside the membrane can be diminished, under boundary
layer control conditions, by increasing the thickness of the boundary layers. Never-
theless, the thickness of the boundary layers used in the simulations performed in
the literature is unknown (Zheleznov et al., 1998).

Under boundary layer control, the low hydroxide concentration gradient between
the dialysate and feed channel generates a relative low driving force for lactate
extraction. The consequence of the low fluxes can be seen in the ion concentration
profiles in the boundary layer (see Fig. 2.6(b) and (c)). Besides, the pH value in the
feed channel is similar to the inlet value due to the low hydroxide flux. Therefore,
a portion of the lactate is undissociated.

It can be seen in Fig. 2.7 under membrane control, large non linear concentra-
tion profiles inside the membrane were reproduced. In the boundary layers, larger
concentration gradients can be seen since the hydroxide concentration gradient is
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(a) Concentration profile in a cell (b) Dialysate channel

(c) Feed channel ions (d) Feed channel pH

Figure 2.7: Steady state concentration profiles for Cdbin
OH−=800 mol/m3 (Membrane con-

trol). Enlargement of the concentrations in the dialysate (b) and feed channels
(c,d)

considerably larger than under boundary layer control. The pH in the feed channel
is very high since the hydroxide flux is larger, therefore all the lactate in the chan-
nel remains dissociated. Besides, the efficiency reduction of Donnan exclusion at
high hydroxide concentrations was evidenced since there is an increasing amount of
sodium inside the membrane.

In both above cases the pH value within the membranes is very high as expected,
confirming the validity of the assumption MA3. As a final remark, in all simulations
performed the symmetry around the dialysate channel of the concentration profiles is
evident. It means, the concentration profiles in the second anion exchange membrane
(AEM2) are mirroring of the concentrations in the first membrane (AEM1).

2.4.4 Numerical implementation

The derived dynamic model was regressed to reproduce the transport of some car-
boxylic anions through Neosepta-AMH during Donnan dialysis conditions, and the
obtained results were satisfactory. Nevertheless, the numerical implementation was
investigated. The electroneutrality condition was evaluated at locations of the mod-
eled section. The steady state relative deviation from the electroneutrality condition
is depicted in Fig. 2.9. These values correspond to the simulation performed for
lactate using a inlet hydroxide concentration in the dialysate channel of 800 mol/m3.
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Figure 2.8: Simulated steady state ion fluxes through the anion exchange membrane as
a function of the inlet base concentration in the dialysate channel, during lactate
recovery. The sign of the fluxes indicates the direction of the ion transport (Anions:
lactate and hydroxide)

The other input parameters remain constant and equal to the values used during
the model regression. From the results, a negligible deviation is observed in the
membranes, bulk channels and boundary layers adjacent to the dialysate channel.
The higher deviations are observed in the boundary layers in the feed channel. This
deviation was reduced by using more discretization points in that zone as men-
tioned before, however the number of nodes can not be increased unlimited since
the simulation time increases exponentially.

Figure 2.9: Fulfillment of the electroneutrality condition under steady-state Donnan
dialysis recovery of lactate at Cdbin

OH−=800 mol/m3. The deviation is relative to the
lactate concentration at each discretization point
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2.5 Conclusions

A dynamic model for simultaneous transport of ions across ion exchange membranes
was derived from first principles based on dissociation, diffusion, convection and mi-
gration of species. This model accounts the effects of concentration and electrical
potential as driving forces for ion transport through boundary layers and membranes.
From experimental data, a qualitative agreement between the flux magnitude and
the aqueous diffusion coefficient was found. On the other hand, there is no qualita-
tive agreement with other important properties such as pKa and molecular weight.

The developed model was regressed to describe the recovery of monoprotic car-
boxylic under steady state Donnan dialysis conditions. A black box model was
proposed to describe the membrane water content as a function of the inlet base
concentration in the dialysate channel. The complete model satisfactorily reproduces
steady state experimental data for several monoprotic carboxylic anions, despite the
rather crude estimates of the boundary layer thickness and fixed ion concentration
of the membrane. These results indicate that the changes in the ion flux as a func-
tion of the base concentration in the dialysate channel can be reproduced by this
model structure for each carboxylic acid and membrane. In addition, the estimated
average diffusion coefficients showed good agreement with the experimentally de-
termined values in the literature. Besides, the simulated concentration profiles did
match the previously predicted profiles in the literature, both under boundary layer
and membrane control. Additionally, the effectiveness of the Donnan exclusion was
evaluated. The symmetry around the dialysate channel could be exploited to re-
duce the computational requirements of the performed simulations. Nevertheless,
our intention was not to derive a specific model for Donnan dialysis, it is to have
a general model for ion transport through anion exchange membranes that can be
used even under conditions that generate asymmetric profiles.
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2.7 Nomenclature

C Concentration (mole m−3)
D Diffusion coefficient (m2 s−1)
E Fractional membrane water content (-)
F Faraday constant (C mole−1)
Id Current density (A m−2)
J Flux (mole m−2 s−1)
hi Channel i height (m)
k Kinetic parameter (-)
kl Mass transfer coefficient (m s−1)
Ka Acid dissociation constant (mol m−3)
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Kd Dissociation constant (mol m−3)
Kw Ionic product for water (mol2 m−6)
L Channel length (m)
P Effective permeability coefficient (m s−1)
Pow Partition coefficient in 1-octanol/water
Q Ion exchange capacity (meq g−1)
q Flow rate (m3 s−1)
Rk Total reaction rate of k (mol m−3 s−1)
R Universal gas constant (J mol−1 K−1)
t Time (s)
T Absolute temperature (K)
x Spatial direction (m)
y Spatial direction (m)
W Channel width (m)
z Dimensionless distance z = x/δm (-)
zk Valence of k (-)

Greek letters

δBL Boundary layer thickness (m)
δm Membrane thickness (m)
γ Parameter in the WC model (-)
ψ Electrical potential (V)
ψn Nominal potential (ψn = RT/F ) (V)
σ Parameter in the WC model (-)
τ Dimensionless time (τ = t/τn) (-)
τdia Residence time in dialysate channel

(τdia = hdiaWL/qdia) (s)
τdiff Diffusion time (τdiff = δ2

m/Dk,p) (s)
τf Tortuosity factor (-)
τfeed Residence time in feed channel

(τfeed = hfeedWL/qfeed) (s)
τn Nominal time (τn = 1 (s))
ϕ Dimensionless potential (ϕ = ψ/ψn) (-)

Subscripts

A− Anion
Ac− Acetate ion
BL Boundary layer
dia Dialysate channel
feed Feed channel
fix Fixed charges in the membrane
HAc Acetic acid
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2.7. Nomenclature

HL Lactic acid
HP Undissociated protein
HPr Propanoic acid
in inlet
i Specie
j Discretization point
k Specie
L− Lactate ion
max Maximum
Na+ Sodium ion
OH− hydroxide ion
P− Dissociated protein
p Zone (phase)
Pr− Propionate ion
z specific location

Superscripts

db Dialysate bulk
dbin Dialysate bulk inlet
fb Feed bulk
fbin Feed bulk inlet
m Membrane
s Solution
−/+ Left/Right side of a section
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3

Electro-Enhanced Dialysis for
Lactate Recovery

3.1 Abstract

The competitive ion transport through anion exchange membranes under current
load conditions, referred to as the electro-enhanced dialysis process, is modeled
and investigated through simulations. A dynamic model has been developed for
simultaneous transport of multiple ions based on the Nernst-Plank equation. This
model accounts for the convective transport of the dissociated and undissociated
species in the module channels, and the diffusion and migration across the boundary
layers and membranes. The potential static flux enhancement is evaluated and
compared to Donnan dialysis operation for lactate recovery, where lactate fluxes
were increased up to 230%. The effect of the imposed current on the concentration
profiles is analyzed. Furthermore, the current saturation condition is investigated
for the proposed electro-enhanced dialysis system. Thus, the operating window for
current density and inlet hydroxide concentration was defined.

3.2 Introduction

Lactic acid is an interesting product which is increasingly used in industry. This
product has in addition significant industrial potential as a main feedstock for poly-
lactic acid (PLA) production. PLA is a biopolymer, which can substitute petrochem-
ical derived polymers in several applications (Kharas et al., 1996). A sustainable and
economic lactic acid bioproduction will definitely make PLA production feasible to
substitute its petrochemical based competitors. When lactic acid is produced by fer-
mentation of carbohydrates, the production rate is adversely influenced by lactates
present in the cultivation broth (Hongo et al., 1986; Nielsen et al., 2003). Extensive
work has been carried out in metabolic engineering, since lactic acid bacteria are one
of the most studied group of microorganisms, trying to understand the metabolic
pathways and genetically design improved bacterial strains tolerant to inhibiting
conditions. Nevertheless, the expected productivity amendment of the genetically
modified microorganisms is limited. Thus, the in situ removal of lactates from the
fermentation broth raises as the most promising alternative, since the productiv-
ity of the bacteria can be significantly increased. Membrane separation processes,
especially electrically driven processes, have been studied to separate the biotoxic
lactate.

In the early 1970’s, the growth and acid production by Lactobacillus delbrueckii
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in a dialysis fermentation system was studied and modeled (Friedman and Gaden,
1970). The dialysis fermentation technique using mainly ultrafiltration membranes,
was previously developed and investigated (Gerhardt and Gallup, 1963; Herold et al.,
1967). The results corroborate the earlier observations, where the microorganism ex-
hibits higher production rates and cell concentrations than non-dialysis experiments.
The main drawback of utilizing dialysis fermentation is the low diffusion efficiency.
Later on, electrodialysis was suggested as a potential in situ separation method
(Hongo et al., 1986). This process showed potential since lactate can be selectively
removed by ion exchange membranes. Subsequently, a sequence of ultrafiltration
and electrodialysis was proposed as an alternative to reduce fouling problems in
conventional electrodialysis (Boyaval et al., 1987; Raucourt et al., 1989). Studies
on electrodialysis were continued applying double exchange reaction electrodialysis
for the isolation and concentration of lactic acid (Heriban et al., 1993). Double
exchange reaction electrodialysis is a special configuration for electrodialysis. The
conventional module with alternating anion and cation exchange membranes plus
an inorganic acid are used to produce two concentrate and diluate streams (only one
concentrate stream contains lactic acid). It can be considered analogous to electro-
dialysis with bipolar membranes. In their best scenario the lactic acid concentration
was increased up to 4 times.

Even though, electrodialysis is one of the most successful membrane based sepa-
ration processes for lactic acid production, potential problems of applying electro-
chemically pH-controlled electrodialysis fermentation have been pointed out (Hongo
et al., 1986; Heriban et al., 1993; Grossman and Sonin, 1973; Garde, 2002; Rype,
2003):

- Membrane fouling: this problem is probably the most significant obstacle when
membranes are used. Fouling can be caused by the biomaterial present in the
fermentation broth.

- Scaling: multivalent cations in the feed solution such as calcium and magne-
sium pass through cation exchange membranes, and their salts precipitate on
the membrane surface.

- Bipolar membrane degradation: this kind of membrane is commonly used for
the further recovery and concentration of lactic acid. The presence of calcium,
magnesium and iron can damage or destroy these membranes, even if they are
present in small amounts.

Donnan dialysis process was proposed as a method which ideally eliminate scaling
and bipolar membrane degradation since only anion exchange membranes are used
(Zheleznov et al., 1998). Additionally, fouling issues are reduced using high flow
velocities combined with the membrane cleaning effect by the hydroxide flux toward
the feed channel. This separation has shown promising performance experimentally
and is applicable for recovery of other bioproduced carboxylic acids. Previously,
a first principles model that describes the simultaneous anion transport through
ion exchange membranes and adjacent boundary layers under current load condi-
tions has been developed. This model suitable describes Donnan dialysis recovery of
monoprotic carboxylic anions (Prado-Rubio et al., 2010b). There, the model was re-
gressed to reproduce experimental fluxes of acetate, propionate and lactate through
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Neosepta-AMH membranes. Besides, the concentration profiles within the modeled
zones were analyzed for two different limiting transport conditions referred to as
boundary layer and membrane controlled transport.

The main limitation during Donnan dialysis recovery is a rather low flux, since the
driving force behind the lactate transport is the OH− concentration gradient, which
implies larger membrane area and concentration gradients (Strathmann, 2004). In
this contribution, we want to exploit the derived first principles model to investi-
gate an alternative operation mode of the Donnan dialysis module by imposing an
electrical potential gradient. This method has been denoted as electro-enhanced
dialysis (EED) (Garde, 2002; Rype, 2003; Prado-Rubio et al., 2009a). EED pro-
poses to increase the lactate flux in conventional Donnan dialysis operation by the
imposed external electrical field. The purpose of this paper is to contribute to the
understanding of simultaneous ion transport through anion exchange membranes
under current load conditions. Besides, to evaluate the potential ion flux enhance-
ment using Donnan dialysis process, operating with an imposed electrical potential
gradient.

The paper is structured as follows: Donnan and electro-enhanced dialysis pro-
cesses for lactate recovery are introduced. The previously derived model is briefly
summarized. Simulations are performed to investigate the competitive ion transport
taking place under current load conditions. The concentration profiles under bound-
ary layer and membrane controlled transport are estimated for Donnan and electro-
enhanced dialysis. The total ion flux enhancements are calculated as a function
of the imposed current density and inlet hydroxide concentration in the dialysate
channel. The current saturation condition is determined for the system and the
involved numerical issues are addressed. Finally, the conclusions are drawn.

3.3 Process description

The module setup for electro-enhanced dialysis is obtained from that of Donnan
dialysis, by adding electrode chambers at the left and right sides of the module
stack. The Donnan dialysis process for extraction of lactic acid from a dilute so-
lution is depicted in Fig 3.1. In this process, the fermentation broth with a low
pH is fed to every feed channel in the membrane stack. The remaining channels
are fed with a strong alkaline solution, so-called dialysate channels. Due to the
large hydroxide concentration gradient between the two solutions, the hydroxide is
transported through the anion exchange membrane. The hydroxide flux induces an
electrical potential gradient which forces a lactate flux in the opposite direction.
The ion fluxes are coupled through the electroneutrality condition and Faraday’s
law (Prado-Rubio et al., 2010b; Strathmann, 2004; Mulder, 1997).

Fig. 3.2 shows the expected ion transport through the electro-enhanced dialysis
module under current load conditions. Imposing an external electrical potential gra-
dient, the transport mechanism changes from counter ion transfer to a competitive
ion transport. Under competitive ion transport, the electrical current is distributed
between the ions present to fulfill Faraday’s law. When a constant current density
is applied, it is expected that anions and cations will move toward the electrode
with the opposite charge. This situation implies that lactate is transported from
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Figure 3.1: Schematic drawing illustrating the lactic acid extraction by Donnan dialysis.
Dominant fluxes are depicted in solid lines (Prado-Rubio et al., 2010b)

the feed channel to the adjacent dialysate channel, however it could be extracted
through the next membrane and returned to the feed channel just right after. A
simple model has been used to show how lactate is preferably transported when the
pH is below 11, while for pH higher than 12.5 hydroxide is carrying an increasing
amount of current (Rype, 2003). Assuming that the solution in the feed channel
maintains a pH below 11, the lactate extraction from the feed stream is favored.
This condition can be fulfilled in a fermentation broth due to the presence of pH
buffer components.

Figure 3.2: Schematic drawing illustrating lactic acid extraction by electro-enhanced
dialysis under completely effective Donnan exclusion. Dominant fluxes are depicted
in solid lines

3.4 Model description

A detailed sketch of the modeled section of the dialysis module is depicted in Fig.
3.3. The section is composed of two feed channels with a dialysate channel in
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between, separated by anion exchange membranes. The model describes the ion
transport across anion exchange membranes with corresponding boundary layers. A
detailed description of the model equations, assumptions and solution is presented
in a previous contribution (Prado-Rubio et al., 2010b). The main assumptions are:

1. General: electroneutrality at any location in the system, the current is carried
by ions in ideal solution. The species included in the model are: Lactate (L−),
hydroxide (OH−), sodium (Na+), dissociated protein (P−), lactic acid (HL)
and undissociated protein (HP).

2. Membrane: convective transport is not investigated, transport of water by os-
mosis and electro-osmosis is neglected, there is transport of neither uncharged
nor large molecules through the membrane, equilibrium at the membrane sur-
face and constant membrane dimensions.

3. Boundary layer: convective transport is neglected and the thickness of the
boundary layers is constant for a given flow condition.

Figure 3.3: Sketch of a section of the dialysis module for lactate recovery from a fermenta-
tion broth. The zones in the section and ions present in each zone are depicted. BL:
boundary layer and AEM: anion exchange membrane. The positions zj ∀ j=0,...,7
denote the dimensionless interface locations (Prado-Rubio et al., 2010b). In EED,
the electrodes are located at the left and right sides on the section

The most relevant model equations are depicted in Tables 3.1 and 3.2. The sub-
stances and the phases are denoted by the subscripts k and p, respectively. For the
sake of simplicity, the mass balances are derived for one tank in the y-direction.
Therefore, the index in that dimension is not shown. The flux Jk,p is defined by the
Nernst-Planck equation for ideal solutions (Eq. 3.2), neglecting convective transport
(Strathmann, 2004). Relevant deviations from ideal behavior might occur within the
membrane (van der Stegen et al., 1999), but this is neglected in the present paper.
This is due to the considerable increase in model complexity and in the required
procedure to estimate the additional model parameters. Introducing the Nernst-
Planck equation and dimensionless parameters (see nomenclature) into Eq. 3.1, the

51



Chapter 3. Electro-Enhanced Dialysis for Lactate Recovery

mass balance can be rewritten as Eq. 3.3. Substituting the fluxes for each ion (Eq.
3.2) into Faraday’s law (Eq. 3.9), the electrical potential gradient can be estimated
(Eqs. 3.4 and 3.5). The model for bulk channels is formulated using a tank in series
model to handle gradients in the y-direction. In each tank there is mass exchange
over the adjacent boundary layers, and the dissociation reactions are present as well.
The mass balance for each tank in the feed and dialysate channels are depicted in
Eqs. 3.6 and 3.7. The reaction term was suppressed from the dialysate mass balance
since the ions are completely dissociated due to the high pH (Eq. 3.7).

Algebraic expressions are employed to describe the electrical potential gradient and
concentration discontinuities at the membrane-boundary layer interfaces (z1, z2, z5

and z6 in Fig. 3.3) and the electrical potential gradient at the bulk solution-boundary
layer interfaces (z0, z3, z4 and z7). For sorption equilibrium at the membrane surface,
the electrochemical potential in the ionic solution and the membrane surface must
be the same, referred to as the Donnan potential. The Donnan potential gives
the potential build-up at membrane-solution interfaces, which is determined by the
ionic distribution of the transported ions (Eq. 3.8). Faraday’s law states that all
the electrical current is carried by ions (Eq. 3.9). Fluxes at the membrane-solution
interfaces are continuous for the transported ions (Eq. 3.10), while for the non-
transported ions the flux equals zero.

The electroneutrality condition affects the concentration distribution in both the
membrane and the solution (Eqs. 3.11 and 3.12). The Mackie and Meares’ expres-
sion (Eq. 3.15, (Jonsson, 1980)) has been employed to correlate the ion diffusion
coefficient in solution and its value within the membrane, as a function of the free
volume in the membrane. A power function has been regressed to describe the in-
creasing membrane free volume by increasing the inlet hydroxide concentration to
the dialysate channel (Eq. 3.16) (Prado-Rubio et al., 2010b).

3.4.1 Model solution

The developed model includes a pH model that accounts for a pH buffer effect in the
feed channel, this is used when the lactate recovery is carried out from a fermentation
broth. The buffer effect is suppressed by fixing a negligible concentration of the
protein in the inlet stream to the feed channel. The physicochemical properties
required to solve the model are listed in Table 3.3.

The anion exchange membrane used is Neosepta-AMH which has been produced
by ASTOM Corporation (Tokyo, Japan), earlier Tokuyama Soda Company, Inc.
This is a strongly basic membrane with -NC7H

+
7 as fixed charge groups (Ayyildiz

and Kara, 2005). The characteristic properties are presented in Table 3.4.
The operational conditions employed for the simulations according to previous

work are shown in Table 3.5 (Prado-Rubio et al., 2010b). The temperature, flow
rates and concentration of carboxylic acid and sodium hydroxide were taken from
the Donnan dialysis experimental data (Zheleznov et al., 1998). The model uses
dimensions of a rectangular dialysis module, according to the proposed module ge-
ometry. The thickness of the boundary layer has been regressed from Donnan dial-
ysis experimental data in a previous work (Prado-Rubio et al., 2010b). Based on a
numerical analysis of the model solution, there has been found no significant differ-
ences (i.e. less than 2% for five tanks) in mean ion fluxes and outlet concentrations
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Table 3.1: Interfacial boundary conditions to describe the ion concentrations and elec-
trical potential gradients, reaction and model parameter expressions

Transport in boundary layers and membranes

∂Ck,p

∂t
+ ∇Jk,p − Rk = 0 (3.1)

Jk,p = −Dk,p

(

∂Ck,p

∂x
+

zkFCk,p

RT

∂ψp

∂x

)

(3.2)

∂Ck,p
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τn

τdiff

(

∂2Ck,p

∂z2
+ zk

(∂Ck,p

∂z

∂ϕp

∂z
+ Ck,p

∂2ϕp

∂z2

)

)

+ τnRk (3.3)

∂ϕp

∂z
=
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∑
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∑
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(
∑

k z2
kDk,pCk,p)

2

(

∑

k

z2
kDk,p

∂Ck,p

∂z

)

(3.5)

Bulk channel model

dCfb
k

dτ
=

τn

τfeed

(

Cfbin
k − Cfb

k

)

+
τn

hfeed

(

Jk|z=z7
− Jk|z=z0

)

+ τnRk (3.6)

dCdb
k

dτ
=

τn

τdia

(

Cdbin
k − Cdb

k

)

+
τn

hdia

(

Jk|z=z3
− Jk|z=z4

)

(3.7)

by increasing the number of tanks in series. However, the simulation time increased
exponentially. Therefore, only one tank is employed in the presented simulations.

The dynamic model consists of a system of stiff partial differential and algebraic
equations. The spatial dimension in the partial differential equations (x-direction)
is discretized using a sixth order Taylor expansion with asymmetric centered dif-
ferences. The resulting index-1 system of differential and algebraic equations is
integrated employing a variable order multistep solver based on the numerical dif-
ferentiation formulas in Matlab2007a (Shampine et al., 1999). Due to the complexity
of the model, an inconsistent set of initial conditions leads to numerical problems.
Therefore, an initialization procedure was used in order to guarantee convergence
in all evaluated scenarios. The dynamic nature of the model facilitates obtain-
ing static solutions, thereby avoiding convergence issues associated with solution of
steady state models.
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Table 3.2: Summary of the differential equations employed in the first principles model
for simultaneous ion transport through an Electro-Enhanced Dialytic module. The
index for the tank in series description in the y-direction is not shown

Equations at the interfaces
(

Cs
k

Cm
k

) 1

zk

=

(

Cs
i

Cm
i

) 1

zi

= ... k �= i (3.8)

Id = F
∑

k

zkJk,p (3.9)

Jk|z=z−j
= Jk|z=z+

j
(3.10)

∑

k

zkC
s
k = 0 (3.11)

∑

k

zkC
m
k + zfixC

m
fix = 0 (3.12)

Reactions

HL+OH−
k1−⇀↽−
k2

L−+H2O (3.13)

HP+OH−
k3−⇀↽−
k4

P−+H2O (3.14)

Diffusion model

Dm
k = Ds

k

(

E

2 − E

)2

(3.15)

E = γ(Cdbin
OH )σ (3.16)

3.5 Results and discussion

As mentioned above, a disadvantage of Donnan dialysis operation is the rather
low flux obtained through the membrane. The carboxylic anion is recovered from
the feed stream due to the induced electrical potential gradient that the hydroxide
flux generates. Therefore, imposing an external electrical field in the system can
potentially enhance the lactate flux. Thus the main motivation for the present
work is to elucidate the ion transport under current load conditions, and then to
investigate to which extent fluxes can be increased.

3.5.1 Competitive ion transport

Under Donnan dialysis conditions, the transport mechanism has been called counter
ion transfer since the lactate transport is driven by hydroxide ions flowing in the
opposite direction. However, in electro-enhanced dialysis the external electrical po-
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Table 3.3: Species properties in the numerical model implementation

Parameter Value Units Source
pKa for HL 3.860 - (Lide, 2008)
pKa for HP 5.000 - (Møllerhøj, 2006)

DL− in solution 1.033x10−9 m2/s (Lide, 2008)
DOH− in solution 5.273x10−9 m2/s (Lide, 2008)
DNa+ in solution 1.334x10−9 m2/s (Lide, 2008)
DP− in solution 0.090x10−9 m2/s (Bowen et al., 2000)
DHP in solution 0.090x10−9 m2/s (Bowen et al., 2000)
DHL in solution 0.848x10−9 m2/s (Ribeiro et al., 2005)

ρHL 0.1 M 1000.2 kg/m3 (Lide, 2008)
ρNaOH 1 M 1042.8 kg/m3 (Lide, 2008)
µHL 0.1 M 1.027x10−3 kg/m/s (Lide, 2008)
µNaOH 1 M 1.248x10−3 kg/m/s (Lide, 2008)

MWHP ≈66500 g/mol (Bowen et al., 2000)
MWHL 90.08 g/mol -

γ 0.24 - (Prado-Rubio et al., 2010b)
σ 0.10 - (Prado-Rubio et al., 2010b)

tential gradient plays an important role as well as the mentioned driving forces in
Donnan dialysis. The imposed electrical potential gradient makes the ions compet-
itively transport the current since Faraday’s law must be fulfilled. Therefore, under
current load conditions the transport mechanism has been denoted as competitive
ion transport (Rype, 2003).

In Section 3.3, the qualitatively expected ion transport mechanism under current
load conditions was depicted in Fig. 3.2 and explained in accordance with previous
work (Rype, 2003). The average ion fluxes are investigated as a function of the cur-
rent density at high and low inlet hydroxide concentration to the dialysate channel
employing the derived model.

3.5.1.1 Transport at high base concentration gradient

The steady state fluxes of lactate, hydroxide and sodium through each anion ex-
change membrane in the modeled section are depicted in Fig. 3.4, as function of
the imposed current density. The maximum applied current density is defined by
the current saturation point. This issue is further investigated in Section 3.5.3. The
initial state is Donnan dialysis conditions and the current density is increased step-
wise until the next steady state is achieved. The fluxes are evaluated for an inlet
base concentration in the dialysate channel of 800 mol/m3.

When no current is applied, the flux magnitude across both membranes are the
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Table 3.4: Properties of the Neosepta-AMH membrane (Ayyildiz and Kara, 2005; Palatý
et al., 2006). The water content and fixed charges concentration in the membrane
were regressed (Prado-Rubio et al., 2010b). The fixed charges concentration is
referred to the free membrane volume

Parameter Range Value Units
Thickness 0.25-0.28 0.27 mm
Water content 17-22 variable %
Ion exchange

1.30-1.50 - meq/g
capacity
Cfix - 7.5x103 mol/m3

Table 3.5: Operational parameters for electro-enhanced dialysis operation mode. Feed
and dialysate channels have the same dimensions

Parameter Value Units
Channel length 0.373 m
Channel width 0.15 m
Channel height 0.6x10−3 m
Temperature 308 K
Current density 0-260 A/m2

qfeed 120 l/h
qdia 120 l/h
δBL 70x10−6 m

Cfbin
HL + Cfbin

L− 100 mol/m3

Cdbin
NaOH ≈0-1500 mol/m3

Cdbin
L− 0 mol/m3

Cfbin
HP + Cfbin

P− 1x10−7 mol/m3

pHin feed 5.75 -

same for each type of ion. Notice that negative values correspond to fluxes going from
right to left in the x-direction in Fig. 3.3. After a small positive current density is
imposed, the external electrical potential gradient promotes the anion fluxes toward
the anode and the cation flux toward the cathode. Therefore in AEM1, the hydroxide
flux is enhanced but lactate and sodium fluxes are diminished. On the other hand,
in AEM2 the lactate and sodium fluxes are increased but hydroxide flux is reduced.
At low current densities, the flux enhancement in one membrane almost equals the
decrement in the other one for lactate and hydroxide ions. However by increasing
the current density, the flux enhancement in one membrane becomes higher than
the reduction in the other membrane.

Another interesting behavior is shown at high imposed current densities, since the
hydroxide flux gradually changes into the opposite direction in AEM2 at approx-
imately 140 A/m2. This behavior means, that at low current densities hydroxide
goes from dialysate to feed channel across AEM2, but at high current densities
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(a) Ion fluxes through AEM1 (b) Ion fluxes through AEM2

Figure 3.4: Steady state lactate, hydroxide and sodium fluxes at different imposed cur-
rent densities for Cdbin

OH−=800 mol/m3. AEM1: anion exchange membrane between
feed and dialysate channels. AEM2: anion exchange membrane between dialysate
and feed channels, according to the cell sketch depicted in Fig. 3.3

the hydroxide migration toward the anode is higher than diffusive transport in the
opposite direction. Moreover, there is a current density where the hydroxide flux
equals zero; thus there is no net ion transport through the respective membrane. A
schematic representation of flux directions in this scenario is depicted in Fig. 3.5.
At high base concentration in the dialysate channel, only hydroxide flux inversion
is observed. The occurrence of flux inversion has been predicted before in other
electrochemical system, where the transport of multiple ions was investigated in a
chlor-alkali reactor (Fila and Bouzek, 2003). In that case, Sodium (Na+), Chlor
(Cl−), hydroxide (OH−), Hydrogen ion (H+) and Calcium (Ca2+) fluxes were calcu-
lated as function of the imposed current density. It was observed that by increasing
the strength of the electric field the sodium fluxes can be inverted.

Investigations of Donnan dialysis have shown that Donnan exclusion is very effec-
tive for this system. However, its effectiveness is reduced by increasing the hydroxide
concentration in the dialysate channel (Prado-Rubio et al., 2010b). The above sim-
ulation results indicate that by increasing the current density, the effectiveness of
the exclusion decreases since sodium ions can carry a significant current. When no
current is applied, sodium fluxes are two orders of magnitude lower than the lactate
and hydroxide fluxes. At high current densities this difference is reduced to one
order of magnitude.

3.5.1.2 Transport at low base concentration gradient

At low inlet base concentration in the dialysate channel, the simulations done previ-
ously are performed using Cdbin

OH−=50 mol/m3. These simulation results are depicted
in Fig. 3.6. Once again, when no current is applied the flux magnitude across both
membranes are nearly the same for each ion. Just for sodium there is a small dif-
ference, but accounting for the small order of magnitude, it could be a numerical
inaccuracy (O(×10−8)). In this case the fluxes are clearly lower than the situation
using high base concentration in the dialysate channel due to the lower base con-
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(a) Ion fluxes at low current densities (b) Ion fluxes at high current densities

Figure 3.5: Schematic representation of competitive transport under current load con-
ditions at high base concentrations in the dialysate channel (Cdbin

OH−=800 mol/m3).
Dashed and solid lines correspond to diminished and enhanced fluxes compared to
Donnan dialysis, respectively

centration gradient. Imposing a small current density, the flux increment through
one membrane almost equal the flux reduction in the next membrane resulting in a
negligible lactate recovery enhancement.

(a) Ion fluxes through AEM1 (b) Ion fluxes through AEM2

Figure 3.6: Steady state lactate, hydroxide and sodium fluxes at different imposed
current densities for Cdbin

OH−=50 mol/m3. AEM1: anion exchange membrane between
feed and dialysate channels. AEM2: anion exchange membrane between dialysate
and feed channels, according to the cell sketch depicted in Fig. 3.3

In contrast to transport under high base concentration gradient, in the low base
concentration scenario there is flux inversion for all ions under current load condi-
tions. When the current density is increased, the sodium flux is inverted in AEM1.
By further increasing the current density, the hydroxide flux turns in the opposite
direction in AME2. Meanwhile the sodium flux is enhanced toward the cathode, the
lactate flux is increased in AEM2 and reduced in AEM1. Finally, at high applied
current densities, the lactate migration toward the anode overcomes the diffusive
transport in the opposite direction in AEM1. Sodium flux inversion occurs at ap-
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proximately 15 A/m2 in AEM1, for hydroxide it happens at approx. 90 A/m2 in
AEM2 while lactate flux inversion appears at approx. 220 A/m2 in AEM1.

The sodium flux inversion occurs since the Donnan exclusion is more effective at
low hydroxide concentrations in the dialysate channel (Prado-Rubio et al., 2010b).
Besides, it is expected that hydroxide flux inversion occurs at lower current density
since its concentration gradient is smaller and can be overcome more easily than
under high base concentration scenario. A sketch of all situations described in this
scenario is depicted in Fig. 3.7, where the initial condition is the same as shown
in Fig. 3.5(a). In the figure, the last plot (c) represents the expected competitive
ion transport under current load conditions shown in previous work (Rype, 2003).
Clearly the presented investigations illustrate that the required current density for
flux inversion depends strongly on the base concentration in the dialysate channel.

From the simulation results depicted in Fig. 3.6, the efficiency of Donnan exclusion
was corroborated. At low inlet hydroxide concentration in the dialysate channel, the
sodium flux through the membranes is four orders of magnitude lower than lactate
and hydroxide fluxes. At high current densities, sodium fluxes increase by one order
of magnitude.

The existence of the predicted transport scenarios means that the ion fluxes, and
therefore the lactate recovery, strongly depend on the actual operating conditions.
Due to the coupling between variables, it is difficult to predict the actual transport
scenario for a given set of inputs. Thus, the derived model is very useful to evaluate
the operating window for this electrochemical system.

3.5.1.3 Concentration profiles at limited transport conditions

Investigations of lactate recovery using Donnan dialysis have illustrated the con-
centration gradients within boundary layers and membranes under two different
transport controlled cases, referred to as: boundary layer control and membrane
control (Zheleznov et al., 1998; Prado-Rubio et al., 2010b). The hydroxide concen-
tration in the dialysate channel defines the transport control regime. A similar set of
simulations are performed for electro-enhanced dialysis in order to study the effect
of the imposed electrical potential. The average static concentration profiles within
the membranes at low and high hydroxide concentration in the dialysate channel are
shown in Figs. 3.8 and 3.10, respectively. Analogously, the concentration profiles
within the boundary layers and channels are depicted in Figs. 3.9 and 3.11.

Under Donnan dialysis conditions, the concentration profiles are symmetric around
the dialysate channel (Figs. 3.8-3.11). However under current load conditions, the
concentration profiles become asymmetric.

At low base concentration in the dialysate channel, the ion concentration gradi-
ents in AEM1 increase with the strength of the imposed electrical potential (Fig.
3.8(a)). The lactate content in the membrane is reduced while hydroxide concen-
tration is augmented. The reason is the reduction and enhancement of the lactate
and hydroxide fluxes, respectively in AEM1.

In AEM2, lactate flux is enhanced while hydroxide flux is diminished by increasing
the current density. The membrane is almost saturated with lactate and depleted
of hydroxide ions (Fig. 3.8(b)). It can be noticed that the ion concentrations at
the membrane surface in the feed channel do not change as much as in the interface
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(a) Ion fluxes after Na+ flux inversion (b) Ion fluxes after OH− flux inversion

(c) Ion fluxes after L− flux inversion

Figure 3.7: Schematic representation of competitive transport of lactate, hydroxide and
sodium under current load conditions at low base concentrations in the dialysate
channel (Cdbin

OH−=50 mol/m3). Dashed lines correspond to diminished fluxes and
solid lines represent the enhanced fluxes

facing the dialysate channel. This might be related to the lactate concentration
change in the channels and therefore in the adjacent boundary layers, since larger
variations are predicted in the dialysate channel as seen in Figs. 3.9(a) and (c).

In electro-enhanced dialysis, the preferential lactate transport from the feed to
dialysate channel across AEM2 can be seen in the concentration profiles depicted
in Fig. 3.9. Larger concentration gradients in the boundary layers around AEM2
appear as a consequence of higher lactate flux. A reduction in pH values is predicted
in BL IV (in the feed channel adjacent to AEM2) due to the lower hydroxide flux
through that section, as seen in Fig. 3.9(b). The enhanced hydroxide total flux
toward the feed channel, implies a higher pH in that channel and therefore the
amount of lactic acid is reduced. Any increment of negative ions in the boundary
layers is accompanied by a rise in sodium concentration (Fig. 3.9(c)). In this
simulated scenario, there is no appreciable change in the lactate concentration in
the feed channel by the imposed current density.

The simulated concentration profiles of lactate and hydroxide within the mem-
branes at high hydroxide concentration in the dialysate channel are shown in Fig.
3.10. High concentration gradients are predicted within the membranes when no
current is applied. In the AEM1, the amount of hydroxide is increased since hy-
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(a) Anion Exchange Membrane 1 (AEM1) (b) Anion Exchange Membrane 2 (AEM2)

Figure 3.8: Steady state ion concentration profiles within the membranes under current
load conditions, during boundary layer controlled transport (Cdbin

OH−=5 mol/m3).
The current density is increased stepwise with an amplitude of 5 A/m2, from 0 to
45 A/m2. z=1 and z=5 correspond to the membrane side facing the feed channel.
z=2 and z=4 correspond to the membrane side facing the dialysate channel

droxide is preferably transported from the dialysate to the feed channel while lactate
is depleted (Fig. 3.10(a)).

In AEM2, the amount of lactate tends to increase but the high transport resistance
inside the membrane limits the transport (Fig. 3.10(b)). Additionally, the concen-
tration profiles become highly non linear under increasing current load conditions.

The concentration profiles within the boundary layers and bulk channels are shown
in Fig. 3.11. At high hydroxide concentration in the dialysate channel, the concen-
tration gradients at the boundary layers are larger than at low hydroxide concentra-
tions (compare Figs. 3.9(a) and 3.11(a)). In this case, the pH in the feed channel
is very high even at Donnan dialysis conditions. Thus, there is no lactic acid. The
hydroxide concentration profile is inverted in the feed boundary layer adjacent to
AEM2. Therefore, the bulk concentration is slightly higher than at the AEM2 sur-
face at high current densities (due to the scale, it is hardly visible in Fig. 3.11(b)).

Using both limited transport scenarios in the dialysate channel, Donnan exclusion
provokes that hydroxide concentration in the membrane almost complements the
lactate concentration to fulfill the electroneutrality condition. This implies that lac-
tate concentration is a mirror image of the hydroxide concentration around Cfix/2,
as seen in Figs. 3.8 and 3.10.

3.5.2 Flux enhancements

As predicted above under current load condition, the imposed potential gradient
will enhance the fluxes in one membrane but diminish them in the other. In order
to quantify the total fluxes toward each channel, the fluxes through both anion
exchange membranes in the modeled section have to be accounted for. The total
ion fluxes at steady state are calculated as follows. Note that fluxes going from right
to left in the modeled section are negative.
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(a) Lactate in feed channel (b) pH in the feed channel

(c) Ions in the dialysate channel

Figure 3.9: Steady state ion concentration profiles in the channels and boundary layers
under current load conditions, during boundary layer controlled transport (Cdbin

OH−=5
mol/m3). Concentration profiles during Donnan dialysis (Id=0 A/m2) and current
density of Id=45 A/m2 are depicted. The channel widths have been scaled for
illustration purposes

- Lactate flux toward dialysate channel:

JL−,tot =
1

2
(JL−,AEM1 − JL−,AEM2) (3.17)

- Hydroxide flux toward the feed channel:

JOH−,tot =
1

2
(JOH−,AEM2 − JOH−,AEM1) (3.18)

- Sodium flux toward the feed channel:

JNa+,tot =
1

2
(JNa+,AEM2 − JNa+,AEM1) (3.19)

Ion fluxes are calculated for a range of current densities from zero to 260 A/m2.
The relative lactate and hydroxide flux enhancements are depicted in Fig. 3.12.
Donnan dialysis flux, for all range of inlet hydroxide concentrations in dialysate
channel, are represented by zero relative enhancement.
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(a) Anion Exchange Membrane 1 (AEM1) (b) Anion Exchange Membrane 2 (AEM2)

Figure 3.10: Steady state ion concentration profiles within the membranes under current
load conditions, during membrane controlled transport (Cdbin

OH−=800 mol/m3). The
current density is increased stepwise with an amplitude of 20 A/m2, from 0 to 260
A/m2. z=1 and z=5 correspond to the membrane side facing the feed channel. z=2
and z=4 correspond to the membrane side facing the dialysate channel

From Fig. 3.12, it can be seen that for both lactate and hydroxide fluxes, the
relative enhancement is non linear at low hydroxide concentration in the dialysate
channel. When a low current density is imposed on the system there is no apparent
flux enhancement. The reason is that the ion fluxes are increased in one membrane
but diminished in the other one at nearly the same rate (see Figs 3.4 and 3.6).
Consequently, the total flux is almost constant. An important fact is that none
of the total fluxes calculated under current load conditions are lower than during
Donnan dialysis. The total relative ion flux is larger than zero when the ion flux
enhancement in one membrane exceeds the reduction in the other membrane.

The largest flux enhancements are observed at low inlet base concentration in the
dialysate channel. The reason can be related to the transport mechanism. The
imposed electrical potential gradient competes with the concentration gradient and
the induced electrical potential gradient. The latest is generated by the hydroxide
flux from the dialysate to the feed channel. At low base concentration in the dialysate
channel, hydroxide and lactate fluxes are low, therefore there is a stronger response
to changes in current density.

The total fluxes of lactate and hydroxide are plotted in Fig. 3.13. The large flux
enhancement observed at low base concentrations in the dialysate channel, under
current load conditions, means that the flux at high current densities is almost in-
dependent of the base concentration. Under Donnan dialysis operation mode, the
way to enhance the flux is by increasing the OH− in the dialysate channel. However
under current load conditions, there is not a big influence of the base concentration
at high current densities. These results are very promising since high fluxes will
be achieved at low base concentration, which reduces the base requirements dur-
ing operation and the potential membrane damage due to the less aggressive pH
environment.
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(a) Lactate in feed channel (b) pH in the feed channel

(c) Ions in the dialysate channel

Figure 3.11: Steady state ion concentration profiles in the channels and boundary layers
under current load conditions, during membrane controlled transport (Cdbin

OH−=800
mol/m3). Concentration profiles during Donnan dialysis and current density of 260
A/m2 are depicted. The channel widths have been scaled for illustration purposes

3.5.3 Current saturation conditions

In any electrically driven membrane separation process, it is expected to have a
maximum allowed current density beyond which the current efficiency decreases.
The presented model was derived to describe the ion transport under sub-limiting
current conditions, therefore it is very important to know the operating window for
the current density. In the literature the same situation is referred to as the limiting
current density or current saturation (Mulder, 1997; Strathmann, 2004; Sonin and
Grossman, 1972).

The term limiting current density is used in electrodialysis when, due to concentra-
tion polarization, the salt concentration at the membrane surface is reduced to zero
and there are no more ions available to carry the imposed electrical current. The
required ions are then provided by water dissociation resulting in a loss of current
utilization (Strathmann, 2004). The current saturation term has been used for a
more general situation when ion transport through layered ion exchange membranes
was studied (Sonin and Grossman, 1972). Current saturation is achieved when the
Donnan potential across an interface becomes infinity at a finite value of current
density.
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(a) Lactate flux enhancement toward dialysate
channel

(b) Hydroxide flux enhancement toward feed
channel

Figure 3.12: Relative ion flux enhancement to Donnan dialysis as a function of the
imposed current densities and inlet base concentration in dialysate channel

(a) Total Lactate flux toward dialysate channel (b) Total hydroxide flux toward feed channel

Figure 3.13: Total ion flux as a function of the imposed current densities and inlet base
concentration in dialysate channel

Due to the complex mathematical description of the system, it is not feasible to
find a analytical equation to determine the current saturation value for a given set
of input variables. Instead, a convergence issue during the solution of the system
of differential algebraic equations is exploited to obtain an idea about when current
saturation occurs. For a given input hydroxide concentration in the dialysate chan-
nel, a simulation is performed by increasing stepwise the current density until the
point where the solver does not converge. The last successful step is analyzed to
find the interface where the current is saturating. In the evaluated scenarios, the
saturation of the current was seen in the interface between the AEM2 and BL IV.
The hydroxide concentration profiles in BL IV are shown in Fig. 3.14.

By increasing the current density further than the hydroxide flux inversion in
AEM2 (as is depicted in Figs. 3.4(b) and 3.6(b) for high and low hydroxide concen-
tration in the dialysate channel), the concentration profiles in the boundary layer
between AEM2 and feed channel, BL IV, have an inversion point as it is shown in
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Fig. 3.14.
In both simulated cases, the hydroxide concentration is higher in the solution

adjacent to the membrane surface than in the feed channel at low current densities.
After concentration gradient inversion, the feed channel hydroxide concentration
is higher than close to the membrane, the gradient increases by intensifying the
strength of the electric field. At high imposed electrical potential gradients, the
hydroxide concentration in the solution adjacent to AEM2 decreases and approaches
zero. In the derived model, Donnan equilibrium is one of the equations used to
describe the concentration discontinuity at the membrane surface. This equilibrium
defines the ion distribution inside the membrane based on the ion concentration in
the solution adjacent to the membrane surface. The Donnan potential is represented
in Eq. 3.20.

(a) Low base concentration (Cdbin

OH−
=50

mol/m3)
(b) High base concentration (Cdbin

OH−
=800

mol/m3)

Figure 3.14: Hydroxide profile in the boundary layer between AEM2 and feed channel
for low and high inlet base concentration in dialysate channel. Position in BL
IV=0 corresponds to AEM2 surface and dimensionless position in BL IV=0.26 is
the boundary between BL and feed channel

∆ψDon =
RT

zOH−F
ln

(

Cs
OH−

Cm
OH−

)

(3.20)

The Donnan potential has a finite value. However, it can be seen that at some
finite value of current density, the Donnan potential ∆ψDon can approach infinity.
This is provoked by small values of the hydroxide concentration in the solution
adjacent to the membrane surface (Cs

OH−) combined with the somewhat higher con-
centration within the membrane (Cm

OH−). The static hydroxide concentration ratio
at the interface AEM2-BL IV is depicted in Fig. 3.15. It can be seen how this ra-
tio grows almost exponentially while approaching the current saturation condition.
At that point, it is difficult to solve the coupled system of algebraic and differential
equations. Therefore, the saturating current density value can not be accurately pre-
dicted. However, it is expected that the Donnan potential increases fast for higher
current densities since the Cs

OH− is decreasing. At moderate and high hydroxide
concentrations in the dialysate channel, the current is saturated in the vicinity of
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260 A/m2. Nevertheless, this value dramatically decreases at low hydroxide con-
centrations (Cdbin

OH− ≈ 5 mol/m3). To overcome this situation, the model should be
extended to account for water splitting at the membrane surface.

Figure 3.15: Static hydroxide concentration ratio (Cs
OH−/Cm

OH−) at the interface be-
tween AEM2 and BL IV as a function of the current density and Cdbin

OH−

3.6 Conclusions

A model based study has been performed to investigate the electro-enhanced dial-
ysis process, as a potential method to improve the lactate recovery over that for
Donnan dialysis. A previously derived first principles dynamic model was employed
to elucidate the simultaneous transport of multiple ions across ion exchange mem-
branes under current load conditions. The parameters employed during the simu-
lations have been taken from literature and estimated based on experimental data
for lactate dialytic recovery. The flux behavior after applying an electrical potential
gradient to the Donnan dialysis process was investigated. Different ion transport
scenarios are predicted due to a flux inversion phenomenon. The current necessary
to invert a certain ion flux strongly depends on the ion concentrations in the bulk
solutions.

The concentration profiles in the modeled sections are studied at high and low
inlet hydroxide concentration in the dialysate channel. Important changes in the ion
concentration were seen compared to Donnan dialysis operation, especially within
the membranes. The potential flux enhancement by imposing an electrical field was
quantified. Lactate fluxes were increased up to 230% compared to Donnan dialysis
operation at moderate and high base concentration in the dialysate channel. At
low hydroxide concentration, the fluxes can be further increased but the current is
saturated at a lower value. A numerical restriction is exploited to reveal that this
system possesses an interface where the current is saturated. This point is the limit
of the model validity since the water splitting reaction is not modeled.

Based on the simulation results, the operating window for current density and inlet
hydroxide concentration to the dialysate channel was defined. The operating con-
straints for current density are Donnan dialysis and current saturation conditions.
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Very low hydroxide concentration in the dialysate channel should be avoided since
the current saturation value dramatically decreases under those conditions. The
maximum base concentration in the dialysate channel is experimentally associated
to the membrane stability. However, the ion fluxes have shown low sensitivity to
the hydroxide concentration for high current densities. Therefore, it is beneficial
to operate the system using moderate base concentration in the dialysate channel.
Information about the system operating window is vital for further investigations
on the operability of this membrane separation process.

The derived model has shown a great potential to contribute to the understanding
of transport phenomena in electrochemical systems. It can be used for process design
and optimization.
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3.8 List of symbols

Abbreviations

AEM 1-2 Anion Exchange Membrane 1-2
BL I-IV Boundary layer I-IV
EED Electro-enhanced dialysis
MW Molecular weight
PLA Polylactic acid

Symbols

AEM Anion Exchange Membrane
BL Boundary layer
C Concentration (mole m−3)
D Diffusion coefficient (m2 s−1)
E Fractional membrane water content (-)
F Faraday constant (C mole−1)
Id Current density (A m−2)
J Flux (mole m−2 s−1)
hi Channel i height (m)
k Kinetic parameter (-)
L Channel length (m)
q Flow rate (m3 s−1)
Rk Total reaction rate of k (mol m−3 s−1)
R Universal gas constant (J mol−1 K−1)
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t Time (s)
T Absolute temperature (K)
x Spatial direction (m)
y Spatial direction (m)
W Channel width (m)
z Dimensionless distance z = x/δm (-)
zk Valence of k (-)

Greek letters

δm Membrane thickness (m)
γ Parameter in the diffusion model (-)
ψ Electrical potential (V)
ψn Nominal potential (ψn = RT/F ) (V)
σ Parameter in the WC model (-)
τ Dimensionless time (τ = t/τn) (-)
τdia Residence time in dialysate channel

(τdia = hdiaWL/qdia) (s)
τdiff Diffusion time (τdiff = δ2

m/Dk,p) (s)
τfeed Residence time in feed channel

(τfeed = hfeedWL/qfeed) (s)
τn Nominal time (τn = 1) (s)
ϕ Dimensionless potential (ϕ = ψ/ψn) (-)

Subscripts

AEM Anion Exchange membrane
BL Boundary layer
dia Dialysate channel
feed Feed channel
fix Fixed charges in the membrane
HL Lactic acid
HP Undissociated protein
in inlet
i Specie
j Discretization point j=0,...,7
k Specie
L− Lactate ion
Na+ Sodium ion
OH− hydroxide ion
P− Dissociated protein
p Zone (phase)
tot Total
z specific location (z-coordinate)
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Superscripts

db Dialysate bulk
dbin Dialysate bulk inlet
fb Feed bulk
fbin Feed bulk inlet
m Membrane
s Solution

70



4

Reverse Electro-Enhanced Dialysis
for Lactate Recovery from a

Fermentation Broth

4.1 Abstract

A model based investigation is performed on the potential lactate recovery under
current reversal conditions in a dialytic module. This technology has been referred
to as the Reverse Electro-Enhanced Dialysis (REED). A description of the process,
operation modes and antifouling mechanism is presented. A previously developed
first principles dynamic model is employed to perform simulations. The model can
describe simultaneous transport of ions through anion exchange membranes and
Nernst diffusion layers in a section of the REED module. The approach leads to a
system of multiregion partial differential equations that are solved numerically. The
ion fluxes are studied predicting preferable ion transport at the interfaces, transient
flux inversion and accumulation/depletion of ions within the membranes. These
phenomena can explain the moderate loss of current efficiency during current rever-
sal operation, which has been experimentally demonstrated. The average lactate
productivity is estimated as a function of the reversal time. Experimental data are
used to regress a simple electrical potential build up model and calculate the module
energy consumption. This value is compared to a similar experimental setup. The
trade off between the current efficiency loss and energy consumption is identified,
which defines an optimal reversal time. Potentially, the model can be applied to
optimize the design and the operation of the REED module for different production
scenarios.

4.2 Introduction

The work presented in this contribution is part of our efforts investigating a novel
process for in situ lactate recovery from dilute solutions. This investigation is driven
by the wide range of applications of lactic acid in chemical, pharmaceutical, cosmetic
and food industries. Recently, a research acceleration has been evidenced due to the
increasing number of applications of biodegradable lactide polymers in biomedical,
textile and plastic industries (Kharas et al., 1996). Fermentation of carbohydrates
using lactic acid bacteria (LAB) is mostly used at industrial scale, even though lactic
acid can be produced by chemical synthesis. The main limitations during sustainable
bioproduction of lactic acid are: that lactic acid bacteria are impaired by product
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inhibition plus difficult downstream processing. It has been shown that lactic acid
recovery and concentration can represent up to 70% of the total production cost
(Stanbury et al., 1995). Therefore, Polylactic acid polymers (PLA) only will be able
to substitute petrochemical based products when the production costs of the main
bulk raw material are considerably reduced. The application of new purification
technologies and integrated process configurations appear to be efficient ways to
render PLA production economically feasible.

A dynamic model has been derived previously, from first principles, to describe
simultaneous ion transport across ion exchange membranes in a dialysis cell (Prado-
Rubio et al., 2010b). The model parameters were regressed to reproduce experi-
mental steady state recovery of monoprotic carboxylic anions by Donnan Dialysis.
The model structure satisfactorily reproduced anion fluxes as function of the base
concentration in the dialysate channel. The estimated average diffusion coefficients
within the membrane showed good agreement with experimentally determined val-
ues presented in literature. Additionally, simulated concentration profiles within the
modeled sections matched the previously predicted profiles, both under boundary
layer and membrane controlled transport.

The main limitation of lactate recovery using Donnan Dialysis is a rather low anion
flux, since the driving force behind lactate transport is the hydroxide concentration
gradient between dialysate and feed channels. Therefore, simulations were used to
evaluate the potential flux enhancement under current load conditions, referred to as
Electro Enhanced Dialysis (EED) (Prado-Rubio et al., 2011b). The static analysis
of EED showed the potential performance of the module and how recovery can be
enhanced by applying an external potential gradient. The limiting current density
was indirectly estimated as a function of the base concentration in the dialysate
channel. For the range of concentrations employed in this contribution, the limiting
current density is in the vicinity of 260 A/m2. EED constitutes an ideal scenario
and corresponds to the best achievable separation under current load conditions.
The reason is that the model was solved for carboxylic anion recovery from ideal
solutions. However, when the separation is performed from a fermentation broth,
the picture is slightly different. There, membrane fouling and a pH buffer effect both
become relevant (Hongo et al., 1986; Lee et al., 1998a; Garde, 2002; Rype, 2003).

Periodic operation has been researched and exploited in many chemical processes
whereby intensification or higher efficiency may be obtained. One of the early ex-
amples was periodic forcing of chemical reactors, e.g. to improve conversion in
equilibrium limited chemical reactions (Matros, 1989; Neophytides and Froment,
1992) and to ensure reduction of volatile organic compounds in industrial exhaust
gases in tubular catalytic reactors (Eigenberger and Nieken, 1988; Matros and Buni-
movich, 1996) through reverse flow operation. In separation processes periodic forc-
ing has been employed to enhance the driving force between phases, e.g. in pressure
swing adsorption which has been suggested (Jasra et al., 1991; Ruthven et al., 1994;
Ruthven, 2000; Sircar, 2002) and applied for bulk gas separations, e.g. air purifica-
tion (Ritter and Yang, 1991) propane propylene separation (Rege and Yang, 2002)
and hydrogen purification (Sircar and Golden, 2000). Periodic forcing has also been
demonstrated to improve the efficiency in vapor liquid tray separation processes
(Tofteg̊ard and Jørgensen, 1988).

Periodic operation has also been investigated and applied in membrane processes to
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compensate the adverse influence of membrane fouling during long term operation.
Enhanced separation from fouling suspensions has been achieved using dynamic mi-
crofiltration with vibrating membrane filters (Beier et al., 2006; Holm et al., 1986;
Postlethwaite et al., 2004). Non stationary periodic operation during ultrafiltration
and microfiltration units is obtained using hydraulic membrane cleaning through
back-flushing (Mulder, 1997) or high frequency back-flush (Gekas and Hallström,
1987; Jonsson and Wenten, 1994; Guerra et al., 1997). Probably the most simi-
lar periodically operated membrane separation process to REED, is Electrodialysis
Reversal (EDR) (Katz, 1979). During EDR, the transport of ions is reversed dur-
ing certain time intervals. Since the Electrodialysis stack is composed of anion
and cation exchange membranes, concentrate and diluate compartments must be
switched when the current is reversed. An advantage of the REED technology is
that the channel switching is not required.

The purpose of this contribution is to investigate the periodic operation of the
Reverse Electro-Enhanced Dialysis (REED) module and to elucidate the potential
lactate recovery under periodic current reversal conditions. These insights are vi-
tal to reveal how the system should be operated according to a given production
objective and thus evaluate the technical feasibility of REED.

The paper is structured as follows: REED process is introduced. Operation modes
and the self-cleaning membrane mechanism in REED are described. Subsequently,
the dynamic model is briefly described. Simulations are performed to investigate
the dynamic ion fluxes, lactate bulk concentrations, lactate productivity and energy
consumption. Finally, conclusions are drawn.

4.3 Process description

The Reverse Electro-Enhanced Dialysis design emerges as a potential method to en-
hance the lactate flux in conventional Donnan Dialysis operation, while reducing the
adverse influence of membrane fouling (Garde, 2002; Rype, 2003). The REED mod-
ule combines elements from Electrodialysis Reversal (EDR) and Donnan Dialysis
(DD) separations.

The REED module setup is basically the same as for Donnan Dialysis, including
electrode chambers at the left and right sides of the module stack. In addition,
it includes a mechanism that allows a polarity reversal of the imposed electrical
potential gradient. The qualitative understanding of the REED process prior to
this investigation is depicted in Fig. 4.1 (Rype, 2003; Møllerhøj, 2006). A rela-
tively low pH cultivation broth is introduced in every even numbered channel in the
membrane stack (feed channels), while sodium hydroxide solution is fed into the re-
maining channels (dialysate channels) (see Fig. 4.1). When current load conditions
are imposed, concentration and electrical potential gradients are the main driving
forces for the separation. A competitive ion transport in the electrochemical system
is generated. Lactate is preferably transported from the feed to the dialysate chan-
nels while hydroxide is transported in the opposite direction (Prado-Rubio et al.,
2011b). Due to this transport mechanism, the REED system recovers lactate while
simultaneously facilitating pH control of the fermentation broth operating at defined
current densities.
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Figure 4.1: Sketch of the expected ion transport under negative current density condition
and completely effective Donnan exclusion. Dominant fluxes are depicted with solid
lines. For positive current density, the ion fluxes are the mirror image

Due to the symmetry of the modeled section, it is expected to have a mirror image
of the ion fluxes when the polarity of the current is reversed. The presented sketch
of flux directions is however valid only at sufficiently high current densities, but
useful for the process introduction. How the fluxes are enhanced/reduced under
continuous current load conditions has been previously investigated (Prado-Rubio
et al., 2011b).

4.3.1 REED operation modes

Analogous to Electrodialysis, REED module has two operation modes. The system
can be operated at constant voltage or at constant current density. If the separa-
tion problem involves clear solutions of the carboxylic acids, practically there is no
difference between the two operation modes. However, in the case of a fermentation
broth, the selected operation mode defines the actual separation capabilities and
operability of the device (Lee et al., 1998a).

The difference between the mentioned operation modes can be seen from Ohm’s
law (Eq. 4.1). Where ψ represents the electrical potential difference across the
module, I is the imposed current and R is the cell resistance.

ψ = IR (4.1)

The total resistance of the membrane cell is composed by the summation of dif-
ferent resistances in series (Mulder, 1997; Timmer et al., 1994):

- Rm: resistance of clean membranes in the cell, given by the summation of the
resistances of the two anion exchange membranes.

- Rchannel: resistance of channels, it is the summation of the resistance of the
feed and dialysate channels.

- Rtd: time dependent resistance
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The first two resistances could be condensed into a single term denoted as ini-
tial or intrinsic cell resistance Ri, which is time independent. The time dependent
resistance is generated by diverse sources such as concentration polarization, precip-
itation of salts, deposition of colloidal material and biomaterial attachment to the
membrane surfaces. The colloidal matter and macromolecules can generate a layer
adjacent to the membrane surface, either electrically neutral or carrying some fixed
charges (Korngold et al., 1970). An inert film increases the resistance to ion trans-
port. Besides, if the formed layer is constituted of negatively charged components,
i.e. organic macromolecules, the fouling layer is cation selective. This situation
leads to a composite membrane that behaves as a bipolar membrane. The transport
resistance largely increases, even if the thickness of the cation exchange layer is small
(Korngold et al., 1970; Grossman and Sonin, 1973).

Due to the increasing electrical resistance, operation at constant electrical potential
implies a decreasing current density. From Faraday’s law (Eq. 4.2), it is clear that
a lower current density means lower ion fluxes.

Id = F
∑

k

zkJk (4.2)

Only increasing the strength of the imposed electrical potential gradient across
the cell allows operation at constant current density (constant ion fluxes). The
REED module is operated at constant current density, analogously to a filtration
unit operated at constant flux (Mulder, 1997).

From the modeling point of view, this operation is convenient since the predicted
ion fluxes do not depend on the fouling layer formation.

4.3.2 Membrane cleaning effect in REED

In Electrodialysis, diverse procedures have been proposed to reduce the adverse
influence of fouling. Mechanical cleaning has shown to be a temporal solution which
works for short time. A chemical cleaning of the membrane with an alkali solution
after a defined fouling level is regularly used achieving complete regeneration.

Some experiments were performed in the REED module to investigate the self-
cleaning mechanism (Garde, 2002; Rype, 2003). The experiments used a fermented
brown juice from food pellet industry. The feed was a 7% lactic acid solution with
5.5 pH. The electrical potential drop across a REED cell under current reversal
conditions is depicted in Fig. 4.2. The current density was kept constant at 250
A/m2 and the reversal time is 60 s.

From Fig. 4.2, the increasing electrical resistance generated by the fouling build-up
is clear. The most interesting aspect is that after every current reversal, the initial
cell resistance was regained. It means, that most of the fouling layer was reversibly
removed by inversing the current direction with a suitable periodicity of the current
reversal. By reducing the severe effect of fouling, the REED module can achieve
long term operation for lactate extraction from a fermentation broth. In this paper,
the first current imposed is negative with a selected magnitude. When the current
is reversed, it becomes positive. The two half periods are equally long. The current
reversal time is defined as half the period time.
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Figure 4.2: Sampling of the electrical potential drop in a cell of REED module during
experiments with fermented brown juice with current reversal every 60 s (Garde,
2002; Rype, 2003)

4.4 Model description

A dynamic model has been derived from first principles to describe the simultaneous
ion transport in a section of a Dialysis module (Prado-Rubio et al., 2010b). The
model accounts for convective transport of dissociated and undissociated species
in the channels, and diffusion and migration across the boundary layers and mem-
branes. The ion transport across the potential fouling layers is not currently included
into the model. This is due to a lack of information about the nature of the fouling
layer and of its rate of formation. However, the adverse influence on the energy
consumption is quantified.

Donnan equilibrium is employed to describe the concentration and potential dis-
continuity on membrane-solution interfaces. The Nernst-Planck approach is used to
describe the multicomponent diffusion and migration through boundary layers and
membranes. A tank in series approach was employed to approximate the convec-
tive flow in channels in the y-direction. The most important field conditions are:
electroneutrality and Faraday’s law. At the boundaries, there is flux continuity of
transported ions and equilibrium conditions. A more detailed model description has
been previously published and employed (Prado-Rubio et al., 2010b, 2011b). In the
present contribution, the pH buffer model is highlighted since it has not been used
in our previous work.

A sketch of the modeled section of the Dialysis module is depicted in Fig. 4.3. The
section includes two anion exchange membranes and three bulk channels. This con-
figuration was chosen in order to have symmetry under current reversal conditions.
The main assumptions are:

1. General: electroneutrality at any location in the system, ideal solution and the
current is carried only by ions. The species included in the model are: Lactate
(L−), hydroxide (OH−), sodium (Na+), dissociated protein (P−), lactic acid
(HL) and undissociated protein (HP).

2. Membrane: convective transport is not investigated, transport of water by
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Figure 4.3: Sketch of the modeled section of the dialysis module for lactate recovery from
a fermentation broth. The zones in the section and ions present in each zone are
depicted. BL: boundary layer and AEM: anion exchange membrane. Dimensionless
location zj ∀ j=0,...,7 are the interface locations (Prado-Rubio et al., 2010b). In
REED, the electrodes are located at the left and right sides on the section

osmosis and electro-osmosis is neglected, there is no transport of uncharged or
large molecules through the membrane, equilibrium at the membrane surface
and constant membrane dimensions.

3. Boundary layer: convective transport is neglected and the thickness of the
boundary layers are constant for a given flow condition.

The most relevant model equations are depicted in Tables 4.1 and 4.2. The sub-
stances and phases are denoted by the subscripts k and p, respectively. For simplic-
ity, the index for the tank in series description in the y-direction is not shown.

Algebraic expressions are employed to describe the electrical potential gradient and
concentration discontinuities at membrane-boundary layer interfaces (z1, z2, z5 and
z6 in Fig. 4.3) and electrical potential gradient at the bulk solution-boundary layer
interfaces (z0, z3, z4 and z7). Those algebraic equations are derived from bound-
ary and field conditions. It is assumed that ion concentrations at the membrane
surface is in equilibrium with the adjacent solution. Electrochemical potential in
the ionic solution and the membrane surface must be the same, which is referred
to as the Donnan potential. Donnan equilibrium determines the ionic distribution
of transported ions (Eq. 4.3). Faraday’s law states that all the electrical current
is carried by ions (Eq. 4.4). There is no accumulation of transported ions at the
interfaces (Eq. 4.5), for the non-transported ions the flux equals zero. Finally, the
electroneutrality condition affects the concentration distribution in both membrane
and solution (Eqs. 4.6 and 4.7). The ion diffusion coefficients within the mem-
brane are estimated through the Mackie and Meares’ expression (Eq. 4.8, (Jonsson,
1980)). That relation accounts for the increasing ion diffusivity when free volume
in the membrane increases. A power function is employed to describe the increas-
ing membrane free volume as a function of the inlet hydroxide concentration in the
dialysate channel (Eq. 4.9).
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A mass balance for each species in each phase are represented by Eq. 4.10 (Taylor
and Krishna, 1996). The ion flux Jk,p through boundary layers and membranes is
estimated using the Nernst-Planck equation for ideal solutions (Eq. 4.11), where
the convective transport term was neglected (Strathmann, 2004). Dimensionless
parameters are used to group constants and have dimensionless distance and time
in the mass balances (see list of symbols). Substituting the flux term in Eq. 4.10
with the Nernst-Plank equation, the mass balance can be rewritten as Eq. 4.12. The
electrical potential gradient is estimated explicitly by substituting the ion fluxes into
Faraday’s law (Eq. 4.13). Subsequently, the derivative of the electrical potential is
obtained (Eq. 4.14). The convective transport in the bulk channels is modeled
using a tank in series approach. Along a channel, there are migration and diffusion
transport toward the adjacent boundary layers plus dissociation reactions. The mass
balance for each tank in the feed and dialysate channels are depicted in Eqs. 4.15
and 4.16. In the dialysate channel mass balance the reaction term is neglected, since
the high pH makes the ions completely dissociated.

Table 4.1: Interfacial boundary conditions to describe the ion concentrations and elec-
trical potential gradients, and model parameter expressions (Prado-Rubio et al.,
2011b)
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E = γ(Cdbin
OH )σ (4.9)

The presence of proteins in the fermentation broth induces a pH buffer effect. In
the mass balances a reaction term is included, to account for the species dissociation.
It is expected that the present macromolecules are polyprotic species. However, if
the biomolecules are modeled as a highly charged macromolecule, the stiffness of the
system of model equations could increase considerably. To overcome this situation,
proton acceptor groups in the protein are considered in terms of equivalents, i.e. the
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Table 4.2: Summary of the differential equations employed in the first principles model for
simultaneous ion transport through the Reverse Electro-Enhanced Dialytic module
(Prado-Rubio et al., 2011b). The index for the tank in series in the y-direction is
not shown

Transport in boundary layers and membranes
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Bulk channel model
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protein concentration is defined as moles of acid equivalents per volume. Therefore,
the dissociation of a polyprotic species is simplified to an apparent monoprotic acid
reaction (Prado-Rubio et al., 2010b). The protein species represents a wide range
of components in the fermentation broth from low molecular weight proteins to
colloidal material. The system of reactions are given by the following equilibrium
expressions:

HL+OH−
k1−⇀↽−
k2

L−+H2O

HP +OH−
k3−⇀↽−
k4

P−+H2O

where the dissociation constants (Kd) correspond to the acid dissociation constant
(Ka) divided by the ionic product of water (Kw). Stoichiometric matrices are used to
systematically handle the reaction term in each mass balance (Nielsen et al., 2003).
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4.4.1 Model solution

The dynamic model is a system of multiregion partial differential equations that are
solved numerically. A sixth order asymmetric Taylor expansion is used to discretize
the spatial dimension. The step length is reduced toward boundaries in order to have
higher accuracy. Discretization leads to a system of algebraic differential equations
(DAEs). A variable order multistep solver is employed based on the numerical
differentiation formulas (NDFs) (Shampine et al., 1999). An initialization procedure
was used in order to guarantee convergence in all evaluated scenarios (Prado-Rubio
et al., 2010b).

4.5 Results and Discussion

4.5.1 Input parameters

For all simulations performed in this paper the extra pH buffer effect is activated by
using a sufficient but relatively small concentration of total protein at the inlet of
the feed channel. Preliminary simulations were performed under Donnan Dialysis
to estimate that threshold. This model feature has not been used in previous work
(Prado-Rubio et al., 2010b, 2011b). Besides, sub-limiting current conditions are
employed since the model has been derived for such a scenario. The required inputs
are depicted in Table 4.3.

The physicochemical properties required to solve the model are listed in Table 4.4.
Forced by the limited availability of ion diffusion coefficients in solution as a function
of concentration, infinite dilute solution values are employed. The anion exchange
membrane used is Neosepta-AMH which has been produced by ASTOM Corporation
(Tokyo, Japan), earlier Tokuyama Soda Company, Inc. This is a strongly basic
membrane with -NC7H

+
7 as fixed charge groups (Ayyildiz and Kara, 2005). The

characteristic properties are presented in Table 4.5.

4.5.2 Numerical issues related to current reversal conditions

Some preliminary simulations were performed to determine if there were convergence
problems during the simulations under current reversal conditions. At the beginning
of each period current is imposed to the system, then after a half period time the
current density is reversed. As a result, a square wave function is obtained.

A current density function with an amplitude of 100 A/m2 is applied. The first cur-
rent applied is negative (-100 A/m2). The initial conditions correspond to the steady
state for Donnan dialysis operation, for the given inputs. For very short and long
reversal times (shorter than 3 and longer than 20 min), simulations crashed. The
numerical method was unable to achieve the integration tolerance without reduc-
ing the step size below the smallest allowed value (h=5.820766x10−11) (Mathworks,
2006). It was noticed that after the current was reversed, the flux responses are
characterized by two different dynamics. There is a fast response after the step
disturbance followed by slow settling. The fast dynamic behavior increases consid-
erable the stiffness of the system of equations. Thus if the step change amplitude in
the current density is very high, there is a point where the numerical method can
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Table 4.3: Operational parameters for REED operation at constant current intensity.
The feed and dialysate channels have the same dimensions

Parameter Value Units
Channel length 0.373 m
Channel width 0.15 m
Channel height 0.6x10−3 m
Current density ±100 A/m2

qfeed 120 L/h
qdia 120 L/h
δBL 70x10−6 m
δm 270x10−6 m
E 0.1779 -

Cfbin
HL + Cfbin

L− 100 mol/m3

Cfbin
HP + Cfbin

P− 10 mol/m3

Cdbin
NaOH 50 mol/m3

Cdbin
L− 0 mol/m3

pHin feed 5.75 -

not achieve the required tolerance.
In order to ensure convergence for a wider range of current reversal times, the

square wave function was modified. The step changes were softened by employing
a ramp between initial and final value, with a tshift duration. The selected shifting
time is negligible compared to the reversal time (tshift = 1×10−3s). In this way, con-
vergence of the model is obtained within a reversal time window of 10≤ trev ≤8000s
(these values correspond to the minimum and maximum reversal times employed in
the simulations).

4.5.3 Dynamic fluxes

Simulations are performed to investigate the dynamic ion fluxes through all inter-
faces at different current reversal times. Two different scenarios were studied. First,
the complete dynamic response until steady state fluxes are achieved is investigated.
In the second scenario, the short transient is studied before the change in the po-
larity.

4.5.3.1 Long current reversal time

The objective of this simulation is to study the complete dynamic response until
static operation is achieved before the polarity of the current is reversed. The
selected reversal time was sufficiently long to assure steady state fluxes, trev =8000
s. All the dynamic fluxes through each interface were investigated, but only the
most relevant results for lactate are shown.

In Fig. 4.4, the lactate flux through both interfaces of the two anion exchange
membranes is depicted. During Donnan Dialysis separation, static ion fluxes across
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Table 4.4: Species properties in the model implementation

Parameter Value Units Source
pKa for HL 3.860 - (Lide, 2008)
pKa for HP 5.000 - (Møllerhøj, 2006)

DL− in solution 1.033x10−9 m2/s (Lide, 2008)
DOH− in solution 5.273x10−9 m2/s (Lide, 2008)
DNa+ in solution 1.334x10−9 m2/s (Lide, 2008)
DP− in solution 0.090x10−9 m2/s (Bowen et al., 2000)
DHP in solution 0.090x10−9 m2/s (Bowen et al., 2000)
DHL in solution 0.848x10−9 m2/s (Ribeiro et al., 2005)

ρHL 0.1 M 1000.2 kg/m3 (Lide, 2008)
ρNaOH 1 M 1042.8 kg/m3 (Lide, 2008)
µHL 0.1 M 1.027x10−3 kg/m/s (Lide, 2008)
µNaOH 1 M 1.248x10−3 kg/m/s (Lide, 2008)

MWHP ≈66500 g/mol (Bowen et al., 2000)
MWHL 90.08 g/mol -

γ 0.24 - (Prado-Rubio et al., 2010b)
σ 0.10 - (Prado-Rubio et al., 2010b)

both membranes are equal in magnitude due to the symmetry around the dialysate
channel (represented schematically in Fig. 4.6a). When current is applied, asym-
metric flux conditions at steady state are imposed, since the ion fluxes are enhanced
in one membrane but diminished in the other one (Prado-Rubio et al., 2011b). It can
be seen in Fig. 4.4 that after the first step change, the static lactate flux through
AEM1 is enhanced while a reduction is observed in AEM2 (notice that the flux
sign indicates its direction). The opposite situation happens when the current is
reversed.

After every step, the dynamic response of the fluxes through the interfaces (-/+) of
each membrane differ, this generates a positive or negative accumulation of lactate
in the membrane. When the steady state is achieved, fluxes are constant and equal
across both interfaces for each membrane. This accumulation is clear when the
dynamic concentration profiles are studied. In Fig. 4.5, the lactate concentration
profile within AEM1 is depicted for a period and a half of stationary operation.
In the first half period, lactate is accumulated in AEM1 while it is depleted from
AEM2. After the second step change, the lactate is depleted from AEM1 while
AEM2 is filled.

Under current reversal conditions, a dynamic flux symmetry situation is estab-
lished with a half period time delay. It means that the lactate flux response through
AEM1− is a half period delayed mirror image of the flux across AEM2+, these
interfaces are facing the boundary layers in the feed channel. Analogous behav-
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Table 4.5: Properties of the Neosepta-AMH membrane (Ayyildiz and Kara, 2005; Palatý
et al., 2006). The water content and fixed charges concentration of the membrane
were regressed (Prado-Rubio et al., 2010b)

Parameter Range Value Units
Thickness 0.25-0.28 0.27 mm
Water content 17-22 17.79 %
Ion exchange

1.30-1.50 - meq/g
capacity
Cfix - 7.5x103 mol/m3

Figure 4.4: Dynamic lactate flux through both sides of each anion exchange membrane
(AEM) for a reversal time of 8000 s (2.22 h). The signs -/+ stand for the left and
right hand side of the membrane, respectively. The static Donnan Dialysis flux is
depicted in each plot. AEMi: anion exchange membrane (i=1,2 see Fig. 4.3), DD:
Donnan Dialysis

ior is observed for the membrane interfaces adjacent to the boundary layers in the
dialysate channel. This half period delayed flux symmetry implies that the station-
ary total lactate flux is independent of polarity of the imposed electrical potential
gradient.

Previous calculations have shown that there is a current density value that can
invert the static ion flux when the reference is Donnan Dialysis separation (see
Fig. 4.6a) (Prado-Rubio et al., 2011b). In this first simulated scenario, there is a
transient flux inversion at the membrane interfaces facing the feed channel. The
flux inversion lasts for approximately 20 min. The transient flux directions and
qualitative magnitudes are represented in Fig. 4.6, according to the polarity of the
electrical potential gradient.

It is interesting that lactate flux response at the interface facing the feed channel
has a pronounced overshoot which is not seen at the opposite interface. Additionally,
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Figure 4.5: Dynamic lactate concentration in the membranes for a reversal time of
trev=8000s (2.22 h). 1.5 operating period is depicted. Membrane thickness equal to
1 and 2 represent the interfaces facing the feed and dialysate channels, respectively
(See Fig. 4.3 for the dimensionless references)

the overshoot is more pronounced for negative current in AEM2+ and for positive
current in AEM1−, where the transient lactate flux inversion takes place. If only
lactate flux is investigated, the reason for the overshoot is definitely not clear. The
explanation for this behavior was found when all fluxes where investigated at the
interfaces, since the hydroxide flux presents an analogous behavior.

A preferable ion transport was investigated statically for this system (Prado-Rubio
et al., 2011b). It was predicted that, under current load conditions, lactate is prefer-
ably transported from the feed to the dialysate channel through one membrane while
hydroxide is transported in the other membrane. In other words, lactate is trans-
ported to the dialysate channel and most of it remains there. This phenomenon
enables larger lactate recovery under current load conditions than in Donnan Dial-
ysis separation.

Under current reversal conditions, a dynamic preferable ion transport is predicted
at each interface. For instance, the lactate flux enhancement at the AEM1− interface
is faster than the hydroxide flux reduction under negative current conditions. This
is connected to Faraday’s law condition that must be fulfilled dynamically. The ion
fluxes react instantaneously at every sampling time. Therefore, lactate flux over-
shoot is the complement of the hydroxide flux to fulfill Faraday’s law. The difference
in the lactate flux overshoot magnitude is provoked by the fact that the hydroxide
flux enhancement is slower that its reduction. It is believed that this happens since
lactate is preferably transported at that interface. The high lactate concentration at
the membrane interfaces facing the feed channel favor the lactate transport. To il-
lustrate our interpretation, lactate and hydroxide fluxes across AEM1− are depicted
in Fig. 4.7.

It is important to mention that in the feed channel and the adjacent boundary
layers the lactate is present in both dissociated and undissociated form. To quantify
total lactate both species must be accounted for.

Sodium flux was investigated in order to evaluate the effectiveness of Donnan ex-
clusion. From previous work in this electrochemical system, it was concluded that
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(a) Static Donnan Dialysis (b) Negative current density

(c) Positive current density

Figure 4.6: Schematic representation of ion transport under current reversal conditions
until steady state is achieved before the current is reversed. The strength of the
imposed current density is Id = 100 A/m2 and it is reversed every 8000 s (2.22 h).
Bold hatched lines represent large transient fluxes. Dashed and solid lines corre-
spond to diminished and enhanced fluxes, respectively. Transient flux inversions are
depicted by double arrows besides the respective ion

statically Donnan exclusion is very effective during Donnan Dialysis and Electro-
Enhanced Dialysis (Prado-Rubio et al., 2010b, 2011b). It was confirmed that Don-
nan exclusion effectiveness remains dynamically, since sodium flux is at least three
orders of magnitude smaller than lactate and hydroxide fluxes.

In Fig. 4.8b, total dynamic lactate flux arriving to the dialysate channel is de-
picted. Additionally, the static Donnan Dialysis total lactate flux is shown (the total
flux is quantified using according to Eq. 4.17). It is clearly seen that the current
reversal generates periodic operation. Fig. 4.8a shows lactate total flux during one
period of operation. The lactate flux through the boundary layers in the dialysate
channel are depicted as well (JBLII+ and JBLIII− , respectively). The static lactate
flux is approximately 65% larger than during Donnan Dialysis. In a fair comparison,
the static flux is expected to be much larger than under Donnan Dialysis conditions.
The reason is that the fouling issue is not accounted for during Donnan Dialysis cal-
culations. Due to the increasing resistance with time, the ion flux will decrease
when there is no external electrical potential gradient. On the other hand, the ion
fluxes obtained during REED operation potentially can be recovered after each time
reversal, thereby ensuring longer operation time without a significant flux decrease.

85



Chapter 4. REED lactate recovery

Figure 4.7: Dynamic lactate and hydroxide flux through AEM1− for a reversal time of
8000 s (2.22 h)

JL−,tot =
1

2
(JL−,BL II+ − JL−,BL III−) (4.17)

After the current polarity is reversed, there is a steep reduction of the total lactate
flux. This model predicts that lactate flux arriving to the dialysate channel is
reduced faster than the flux enhancement after every polarity change (see Fig. 4.8a).
As a consequence, the total lactate flux decreases at first but recovers afterwards.
The minimum lactate flux is achieved approximately 4.7 min after the half period
time. There is a time interval (≈ 8.3 min) where the total lactate flux is lower than
during Donnan Dialysis.

(a) One period (b) 4.5 periods

Figure 4.8: Dynamics of total lactate flux to the dialysate channel for a reversal time
of 8000 s (2.22 h). The steady state Donnan Dialysis flux is depicted. One period
operation is enlarged including JBLII+ and JBLIII−

Preliminary experiments with REED operation using prepared solutions of lac-
tic acid, showed a loss of current efficiency compared to Electro-Enhanced Dialysis
(Rype, 2003). Using a simple mathematical description of the process, the experi-
mental current efficiency loss was explained by shorter process operation at not fully
developed concentration profiles.

From our simulation results, the loss of current efficiency has shown to be a con-
sequence of the transient ion transport under current reversal conditions. After the
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current is reversed, the anion exchange membranes are filled either with lactate or
hydroxide ions. During the next current reversal the accumulated material is re-
leased toward both dialysate and feed channels. The ions returning to the source
channel are quantified by the transient ion flux inversion after the current reversal.
In a qualitative way, current is used building the lactate concentration profile within
an anion exchange membrane. When the current is reversed and lactate returns to
the feed channel, then part of this energy is lost. The symmetry of the modeled
section permits to have the same phenomena independently of the polarity of the
current.

4.5.3.2 Short current reversal time

This second scenario is investigated to understand the system when it does not
achieve steady state before the current is reversed. The state values before the
current polarity is reversed are the initial conditions for the following half period
simulation. Consequently, the dynamic response shows additional features than
analyzed above. The selection of the operating period time is a trade off between the
carboxylic anion recovery and the energy consumption, subject to the operational
constraints (Prado-Rubio et al., 2009b). For illustration purposes, a period time of
600 s was selected. This value also has been used experimentally (Rype, 2003). The
calculated dynamic lactate flux response in the two anion exchange membranes is
depicted in Fig. 4.9.

Figure 4.9: Dynamic lactate fluxes through the both sides of each anion exchange mem-
brane (AEM) for a reversal time of 300 s (5 min). The signs -/+ stand for the left
and right side of the membrane, respectively. The static Donnan Dialysis flux is
depicted in each plot

The half period delayed symmetry situation predicted for a long period time,
remains in this simulation. This is expected since the symmetry is due to the
modeled section. The transient lactate flux inversion at the membrane interfaces
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adjacent to the feed channel (AEM1− and AEM2+) is clearer here, since the current
is reversed before the lactate flux settles. During the first half period, the lactate flux
entering the membrane across AEM1− is more than double the flux leaving through
AEM2+. Therefore, lactate ions fill the membrane during this half period. When the
current is reversed, the accumulated ions are depleted from the membrane toward
both channels. A larger amount is going back to the feed channel. This implies that
shorter reversal times adversely affect the total lactate flux toward the dialysate
channel. The lactate flux through the membrane interfaces facing the dialysate
channel is very similar to the Donnan Dialysis lactate flux.

A schematic representation of the ion flux direction, magnitude and tendency is
illustrated in Fig. 4.10. Lactate and hydroxide fluxes are very similar in magnitude
but opposite in direction, in order to fulfill Faraday’s law. This similarity is due to
Donnan exclusion and the absence of protein within the membrane. Under negative
current density, lactate accumulates in AEM1 due to the enhanced anion migration
flux toward the anode. In this case, the fast lactate flux enhancement at AEM1− is
represented by a dashed bold line.

For short periods, the total lactate flux is illustrated in Fig. 4.11. Clearly, the ion
fluxes do not achieve steady state values before the current is inversed. This situation
implies that several pulses are required to achieve stationary periodic operation. As
anticipated, short period time implies that the total lactate flux is just slightly higher
than during Donnan Dialysis.

From a current efficiency point of view, there is a radical effect when the cur-
rent reversal time is reduced. The current is consumed filling the membrane with
lactate/hydroxide ions but just a fraction passes through it before the current is
reversed.

4.5.4 Lactate productivity

A dynamic productivity function was employed (Prod) to quantify the lactate re-
moved from the feed stream. Productivity is defined as the molar lactate flow rate
into the dialysate channel:

ProdL−(t) = qdia

(

Cdb
L−(t) − Cdbin

L− (t)
)

(4.18)

For different reversal times, an average productivity is employed. The average
productivity per half period is defined as follows:

ProdL− =

∫ trev

0
ProdL−(t)dt

trev

(4.19)

The average lactate productivity is evaluated for each reversal time under station-
ary operation. Stationary periodic operation is achieved when the average lactate
productivity is constant from period to period. The integral was evaluated em-
ploying the composite Simpson rule. The average productivity as a function of the
reversal time is depicted in Fig. 4.12. Donnan Dialysis operation is used as reference
point.
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(a) Negative current density (b) Positive current density

Figure 4.10: Schematic representation of ion transport under current reversal conditions
during short period operation. The strength of the imposed current density is Id =
100 A/m2 which is reversed every 300 s. Dashed and solid lines correspond to
diminished and enhanced fluxes, respectively. Bold dashed lines represent larger
transient fluxes

Figure 4.11: Dynamic total lactate flux arriving the dialysate channel for a reversal time
of 300 s (5 min). The steady state Donnan Dialysis flux is also depicted

It can be seen that for short reversal times, the average lactate productivity in-
creases almost linearly. This conditions remains up to a reversal time of approxi-
mately 20 min. For higher reversal times, the average lactate productivity does not
improve considerably by increasing the operating time before the current is reversed.
For long operating periods, the ion flux practically achieve steady state before the
current is reversed. This condition implies that the average lactate productivity
does not increase substantially.

From these results, the first intuitive conclusion is to operate REED using a rela-
tively long reversal time, and then achieve higher lactate recoveries. Eventually, if
the current is not reversed it corresponds to operate the module as Electro-Enhanced
Dialysis. However, using high current reversal times has a price which has been qual-
itatively discussed in section 4.3.1, and further investigated in the next section.
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Figure 4.12: Average lactate productivity as a function of the reversal time for a cur-
rent of Id = ±100 a/m2 and Cdbin

NaOH=50 mol/m3. The maximum Donnan Dialysis
productivity is depicted

4.5.5 Resistance build-up and energy consumption

The main drawback of using long reversal times is the energy requirement to main-
tain constant current density operation. For that reason, it is important to identify a
potential REED reversal time operating window. The influence of other operational
variables, such as the hydroxide concentration in the dialysate channel and imposed
current density, is not currently investigated. The reason is that those inputs can
be used to facilitate the pH control in the fermenter (Prado-Rubio et al., 2010a).

At this point, it is desired to quantitatively illustrate the adverse influence of
a fouling layer formation during periodic operating conditions. Even though the
nature of the fouling layer is unknown in this specific application, i.e. charged or
neutral fouling layer, some experimental data can be used. Previous experimental
work has measured the electrical potential gradient across a REED cell during lactate
recovery from brown juice from food pellet industry (Rype, 2003). The numerical
values are depicted in Fig. 4.2. From these data, the potential gradient build up
was approximated with a linear function.

∆V (t) = ∆Vo + λt (4.20)

where ∆V is the time variant electrical potential gradient, ∆Vo is the electrical
potential gradient corresponding to the initial cell resistance and λ is the electrical
potential build up rate. It can be seen in Fig. 4.2 that the initial potential gradient
of the cell (∆Vo) is practically regained after the current is reversed regardless the
polarity. The average value is used for the model. In contrast, the electrical potential
gradient build up rate is characterized by two different values, according to the
direction of the current. The positive electrical potential gradient build up rate
(λ+) is larger than for negative electrical potential build up (λ−). Numerically, λ+

is more than twice λ−. The reason for this asymmetric condition might have been
due to physical differences between the two channels. For illustration purposes,
the larger slope is used in the linear potential gradient model. The values are
∆Vo = 1.4446 V and λ = ±3.0118 V/min. In order to render this model compatible
with the simulations performed previously, the potential gradient was scaled due
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to the differences in the employed current densities. The scaling was done using
Ohm’s law, assuming that the resistance model is dependent of the imposed current
density. This procedure leads to ∆Vo = 0.5778 V and λ = ±1.20472 V/min.

The energy density consumed in a reversal time interval can be estimated from
the following expression:

E = Id∆V (t)t = Idtrev∆Vo + λIdt
2
rev (4.21)

where E is the energy density consumption, Id is the imposed current density and
trev is a half period of time. The maximum potential gradient that must be imposed
and the energy density consumption as a function of reversal time are depicted in
Fig. 4.13.

Figure 4.13: Maximum required potential gradient and energy density consumption of
a REED cell, as a function of the reversal time for pulse changes in current density
Id = ±100 A/m2 and Cdbin

NaOH=50 mol/m3

Eq. 4.21 estimates the energy density consumed during half period of operation.
In order to compare the energy consumed for all reversal times, the value estimated
from the equation is scaled to be the energy consumed by the cell if it is operated
during 80 min, which is the maximum reversal time employed in these simulations.

The energy consumption in an electrochemical system was investigated previously
(Narbȩska and Staniszewski, 1998b). Electrodialysis was applied to recover lactate
from a solution of sodium lactate. Through that example, the substantial adverse
influence of working with a fermentation broth can be seen. There are important
differences between the Electrodialysis experimental setup and the REED module,
especially: the feed solution, the membrane configuration and the operational mode.
However, it is believed that the relevant difference regarding energy consumption
is the fouling issue. The energy consumed by Electrodialysis was 0.297 MJ/mol/h,
while an energy consumption up to 13.16 MJ/mol/h was predicted for REED (max
trev=80 min, See Fig. 4.14). The large differences can be explained by the increasing
electrical resistance which is not evidenced when clear solutions are used. Compa-
rable energy consumptions are achieved with REED by operating at relatively short
reversal times (around 40 s.).
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Prolonged operation at constant current requires a higher potential gradient and
therefore the energy consumption increases as well. However, there is a maximum
potential gradient allowed due to the power source constraint, which defines the
operating window for the REED unit. Once the current source reaches its limit,
operation at constant current conditions is no longer feasible. This means that the
operational mode switches to constant voltage conditions, implicating a reduction in
the ion flux and lactate productivity. It must be stressed that the presented model
was not developed to predict operation under constant voltage conditions.

This qualitative illustration can not be numerically relevant due to the lack of
information about the fouling layer characteristics. However, the objective of this
section was to identify the factors which define the constraints for an optimization
problem. The trade off between the current efficiency loss and energy requirements
as a function of the reversal time is clear in Fig. 4.14. The current efficiency (η) is
used in Electrodialysis to measure the fraction of the energy added which is utilized
for the target separation. The average current efficiency is estimated using the Eq.
4.22.

Figure 4.14: Stationary average current efficiency loss and energy density consumption
as a function of the reversal time

η = −zL−Fqdia(Cdb
L− − Cdbin

L− )

nIdAm

(4.22)

where zL− is the lactate valence, F is the Faraday constant, qdia(Cdb
L− −Cdbin

L− ) is the
average lactate productivity, n is the number of cell pairs in the stack and Id · Am

corresponds to the total current through the module. The numerator of the current
efficiency equation can be understood as the average amount of electrical current
that the recovered lactate ions carried. The denominator normalizes that magnitude
by the total current added to the system. Implicitly, the current efficiency equation
assumes that the target ion was recovered only by means of the imposed current. The
contribution of migration by the induced electrical potential gradient and diffusion
are not accounted for. The ion transport due to the mentioned phenomena can
influence the total target productivity either positively or negatively. Therefore,
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the average current efficiency is biased. To calculate the current efficiency loss, we
assumed that the maximum efficiency is 100% (ηl = 1 − η).

Under current reversal conditions, the maximum current efficiency is obtained
just before the polarity is reversed, analogously to the lactate productivity function
presented in Fig. 4.16. Thus, long reversal time implies a better current utilization,
especially when the concentration profiles are fully developed. At short reversal
time, there is a high current efficiency loss since the current is utilized to fill the
membrane with ions, and just a fraction is transported through as shown in Fig.
4.9. On the other hand, longer operation without reversing the current requires
more energy due to the electrical resistance build up.

Experimentally, the current efficiency was estimated during REED operation using
a clear lactic acid solution (Rype, 2003). The experimental conditions were: type
of anion exchange membrane (Neosepta ASC), feed lactate concentration (7%), cur-
rent density (250 A/m2), flow conditions (16.2 l/h), no pH buffer effect (lactic acid
solution) and reversal time (60 s). Over a large pH range, the experimental current
efficiency was approximately 55%.

For the simulations, Neosepta ASC properties were taken from literature (Sarmidi
et al., 2001) and the flow conditions are kept as shown in Table 4.3. The total
lactate concentration at the inlet is reproduced but to ensure numerical stability, the
employed current density is 200 A/m2. The predicted current efficiency for trev=60
s is 51%. Despite the model parameters were estimated for a different membrane
and flow conditions, the results are fairly similar.

The large adverse influence of reversal conditions on the current efficiency is mainly
due to the large capacity of the membrane relative to the amount of ions transported.
The high membrane fixed charge is crucial for the permselectivity, but the thinner
Neosepta ACS showed a substantially better current utilization than Neosepta AMH.

From the current efficiency trend, it can be concluded that the optimal reversal
time represents a trade off between the carboxylic anion productivity and the energy
consumption, subject to the power and safety constraints introduced by the selected
design. The location of optimum reversal time depends on the weights of both
contributions on the objective function.

4.6 Conclusions

A Reverse Electro-Enhanced Dialysis process has been investigated as a novel tech-
nology to recover lactate from a fermentation broth. This model based study is
supported by prior experimental and modeling work. The main goal of this investi-
gation is to provide insights, vital for the REED process design and operation.

Simulations were performed to investigate the dynamic ion fluxes through each
interface in the system. The transport mechanism has shown to be more complex
than predicted in previous research. The system has shown to have lactate accumu-
lation or depletion in the membranes, transient flux inversion, flux symmetry and
preferable ion transport at the interfaces. The interpretation of those phenomena
is an important contribution of the presented investigation, since they trigger the
development of a transient lactate recovery when the current is reversed. Therefore,
the experimentally observed loss of current efficiency can be explained.
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From this modeling work, the total lactate flux independence of the current po-
larity was predicted. This result is relevant from control point of view, since the
current density could be used as manipulated variable without account for the po-
larity. Additionally, the influence of the base concentration in the separation makes
it interesting to investigate for control purposes. However, the REED operation
might be challenging due to the non linear system behavior within the period and
from period to period.

The relatively large ion exchange capacity of the Neosepta AMH has shown to
be crucial for the separation. However, it has a negative influence on the current
utilization under current reversal conditions. Therefore, a thinner membrane like
Neosepta ASC would be more appropriate from a current utilization point of view.
Additionally, it was predicted that the reversal time must be selected as a trade
off between current efficiency loss and energy consumption. Therefore, REED tech-
nology only should be used when fouling has a considerably negative impact on
the separation. Validation of the dynamics can be improved by dedicated dynamic
experiments designed for parameter estimation.

Finally, this model was implemented as a tool which can be used to study the
competitive ion transport through ion selective membranes. Therefore it is useful
for development of an optimal design and operation of REED in dependence of
different production objective functions.
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4.8 Appendix

Here, complementary information about the system behavior is presented.

4.8.1 Dynamic Bulk concentrations

The dynamic lactate concentration in bulk channels displays a direct reflection of the
fluxes calculated above. To illustrate the concentration evolution in the channels,
the simulation for short current reversal time is employed. The lactate concentration
in the feed and dialysate channels when trev=300 s is depicted in Fig. 4.15.

Analyzing the fluxes, it was predicted that accumulated lactate ions within a mem-
brane during half operating period are depleted by reversing the current polarity. A
larger amount of lactate ion is returning to the feed channel, as seen in Fig. 4.15a.
After the reversal in polarity, lactate concentration in the feed channel rises fast but
starts decreasing slowly since lactate is extracted as well. The lactate concentration
in the dialysate channel follows exactly the same evolution as the total lactate flux
calculated previously.
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(a) Feed channel (b) Dialysate channel

Figure 4.15: Lactate bulk concentration in the feed and dialysate channel. Current
reversal time trev=300 s (5min). Static Donnan Dialysis concentration of lactate
are shown

4.8.2 Dynamic lactate productivity

As an example, lactate productivity for a current reversal time of 600 s is depicted
in Fig. 4.16. The dynamic behavior completely follows the lactate concentration
profile in the dialysate channel, since the dialysate flow rate qdia is a constant value.

Figure 4.16: Lactate productivity evolution for a current of Id = ±100 a/m2 when it is
reversed every 600 s (10 min) and Cdbin

NaOH=50 mol/m3. Dashed line represents the
maximum productivity achievable during Donnan Dialysis

4.9 List of symbols

AEM Anion Exchange Membrane
BL Boundary layer
C Concentration (mol m−3)
D Diffusion coefficient (m2 s−1)
DD Donnan Dialysis
E Fractional membrane water content (-)
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E Energy density consumption (J m−2)
EDD Electro-Enhanced Dialysis
F Faraday constant (C mol−1)
I Current (A)
Id Current density (A m−2)
J Flux (mole m−2 s−1)
hi Channel i height (m)
k Kinetic parameter (-)
Ka Acid dissociation constant (mol m−3)
Kd Dissociation constant (mol m−3)
Kw Ionic product for water (mol2 m−6)
L Channel length (m)
Prod Productivity (mol/h)

Prod Average productivity (mol/h)
q Flow rate (m3 s−1)
R Electrical resistance (Ohm)
R Universal gas constant (J mol−1 K−1)
REED Reverse Electro-Enhanced Dialysis
Rk Total reaction rate of k (mol m−3 s−1)
t Time (s)
T Absolute temperature (K)
trev Reversal time (s)
V Electrical potential (V)
x Spatial direction (m)
y Spatial direction (m)
W Channel width (m)
z Dimensionless distance z = x/δm (-)
zk Valence of k (-)

Greek letters

δm Membrane thickness (m)
η Current efficiency (-)
ηl Current efficiency loss (-)
γ Parameter in the diffusion model (-)
λ Potential build up rate (V/min)
ψ Electrical potential (V)
ψn Nominal potential (ψn = RT/F ) (V)
σ Parameter in the diffusion model (-)
τ Dimensionless time (τ = t/τn) (-)
τdia Residence time in dialysate channel

(τdia = hdiaWL/qdia) (s)
τdiff Diffusion time (τdiff = δ2

m/Dk,p) (s)
τfeed Residence time in feed channel

(τfeed = hfeedWL/qfeed) (s)
τn Nominal time (τn = 1) (s)
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ϕ Dimensionless potential (ϕ = ψ/ψn) (-)

Subscripts

AEM Anion Exchange membrane
BL Boundary layer
dia Dialysate channel
feed Feed channel
fix Fixed charges in the membrane
HL Lactic acid
HP Undissociated protein
in Inlet
i Species
j Discretization point j = 0, ..., 7
k Species
L− Lactate ion
Na+ Sodium ion
OH− Hydroxide ion
P− Dissociated protein
p Zone (phase)
tot Total
z specific location (z-coordinate)

Superscripts

db Dialysate bulk
dbin Dialysate bulk inlet
fb Feed bulk
fbin Feed bulk inlet
m Membrane
s Solution
−/+ Left/Right side of a section
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5

Unstructured fermentation model
development

5.1 Abstract

This work is focused on modeling lactic acid fermentation suitable for integration
with the previously derived model for Reverse Electro-Enhanced Dialysis (REED)
(Prado-Rubio et al., 2011a). In order to further understand the interaction between
the Reverse Electro-Enhanced Dialysis module and the bioreactor, it is desirable
to develop a dynamic model for the fermentation. This model should describe the
lactate production rate as a function of key operating variables such as substrate,
biomass and product concentrations. The structure of a published fermentation
model is modified. The kinetic parameters are estimated using experimental data
from literature and mathematical and statistical tools. As a result, a reasonable
model which is feasible for integration with the REED module is obtained. The
developed kinetic model is employed to estimate the dilution rate and input sub-
strate concentration to achieve the best total lactate productivity, in a continuous
fermentation.

5.2 Introduction

In bio-systems modeling the present trend is to exploit the growing fond of knowl-
edge of intracellular metabolism, to increasingly substitute heuristic-based models
by mechanistic representations of the cell behavior. As a consequence, the pre-
dictive power of the models is augmented. The complexity of the metabolism of
a cell lies in the hundreds of reactions subject to internal regulatory mechanisms.
However, the cellular control systems are not yet well understood, therefore it is
necessary to employ different assumptions and modeling approaches according to
the specific model purpose. Traditionally, fermentation processes have been mod-
eled employing unstructured biomass models. The model parameters are estimated
from measurement of extracellular metabolite and biomass concentrations. Even
though these models do not provide insight into cellular physiology and thus their
predictive power is limited, they have been widely used in engineering since they
provide a simple representation of cell growth especially for prokaryotic organisms
(Nielsen et al., 2003).

The main challenges during parameter estimation of a large number of kinetic
parameters have been investigated and summarized by Kristensen (2003). The non
linear nature of the model makes the estimation problem most likely non convex,
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thus it has local minima. The global minimum is the target solution since it hope-
fully provides the most biologically reasonable set of parameters. In order to ensure
that the solution is close to a reasonable minimum, a good quality of initial param-
eters guesses is vital. The selection of the initial estimates must be supported by
physiological understanding. The robustness of the solution must be verified using
different sets of initial conditions. It has been noticed that in biological systems
there is a strong correlation between the rate and affinity constants in Monod based
kinetic expressions (Holmberg, 1981). Therefore, they are difficult to estimate from
standard batch experiments. The insensitive set of model parameters can be reduced
by using experimental data from different operation modes.

In order to reduce the influence of model structure error, the model development
procedure should be supported by statistical tools. In this contribution, sensitivity
based metrics are employed to increase the reliability of the proposed model. Sensi-
tivity analysis can be described as a variance analysis where the output variance is
decomposed with respect to each model parameter (Salteri et al., 2006). In that way,
the influence of an individual input parameter on the predicted output is quantified.
Thus, a sensitivity analysis can assist both parameter estimation and model unfalsi-
fication stages. Additionally, the results of the sensitivity analysis can be exploited
to design future experiments that potentially can reduce the uncertainty. It should
be stressed that sensitivity analysis is a powerful framework, but absolute conclu-
sions can not be obtained from it. The main limitations are firstly that it is based
on local sensitivity calculations that become a limitation in non convex optimiza-
tion problems. Secondly, the results can be affected by the selection of scale factors
and therefore these factors must be carefully selected. Finally, prior knowledge of
the model parameters is crucial. For those reasons, the statistical analysis must
be coupled to expert knowledge of the process and model. Uncertainty and sensi-
tivity analysis methodologies have been successfully employed in other applications
(McKlay et al., 1999; Brun et al., 2002; Sin et al., 2009, 2010).

The purpose of this chapter is to develop a model for the fermentation which
may be usable for investigating the integrated operation of the REED separation
with the bioreactor. Therefore, this model should (ideally) be able to describe the
disturbance dynamics which are imposed by the REED operation in order to obtain
a valid representation of the integrated system. The operational requirements of
the integrated system are to handle start up, i.e. batch or fedbatch operation, as
well as continuous operation. In addition, the integrated system should also enable
control of pH. In the case of the continuous operation additional variables should be
controlled, i.e. lactate, substrate, biomass, etc.(determined by the analysis of the
operational degrees of freedom).

Since control during batch/fedbatch as well as continuous operation is desired, a
fairly reasonable accuracy of the fermentation model is required at low to medium
frequencies. However, the pH dynamics from period to period in the REED mod-
ule will also influence the fermenter behavior, thus ideally also high frequency pH
disturbances should be well described by the bioreactor model. These requirements
are rather high for a fermenter model.

Due to experimental work was not available within this project, it is decided to
search in the literature for a model which can describe both batch and continuous
operation. A model developed by Boonmee et al. (2003) is able to describe both
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batch and continuous fermentations of Lactococcus lactis. Therefore this model will
be analyzed to reveal to which extend this type of model structure and experimental
data behind may be used as basis for modeling the bioreactor in this work.

This contribution is structured as follows: lactic acid fermentation is introduced
and the fermentation model presented. The reported kinetic model is described and
the proposed structural modification introduced. Subsequently, the methodology
for parameter estimation is depicted and the required tools presented. Afterwards,
the structure of the kinetic model is investigated and the relation with the pub-
lished model is elucidated. The full model parameter set is regressed. Due to the
correlation between parameters, an identifiable parameter subset is estimated. Fi-
nally, the kinetic model is used to find the best operating conditions for total lactate
productivity during continuous fermentation.

5.3 Model development

The most important reactions taking place in the reactor during lactic acid fermen-
tation are modeled. In this multicomponent system, a carbon source is transformed
by the microorganisms into lactate and biomass. A dynamic model is derived to
represent the substrate consumption, biomass growth and lactate production. Ad-
ditionally, the model accounts for the dissociation of the main monoprotic acids.
The fermentation is performed in a stirred bioreactor operated in either batch/fed
batch or continuous mode with a recycle stream coming from the REED module. A
sketch of the fermenter and involved streams are depicted in Fig. 5.1.

Figure 5.1: Sketch of the integrated bioreactor with the REED module for a batch/fed-
batch/continuous fermentation

The bioreactor has two input streams, one for the required substrate and nutrients
and another that allows pH control by adding a base solution. The cultivation broth
is continuously sent to the REED module where lactate is exchanged by hydroxide
while substrate and biomass are recirculated. The lactate is recovered as sodium
lactate in the dialysate channels in the REED module. During continuous operation,
a purge stream in the fermenter is necessary to avoid accumulation.
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5.3.1 Model assumptions

The main assumptions for the fermenter model development are (FA):

FA1. The biomass growth is influenced by carbon source limitation and inhibition
at low and high concentrations, respectively. Additionally, growth is also
inhibited by the primary fermentation product concentration. Substrate
limitation is modeled using a Monod expression and substrate inhibition
follows a non-competitive inhibition function. The biomass growth is not
affected by pH.

FA2. There is only one carbon source.

FA3. The feed stream contains the main carbon source at a known pH. Phosphate,
nitrogen source, salt and vitamin uptakes are not investigated, presently.

FA4. The fermentation is considered homofermentative with lactic acid as prod-
uct. However, the product inhibition is caused by the total lactate concen-
tration in the media (L− and HL).

FA5. The assumption MA2, where the transport of water by osmosis and electro-
osmosis is neglected in REED, implies that there are no changes in the
volumetric flow rate of the recycle stream.

FA6. Mass balances are formulated for: biomass, carbon source, lactate, dissoci-
ated protein, sodium, lactic acid, undissociated protein and hydroxide.

FA7. The pH of the fermenter is perfectly controlled. When the pH regulation is
investigated, pH is adjusted by adding a solution of sodium hydroxide.

FA8. The protein production rate has been chosen such that the total protein
concentration in the fermenter remains constant. In that way the buffer
effect induced by the protein dissociation is kept constant. The hypothetical
protein species (HP and P−) represent a wide range of molecules that could
induce a pH buffer effect in the fermentation broth. Due to the lack of
understanding of the pH buffer source, it is assumed a protein production
rate which keeps the total concentration constant.

FA9. Substrate uptake and product formation are similarly to growth rate limited
at low and high substrate concentrations, respectively (Kss = Ksp and
Kis = Kip).

FA10. Lactic acid inhibition term affects substrate uptake and product formation
equally (CL,1/2s = CL,1/2p)

FA11. The separation effect of the REED module is not accounted for in the
fermenter model development. This is done by eliminating the recirculation
flow rate (qfeed = 0).

FA12. For lactate concentrations higher than the maximum value for cell growth
(Pmx in the reported model), the biomass concentration remains constant.
It means, there is no viability loss or cell lysis.
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5.3.2 Mass balances

The generalized mass balance for component k and the volume change in a bioreactor
with recycle can be written as follows:

dCk

dt
=

qfeed

V
(Crec

k − Ck) +
υbase

V

(

Cbase
k − Ck

)

+
υfeed

V

(

Cin
k − Ck

)

+ Rk (5.1)

dV

dt
= υfeed + υbase − υprod (5.2)

where Ck is the concentration of the species k in the bioreactor. A recycle stream is
included with a flow rate of qfeed. In this mass balance, the bioreactor has a purge
stream that allows to remove material with a flow rate υprod. An extra input flow
rate is added to the mass balances so called υbase. This stream is used to allow for pH
regulation by base addition. The reaction term Rk is composed by the bioreactions
plus the dissociation reactions. The dissociation reactions are shown in Chapter 2.

5.3.3 Kinetic model development

5.3.3.1 Unstructured kinetic model

The kinetics is the core of the fermenter model. An appropriate description of the
microorganism growth is vital for the bioprocess design. The selection of a model
structure is a crucial step during system identification. This choice must be based
both on an understanding of the system identification procedure and on system in-
sights (Ljung, 1999). A variety of unstructured models have been applied to lactic
acid fermentation, those models account for the growth dependency on substrate
concentration and product inhibition. The substrate concentration influence on the
growth rate is usually modeled using Monod kinetics, i.e. where the growth is in-
hibited at certain concentration of the rate limiting substrate. The point where
substrate inhibition occurs is very important, especially in batch cultivations. For
the product inhibition, different types of linear and non linear functions have been
investigated. A linear inhibition term has shown to be useful in several applications
(Nielsen et al., 2003; Boonmee et al., 2003). However, for other cases the functional-
ity of the product inhibition term is highly non linear, mainly exponential (Cachon
and Divès, 1993; Amrane and Prigent, 1994; Åkerberg et al., 1998; Burgos-Rubio
et al., 2000).

The growth kinetics proposed here for the prokaryote is based on the Luedeking-
Piret model with inhibition (Boonmee et al., 2003). This model is attractive since is
capable of describing experimental data for batch and continuous fermentations with
the same model parameters. This flexibility is convenient for our ultimate goal which
is the investigation of the operability of the integrated bioreactor with the REED
module. The published growth model includes a linear product inhibition term and
substrate limitation. The substrate influence on the growth rate is modeled using an
extended Monod expression, similar to Haldane equation. Besides, lactate inhibition
is considered to work within a concentration band. It means, there is a threshold
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lactate concentration (Pi) which is required to initiate the inhibition. On the other
hand, there is a maximum lactate concentration (Pm) where complete inhibition is
reached. Different values of Pi and Pm for growth and lactate production/lactose
consumption were found by Boonmee et al. (2003). The published kinetic model, as
presented by Boonmee et al. (2003), is shown in Eqs. 5.3 - 5.5.

qx = µmax

(

s

Ksx + s

) (

Kix

Kix + s

) (

1 − p − Pix

Pmx − Pix

)

(5.3)

qp = α
dx

dt
+ qp,max

(

s

Ksp + s

) (

Kip

Kip + s

) (

1 − p − Pip

Pmp − Pip

)

(5.4)

qs = qs,max

(

s

Kss + s

) (

Kis

Kis + s

) (

1 − p − Pis

Pms − Pis

)

(5.5)

The number of parameters to be estimated are 16 (µmax, Ksx, Kix, Pix, Pmx, α,
qp,max, Ksp, Kip, Pip, Pmp, qs,max, Kss, Kis, Pis, Pms). Based on the assumptions
proposed by Boonmee et al. (2003), the number of parameters in this model is
slightly reduced (to 12). It is assumed that Kss = Ksp and Kis = Kip (FA9); Pis =
Pip and Pms = Pmp (implicit in FA10). This means that substrate uptake and lactate
production are affected in the same way by substrate and product concentrations.

5.3.3.2 Kinetic model structure modification

The motivation to modify the kinetic model structure lies in how the no biomass
viability loss assumption is handled in the reported model (F12). The assumption
states that when the maximum growth inhibiting lactate concentration (Pmx) is
reached, the biomass concentration remains constant with no viability loss or cell
lysis.

It can be seen in the Eq. 5.3, that when the product concentration is higher than
Pmx the product inhibition term becomes negative. From a mathematical point of
view, it means that the growth rate is negative. In other words, the model predicts
biomass death. This contradicts the initial assumption of no viability loss. Another
inconsistency can be seen when the product concentration is lower than Pix, since the
product inhibition term is larger than 1. Under that condition, the model predicts
that the biomass growth is enhanced by the presence of the product. That scenario
should be supported by experimental evidence. In order to avoid the above listed
situations, the growth rate must be saturated. It can be achieved using constraints
in the product inhibition term which must be between zero and one. However,
using a simple saturation function for the inhibition term is a potential problem for
gradient based calculations, such as the parameter estimation procedure.

Our contribution lies in modifying the lactate inhibition functionality. The ba-
sic concept is preserved for the inhibition term, but the function describing it is
substituted by a normalized Boltzmann two parameter sigmoid function. Boltz-
mann sigmoid functions are interesting since they are continuous and monotonically
increasing/decreasing between 2 defined boundaries, therefore they have smooth
derivatives. These characteristics make them useful in neural networks training and
gradient based calculations (Baughman and Liu, 1995; Rutledge and Steward, 2008).
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The proposed growth model is:

qx = µmax

(
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) (

Kix

Kix + Cs

)

⎛

⎝1 − 1

1 + exp
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)

⎞

⎠ (5.6)

Analogously, the substrate uptake is:
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⎞
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The lactate production rate is given by the Luedeking-Piret model. When the
product inhibition is low, the dominant lactic acid production rate has shown to be
growth associated. However, at high lactate concentrations the lactic acid produc-
tion rate follows a non growth associated pattern (Luedeking and Piret, 1959).

qp = αqx + qp,max

(

Cs

Kps + Cs

) (

Kip

Kip + Cs

)

⎛

⎝1 − 1

1 + exp
(

CL,1/2p−CL

kp

)

⎞

⎠ (5.8)

Based on the assumptions proposed by Boonmee et al. (2003), the number of
parameters in this model may be slightly reduced. It is assumed that Kss = Kps

and Kis = Kip (FA9), CL,1/2s = CL,1/2p and ks = kp (FA10). The number of
parameters to be regressed is reduced from 16 to 12, analogously to the reported
model.

A limitation for the kinetic model is how to define the total protein production
rate. The hypothetical protein species (HP and P−) represent a wide range of com-
ponents contained in the cultivation broth from moderate molecular weight proteins
to colloidal material, that could induce a pH buffer effect which is not associated to
lactic acid dissociation. Due to the lack of knowledge of the source and nature of
such components, it is assumed that the total protein production rate compensates
for the protein which is removed/diluted in the reactor. As consequence, the total
protein concentration in the fermenter is constant (FA8). Notice, that the ratio
between dissociated and undissociated form of the protein still is a function of the
fermenter pH.

5.4 Methodology for kinetic parameter estima-

tion

Once the model structure is defined, a methodology is employed to estimate the
kinetic parameters in the unstructured model. The parameters to be estimated
are allocated in the parameter vector θ. At this stage the system identification
problem is to estimate θ, evaluate the quality of estimates and confront the model
to extra experimental information. For those purposes, the available experimental
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data must be divided into 2 sets, one for parameter identification and the second
for model validation. The purpose of the model validation is to ensure that the
process noise is not modeled, e.g. through model over parametrization. That is
investigated through a residual analysis test (Ljung, 1999). Another issue is to ensure
the identifiability of the model parameters, which is investigated using correlation
and sensitivity analysis.

The first step is to obtain initial guesses for the parameters. Secondly, the model
parameters are regressed using a parameter estimation procedure. Thirdly, the
model is falsified or unfalsified employing a statistical analysis. If the model is
falsified, a sensitivity analysis is performed to propose a way to unfalsify the model
given the existing experimental data.

5.4.1 Initial parameter guesses

In order to regress the model parameters through an optimization procedure, ini-
tial guesses are required. Those values can be obtained from (based on the ideas
presented by Lei (2001)):

• Literature review to find approximate values for the kinetic parameters.

• Preliminary calculations using experimental data.

• Rough guesses based in the model structure and some experimental evidence.

If the model complexity is high, probably a manual tuning of the parameters
is required to ensure convergence to a physiologically reasonable minimum. This
tuning is based on a prior knowledge of the system.

5.4.2 Parameter regression

During a parameter estimation procedure, the model’s ability to describe experi-
mental data is exploited. A suitable model is able to reproduce the observed data
with a small prediction error. In other words, the parameter estimation process
must compute a set of parameters such as the prediction errors become as small as
possible. This guiding principle can be stated as an optimization problem. Usually,
the least-squared criterion is employed as shown in Eq. 5.9.

minθF =
L

∑

l=1

Wl

Il
∑

i=1

w2
li

Nli
∑

n=1

(ylin − ȳlin)2 (5.9)

where L is the number of different experiments, Il the number of different mea-
surements in the l’th experiment and Nli is the number of data points for the i’th
measurement in the l’th experiment. F is the sum of the squared residuals, y are
the experimental data while ȳ are the model prediction. Wl and wli are weights.
When the vector θ contains many parameters, due to the stochastic nature of data
it will not be possible to estimate the parameters accurately. In addition, there may
be parameters about which data does not have any information, therefore, there
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are advantages to force those parameters towards a fixed value. This is achieved by
adding a regularization term in the objective function as follows (Ljung, 1999; Lei,
2001).

minθF =
L

∑

l=1

Wl

Il
∑

i=1

w2
il

Nli
∑

n=1

(ylin − ȳlin)2 + Wreg

np
∑

j=1

λj

(

θin − θ

θin

)2

(5.10)

where np is the number of parameters and θin is the initial value of the parameter
vector. Wreg and λj are weights. During the solution of the regularized optimization,
the model parameters that have a small influence on the objective function, given
the available data, will be affected the most by the regularization term. Another
advantage of the regularization term is when the Hessian of the least-squared part is
ill-conditioned. In that case, the minimization problem will be ill-conditioned. By
adding regularization, the penalty λI is added to the Hessian matrix and makes it
better conditioned (Ljung, 1999).

5.4.3 Model falsification or unfalsification

After the best parameter vector is obtained, it is important to evaluate the quality
of the model prediction. A number of tools are available to estimate the parameter
significance and correlation between them based on a residuals analysis. Correla-
tion between parameters indicates that the data contains insufficient information
to estimate the model parameters uniquely. This analysis can be performed on the
estimation or validation data set. The same conclusion can be obtained from a test
for whiteness of cross-validation residuals, but it must be necessarily performed on
the validation data set (Ljung, 1999). In that case, the model is said to be falsified
with respect to the available information. Thus, the model structure should be re-
considered, further experiments performed or the parameter set should be reduced
to a subset that can be estimated from the available data. In case the model is not
falsified through the correlation analysis, the modeling cycle is terminated. Notice
that the methods employed in this work employ estimation data sets and not cross-
validation data, therefore the model can only be falsified. In order to unfalsify the
model, new data are required to perform the residual analysis test.

5.4.3.1 Parameters confidence interval

The covariance matrix of the parameters estimators can be approximated by Eq.
5.11 (Seber and Wild, 2003).

COV (θ) =
1

Wl

(

F (θ̂)

m − np

)

H−1 (5.11)

where F (θ̂) is the objective function evaluated at the optimum solution θ̂, m is the
number of observations, np corresponds to the number of parameters and H is the
parameter Hessian. The Hessian is usually approximated using the Jacobian, which
is the sensitivity of the model outputs ȳ to the parameters θ (H = JT J) (Nocedal
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and Wright, 1999). Based on the covariance matrix, the confidence intervals of the
parameters can be estimated using Eq. 5.12.

∆θ = θs ±
√

diag(COV (θ)) ×
(

t(m − np, αs/2)
)

(5.12)

where diag(COV (θ)) represents the diagonal elements of the covariance matrix and
t(m−np, αs/2) is the t-distribution value corresponding to αs/2 percentile for m−np

degrees of freedom.

5.4.4 Sensitivity analysis

In order to obtain an identifiable parameters set, two conditions must be fulfilled.
The available experimental data must be sensitive to individual changes in each
parameter and the parameters must be uncorrelated. The first condition may be
addressed by an average sensitivity measure δmsqr

j calculated for every parameter
θj. This sensitivity measure assesses the average individual parameter significance.
The significance of individual parameters is important to investigate the structure
of the model. In principle, insignificant parameters must be eliminated since their
presence indicates that the model is overly complex (Kristensen, 2003). The absolute
sensitivity matrix S is built on the model output sensitivity yi to each parameter θj

around the optimal solution:

sij =
dyi

dθj

∣

∣

∣

∣

∣

θ̂

(5.13)

In a dimensionless form:

snd
ij =

∆θj

sci

dyi

dθj

(5.14)

where ∆θj is an a priori measure of the range of θj and sci is a scale factor with the
same dimension as the corresponding yi observation. The dimensionless form of the
sensitivity accounts for the different scales of the model outputs and parameters. For
this analysis, it is very important to have an appropriate selection of the scale factors
since the results are highly influenced thereby. The average sensitivity measure is
quantified using the quadratic mean of the dimensionless sensitivity factors through
Eq. 5.15.

δmsqr
j =

√

√

√

√

1

m

m
∑

i=1

(snd
ij )2 (5.15)

The second condition is quantified employing the so called collinearity index, γK ,
which is calculated for a parameter subset K. K is an index given to a specific
combination of parameters. According to the number of parameters in the subset,
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the combinatorial is calculated as the k-combination C
np

k , k ∈ {2, 3, ..., np}. The
collinearity index measures the degree of linear dependence between the columns of
a submatrix S̃K of the normalized sensitivity matrix (S̃), the latest developed using
Eq. 5.16 (Brun et al., 2001). S̃K is an m × k submatrix containing the columns
that correspond to parameters in the index K. The collinearity index equals one if
the columns are orthogonal, meaning they are linearly independent. An increasing
linear dependency is reflected in an increasing collinearity index.

s̃ij =
snd

ij
∥

∥snd
j

∥

∥

(5.16)

where
∥

∥snd
j

∥

∥ is the Euclidean norm of the jth column of the dimensionless sensitivity
matrix. The collinearity index is defined as:

γK =
1√
λK

(5.17)

where λK is the smallest eigenvalue of the product S̃K
T
S̃K . If the columns in the

submatrix S̃K are dependent, a change in the model output due to a small change
in θj can be compensated by a change in other parameters in parameter subset
K. It has been observed empirically that collinearity indexes larger than 15, the
subset is poorly identifiable. An interesting characteristic of this measure is that it is
independent of ∆θj due to the normalization, making more general the interpretation
of the results (Brun et al., 2001).

5.5 Results and discussion

Our main objective is to show how the proposed kinetic structure can satisfactorily
reproduce experimental data from the literature. The experimental data obtained by
Boonmee et al. (2003) are used to re-estimate the model parameters of the proposed
kinetic structure. Therefore, a reasonable model is obtained which is suitable for
the integrated system analysis.

5.5.1 Experimental data

Boonmee et al. (2003) performed a series of batch and continuous fermentations
using Lactococcus lactis NZ133. The cultivations were carried out in a one liter
Quickfit fermenter with 400 ml working volume. The experiments took place at
30◦C. The pH was controlled at 6.5 by adding 5M NaOH. The series of batch and
continuous fermentations used a modified M17 medium with 20, 40, 60, 80 and 100
g/l of initial lactose. In Boonmee et al. (2003), the batch experiments were used for
the model parameters estimation, while the continuous culture data was employed
to evaluate the model quality. This strategy may be questioned since very different
dynamics take place in batch versus continuous operation. When the model quality
is assessed using the continuous fermentation data, only the low frequency part of
the model is evaluated.

111



Chapter 5. Bioreactor

From the published simulation results, a reasonable qualitative agreement was
found. Additionally, the estimated parameters values show significant similarities
with values estimated for other microorganisms. However, no statistical analysis
was performed.

5.5.2 Product inhibition term

When a non conventional black box model is proposed to substitute an existing
unstructured function, it is relevant to reveal the meaning of the model parameters
and the connection with the previous model. It can be shown analytically that the
term CL,1/2 (in Eqs. 5.6, 5.7 and 5.8) corresponds to the product concentration at
the inflexion point of the Boltzmann function. Besides, the constant k is related to
the inhibition function (IT ) slope evaluated at the inflexion point (CL,1/2):

k = −
(

4
dIT

dCL

∣

∣

∣

CL,1/2

)

−1

(5.18)

Using the saturated kinetic model employed by Boonmee et al. (2003) (Eqs. 5.3
- 5.5), the product inhibition term for biomass and substrate were plotted as a
function of the product concentration. This calculation is performed in order to
evaluate if the proposed model structure can follow the saturated inhibition term
proposed in the literature.

Figure 5.2: Saturated product inhibition term (solid lines) according to Boonmee et al.

(2003) and the regressed Boltzmann sigmoid functions (dashed lines), for biomass
and lactose/lactate product inhibition

From these data, the parameters required by the Boltzmann inhibition function
were regressed. The methodology used for parameter estimation is a numerical
method for large scale optimization, this algorithm is a subspace trust region method
based on the interior reflective Newton method for non linear minimization subject
to bounds (Coleman and Li, 1994), available in Matlab 2007a using the function
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“lqscurvefit”(Mathworks, 2006). The objective function is the sum of the squared
residuals according to Eq. 5.9, using Wl=1/2 and wli=1.

The estimated parameters are depicted in Table 5.1 and the function fitting is
depicted in Fig. 5.2. It can be seen in the figure how the s-shaped threshold function
smoothly adjusts to the saturated product inhibition term. In general the results
satisfactorily describe the location of the inhibition band, the largest differences are
evidenced in the biomass model at low product concentrations.

Table 5.1: Estimated parameters for the Boltzmann inhibition term and the equivalent
in the reported model (Boonmee et al., 2003). The CL,1/2 value in the literature
column is estimated as the average value of Pi and Pm

Parameter Estimated Literature
CL,1/2x 25.54 25.64
CL,1/2s 71.30 71.30
kx 9.37 -
ks 9.13 -

From the results can be seen that the inflexion point of the Boltzmann function
(CL,1/2) can be considered as the average value of Pi and Pm for both biomass and
product kinetics (see Table 5.1). The results also indicate that there are small
differences between the k values in the rate expressions for biomass and substrate.
For that reason, k can be considered constant in the three reaction rates, i.e. kx ≈
ks = kp = k (Eqs. 5.6 - 5.8). Thus, the number of parameters in the proposed
model structure is reduced further lower than in the published model, being at the
end eleven. The product inhibition affects the biomass growth and substrate uptake
at the same rate but at different product concentration. Differences in the inflexion
point of the Boltzmann functions can be explained by the low biosynthetic ability
of the lactic acid bacteria. Therefore the substrate uptake is usually considered
decoupled of the biomass growth (Stephanopoulos et al., 1998).

5.5.3 Initial parameter guesses

A reasonable set of initial conditions for the parameter estimation are the regressed
values presented in Boonmee et al. (2003). The model structure and parameter
interpretation are discussed in the paper.

5.5.4 Model parameter estimation

The initial purpose was to use the experimental data obtained by Boonmee et al.
(2003) and then re-estimate the model parameters for the proposed model structure.
Therefore, it is reasonable to use only information from the batch experiments for
parameter estimation, as was done in the referred paper.

The batch data sets were divided into two groups. The first group is used for
parameter estimation and the second to evaluate the model quality. The data sets
used initially for model parameters regression are batch experiments with initial
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substrate concentration of 20, 60 and 100 g/l of initial lactose. The kinetic model
is substituted in the mass balance equation (Eq. 5.1) and it is solved according
to the type of experimental data used for the parameter estimation, i.e. batch or
continuous fermentation. There is a total of eleven parameters: µmax, Ksx, Kix,
CL,1/2x, k, α, qp,max, Ksp, Kip, CL,1/2p, qs,max.

The model parameters are estimated by minimizing the sum of the squared resid-
uals employing again the interior reflective Newton method (Coleman and Li, 1994).
A modification is introduced into the residual objective function compared to the
method employed by Boonmee et al. (2003). The experimental data are normalized
using the maximum value for each concentration in each experiment, as consequence
all concentrations remain within zero and one. This is done through the weight vec-
tor wli in the objective function. The purpose of this modification is to compensate
for differences in orders of magnitude between the biomass, substrate and product
concentrations. Therefore, all substances have the same weight in the objective
function. The weight Wl = 1/2 as it is commonly used in the least squares method
(Nocedal and Wright, 1999).

Due to the large number of parameters plus the non linear behavior of the system,
it was expected to have a non convex optimization problem. In this investigation,
different distribution of the data set for regression and quality evaluation were tested,
combined with a grid of initial guesses close to the values reported by Boonmee et al.
(2003). The solution with minimum value of the objective function was selected. The
model regression on the experimental data is depicted in Fig. 5.3. The estimated
parameters are listed in Table 5.2. The model prediction using the validation data
set is shown in Fig. 5.4. From the figures, a qualitatively reasonably description of
the experimental data is seen.

Figure 5.3: Model regression (dashed lines) on experimental data for batch fermentations
(points). (•) 20 g/l lactose, (⋄) 60 g/l lactose and (△) 100 g/l lactose

114



5.5. Results and discussion

Figure 5.4: Model confrontation (dashed lines) with experimental data for batch fer-
mentations (points). (•) 40 g/l lactose, (△) 80 g/l lactose

Table 5.2: Estimated kinetic parameters for the proposed fermentation model

Parameter Estimated 95% CI Deviation Units
1 µmax 1.2471 0.1366 11 % 1/h
2 Ksx 6.315 0.0047 0.1% g/l
3 Kix 302.7832 151.1118 50% g/l
4 CL,1/2x 22.8693 5.1297 22% g/l
5 k 8.6147 1.9371 23% g/l
6 qs,max 6.7458 0.5049 7.5% g/g/h
7 Kss 4.6069 2.3052 50% g/l
8 Kis 145.1781 74.5589 51% g/l
9 CL,1/2s 63.3429 3.0572 5% g/l
10 qp,max 5.7108 0.2775 5% g/g/h
11 α 0.7493 0.9291 124% g/g

Despite the simulation results agreement, the considerable large number of param-
eters to estimate from the experimental data provides a motivation for estimating
the parameter set using the least squares method combined with the regularization
(see Eq. 5.10). However, no substantial improvements are obtained using regulariza-
tion and thus only the parameters calculated through the least squared optimization
are employed. The results using regularization are shown in Appendix D.
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5.5.5 Model falsification or unfalsification

The confidence intervals of the estimated parameters are shown in Table 5.2. Large
confidence intervals are provoked by significant correlation between the parameters.
From the correlation matrix (not shown) it was found that the pairs Ksx-Kix, CL,1/2x-
k, Kss-Kis and CL,1/2s-qp,max are highly correlated. Besides, there is significant
correlation between other parameter pairs. This situation is undesired, since a
parameter can take any value within the confidence interval and this unbalance is
compensated by appropriate change of the correlated parameters.

It must be stressed that this analysis is local, since the Jacobian is evaluated
around the optimal solution found by the parameter estimation procedure. It has
been noticed that the obtained optimal parameters depend on the initial parameter
guesses. This is an indication that the optimization problem is not convex and local
minima are obtained. A change in the initial guesses can potentially generate a
different solution and thus correlation matrix. From the above correlation analysis,
it is clear that all the parameters can not be estimated uniquely from the avail-
able experimental data, even though the model reproduces the validation data sets
satisfactorily. Therefore, the model with the full parameter set is falsified.

5.5.6 Sensitivity analysis

In order to have a fully identifiable parameter set, a reduction of the number of
parameters to be estimated is investigated using a sensitivity analysis. This is not a
straight forward task since it must be supported by an expert knowledge filter which
excludes parameters from the search space that can not be reasonable estimated from
the available data (Brun et al., 2002). However, this exclusion can be assisted by
the identifiability analysis.

As mentioned above, an important factor for these calculations is the selection of
the scale factors to transform the sensitivity matrix into a non dimensional form.
Previous studies have used different scale factors such as the standard deviation of
the inputs and outputs (Sin et al., 2009) or the mean value of the output (Brun
et al., 2002). In this investigation the scale factor of the output sci has been chosen
as the mean value of the output, depending of the i’th measurement and the within
the l’th experiment (according to the nomenclature used in Eq. 5.9). On the other
hand, the scale factor of the parameters ∆θj is the estimated value of the parame-

ter θ̂. Other scale factors than the presented here were investigated, the δmsqr
j has

shown to be very sensitive to these. The estimated average sensitivity measure is
depicted in Fig. 5.5. It can be seen that the model output is practically insensitive
to parameters such as µmax, Kix, qs,max and α. Besides, Kss and Kis have a small
contribution. While the model output is significantly sensitive to Ksx, CL,1/2x, k,
CL,1/2s and qp,max. The average sensitivity measure just confirms the results obtained
in the correlation analysis and regularized optimization, since only parameters with
significant influence on the output can be expected to be identified from the ex-
perimental data. However, the parameters with low sensitivity measure can not be
directly excluded from the parameter set due to the results highly dependent on the
selection of the scale factor.

The second part of the identifiability analysis is the estimation of the collinearity
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Figure 5.5: Relative average sensitivity measure of the output to each parameter num-
bered as in Table 5.2

index. The number of parameter combinations starts from 2 up to the number of
parameters np. The results are shown in Fig. 5.6. From the figure is not straightfor-
ward to distinguish the subsets that are qualified as potentially identifiable subsets
(the collinearity index is lower than the threshold γK <15). The number of the
identifiable parameter subsets according to the parameters is summarized in Table
5.3. For this calculation, there are 948(46.6%) parameter subsets of 2036 possible
combinations that can be identified. It is concluded that a maximally 8 parameters
can be estimated from the experimental data (see the last column of Table 5.3).

Figure 5.6: Collinearity index of each parameter combination in the set. The vertical
black lines separate the parameter subset by number of parameters within the subset.
Dashed line corresponds to the mean collinearity index in the subset with the same
number of parameters

117



Chapter 5. Bioreactor

Table 5.3: Total number and identifiable combinations according to the number of pa-
rameters considered. The percentage of the identifiable combinations according to
the number of parameters is depicted

Parameters
Total Identifiable Percentage

Combinations Combinations (%)
2 55 53 96.36
3 165 145 87.88
4 330 245 74.24
5 462 261 56.49
6 462 171 37.01
7 330 63 19.09
8 165 10 6.06
9 55 0 0
10 11 0 0
11 1 0 0

Total 2036 948 46.56

5.5.6.1 Parameter re-identification

It is intended to determine the number of parameters which may be reliably es-
timated from the available experimental data. In order to define an identifiable
subset, some of the parameters must be fixed using information from literature. An
alternative is to change the model structure. Both solutions were investigated.

Parameters for comparable unstructured growth models of lactic acid bacteria
were collected from different sources (Nielsen et al., 2003; Burgos-Rubio et al., 2000;
Cachon and Divès, 1993; Amrane and Prigent, 1994; Boonmee et al., 2003). Unfor-
tunately, the estimated parameters are very different since they depend on factors
such as the employed microorganism, fermentation conditions, substrate, the model
structure and parameter identification methodology. Initially, a modification of the
model structure was studied including a maintenance term into the substrate uptake
rate. No improvement of the results was obtained. Subsequently, different combi-
nations of fixed parameters were studied, especially highly correlated parameters.
The identifiability analysis is performed for each parameter subset. It was noticed
that reducing the size of the parameter set also affects the maximum number of
identifiable parameters and their correlation. This makes it non trivial to find an
identifiable parameter subset.

During this analysis the following insights were obtained: the correlation between
α and µmax was very high. This correlation could be decreased if the data from
the continuous cultivation are employed for the parameter estimation. The reason
might be that during batch experiments, growth rate changes along the experiment
as well as the product formation, which make more difficult to estimate µ and α
from the same batch data sets.

Additionally, if too many batch experiments are used for parameter estimation,
objective function will contain more data from the batch experiments that may
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Figure 5.7: Model regression (dashed lines) on experimental data for batch and steady
state continuous fermentations (points). (•) 60 g/l lactose, (△) 100 g/l lactose and
(⋄) steady state continuous fermentation

dominate the information contained in the continuous culture. This issue should be
dealt with using the weighting factors in the objective function. The weight factors
selection is tightly related to the modeling purpose. From the evaluated experiments
combination, the best fitting was obtained employing for parameter estimation the
continuous fermentation plus the batch experiments with 60 and 100 g/l of initial
substrate. A seven parameter set that is identifiable from the available data: µmax,
Kix, CL,1/2x, qs,max, CL,1/2s, qp,max and α.

The model fitting to the experimental data and model quality evaluation are de-
picted in Figs. 5.7 and 5.8. The estimated parameters and the fixed values are
depicted in Table 5.4. The qualitative agreement between the model prediction and
the experimental data remains comparing with the initial parameter estimation in
Figs. 5.3 and 5.4. The largest deviations during model regression are obtained for
lactate concentration at low dilution rates. For the model quality evaluation, there
are considerable differences in biomass and lactate concentrations for the batch using
80 g/l of initial lactose.

The statistical analysis of the best parameter set showed a substantial reduction of
the parameter correlation. This can be seen from the confidence intervals depicted
in Table 5.4. The maximum confidence interval for the complete parameter set
was calculated for α and it was with 124% larger than the parameter value. That
confidence interval was reduced to 35% after the model parameter reduction.

From the identifiability analysis of the set of seven estimated parameters, the
sensitivity measure is depicted in Fig. 5.9. It can be seen how for this parameter
set, the relative parameter significance is better distributed between the parameters
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Figure 5.8: Model confrontation (dashed lines) with experimental data for batch fer-
mentations (points). (•) 20 g/l lactose, (△) 40 g/l lactose and (⋄) 80 g/l lactose

than the initial estimated set (compare to Fig. 5.5). This means that the output is
actually sensitive to each of those parameters and thus they are might be identifiable
from the given experimental data.

Figure 5.9: Relative average sensitivity measure of the output to each parameter num-
bered as in Table 5.4

The collinearity index for the seven parameter subset is shown in Fig. 5.10. From
the collinearity index figure, it can be seen that the collinearity index is lower than
the linear dependency threshold (γK < 15) for all the possible parameter combi-
nations in the set. This indicates that all parameters in the set are identifiable.

120



5.5. Results and discussion

Table 5.4: Reduced set of estimated kinetic parameters for the proposed fermentation
model. Parameters without number were fixed during the parameter estimation
procedure

Parameter Estimated 95% CI Deviation Units
1 µmax 1.2212 0.1183 9.7 % 1/h
- Ksx 6.315 - -% g/l
2 Kix 299.9919 96.2399 32% g/l
3 CL,1/2x 23.9953 3.617 15% g/l
- k 7.8875 - -% g/l
4 qs,max 5.6659 1.2573 22% g/g/h
- Kss 4.6069 - -% g/l
- Kis 145.1781 - -% g/l
5 CL,1/2s 68.0736 2.7019 4% g/l
6 qp,max 4.0971 0.9177 22% g/g/h
7 α 2.5412 0.9056 35% g/g

The number of parameter combinations starting from 2 up to 7 parameters and the
number of identifiable subset are summarized in Table 5.5. There is a total of 120
parameter subsets (K) and all of them are identifiable.

Table 5.5: Total number and identifiable combinations according to the number of pa-
rameters considered. The percentage of the identifiable combinations according to
the number of parameters is depicted

Parameters
Total Identifiable Percentage

Combinations Combinations (%)
2 21 21 100
3 35 35 100
4 35 35 100
5 21 21 100
6 7 7 100
7 1 1 100

Total 120 120 100

The selection of any model structure implies a degree of approximation to the
actual phenomena involved in the modeled process and hence so the uncertainty of
the predictions. Despite the diverse sources of uncertainty, the concern was to avoid
an increase of structural uncertainty when the model proposed by Boonmee et al.
(2003) was modified.

It can be concluded from the presented analysis that despite the apparently good
quality of the model structure evaluated through the agreement between the full
model (eleven parameter set) and experimental data, the large number of parame-
ters is not identifiable from the available experimental data. Therefore, the model
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Figure 5.10: Collinearity index of each parameter combination in the set. The vertical
black lines separate the parameter subset by number of parameters within the subset.
Dashed line corresponds to the mean collinearity index in the subset with the same
number of parameters

structure may be appropriate to reproduce the experimental data but the model can
not be validated. The methods and tools employed in this contribution only allows
to falsify a model, thus to obtain a reasonable model. However, there is not enough
information to validate the model. In order to render the model parameters better
identifiable, new experiments must be performed. The information obtained from
the sensitivity analysis can be used to design new experiments.

Despite these concerns, the obtained model will be used for the further to investi-
gate the integrated system behavior.

5.5.7 Optimal continuous fermentation

The developed kinetic model is employed to estimate the optimal static lactate pro-
ductivity as a function of dilution rate and inlet substrate concentration during a
continuous fermentation. This calculation is performed since the lactate produc-
tivity without in situ product removal is the reference to evaluate the impact of
the fermenter and REED integration. The total lactate productivity is estimated
through the total lactate productivity function (Eq. 5.19).

PF = D (CHL + CL−) (5.19)

In the lactate productivity function, both dissociated and undissociated lactates
are accounted for. Since there are only 2 variables to optimize, the productivity
surface is estimated at steady state for a given set of input variables. In this way
we can have more information about the system that will be useful during the
processes integration. A grid of dilution rates and inlet substrate concentrations is
formed based on the experimental data for this fermentation (Boonmee et al., 2003).
For each combination of variables in the grid, the steady state productivity function
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is evaluated. The total lactate productivity and concentration are depicted in Figs.
5.11 and 5.12.

Figure 5.11: Total lactate productivity function for a continuous fermentation as func-
tion of inlet substrate concentration and dilution rate. The optimal productivity is
depicted

Figure 5.12: Total lactate concentration for a continuous fermentation

As expected, it is a convex surface where the best productivity is clearly visible.
The maximum total lactate productivity (PF = 0.0354 mol/l−1h−1) is found for
a dilution rate of D = 0.5688 h−1 and Cin

s = 64 g/l. This point corresponds to a
total lactate concentration of 224.03 mol/m3, which is an intermediate concentration
in the surface. Notice that the highest productivity is the best solution to the
problem but not the optimal. The reason is that this methodology evaluates only
the productivity function for each combination of input variables defined. However,
it is expected that the optimal solution is close the above value.
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5.6 Conclusions

An unstructured kinetic model is proposed for lactic acid fermentation, based on a
model in the literature (Boonmee et al., 2003). A modification is introduced in the
product inhibition term, where a constrained linear function has been substituted
by a normalized Boltzmann two parameter sigmoid representation. The model de-
scribes the substrate uptake, biomass growth and product generation rates. The
model includes the ion dissociation reactions and assumes perfect pH control of the
pH in the fermenter.

The full model parameters are regressed to describe Lactococcus lactis batch growth
on lactose as main carbon source with eleven parameters to be determined from ex-
perimental data. The model is able to satisfactorily reproduce the experimental
data. However, identifiability problems of the full set of parameters were encoun-
tered. Regularized optimization method was shortly investigated to overcome the
poor parameter identifiability, but not satisfactory results were obtained. Therefore,
reduction of the parameter set was used in order to decrease the correlation between
parameters. Sensitivity based metrics and an identifiability analysis were employed
to assist the selection of an appropriate parameter subset, where all parameters
could be identified from the available experimental data. As a result, a subset of
7 parameters was identifiable. Using the validation data set, it was evidenced that
the quality of the model fitting basically remains.

However, the reliability of the developed model is rather limited, since several
parameters could not be reliably estimated from available data. It is noteworthy that
four parameters had to be given constant values during parameter estimation. To
further validate or improve the accuracy of this model, additional experimental work
is required. Preferably with experiments in regions where the measured variables
are more sensitive to the values of the unknown model parameters.

Due to an unstructured model is used, it is expected to have better model accuracy
in the low frequency range (steady state cultivation). Since it is assumed that
the internal composition of the cell is in balance with the cultivation composition,
situation which is referred to as balanced growth. In other words, when the anabolic
processes immediately utilize the energy generated by the catabolism. Dramatic and
very fast changes in the cultivation conditions can change the energetic state of the
cell or modify its genetic activity, thus the assumption of balanced growth does
not hold. Under those conditions, the unstructured model may have less predictive
power. Additional experiments are thus necessary to improve the model accuracy
at higher frequencies. However, models with much higher biochemical details might
be required at some point.

Despite these (rather significant) shortcomings, the developed model is used in the
further work to investigate the operational aspects of integrating the bioreactor and
the REED module.

5.7 Nomenclature

C Concentration (g l−1)
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CI Confidence interval
CL,i Threshold product concentration (g l−1)
CL,m Total inhibiting product concentration (g l−1)
CL,1/2 Average inhibiting product concentration (g l−1)
C

np

k k-combinatorial with np parameters
COV Covariance matrix
D Dilution rate (h−1)
F Residuals objective function (-)
I Number of measurements in experiment l’th
IT Inhibition term
H Hessian
J Jacobian
k Product inhibition kinetic parameter (g l−1)
k Number of parameters in a subset
K Subset
KS Limiting substrate concentration (g l−1)
Ki Inhibitory substrate concentration (g l−1)
L Number of experiments
m Number of observations
Nli Number of data points in measurement i’th in experiment l’th
np Number of parameters
p Product concentration (g l−1)
PF Productivity function (mol l−1 h−1 )
Pi Threshold product concentration (g l−1)
Pm Total inhibiting product concentration (g l−1)
q Recirculation flow rate (l h−1)
qk Reaction rate (biological) (g l−1 h−1)
REED Reverse Electro-Enhanced Dialysis
Rk Total reaction rate of k (g l−1 h−1)
s Element in the sensitivity matrix
s Substrate concentration (g l−1)
s̃ Element in the normalized sensitivity matrix
S Sensitivity matrix

S̃ Normalized sensitivity matrix

S̃K Normalized sensitivity submatrix
sc Scale factor
t Time (s)
t t-distribution
V Volume (l)
Wl Weight
wli Weight
Wreg Weight
x Biomass concentration (g l−1)
y Experimental data
ȳ Predicted values
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Greek letters

αs Percentile for t-distribution
δmsqr
j Average sensitivity measure

µ Specific growth rate (g l−1 h−1)
υ Flow rates in the fermenter (l h−1)
θ Parameter vector

θ̂ Optimal parameter vector
α Growth associated constant (g g−1)
∆θ Scale factor
γK Collinearity index

λK Minimum eigenvalue of S̃T
KS̃K

λj Weight

Subscripts

base Concentrated NaOH solution
feed Feed channel
HL Lactic acid
HP Undissociated protein
i Inhibiting
i Data point
j Parameter
k Specie
L− Lactate ion
max Maximum
Na+ Sodium ion
OH− Hydroxide ion
p Product
P− Dissociated protein
prod Product stream
s Substrate
tot Total
x Biomass

Superscripts

in Inlet
in Initial
nd Non dimensional
rec Recirculation
T Transpose
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6

Analysis and design of a pH
control system of Reverse
Electro-Enhanced Dialysis

6.1 Abstract

A bioreactor integrated with an electrically driven membrane separation process (Re-
verse Electro-Enhanced Dialysis - REED) is under investigation as potential technol-
ogy for intensifying lactic acid bioproduction. In this contribution the pH regulation
issue in the periodically operated REED module is investigated. A methodology for
goal driven control system development is adjust to easily handle the dynamic sys-
tem. A sensitivity analysis is used as criterion for the conceptual design of the
control structure. The analysis leads to a periodic input-resetting control structure.
The system controls pH using the imposed current density and resets the latest em-
ploying the hydroxide inlet concentration to the dialysate channel. The proposed
structure is implemented and evaluated using a set point tracking test. The perfor-
mance of the control structure is satisfactory achieving a desired pH at the outlet of
the feed channel in REED from period to period and resetting the current density.

6.2 Introduction

An integrated bioreactor coupled with electrically driven membrane separation pro-
cesses (Reverse Electro-Enhanced Dialysis - REED and Electrodialysis with Bipolar
membranes - EDBM) has been recently proposed as a method for in situ lactate
removal from the fermentation broth (Garde, 2002; Rype, 2003). The fermentation
and first extraction stage are depicted in Fig. 6.1 (Rype, 2003). The novelty of
the process is the innovative electro-membrane separation process which selectively
extracts the lactate and simultaneously in principle facilitates the pH control in the
fermenter. This is possible since the lactate ions are exchanged by hydroxide ions
through the anion exchange membranes (Strathmann, 2004). In addition, the ad-
verse influence of the membrane fouling is diminished by periodically reversing the
polarity of the electrical field, ensuring longer operation compared to other contin-
uously operated membrane based separations (Rype, 2003).

A model based approach has been employed to investigate the operating window
of the REED process under Donnan Dialysis (Prado-Rubio et al., 2010b), Electro-
Enhanced Dialysis (Prado-Rubio et al., 2011b) and Reverse Electro-Enhanced Dial-
ysis (Prado-Rubio et al., 2011a). Details of the system operation and model are
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Chapter 6. pH control structure design for REED

Figure 6.1: Sketch of the integrated bioreactor with the REED module for a batch/fed-
batch/continuous fermentation (adjusted from (Rype, 2003))

described in those contributions. In order to facilitate integration of the bioreactor
and membrane separation process models, a systematic procedure for control sys-
tem design at the regulatory layer is employed to the periodically operated REED
module. The objective of this contribution is then the design and implementation
of a pH control structure based on a systematic but non trivial sensitivity analysis
for the periodically operated separation process.

Early discussions about control structure design and its impact on industrial pro-
cesses has been given by Foss (1973); Morari et al. (1980); Morari (1982); Stephano-
poulos (1983, 1989). In a simple manner, control structure design refers to which
variables should be measured, which inputs should be manipulated and which links
should be made between the two sets (Foss, 1973). Therefore, this analysis involves
all the structural decisions that lead to the selection of controlled variables, measure-
ments, manipulated variables, control configuration and controller type according
to an operational goal. In addition, the decomposition of the overall problem into
smaller subproblems (Larsson and Skogestad, 2000; Skogestad, 2004). The control
structure design involves a number of tasks that ideally are performed sequentially
through the so called “top-down” analysis. The controllers implementation and their
performance are evaluated using the “bottom-up” design.

This chapter is structured as follows. First, a methodology is described for con-
trol system development for the REED module as a subsystem of the integrated
process. The pH control subgoal of the REED module is addressed and the limi-
tations within the framework discussed. Afterwards, a brief overview of the REED
model is provided and the pH model is highlighted. A sensitivity based criterion
is introduced to assist the top-down analysis during the control structure design.
The pH behavior is investigated as a function of the potential manipulated variables
and the sensitivity analysis is performed. A control structure is proposed to exploit
the pH sensitivity towards the potential manipulated variables and fulfill the input
constraints. The control structure is implemented and its performance evaluated.
Finally, the conclusions are drawn.
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6.3. Methodology for designing a monitoring system

6.3 Methodology for designing a monitoring sys-

tem

The control system in a process is structured in different hierarchically organized
layers, these layers are interconnected and the upper layers compute information
required as inputs to lower layers. The control structure can be divided into two
sections, the upper section corresponds to optimization layer and lower level is the
control layer. The control layer can be divided into two subsections, the supervisory
and regulatory layers. The structure is illustrated in Fig. 6.2 (Skogestad, 2000,
2004; Jørgensen, 2006).

Figure 6.2: Hierarchical structure for control design (adapted from (Skogestad, 2000))

The principal parts of the hierarchical structure for control design are (from the
bottom to the top) (Skogestad, 2000, 2004):

- Regulatory layer: the main purposes of this control layer are stabilization and
local disturbance rejection. In this stage, some variables are stabilized using
low complexity controllers, like single input - single output PI control, to avoid
long control loops.

- Supervisory layer: the main aim is to keep the primary controlled outputs at
their set points. Multivariable controllers may be required at this stage.

- Optimization: the objective is to calculate the optimal set points for given
product specifications based on market conditions. The optimization proce-
dure can be executed off line or in real time (RTO). The real time optimization
is costly and requires (at least) a steady state model that should be contin-
uously updated. The solution of the optimization problem consists in the
maximization of a productivity function. This function is used to quantify the
plant performance.
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In the literature, a methodology based on the analysis of the operational de-
grees of freedom is proposed to develop monitoring systems (Skogestad, 2000, 2004;
Jørgensen, 2006). However, existing guidelines for the conceptual control structure
design of a goal driven control system needs extension. For instance, in the actual
case here where the selection of manipulated variables is not evident or existing tools
are inappropriate for a periodically operated process.

The herein employed methodology is divided into 3 main parts: Goal definition,
Top-down analysis and Bottom-up design.

6.3.1 Goal definition

The starting point of the control structure design procedure is to define the primary
plant operating goal.

Interesting industrially relevant primary objective functions for the process are:
lactate productivity as potential feedstock for the production of the biodegradable
Poly-Lactic Acid (PLA), probiotic culture productivity (higher biomass activity) or
extracellular protein productivity based on genetically modified lactic acid bacteria.
To maximize these productivities, an important subgoal is to to reveal how the
REED process can facilitate pH control in the fermenter. This is selected as a
main subgoal and further investigated in this contribution. To control pH at the
outlet of the REED module is important because it is a measure of the amount of
lactate which is separated, since the lactate flux towards the dialysate channel is
almost identical to the hydroxide flux towards the feed channel. This equality is due
to the exchange-diffusion mechanism and Donnan exclusion in the anion exchange
membranes (Prado-Rubio et al., 2011a).

The next step in the methodology analyses how the available degrees of freedom
may be used to provide the desired functionality to satisfy the primary operating
goal, or in this case the pH control.

6.3.2 Top-down analysis

The operational degrees of freedom (DOF) for the system are determined (details
shown in Appendix C). The DOF that can ensure that the goals and subgoals can be
achieved become actuator variables and define the axes of the operating window for
the process. The remaining degrees of freedom are considered as disturbances. The
measurements provide information concerning goal/subgoal achievements through
key performance indexes. Revealing the coupling between monitored variables and
key performance indexes requires a prior knowledge of the system. Key performance
indexes can be classified as productivity achievement, regulatory performance, yield
achievement and quality achievement.

In linear systems, the selection of the manipulated variables according to a specific
goal can be handled in a relatively simple way based on the system understanding
and guidelines, e.g. large and fast effects on the controlled variables are desired, cor-
responding to a large steady state gain and relatively small time constants. Method-
ologies as Bristol’s Relative Gain Array (RGA) and Singular Value Analysis (SVA)
have been proposed in literature to screen subsets of possible pairing of manipu-
lated variables and controlled variables (Skogestad and Postlethwaite, 2004; Seborg
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et al., 2004). However for this non squared periodically operated system, the ma-
nipulated/controlled variables pairing is investigated in more detail using a dynamic
analysis. A sensitivity based index is defined to quantify the mentioned guidelines.

Performing dynamic simulations within the operating window provide useful in-
formation concerning: the shape of the operating surface for the system, the opera-
tional constraints, possible input or output multiplicities and operating conditions.
Additionally, the simulation results help refining the selection of the manipulated
variables in order to achieve the operational goal. As mentioned above, the pH
regulation structure design in the REED module is chosen to illustrate this control
structure design procedure.

The selected criterion to assist the selection of the manipulated variables according
to the operative goal, is the dynamic sensitivity of the controlled variable to changes
in the potential manipulated variables. Dynamic simulations of the periodically
operated system within the operating window are performed and the sensitivity
is evaluated. From the analysis of those results, a control configuration can be
proposed.

6.3.3 Bottom-up design

Once the control structure is designed, the controllers can be implemented. Usually
a multilevel hierarchical structure is employed. It is of particular interest to re-
veal the potential benefit of multivariable control over a fully decentralized control
structure. The performance of the implemented control structure is investigated
through dynamic simulations. Performance indexes such as overshoot and settling
time provide relevant indicators for the integrated plant monitoring.

6.4 pH control structure development

6.4.1 pH model in the REED module

Previously, a dynamic model was developed to describe simultaneous ion transport
across anion exchange membranes in a dialysis cell (Prado-Rubio et al., 2010b).
Investigations were performed for operation without imposing current density and
subsequently for operation applying an external potential gradient and operation
under current reversal conditions (Prado-Rubio et al., 2010b, 2011b,a). In those
contributions, the operating window of the device was explored. Here, we investi-
gate pH changes in the outlet of the REED module as a function of the potential
manipulated variables, therefore the pH model is highlighted. The mass balances
within the boundary layers and membranes in the REED model can be summarized
as follows. A mass balance for component k in phase p is:

∂Ck,p

∂t
+ ∇Jk,p − Rk = 0 (6.1)

The reaction term (Rk) is used to introduce acid dissociation into the model. The
flux Jk,p is estimated using the Nernst-Planck equation for ideal solutions, neglecting
convective transport (Strathmann, 2004).
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Jk,p = −Dk,p

(

∂Ck,p

∂x
+

zkFCk,p

RT

∂ψp

∂x

)

(6.2)

where Dk,p is the diffusion coefficient, zk the valence, F is the Faraday number, R
is the ideal gas constant, T is temperature and ψ is the electrical potential. The
potential gradient can be calculated using the assumption that all current Id is
carried by ions, through Faraday’s law (Eq. 6.3).

Id = F
∑

k

zkJk,p (6.3)

Donnan equilibrium is used to describe the concentration and potential disconti-
nuities at the membrane surfaces. The bulk channel models are approximated using
tanks in series model, where in each tank there is mass transport towards the mem-
brane and the dissociation reactions are present. Experimentally, it has been verified
that a pH buffer effect is induced by the presence of biomolecules in a fermentation
broth. When those components are modeled as highly charged macromolecules,
multiple dissociation reactions must be introduced. That increases the complexity
of the model unnecessarily. To deal with this situation, the proton acceptor groups
in the proteins are considered in terms of equivalents, i.e. the protein concentration
is represented as mol of acid equivalents per volume. Therefore, the dissociation of
a polyprotic species is simplified to a monoprotic acid reaction (Prado-Rubio et al.,
2010b). The protein species represent a wide range of components in the fermenta-
tion broth from low molecular weight proteins to colloidal material. The system of
reactions is therefore given by the following reversible reactions:

HL+OH−
k1−⇀↽−
k2

L−+H2O

HP+OH−
k3−⇀↽−
k4

P−+H2O

where the dissociation constants for those reactions (Kd) correspond to the acid
dissociation constant (Ka) divided by the ionic product of water (Kw). Using a
stoichiometric matrix, the dissociation reaction rates are systematically introduced
into the model. The reaction rate term Rk can be written as a vector using the the
reaction rates r1 and r2, plus the stoichiometric vectors α and β. The values for α
and β for each species are depicted in Table 6.1.

r1 = k2

[

L−
]

− k1 [HL]
[

OH−
]

(6.4)

r2 = k4

[

P−
]

− k3 [HP]
[

OH−
]

(6.5)

Rk = αkr1 + βkr2 (6.6)

The model consists of a system of multiregion partial differential equations. The
method of lines is employed to discretize the spatial x-dimension, resulting in a
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Table 6.1: Stoichiometric vectors for reactions r1 and r2

Specie Symbol αk βk

Lactate L− -1 0
Hydroxide OH− 1 1
Sodium Na+ 0 0
Protein ion P− 0 -1
Lactic acid HL 1 0
Undissociated Protein HP 0 1

system of differential and algebraic equations (DAEs). A feasible set of initial con-
ditions must be specified in order to ensure convergence. An initialization procedure
is developed in order to guarantee, at least in all evaluated scenarios, convergence
(Prado-Rubio et al., 2010b).

6.4.2 Operational Degrees of freedom

The potential manipulated variables to control hydroxide flux towards the REED
feed channel, and implicitly the lactate flux towards the dialysate channel, are:
the feed and dialysate input flow rates (qfeed and qdia), the polarity reversal time
(trev), the imposed current density (Id) and the inlet hydroxide concentration in the
dialysate channel (Cin

OH,dia ). A first screening is performed based on the knowledge
earned from previous investigations (Prado-Rubio et al., 2010b, 2011b,a). The first
variables discarded are the flow rates, the reason is the lack of information about
how the thickness of boundary layers changes as a function of the flow conditions.
Therefore, the model predictive power during flow rate changes is very limited. The
reversal time, or operation time before the polarity of the potential gradient is in-
versed, is not investigated since it is a design variable that is chosen by trading off
lactate recovery and the energy consumption subject to the power source constrains
(Prado-Rubio et al., 2011a). These choices leave the current density and the in-
let base concentration to the dialysate channel as potential manipulated variables,
restricting the operating window to two dimensions.

6.4.3 Selection of the manipulated variables

The question to answer at this stage is: what is the most appropriate manipulated
variable which can control pH at the outlet of the feed channel in REED? A model
based study is performed to answer that question.

In order to evaluate the pH changes during REED module operation, a simula-
tion scenario is proposed. Feed channel input concentrations to REED are assumed
constant, corresponding to hypothetical fermentation broth at constant pH. Simu-
lations are performed to estimate the pH at the end of the feed channel based on
changes of the potential manipulated variables around certain nominal values (∆Id

and ∆Cin
OH,dia). The dynamic dimensionless sensitivity (NS) of pH to the potential

manipulated variables is calculated through Eqs. 6.7 and 6.8.
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NSId
=

|Id|
∣

∣

∣

t0

pH
∣

∣

∣

t0

dpH(t)

dId

(6.7)

NSCb
=

Cin
OH,dia

∣

∣

∣

t0

pH
∣

∣

∣

t0

dpH(t)

dCin
OH,dia

(6.8)

where the derivatives are approximated using forward finite differences:

dpH(t)

dId

≈ pH(Id + ∆Id, t) − pH(Id, t)

∆Id

(6.9)

dpH(t)

dCin
OH,dia

≈
pH(Cin

OH,dia + ∆Cin
OH,dia, t) − pH(Cin

OH,dia, t)

∆Cin
OH,dia

(6.10)

Dimensionless sensitivity is selected in order to make a fair comparison between
both actuator variables. The scale values chosen are the initial conditions before the
disturbance is applied, i.e. at t0 = 0. The truncation error of the numerical approx-
imation of the derivatives is of the order of magnitude of the applied disturbance
(O (∆Id) or O

(

∆Cin
OH,dia

)

).
The simulation procedure to estimate the sensitivity around each operating point

involves three steps.

a. The dynamic model is initialized from a known operating point to stable periodic
operation. This point is function of Id and Cin

OH,dia. The other input variables
required to solve the model are fixed. The purpose of this step is to determine
the stationary operation at nominal values of the potential manipulated variables.
The last simulation point during the period is selected as the initial condition for
the following simulations.

b. The model is solved from the new initial conditions and the previous input vari-
ables. The simulation results correspond to stationary operation, and become
the reference to estimate the sensitivity. The target variable is either pH(Id, t)
or pH(Cin

OH,dia, t).

c. The model is solved again introducing the disturbance in the potential manip-
ulated variable at t = 0 using the initial conditions obtained in step (a). The
target variable is either pH(Id + ∆Id, t) or pH(Cin

OH,dia + ∆Cin
OH,dia, t).

6.5 Results and discussion

Initially, the system is simulated in open loop in order to understand the dynamic
pH behavior as function of the potential manipulated variables. Afterwards, the
sensitivity analysis is performed resulting in the control structure design. Finally,
PI controllers are implemented and their performance evaluated.
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6.5.1 Operating conditions

The ion physicochemical properties, module dimensions, flow conditions and mem-
brane properties required to solve the model are taken from previous work (Prado-
Rubio et al., 2010b, 2011a). For the all simulations performed in this contribution
the extra pH buffer, due to the presence of the ideal monoprotic protein (HP and
P−), is activated by using a relatively small concentration of total protein at the inlet
of the feed channel. The required inputs are depicted in Table 6.2. The membrane
water content, which defines the ion diffusion coefficients within the membrane, is
estimated according to the diffusion model presented by Prado-Rubio et al. (2010b).

Table 6.2: Operational parameters for REED operation

Parameter Value Units
qfeed 120 L/h
qdia 120 L/h

Cfbin
HL + Cfbin

L− 100 mol/m3

Cfbin
HP + Cfbin

P− 10 mol/m3

Cdbin
L− 0 mol/m3

pHin feed 5.75 -
trev 5 min

6.5.2 pH behavior during REED operation

The understanding of system dynamics is vital to assist the control system devel-
opment. During REED operation at constant values of the potential manipulated
variables (Id and Cin

OH,dia), the system is driven by the periodicity and strength of
the current density plus the hydroxide concentration gradient between channels. At
the beginning of each period current is imposed to the system, then after a half
period time the polarity of the imposed electrical potential is reversed. As a result,
a square wave function is obtained as depicted in Fig. 6.3, with a period time for the
current of 1200 s. The initial condition is static Donnan Dialysis recovery (Id=0)
and the amplitude on the step changes are defined by the desired current density.

The system dynamics has been investigated previously (Prado-Rubio et al., 2011a).
For illustration, the pH behavior at the outlet of the feed channel in REED is
computed during step changes of the potential manipulated variables.

Stationary REED operation at Id=100 A/m2 and Cin
OH,dia=50 mol/m3 is used as

initial condition. Step changes in current density to 200 A/m2 and hydroxide con-
centration to Cin

OH,dia=150 mol/m3 are applied separately. The results are shown in
Figs. 6.4 and 6.5.

The period to period dynamics is visible before periodic stationary operation is
achieved after a few cycles. In both scenarios, the cycles required to achieve station-
ary operation after the disturbances are basically the same. However, under other
operating conditions they may be different. After the polarity is reversed, there is
a steep pH reduction due to a temporal hydroxide flux inversion at the interface
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Figure 6.3: Representation of the squared wave function employed for the current density
with an strength of Id=100 A/m2. In this example the reversal time is 600 s

Figure 6.4: Feed channel pH behavior for trev=5 min and Cin
OH,dia=50 mol/m3. When

Id is changed from 100 A/m2 to 200 A/m2 at t=20 h. The highlighted points are
every half period time

between bulk channel and boundary layer. Transient fluxes inversion in this system
have been predicted previously (Prado-Rubio et al., 2011a). Due to the symmetry
of the unit, the pH behavior is not a function of the polarity of the electrical field
under stationary operation, but of the absolute current density. The last result is
very important from a control point of view, since the manipulated variable can
be the magnitude of the current density instead of the current magnitude plus the
polarity.

The half period pH response to the applied disturbances is characterized by a
different behavior, which is highlighted with red points in Figs. 6.4 and 6.5. The
half period system response to the step change in current density corresponds to the
mapping of an underdamped second order transfer function. On the other hand, the
pH response to the change in the hydroxide concentration in the dialysate channel
maps a first order transfer function.
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Figure 6.5: Feed channel pH behavior for trev=5 min and Id= 100 A/m2. When the
Cin

OH,dia is changed from 50 mol/m3 to 150 mol/m3 at t=20 h. The highlighted
points are every half period time

Previous work with this system revealed other relevant issues related to pH in the
REED module:

• Large pH changes in the REED feed channel have an adverse influence on the
biomass growth and activity.

• At low lactate concentrations, current saturation condition can be achieved
along the feed channel. This issue is relevant especially during a fedbacth
fermentation or the start up of a continuous cultivation (Prado-Rubio et al.,
2011b).

• Computationally speaking, large concentration gradients along the REED
channels are undesired, since several tanks in series must be used to model
the concentration profile along them (Prado-Rubio et al., 2010b). It implies a
substantial increase in the computational time.

6.5.3 Conceptual control structure design

The pH sensitivity functions are evaluated dynamically, however a comparison is
only performed when the derivative has been approximated at the same point in
time within subsequent periods. The chosen points are at the time just before
the polarity is reversed - highlighted in Figs. 6.4 and 6.5. Following the simulation
procedure described above, the sensitivity is investigated within a selected operating
window of the potential manipulated variables. The window size selection is based
on our present understanding of the REED process.

The operative window for current density is defined by Donnan Dialysis (Id=0)
and the current saturation condition. It is desired to operate the process at within
that window since the current utilization decreases after current saturation threshold
(Sonin and Grossman, 1972; Strathmann, 2004). The current saturation point is a
function of the ion bulk concentrations in both channels. In this investigation the
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total lactate concentration in at the feed channel does not significantly change as
a function of the potential manipulated variables. On the other hand, hydroxide
concentration is changing within a wider concentration range. For a feed solution
with 100 mol/m3 of total lactate, it has been predicted that the maximum operative
current density is not very sensitive to large changes in the hydroxide concentration
when the nominal value is higher than 50 mol/m3 (Prado-Rubio et al., 2011b).
Nevertheless, it drops dramatically for concentrations lower than the mentioned
threshold. The operative window for current density defines clearly the operational
constraints.

The maximum hydroxide concentration in the dialysate channel is defined by the
membrane resistance to the pH environment. Neosepta-AMH (produced by ASTOM
Corporation (Tokyo, Japan), earlier Tokuyama Soda Company, Inc.) has been used
in caustic environment using solutions up to 2M of sodium hydroxide. However,
we have estimated that static lactate and therefore hydroxide fluxes are not very
sensitive to the hydroxide concentration in the dialysate channel at high current
densities (Prado-Rubio et al., 2011b). Therefore, it is interesting to explore the pH
sensitivity at relatively low base concentrations.

The dimensionless pH sensitivity to disturbances in current density and hydroxide
inlet concentration to the dialysate channel are depicted in Figs. 6.6 and 6.7, respec-
tively. The disturbance is approximately 0.1% of the nominal value. Analogously to
the pH behaviour evidenced after the step disturbances, the dimensionless sensitivity
response is underdamped and overdamped after introducing disturbances in Id and
Cin

OH,dia, respectively. The settling time for both responses is comparable. During
the calculations a numerical issue raised in the simulations involving disturbances in
Cin

OH,dia. The sensitivity did not achieve a constant value at pH stationary operation
under current reversal conditions. This problem was significantly reduced by low-
ering the tolerance during the solution of the set of differential algebraic equations
(from 1x10−8 up to 1x10−11).

In order to compare the simulation results, the ratio between the two dimension-
less sensitivities was investigated at one point during the transient response -the
first middle point- and at stationary operation after the transient has settled. Dis-
turbances in the potential manipulated variables where evaluated around nominal
values of current density from 75 to 200 A/m2 and Cin

OH,dia of 50 and 150 mol/m3.
The results are shown in Fig. 6.8.

Fig. 6.8a shows that the stationary dimensionless sensitivity ratio increases almost
linearly as a function of the nominal current density where the disturbances are
applied. Differences between the pH sensitivity towards Id and Cin

OH,dia increase
at higher operative hydroxide concentrations. At low current densities, there are
no practical differences between the dimensionless sensitivities. At high nominal
current densities, the pH is 5 to 10 times more sensitive to Id than to Cin

OH,dia. The
results indicate that the stationary pH of the outlet of the REED channel could be
potentially controlled using either Id or Cin

OH,dia, especially at low nominal current
densities.

On the other hand, the dimensionless sensitivity ratio evaluated in the first middle
point carries more information which is relevant for the control structure design.
The sensitivity ratio is not increasing linearly with current density. This behavior
is introduced by the differences in the sensitivities responses as can be seen in Figs.
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Figure 6.6: Dynamic dimensionless feed channel pH sensitivity to current density at
every half period time for trev=5 min and Cin

OH,dia=150 mol/m3. The disturbances
are applied around the shown current densities

6.6 and 6.7. More importantly, larger differences are clear since the normalized
pH sensitivity is approx. 20 to 50 times higher for current density than for base
concentration changes (Fig. 6.8b).

A fast view to these results indicates that Id is the appropriate manipulated vari-
able to control the pH, since the sensitivity ratio is higher in both scenarios evalu-
ated. However, the current density constraints are an issue from both numerical and
an operative point of view. The numerical constraints come from the mathematical

Figure 6.7: Dynamic dimensionless feed channel pH sensitivity to Cin
OH,dia at every half

period time for trev=5 min and Cin
OH,dia=150 mol/m3. The disturbances are applied

around the shown current densities
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(a) Stationary (b) First middle point

Figure 6.8: Dimensionless feed channel pH sensitivity ratio of current density over base
concentration at the first middle point and stationary operation for trev=5 min

description of the equilibrium conditions at the membrane surface. By employing
Donnan equilibrium equation, convergence problems appear when the current den-
sity approaches saturation conditions (Prado-Rubio et al., 2011b). On the other
hand, at current saturation the current density would be insufficient to reject dis-
turbances. Therefore, in this specific application is interesting to exploit the fact
that Cin

OH,dia can facilitate the pH control and has larger operative window. This can
be done through an input-resetting control structure, which has some resemblance
to cascade control.

Cascade control structures have been employed in order to enhance the response of
a control loop by using an intermediate measurement and two feedback controllers
(Seborg et al., 2004). Due to the hierarchical arrangement of the controllers in the
cascade control structure, the feedback signals are interconnected but the imple-
mentation has the advantage of a decoupled design of the controllers (Skogestad
and Postlethwaite, 2004). In a cascade control structure, one manipulated variable
takes care of the fast control action and the second of the long term control. When
the extra measurement employed is an output, the design leads to a conventional
cascade control configuration. However if the extra measurement is an input, then
the so called input-resetting control implementation emerges (Faanes and Skoges-
tad, 1999). The input-resetting control configuration is a non-conventional control
structure where a fast controller regulates the controlled variable, while the slow
controller uses the extra input to drive the fast controller manipulated variable to a
desired value. This avoids saturation of the measured input, thus input constraints
can be handled. A special characteristic of this control structure is that if both
inputs have a positive effect in the output the gain of the slow controller must be
negative (Skogestad and Postlethwaite, 2004).

For pH regulation of the outlet of the REED module, the input reseting control
architecture enables a fast dynamic response using the current density as manipu-
lated variable. Additionally, manipulation of the inlet hydroxide concentration to
the dialysate channel resets the imposed current density to a desired value, thereby
avoiding current saturation conditions. The desired pH value is given by the reg-
ulation performance index, and the current density set point may be provided by
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a higher layer in the control system. The conceptual design of the cascade control
structure is depicted in Fig. 6.9.

Figure 6.9: Input-resetting control structure for pH control of the outlet of the REED
module

6.5.4 Control structure implementation

Once the control structure has been designed, the controllers implementation and
performance evaluation are performed. Discrete time Proportional-Integral con-
trollers are employed to build the periodic input-resetting control structure. The
controllers are discrete time since our sensitivity analysis was based on the peri-
odicity of the REED system. This choice implies that we can aim to control the
pH at the end of each period and not within the period. Taking advantage of the
vertical decomposition of the structure, the decoupled design of the two feedback
controllers facilitates the implementation. The Proportional-Integral controllers use
the following control law:

pk = p̄ + Kc

(

ek +
∆t

τi

j=1
∑

k

ej

)

(6.11)

where k is the actual sampling time, p is the controller output, p̄ is the nominal value
of the controller output, Kc is the controller gain, e is the error (see Fig. 6.9), ∆t is
the sampling time and τi is the integral time. The controllers are tuned using IMC
method based on an approximated continuous time transfer function. The transfer
function is obtained mapping system response at half period time after applying a
step disturbance in the manipulated variable (Seborg et al., 2004). If the sampling
time is relatively small compared to the process response, then the controller settings
obtained for a continuous controller can be employed by the discrete time controller.
This condition holds as long as ∆t/τi ≤ 0.1 (Isermann, 1989). When the condition is
not fulfilled, the discrete time control system must be modified since the zero-order
hold plus the sampler introduce an effective time delay in the system response. It has
been proposed to approximate the introduced time delay to one half of the sampling
period (∆t/2)(Franklin et al., 1997). Thus, the approximated time delay is added
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to the process time delay before tuning the controller. Since the controller settings
are based on an approximated system response, it is expected that the controller
tuning may be refined manually.

The pH response to a step change in the current density is approximated using a
second order transfer function. The controller is tuned using IMC expressions, and
the condition ∆t/τi ≤ 0.1 is not fulfilled. The half period time delay is introduced
and the controller settings updated. The fast control loop is closed and the slow
controller is tuned using the same approach. The current density response to a step
change in Cin

OH,dia follows a first order transfer function. In this case the condition
∆t/τi ≤ 0.1 is fulfilled and no correction is required. The final controller settings
are obtained by manual tuning. Those are depicted in Table. 6.3.

Table 6.3: Discrete input reseting controller settings

Controller Gain Integral time (s)

Fast controller 130 200
Slow controller -0.5 1000

The discrete time input-resetting controller performance is evaluated using a set
point tracking test. The controllers output are saturated in order to avoid numerical
problems. The minimum Cin

OH,dia is 50 mol/m3, since the limiting current density
dramatically falls at lower hydroxide concentration in the dialysate channel (Prado-
Rubio et al., 2011b). The minimum current density is zero, due to its sign is defined
by the reversal time. The maximum current density is the current saturation value
which is in the vicinity of 260 A/m2 (Prado-Rubio et al., 2011b). The initial condi-
tions are defined by stationary Donnan dialysis operation with Cin

OH,dia=150 mol/m3.
Under those conditions the pH at the outlet of the feed channel in REED equals
pH=6.074. At time t=0, the control loops are closed with pHset = 6.25 and Id,set=80
A/m2. The periodic input-resetting controller performance is depicted in Fig. 6.10.

Due to the positive step change in the desired pH set point, the fast controller
response increases the strength of the imposed current density. The initial conditions
are given by Donnan dialysis (Id=0 A/m2), thus it is expected that a higher current
density is required. The end period pH value at the outlet of the feed channel in
REED achieves the set point after 5 cycles.

By using one period as sampling time, the fast controller objective is to achieve
the pH target at the end of each period. However, the stationary pH behavior is a
function of the strength of the imposed electrical field and not of the current polarity.
As a consequence, when the end of the period pH set point is achieved implies that
the half period pH also reaches that desired point. This can be seen in the top plot
in Fig. 6.10, where the circles highlight the pH at the period time which clearly is
seen to achieve the stationary goal of the control system design, i.e zero set point
error. At the same time, the pH at half period time achieves the set point (shown
with triangles).

The slow controller aims to reset the value of the current density. It implies that
at the beginning the controller reduces the inlet hydroxide concentration in the
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Figure 6.10: Performance of the input-resetting control structure for a set point tracking
test when the initial conditions are Donnan dialysis operation. Solid lines represent
the dynamic response, (◦) corresponds to the value at period time and (△) corre-
sponds to the half period time. Dashed lines are the set points

dialysate channel in order to have a faster rise of the current density magnitude.
Afterwards, Cin

OH,dia slowly increase to compensate the Id overshoot obtained when
the desired pH is achieved. The current density strength settles after 12 cycles,
which is more than double the cycles required by the fast controller. In the second
plot of Fig. 6.10, the circles and triangles are employed every half period time to
show the convergence to the desired current density magnitude.

6.6 Conclusions

This contribution illustrates how to perform a quantitative systematic analysis,
which leads to select an appropriate combination of manipulated variables to sat-
isfy a specific control goal for a highly non linear and dynamic system, when the
selection is neither intuitive nor trivial. As case study, the pH control at the end of
the feed channel of the REED module is selected as subgoal. A quantitative defined
operating window was explored using a dynamic model derived from first princi-
ples. The model describes the simultaneous transport of multiple ions across anion
exchange membranes in a REED cell during lactate recovery from a fermentation
broth. The solution of the system of multiregion partial differential equations was
approximated numerically (Prado-Rubio et al., 2010b, 2011b,a).

Here, the pH model in the cultivation is highlighted including a pH buffer effect
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which was been experimentally evidenced (Møllerhøj, 2006). The dimensionless pH
sensitivity, towards Id and Cin

OH,dia, was used as the quantitative criterion. The sen-
sitivity was evaluated at specific points within the periodic shifting of the imposed
gradient polarity. The results show that pH can be controlled, during stationary
operation, by either of the manipulated variables; especially around low current
densities. However, pH has shown a considerably higher sensitivity towards cur-
rent density in the first middle period point after a step change in the actuator.
That behavior leads to propose that the dynamic pH response can be controlled by
manipulating the current density. Additionally, the base concentration in the inlet
of the dialysate channel can control the stationary response since the Id operating
window is much narrower than for Cin

OH,dia.
The control structure was implemented, tuned and its performance evaluated us-

ing a set point tacking test. The controller performance is satisfactory. It should be
stressed that the found controller settings strongly depend of the operating point.
The last is defined by the pH and Id set points that must be provided by a higher
layer in the hierarchical control structure. Therefore, a lost in the controller per-
formance must be compensated by a re-tuning. In practice, the actual controllers
tuning must clearly depend upon the specific location within the operating window.
This dependence follows directly from the large variation on the sensitivities within
the operating window as shown in Fig. 6.8.

6.7 Nomenclature

C Concentration (mol m−3)
D Diffusion coefficient (m2 s−1)
DD Donnan Dialysis
e Output error
EDD Electro-Enhanced Dialysis
F Faraday constant (C mol−1)
Id Current density (A m−2)
J Flux (mole m−2 s−1)
k Kinetic parameter (-)
Ka Acid dissociation constant (mol m−3)
Kc Controller gain
Kd Dissociation constant (mol m−3)
Kw Ionic product for water (mol2 m−6)
NS Dimensionless sensitivity
p Controller output
p Nominal controller output
q Flow rate (m3 s−1)
R Universal gas constant (J mol−1 K−1)
REED Reverse Electro-Enhanced Dialysis
Rk Total reaction rate of k (mol m−3 s−1)
ri Reaction rate i (mol m−3 s−1)
t Time (s)
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ts Settling time
T Absolute temperature (K)
trev Reversal time (s)
x Spatial direction (m)
zk Valence of k (-)

Greek letters

α Sign vector for r1 (-)
β Sign vector for r2 (-)
ψ Electrical potential (V)

(τdia = hdiaWL/qdia) (s)
τi Integral time

Subscripts

Cb Base concentration
dia Dialysate channel
feed Feed channel
HL Lactic acid
HP Undissociated protein
Id Current density
in Inlet
i Specie
k Specie
L− Lactate ion
Na+ Sodium ion
OH− Hydroxide ion
P− Dissociated protein
set Set point
t0 At time zero

Superscripts

dbin Dialysate bulk inlet
fbin Feed bulk inlet
in Inlet
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7

Integrated bioreactor and Reverse
Electro-Enhanced Dialysis system

7.1 Abstract

From a goal driven analysis for process design and control design, the role of the
individual units in the integrated system is defined as well as a sequential strategy
to design the integrated system based on the design constraints. The integration of
lactic acid fermentation and Reverse Electro-Enhanced Dialysis is investigated based
upon previously developed mathematical models. The degrees of freedom analysis
reveals the process integration requirements which implies additional model assump-
tions and mass balances. The conceptual analysis of the processes integration based
upon an existing design of the separation unit shows the potential need of an ad-
ditional pH controller in the fermenter. A Proportional-Integral (PI) controller is
implemented and tested for pH regulation. The complete control structure for the
integrated system consists of this PI controller in the fermenter plus an input re-
setting control structure in the REED module. The integrated system design and
operation is studied in two case studies: batch production of starter culture and the
continuous production of lactic acid. Substantial productivity improvements are
predicted in both cases using the integrated process, despite a not entirely satisfac-
tory control performance. The simulation results lead to propose challenges in the
design and control of the integrated membrane bioreactor system.

7.2 Introduction

Process design and process control design are still considered separated disciplines
which supplement the process synthesis. Process design and control system devel-
opment are traditionally performed sequentially despite they are tightly coupled.
First, the process is designed to achieve the design objectives, assuming that a con-
trol system can be designed to keep the process in the desired operating point. Once
the process is designed, the achievable system operability is investigated resulting
in the control structure design. The sequential approach may be inconvenient since
process control challenges may arise due to an inadequate or inflexible process de-
sign, which can lead, e.g. to dynamic constraint violations where feedback control
may not guarantee robust performance (Malcolm et al., 2007). As a consequence,
the control system would be unable to meet its design specifications. When pro-
cess design is evaluated sequentially to process control design it may lead to the
elimination of easily controlled designs which are not economically optimal.
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Due the interactions between process and control design decisions, there is a trend
towards the combining process design and operability considerations. As evidenced
by the increasing number of publications that address this issue. These method-
ologies may be classified into two types: methods which enable screening designs
for controllability and methods which integrate the design of the process and the
control system development (Lewin, 1999). In the first group, different process de-
signs can be compared and classified based on open and closed loop controlability
metrices such as relative gain array, condition number and disturbance condition
number (Bristol, 1966; Morari, 1983; Palazoglu and Arkun, 1986; Skogestad and
Morari, 1987). The second group is based on the simultaneous optimization of the
process and control design, often called integrated process design and control design
(IPDC methods) (Bahri et al., 1997; Bansal et al., 2000; Kookos and Perkins, 2001;
Malcolm et al., 2007; Patel et al., 2008; Ricardez-Sandoval et al., 2010; Hamid et al.,
2010). The objective has been to obtain a profitable and operable process as well
as the control structure through a systematic procedure. Therefore, controllability
and process design issues are resolved simultaneously. The main drawback in an
IPDC problem is that the application of these methods is constrained by the com-
putational resources available. Thus, the nature of the process might limit their
applicability.

The study of integrated systems involves even more challenges for the process
design and control. Despite process integration is becoming common in industry,
their design, behavior and operability are still fertile research areas. In simple
cascade processing, the knowledge on the independent units can be applied since
the units are linked sequentially (Luyben, 1993). The operability may not be a
problem when the manipulated variables in each unit are internal, and disturbances
will not propagate to other units in the plant. When single variable control loops
are present in the system, interaction between control loops can be a limitation.
However, if some controllers are faster than others, the interaction may not be a
problem. The challenging problems arise when the disturbances propagates through
the plant, thus conventional single variable local loops may be insufficient to control
inventories (Faanes and Skogestad, 1999).

Additional challenges are prevailing in recycle systems due to the positive material
and/or energy feedback. The dynamics and operational aspects of these integrated
processes have not been thoroughly investigated. Their dynamics are more complex
and may not be sufficiently well understood. Recycle systems can exhibit interesting
behaviors such as: high sensitivity, unexpected changes in the plant time constants
due to the integration, propagation and recirculation of disturbances, infeasibility
and state multiplicity (Recke and Jørgensen, 1999; Jacobsen, 1999; Pushpavanam
and Kienle, 2001; Seborg et al., 2004).

Research in integration of process and control design for integrated reactor-separa-
tion systems, has focused on coupled reactor and distillation columns using mainly
linear models (Luyben, 1993). The reactor is chosen as key unit since it is expected
that the separation section is efficient and robust. This can be achieved by assuming
good quality local control loops and overdesign of the separation unit (Kiss et al.,
2007). However in the particular case investigated in this contribution, an integrated
bioreactor and membrane separation process, both process dynamics are relevant.
The complexity of the interaction between these process units makes the integrated
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system very interesting to investigate.
The purpose of this chapter is to investigate the goal driven integrated process

design and operability to identify potential limitations. The chapter is structured
as follows: a strategy for goal driven process and operability design of the inte-
grated system is presented and analyzed. From that analysis, the required extra
considerations to integrate previously developed unit models are identified. These
requirements also include a PI controller to regulate the pH in the fermenter which
is implemented and its performance evaluated. The final control structure for the
integrated bioreactor and REED module is completed. The design and operability
of the integrated system is investigated using two case studies: the batch produc-
tion of a starter culture and the continuous production of lactic acid. Limitations in
the design and control of both processes are analyzed. Based on the results, some
research challenges are described. Finally, the conclusions are drawn.

7.3 Goal driven integrated process and control

design

The design of the integrated processes under investigation is challenging since it
is tightly coupled to the partially developed monitoring system design. A concep-
tual representation of the interactions between the process and operability design is
depicted in Fig. 7.1.

Figure 7.1: Conceptual sketch of the interaction between process design and control
system development within a goal driven framework

The overall production goal is broken down into a process design goal and an
operability goal. The design and operability goals are defined by the desired target
product and its production mode. For instance, if a production process requires
fedbatch operation, then the operational requirements are quite different from a
case where continuous operation is the most desired operation form. The process
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design and operability goals must of course be feasible and are interdependent. The
achievement of the goals result in the process design, a operating point or trajectory
and the means (i.e. control structure) to operate at that point or to follow the
trajectory.

From these goal definitions follow selection of the unit roles to fulfill the required
production goal and the identification of potential design constraints. At this point,
another interaction between process design and control goal definition arises. The
reason is the control subobjectives become the means to achieve the role of the
individual units in the integrated process. Additional control subobjectives may be
required, for local regulation and/or supervision purposes.

Subsequently follows the design of the unit(-s). For the operational design follows
first an analysis of available degrees of operational freedom, which is used to select
the actuators for controlling the operation to satisfy the operational goal. In ac-
cordance the process design must ensure sufficient power in the actuators to enable
coverage of the desired operating window for the process. It is interesting to evaluate
how the degrees of freedom of the individuals units are moved by the integration of
the two processes.

The IPDC problem can be formulated as an optimization problem where a perfor-
mance objective function in terms of design, control and cost is optimized subject to
constraints such as: process (dynamic and steady state) and conditional (process-
control specifications) (Hamid et al., 2010). In the present highly integrated process,
the complexity of the models, model validity constraints and potential infeasible
simulation scenarios of the integrated system are the main limitations to apply a
simultaneous process design and control design approach. Therefore, the solution of
the problem is attempted in a sequential manner but accounting for the conceptual
interaction between design and control of the integrated process. The formulation
of the two problems separately can provide relevant information for the appropriate
design of the integrated system.

Relevant processing objectives can be: continuous lactic acid production, biomass
production with higher activity (starter cultures for probiotics cultivations) or the
production of extracellular proteins using genetically modified bacteria. Those ob-
jectives define the overall production goal and indirectly the fermenter operation
mode, i.e. batch, fedbatch or continuous. If the target is lactic acid production as
commodity chemical, continuous processing is the clear option. On the other hand,
a batch or fedbatch fermentation is most appropriate for the production of starter
cultures or extracellular proteins (Boonmee et al., 2007).

In the next step, the design constrains have a large influence in the design strategy
of the integrated system. In this application, the main design constraints are pos-
sessed by the available model of the REED unit. The idea is to use the developed
model without compromising its validity. Additionally, the integrated process model
might not be solved without revealing how REED should be operated. Therefore,
the design strategy is to fix the membrane unit dimensions and then design the
fermenter in accordance with the goal of the integrated process.

According to this design strategy, the role of the REED module in the integrated
system is defining the fermenter operating volume. During REED operation, lactate
ions are dynamically exchanged by hydroxide ions. Therefore, REED can play two
different roles in the integrated system that leads to different designs: it can be
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designed to control the lactate concentration in the fermenter or to facilitate the
pH control in the fermenter. In an ideal scenario, when the REED is capable to
remove the lactate that is produced in the fermenter, the hydroxide introduced to
the cultivation broth is the required to keep the pH. Therefore, the REED module
completely substitutes the pH control in the fermenter and control the total lactate
concentration at the desired operating point.

In the modeled system, several situations can cause that REED can not totally
regulate the pH in the fermenter: the Donnan exclusion is not 100% efficient, the
potential incapability of REED to remove the lactate produced and the influence
of purge stream (during continuous operation). The mentioned sources of non ide-
ality, define implicitly another subobjective for the control structure design layer.
The REED may not be able to completely substitute the pH regulation in the fer-
menter. Thus, the previously developed input resetting control structure for the
REED separation must be complemented by a pH controller in the fermenter.

Experimentally yet another issue has been identified: the current efficiency loss
due to the transport of other anions (mainly nutrients) present in the fermentation
broth, which means lower lactate fluxes. In addition, nutrient loss (anions) can
generate lag periods in the biomass growth (Ishizaki et al., 1990; Boonmee et al.,
2007; Jurag-Separation, 2009). The latest problems have not been investigated here
since that requires a more detailed fermenter and REED models than developed
during this work.

7.4 Model extensions for process integration

This investigation is a knowledge based approach, represented in the forms of models
for the units to be integrated. The previously derived models for the individual
units were developed for defined purposes. In order to make the models suitable for
process integration, some adjustments are revealed by a degree of freedom analysis
for the integrated system. These model adjustments imply extra assumptions and
equations. The extra considerations are listed below. The operational degrees of
freedom analysis for the integrated system is shown in the Appendix C.

7.4.1 Mass balances extension in the REED module

The mass balances presented in Prado-Rubio et al. (2010b) consider the presence of
the following substances in the fermentation broth which is fed to the REED unit:
lactate (L−), hydroxide (OH−), sodium (Na+), dissociated protein (P−), lactic acid
(HL) and undissociated protein (HP). However, according to the bioreactor model
previously developed, the substrate and biomass are outputs of the reactor and thus
their mass balances must be added to the REED model. Recalling the assumption
MA3 presented in the model development, there is assumed to be no transport
of uncharged species or large molecules through the anion exchange membranes.
Meaning that the substrate and biomass are 100% retained in the feed channels of
the REED module (Prado-Rubio et al., 2010b). On the top, the following extra
assumptions are added (EA):
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EA1. The biomass is uncharged and thus it is transported through the boundary
layers just by diffusion.

EA2. The biomass diffusion coefficient in solution is assumed equal to the value
assigned for the hypothetical protein species (Ds

x = 9.0× 10−11 m2/s) (Bowen
et al., 2000). The diffusion coefficient for the lactose is taken from literature
(Ds

s = 0.38 × 10−9 m2/s) (Lide, 2008).

EA3. The substrate and biomass do not intervene in the pH balance already defined
for the system.

EA4. There are neither biomass production nor substrate consumption in the feed
channel of the REED module. This assumption is reasonable since the resi-
dence time in REED considerably shorter than in the fermenter. This condi-
tion largely depends on the integrated system design and operational condi-
tions. Therefore, it must be confirmed in every simulated scenario.

EA5. The biomass and substrate do not strongly modify the rheology of the system
and therefore the flow conditions. This assumption implies that for the pre-
viously investigated flow rates, the thickness of the boundary layers remains.

EA6. The substrate and biomass are not accumulating in the REED module. There-
fore, the potential material attachment to the membrane surface is not inves-
tigated. This assumption is reasonable considering the REED antifouling
mechanism (Prado-Rubio et al., 2011a)

The mass balances and boundary conditions defining the substrate and biomass
transport along the y-direction and x-direction (see Fig. 2.2), are completely analo-
gous to the undissociated protein or lactic acid (depicted in Chapter 2). The reason
is that they are uncharged molecules that are only present in the feed channel.
Therefore, the terms involving migration in the mass balance do not apply for those
components (Eq. 2.8, shown below), and the zero flux condition at the boundary
layer-membrane interface remains.

∂Ck,p

∂τ
=

τn

τdiff

(

∂2Ck,p

∂z2
+ zk

(∂Ck,p

∂z

∂ϕp

∂z
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∂2ϕp

∂z2

)

)

+ τnRk

7.4.2 Protein production rate in the fermenter

As stated in the bioreactor modeling using assumption FA8 (Chapter 5), the two
forms of protein production rate (P− and HP) have been chosen such that the total
protein concentration in the fermenter remains constant at the reactor pH. This
assumption can be understood in different ways according to the operational mode
of the fermenter. The following scenarios were investigated:

- Batch reactor with perfect pH control: in this ideal scenario, the pH is kept
constant by the addition of sodium hydroxide molecules that compensate for
the lactic acid formation. Therefore, there is no change in the reactor operating
volume. If the initial total protein concentration is the desired value, the
protein production rates equal zero.
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- Fed-batch reactor: this operation mode also includes the case of a batch re-
actor with pH regulation employing a solution of a strong base, since there
is expected a change of the reactor operating volume. In this case, the pro-
tein production rate must compensate for the concentration change due to the
dilution which is generated by the input flow rate and/or the base solution
addition (see Fig. 7.4).

- Continuous reactor with pH control: the protein production rate is assumed
to compensate for the protein that leaves the reactor in the exit stream (see
Fig. 7.4).

7.4.3 Models units

The bioreactor model presented in Chapter 5, was developed in weight basis in order
to easily compare the results with relevant experimental data. On the other hand,
the mass balances proposed for the REED module are on molar basis.

The molar basis is selected for the integrated system. This choice means that the
units of the model parameters and variables in the fermenter mass balances must
be changed to make the model compatible with the REED model. In some of the
results depicted in this chapter, the concentrations are switched back to weight basis
for comparison with data reported in literature.

7.5 Results and discussion

From the goal driven integrated process design, it was identified that under a non
ideal scenario a pH controller in the fermenter might be necessary to enable main-
taining pH. Introduction of a fermenter pH control loop corresponds to a regulatory
layer control problem which is handled initially. Subsequently, the goal driven de-
sign and operation of the integrated process is investigated considering two different
production goals: the batchwise production of a starter culture and the continuous
production of lactic acid. The integration issues of these two cases are analyzed
separately.

7.5.1 pH control in the fermenter

A conventional problem in bioreactor control is regulation of abiotic variables, such
as pH and temperature, to guarantee optimal conditions for the biological reaction
or microbial growth.

A continuous PI controller in the fermenter is implemented to keep the pH using
the base input stream so called υbase as manipulated variable (see Fig. 7.4). As pH
control agent, a solution of sodium hydroxide is employed, its concentration depends
on the application. Satisfactory controller settings are obtained by manual tuning
(Kp = 0.0001 and τI = 100). The controller performance was evaluated simulating a
5 liters continuous fermenter start up employing the best inputs variables previously
estimated (see Chapter 5). The objective is to regulate the pH at 5.75 using a 2M
solution of sodium hydroxide. The fermenter behavior and actuator are shown in
Fig. 7.2.

153



Chapter 7. Integrated system behavior

Figure 7.2: Simulated continuous fermentation start up to best operating point using a
continuous PI pH controller, where the setpoint is pH=5.75

At this stage, the pH controller performance is tested rejecting periodic distur-
bances in hydroxide ion concentration. The idea is to evaluate how the pH con-
troller in the fermenter will behave when the REED module is integrated during a
batch fermentation (properly speaking is a fedbatch fermentation, due to the volume
change). Employing the minimum and maximum hydroxide fluxes estimated previ-
ously for REED operation under Id = 100 A/m2 and Cin

OH,dia=50 mol/m3 (depicted
in Table 7.1), a periodic function is constructed. Then the disturbance is applied to
the pH controlled batch fermentation previously investigated using 80 g/l of initial
substrate (see Chapter 5), between 5h≤ t ≤8.667h (300 min≤ t ≤520 min). The
disturbance duration time was estimated based on the fermenter hydroxide require-
ments. A enlarged picture of the disturbance and the actuator response are depicted
in Fig. 7.3.

The simulation results indicate that the pH in the fermenter remains constant (not
shown since it is constant at the desired value), while the controller output oscillates
to reject a periodic disturbance with the same period time as the disturbance. The
comparison between the actuator behavior with and without the disturbance is
shown in Fig. 7.3(b). This high frequency response may be a problem for the
actuator. For that reason, a discrete time pH controller is also implemented and its
performance evaluated in during the processes integration (the two case studies).

The pH controlled fermentation is integrated with the REED module which uses
the input resetting control pH structure. The complete control system architecture
is depicted in Fig. 7.4. The pH in the fermenter is regulated by the developed
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(a) Disturbance (b) Actuator response

Figure 7.3: Enlarged periodic hydroxide concentration disturbance function during a
batch fermentation and PI actuator response to reject the disturbance (the actuator
behavior without disturbance is also shown) . The periodic disturbance (period time
is 5 min) is applied between 5h≤ t ≤8.667h

controller herein, while the input resetting control structure controls the pH change
along the feed channel. Conceptually, the REED module operation facilitates pH
control in the fermenter and the extra hydroxide, if necessary, is provided by the
pH regulator in the fermenter. This control structure has the potential problem
that the controllers may fight if they do not know how the other controller behaves.
This issue should be handled at different levels of complexity: by an appropriate
controllers tuning, a feedforward action or perhaps a multivariable control design.

Figure 7.4: Sketch of the complete pH control architecture of the integrated system.
Solid lines are flow streams while dashed lines are signals. The input resetting
control structure controls the separation in REED while there is a PI pH controller
in the fermenter
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7.5.2 Facilitated pH control in the fermenter during batch
fermentation

Batch or fedbatch cultivations have been used to produce starter cultures of lac-
tic acid bacteria for dairy industry. During this type of fermentation, lactate is
accumulated in the cultivation broth and therefore progressively inhibits biomass
growth. Therefore it is relevant to investigate the usage of REED to increase the
potential bacterial productivity during batch operation. The selected case study is
a pH controlled batch fermentation coupled to the REED module. The fermenter is
a fedbatch reactor since there is an operating volume evolution when the addition
of a solution of sodium hydroxide is necessary for pH control.

Experimentally, a batch fermentation coupled with electrodialysis has been inves-
tigated for production of Lactococcus lactis starter culture (Boonmee et al., 2007).
Their study is the continuation of a previous experimental and modeling work on
lactic acid fermentation (Boonmee et al., 2003). The experimental data presented
in that contribution were used for the bioreactor model development in Chapter 5.
The batch experiment of the integrated system started using 80 g/l substrate. After
5 hours, the recirculation through the electrodialysis unit was initiated. These ex-
perimental results will be compared to the performance of the integrated bioreactor
and REED module.

7.5.2.1 Batch integrated system design

The integrated system design is handled using the above presented strategy, where
the design and operability problems are solved sequentially.

The batch cultivation starts with a low biomass concentration in a cultivation
broth rich in substrate and required nutrients. At the beginning, the membrane
separation process is not coupled to the fermenter. The reason is that when lac-
tate concentration is rather low, current saturation conditions may be achieved in
REED module generating numerical problems (Prado-Rubio et al., 2011b). There-
fore, a certain lactate concentration is required in the fermentation broth before the
REED can be started. The role of the REED module in the integrated system is
to provide the hydroxide necessary to neutralize the lactic acid produced during the
fermentation, thus to maintain a constant pH in the bioreactor.

This design problem is particularly interesting due to the dynamic nature of both
the bioreactor and REED. There are 2 design issues:

a. The minimum average hydroxide flux provided by REED can not be excessively
higher than the bioreactor base requirements at the process integration time.
Otherwise, there is the risk that the pH in the fermenter increases and adversely
may influence the biomass growth. Even though the loss of biomass viability as
a function of the increased pH is not accounted for in the model, this situation
is undesired.

b. In order to completely substitute the pH control in the fermenter by operating
the REED with pH control, the membrane separation process must be capable of
providing sufficient hydroxide to neutralize the produced lactic acid during the
entire fermentation.
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The solution strategy is based on simulations of the pH controlled fermenter and
REED module. First, the range of hydroxide flux that can be provided by the fixed
design of REED module is calculated. Then the volumetric hydroxide requirements
in the fermentation are estimated. The fermenter volume is estimated by matching
the lowest amount of hydroxide provided by the REED module and the base require-
ments at the integration time. From the calculations, it is interesting to reveal if the
integrated system design can match both design constraints. If that is not the case,
then the objective is to determine to which extent the REED module facilitates the
pH control in the fermenter.

The first step is to estimate amount of hydroxide that can introduced to the cul-
tivation by the REED module. This is important since different hydroxide fluxes
are required along the operation which it mostly is batch, although the volume
increase makes it a fedbatch (approximately 15%). The batch cultivation broth
concentrations after 5 hours of operation are used as constant inputs for the mem-
brane separation process. A summary of the stationary REED simulation results
are depicted in Table 7.1.

Table 7.1: Summary of average hydroxide flux in REED using a cultivation broth at 5
hours of batch fermentation. The average hydroxide flux (FOH) is estimated using
the composite Simpson rule. The reversal time used in the simulation is 5 min

Case
Id Cin

OH,dia Fmax
OH Fmin

OH FOH

(A/m2) mol/m3 mol/s mol/s mol/s

Donnan 0 50 4.929x10−5 4.929x10−5 4.929x10−5

REED 100 50 3.589x10−5 5.745x10−5 4.949x10−5

REED 250 250 1.112x10−4 -7.689x10−6 6.785x10−5

REED 250 500 1.444x10−4 -6.781x10−6 7.095x10−5

The first design constraint is that Donnan dialysis can take over the pH control
when the system is integrated. Donnan dialysis separation is chosen since the min-
imum ion fluxes are obtained (Prado-Rubio et al., 2011a). The hydroxide require-
ments during the batch fermentation are calculated using the previously presented
continuous pH controller in the fermenter. This controller provides the evolution
of the hydroxide requirements which directly depends on the lactic acid production
during the fermentation. Therefore, the fermenter volume is estimated by match-
ing the REED module and fermentation results at the processes integration time. It
means matching FOHDonnan to the hydroxide requirements per reactor volume of the
fermentation. The later value equals the lactic acid productivity in the fermenter
during a pH controlled fermentation. The solution leads to a bioreactor volume of
approximately 2 l.

The bioreactor is simulated for a 13 hours batch fermentation using 80 g/l of initial
substrate and the estimated volume. The pH is controlled employing a 5M solution
of sodium hydroxide. The fermentation simulation results together with available
experimental data without lactate separation are shown in Fig. 7.5 (Boonmee et al.,
2003) (notice that the experimental data set was used previously in the Chapter 5).
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Figure 7.5: Simulation of a pH controlled batch fermentation using 80 g/l of initial
substrate without lactate separation. Red open dots represent the experimental
data (Boonmee et al., 2003). Solid lines are the model prediction

The most important fermentation result is the behavior of pH control actuator.
At t=5h, the sodium hydroxide molar flow rate is 4.98x10−5 mol/s. The maximum
molar flow rate is 1.09x10−4 mol/s at 7.1 hours of operation. Comparing the fer-
menter requirements and the REED separation capabilities, it can be concluded
that the two design issues can not be fulfilled simultaneously, given the fixed design
of the REED module. When the system is integrated, Donnan dialysis adds to the
fermentation broth approximately the hydroxide which is required. However, at the
maximum lactic acid production point, REED could at most supply 65% of the
hydroxide required. Therefore, the REED module can only facilitate the pH control
in the fermenter.

Another issue during the system design is not so evident at first look. The continu-
ous pH control in the fermenter employs a solution of sodium hydroxide that modifies
the bioreactor volume (see Fig. 7.5). However, the hydroxide addition by REED
does not affect the reactor volume since water transport through the membrane has
not been modeled. Therefore, there is an imbalance within the calculations that
generates a biased design.
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7.5.2.2 Batch integrated system behavior

In order to reveal the potential benefit of process integration it is relevant to com-
pare the performance of conventional batch fermentation (simulated), batch fermen-
tation coupled with electrodialysis (experimental, (Boonmee et al., 2007)) and the
integrated fermentation and REED system (simulated), the same experiment is re-
produced as reported in the literature. The batch fermentation simulation results
are depicted in Fig. 7.5.

The initial conditions for the integrated system simulation are the fermentation
concentrations at t=5 hours. The simulation is stopped when the lactic acid produc-
tion is rather low and the REED module forces the fermenter to high pH values. The
entire control structure with a discrete time pH controller in the fermenter is tested
for this case study. Due to the problems evidenced during the continuous system,
especially the potential pH drops in the fermentation broth, a different strategy is
investigated during batch operation (see section 7.5.3.2). In the continuous fermen-
tation case, the pH at the outlet of the feed channel in the REED module is the
setpoint. It defines which separation is desired in REED when the pH is constant
at the entrance of the module. However when the pH decreases in the fermentation
broth, actuators in REED are forced to saturate to achieve the desired pH setpoint
at outlet of the feed channel. Thus the control objective cannot be satisfied. An
alternative is to define a desired pH change along the channel, instead of defining
a fixed pH at the outlet of REED. In that way, the constant pH setpoint is trans-
formed into a trajectory. The desired pH change along the feed channel in the REED
module is ∆pH=0.25 (this value was estimated as achievable through closed loop
simulations).

The response of the actuators in the input resetting control structure is shown in
Fig. 7.6. It can be seen how at the beginning REED operation under current load
conditions is not necessary, as was expected from the first condition in the design.
Once the process evolves, current starts to be applied from around 5.4 hours, and
subsequently the amplitude increases. The trajectory of the desired pH setpoint in
REED is depicted. The fast controller input resetting structure has a small off set
especially between one and two hours after the integration. The Id controller, which
is the slower controller in the input resetting structure, is not sufficiently fast to
reset the current density. The point where the REED module should be detached
is clear since the pH at the outlet of the membrane module increases rapidly.

Fig. 7.7 shows the evolution of the fermenter concentrations. The unsatisfactory
pH control in the fermenter is clear. However, the biomass growth is not influenced
by this bias (according to FA1). The lactate concentration is reduced initially, but
round 1 hour after the integration, the lactic acid production overcomes the lactate
removal and therefore it accumulates in the bioreactor. There is no substantial
difference between the biomass growth between the batch fermentation alone and
the integrated system before 7 hours of operation (Figs. 7.5 and 7.7). The difference
arises after 7 hours of the fermentation where inhibition completely stops biomass
growth in the batch fermentation. While in the integrated system, the growth is
prolonged achieving higher biomass density. Additionally, the final reactor volume
is lower than the case without REED due to it facilitates the pH in the fermenter,
then the base requirements are lower as well.
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Figure 7.6: pH values at the outlet of the REED module and actuator values during
batch operation of the integrated system. Current density (Id) and input hydroxide
concentration to the dialysate channel (Cdbin

OH ) are defined by the input resetting
control structure in REED. The base addition to the fermenter (vbase) is the output
of the discrete time pH controller. The desired pH change along the feed channel is
∆pH=0.25

Some key performance indexes are summarized in Table 7.2, where the batch
fermentation is compared to the experimental batch+electrodialysis and predicted
batch+REED. The batch fermentation and integrated fermentation and electrodial-
ysis data are taken from the literature (Boonmee et al., 2003, 2007).

Despite the pH is not satisfactorily controlled in the fermenter in the integrated
bioreactor with the REED unit, this technology is promising for the production
of starter cultures. Comparing the key performance indexes, both integrated sys-
tems increase the biomass concentration, biomass yield and biomass productivity
compared to the batch fermentation. The significant differences between using the
electrodialysis and REED can be explained by the following facts. Lower biomass
concentration in the experimental setup can be due to loss of cells that are attached
to the electrodialysis membranes (Boonmee et al., 2007; Ishizaki et al., 1990). An-
other potential problem is the nutrient transport through the membranes. This
problem is significantly larger during batch than for continuous fermentation since
higher nutrient concentration is used. There are two effects due to the transport
of other species: loss of current efficiency and potential nutrient deficiency. Experi-
mentally, if there is a nutrient lack in the fermenter biomass will not grow as much
as expected.
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Figure 7.7: Batch fermentation behavior when REED is integrated with the bioreactor

7.5.3 Process Integration for Continuous Operation

In order to make the production of the commodity lactic acid economically fea-
sible by employing REED technology, and most likely any other technology, the
fermentation must be operated continuously. Such an integrated process is designed
below using the described goal driven methodology for process and control design.
Afterwards, the integrated system behavior is studied.

7.5.3.1 Continuous integrated system design

The fermenter design follows the described goal driven integrated system design
strategy, where the production goal is to produce lactic acid. In this case, the
REED module role in the integrated system is to remove the lactate produced in
the fermenter. By separating the lactate that is produced in the bioreactor, its
concentration can be maintained at a desired value in the fermenter. The best
product concentration must be estimated through an optimization procedure for
the integrated system, which is at the highest level of a process design methodology
(Skogestad, 2000; Jørgensen, 2006).

When the REED module dimensions are fixed as is the case here, the bioreactor
volume is estimated by matching the lactate productivity in the fermenter and the
lactate which can be removed in the REED module. Those values are estimated from
simulations of the individual units as follows. The initial step is to select the lactate
productivity point in the fermenter. Subsequently, the REED model is simulated
under Donnan dialysis conditions to determine the potential lactate separation. This
simulation scenario is selected as a reference since average lactate extraction under
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Table 7.2: Key performance indexes for batch bioreactor (simulated), integrated bioreac-
tor and electrodialysis (experimental) and Integrated bioreactor and REED (simu-
lated). The batch bioreactor with REED improvement is relative to batch bioreactor
with ED

Performance Batch Batch Batch REED
Units

Index Bioreactor (B) B+ED B+REED improvement

Batch time 10 11 7.8 -29% h
Final lactate 68.09 13.32 25.09 88% g/l
Final biomass 5.65 6.55 10.17 55% g/l
Final substrate ≈0 ≈0 4.77 - g/l
Biomass yield 0.0706 0.0819 0.1352 65% g/g

Biomass
Productivity 0.565 0.596 1.304 118% g/l/h

Donnan dialysis is the minimum achievable separation (Prado-Rubio et al., 2011b,a).
The minimum separation is selected since the lactate productivity increases by the
in situ lactate removal. Using lactate productivity and the hydroxide fluxes in the
REED module, the fermenter volume can be estimated.

Two operating points have been selected to investigate the design of the inte-
grated process, an optimal and a suboptimal point. The suboptimal conditions are
a scaled version of the optimal operation point, where the same amount of sub-
strate is provided using a five times more concentrated substrate input stream. As a
consequence, the fermenter input flow rate is reduced in the same proportion. The
fermenter model outputs in both scenarios are summarized in Table 7.3.

Table 7.3: Selected bioreactor operating points for continuous production of lactic acid.
The lactate productivity is depicted as well as the calculated bioreactor volume

Output
Optimal Suboptimal

Units
point point

CL− 221.18 381.89 mol/m3

COH− 5.62x10−6 5.62x10−6 mol/m3

CNa+ 229.67 381.89 mol/m3

CP− 8.49 8.49 mol/m3

CHL 2.85 4.91 mol/m3

CHP 1.51 1.51 mol/m3

Cs 127.34 634.11 mol/m3

Cx 106.86 97.73 mol/m3

Productivity 0.0354 0.015 mol/m3/s
Lactate removal 6.25x10−5 8.95x10−5 mol/s

Fermenter volume 1.76 5.97 l

Using the outlet concentrations of the fermenter as inputs to the REED module,
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the model is solved in Donnan dialysis mode using a qfeed=qdia= 120 l/h and a
base concentration at the inlet of the dialysate channel of Cdbin

OH =150 mol/m3 (These
values correspond to a scenario previously investigated (Prado-Rubio et al., 2010b)).
Using the total lactate flux and the REED dimensions (depicted in Table 4.3) the
lactate that can be removed by the Donnan dialysis is estimated. The bioreactor
volume can be calculated as the ratio between the the Donnan dialysis potential
separation and the fermenter lactate productivity. The results are shown also in
Table 7.3.

It can be seen from simulation results, that total lactate productivity of the opti-
mal operating point is more than twice the suboptimal point. Besides, the lactate
removal under no current conditions is lower for the optimal operating point. The
reason is the lower lactate concentration present in the fermentation broth. The
combination of both situations reveals that the membrane separation process can
handle an optimal bioreactor which is basically three times smaller than the subop-
timal operating point. This is because the ratio between lactate removal and lactate
productivity of the suboptimal point is approximately 1/3 of the ratio evaluated in
the optimal point.

A problem of this simple design approach is that the bioreactor size is based on the
lactate productivity when the inhibition is present. By the in situ lactate removal
from the cultivation broth, productivity is increased. Then the question is to which
extent the REED module is capable of handling the additional load. During the
simulation of the integrated system this issue is studied.

7.5.3.2 Continuous integrated system behavior

The integrated system behavior is investigated using the suboptimal operating point.
This point is selected since it is well know that tight control is required to operate
a system at the optimal value of the fermentation alone. The estimated operative
fermenter volume has slightly increased to V=6.1 L for the following simulation.

The system is integrated in a 3 step procedure:

a. The continuous bioreactor is simulated using the optimal inputs in order to esti-
mate the static concentrations.

b. REED module is simulated under Donnan dialysis conditions, using the inputs
from the simulated fermenter. Additional simulations under current reversal
conditions are performed to define achievable setpoints for the input resetting
control structure.

c. The static concentrations estimated in the previous two steps become the initial
conditions for the integrated system simulation. The control structure is closed
and the system is simulated.

Notice that the first two simulations were performed during the design stage. The
fermentation response when the controlled REED is integrated is depicted in Fig.
7.8. The desired setpoints correspond to the values from preliminary simulations
(pHfer

set = 5.75, pHREED
set = 6.1 and Ifer

dset
=100 A/m2). Firstly, it is relevant to

corroborate that the total protein concentration is constant in the fermenter, this
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has not been shown in previous simulations but has been confirmed in each scenario
by checking the total protein concentration in the fermenter.

Figure 7.8: Continuous fermentation behavior after REED is integrated with the biore-
actor which is in the static suboptimal operating point

From the concentrations in the fermenter, the influence of dynamic and stationary
REED operation can be evaluated. By starting the membrane separation process,
the fermentation is disturbed since lactate starts being removed from the cultivation
broth. Lower lactate concentration in the fermenter promotes biomass growth and
thus substrate utilization. A summary of the results at stationary conditions is
shown in Table 7.4. The integrated system has shown a lactate productivity 2.4 times
higher than the continuous fermentation with a comparable biomass concentration
increment. Additionally, the biomass consumes more than 50% of the substrate still
available.

Table 7.4: Stationary comparison of the performance between continuous fermentation
and the integrated system

Subject Fermentation Integrated system Relative difference Units

Total lactate 386.80 400.90 3.7% mol/m3

Biomass 97.73 246.90 152.6% mol/m3

Substrate 634.11 267.70 -56.4% mol/m3

Lactate
productivity 0.015 0.036 140% mol/m3/s
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The pH value evolutions at the outlet of the REED module and the fermenter
are shown in Fig. 7.9. The actuator actions are depicted in Fig. 7.10. After
the system is integrated, the pH in the fermenter increases since the amount of
hydroxide added to the cultivation is slightly larger than required to maintain pH.
As consequence, the pH controller in the fermenter switches off. Due to the reduced
lactate concentration in the fermenter, the lactic acid production is enhanced and
the pH starts decreasing. When the pH in the fermenter is below the desired value,
the pH controller starts providing the extra hydroxide ions necessary to neutralize
the produced lactic acid. The elapsed time of inactivity of the pH controller is
approximately 120 min.

(a) pH value at the outlet of REED (b) Fermenter pH

Figure 7.9: pH behavior at the outlet of REED and in the fermenter for the controlled
integrated system. In (a), the end period pH at the outlet of the REED module is
highlighted

When the pH controller in the fermenter starts the base supply, it acts as a distur-
bance to the input resetting control structure of the REED module. The effect can
be seen in the pH at the outlet of the REED module as an overshoot at time 130 min
(see Fig. 7.9(a)). The desired value of the pH at the outlet of the REED module is
achieved earlier than the current density setpoint, which is expected from a previous
simulation shown in Chapter 6. The effect of the increased fermenter productivity
can be seen in the actuator efforts to keep the setpoints (see Fig. 7.10).

Regarding the control performance, there is still an issue in the continuous pH
controller output in the fermenter that was evidenced in the simulation performed
and briefly discussed in section 7.5.1 (see Fig. 7.3). The issue is the oscillations of the
base input flow rate to the fermenter to reject continuously the periodic disturbance
introduced by REED. A discrete time pH controller in the fermenter is therefore
evaluated.

• A discrete time pH controller in the fermenter: several problems ap-
peared using this approach, related to the controller tuning and initial condi-
tions. Manual tuning was attempted to overcome the poor controller perfor-
mance. A grid of controller gains and integral times were tested. Low gain
pH control in the fermenter leads to a transient pH decay in the cultivation
broth. Actuators in the REED module achieve saturation conditions trying to

165



Chapter 7. Integrated system behavior

Figure 7.10: Actuator values during continuous operation of the integrated system.
Current density (Id) and input hydroxide concentration to the dialysate channel
(Cdbin

OH ) are defined by the input resetting control structure in REED. The base
addition to the fermenter (vbase) is the output of the continuous pH controller. The
pH behavior of the fermenter and outlet of the REED module are shown in Fig. 7.9

control the pH at the outlet of the feed channel. It must be stressed that the
input resetting control structure in REED was designed for a constant inlet
pH to the REED. If the pH decreases in the cultivation broth, REED is forced
to work harder to keep the pH setpoint. If the setpoint cannot be achieved,
the situation is known as unreachable setpoint. Using higher gain pH control
for the fermenter, the controllers start fighting causing system instability.

Some alternative strategies were implemented to decrease the adverse effect
of the decentralized control structure. The setpoints used in the previous
implementation of the input resetting control structure were relaxed, for in-
stance pHREED

set = 5.95 and Ifer
dset

=125 A/m2 (the pH in the fermenter is still

pHfer
set = 5.75). This modification attempts to reduce the REED effort dur-

ing transient pH drops in the fermenter. Additionally, new initialization is
performed were both control systems are not closed simultaneously. The con-
tinuous fermentation is simulated just with the discrete pH controller and
when static conditions are achieved, the REED is integrated.

Despite the efforts trying to improve the performance of the block decentralized
control structure, no satisfactory behavior was obtained. For the continuous
integrated system, the system becomes unstable in a long term simulation.
For illustration, results obtained using a moderate gain and a rather low inte-
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gral action in the tested grid are shown (Kfer
pH =5x10−8 and τ fer

I,pH=3000). The
actuator performances are depicted in Fig. 7.11.

Figure 7.11: Actuator values during continuous operation of the integrated system.
Current density (Id) and input hydroxide concentration to the dialysate channel
(Cdbin

OH ) are defined by the input resetting control structure in REED. The base
addition to the fermenter (vbase) is the output of the discrete pH controller

The main purpose of implementing a discrete time pH controller is to attempt
to remove the oscillations of the pH controller in the fermenter. If the υbase

discrete time actuator is compared to the continuous in Fig. 7.10, the high
frequency oscillatory behavior was removed. The reason is that the controller
is aiming to control the pH at the end of the REED period and not within the
period. However, the oscillations are transferred to the pH in the fermenter
as can be seen in Fig. 7.12(b).

The main two problems obtained with the discrete simulations can be seen
from the actuators and pH behavior in the fermenter. The integrated system
becomes unstable as can be seen in Figs. 7.11 and 7.12. The second issue is the
simulation crashing at some points. It is believed that this is a consequence of
the dynamic behavior of the fermenter pH, since it could considerably increase
the stiffness of the integrated system. Therefore, the solver can not achieve
the required integration tolerance using the the smallest allowed step value
(h=5.820766x10−11) (Mathworks, 2006). Due to the model implementation
algorithm, the simulation can continue taking the last successful step as initial
conditions for the following current value. The crashing points are clear in
Figs. 7.11 and 7.12. The simulation crashing as such is not really interesting
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(a) pH value at the outlet of REED (b) Fermenter pH

Figure 7.12: pH behavior at the outlet of REED and in the fermenter for the con-
trolled integrated system. Interruptions in the plots correspond to cycles where the
simulation crashed

except as an issue.

7.5.4 Challenges in the integrated system design and oper-
ability

The process and control design of the continuous integrated system is challenging
due to nature of the models and design constraints. The main limitation of the
employed approach is that lactate productivity changes in dependence of the REED
operation. If biomass growth is not limited by the carbon source, the productivity
enhancement by the in situ lactate removal can be significant (as evidenced in the
calculations). By using the lactate productivity in an inhibitory environment for the
bioreactor design, the employed design strategy results in an overdesigned fermenter.
Therefore, the need of an alternative problem formulation becomes clear. However,
the nature of the models and design constraints make infeasible at this point to
consider an IPDC approach. For that reason, alternative ideas are proposed.

An iterative design procedure could be initiated. However, some issues might arise.
Firstly, a smaller reactor requires tighter control, otherwise there is a risk that the
system becomes unstable before achieving stationary operation. Additionally, the
dilution rate of the system changes when the pH control take over by REED. The
fermenter pH control is regulated by the addition of a sodium hydroxide solution,
which influences the system dilution rate. On the other hand, REED facilitates pH
control by adding hydroxide ions without modifying the flow rate. This behavior
implies that the dilution rate changes once REED is integrated with the bioreactor,
thus the productivity moves to another point different than the initially calculated.
Due to the mentioned reasons, it is difficult to predict if the iterative design of the
integrated system actually converges.

An unexplored alternative is to control the productivity of the fermenter, e.g. by
controlling the biomass concentration using the purge flow rate a (slow) actuator.
However, this strategy implies the design of an effective system to separate biomass,
which could be difficult to implement in practice.
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The design problem during the batch fermentation is not only associated with the
increased productivity. The main problem is that the defined REED module is not
capable of supplying the range of hydroxide flow rate to neutralize the lactic acid.
In that case, a more flexible design of the integrated system must be proposed. An
alternative that does not compromise the REED model validity constraints is to use
multiple parallel REED modules. This strategy adds the additional feature of using
different phases in the periodic pH control, thereby enabling a much reduced impact
of the pH oscillations in the fermenter. Thereby significantly improved productivity
may be obtained.

At the control level, the main limitation is the decentralized control structure and
the interaction between controllers. When the propagation of disturbances in cas-
cade systems is sequential, a feedforward control action has shown improvements
in the product quality control (Luyben, 1993). However, the addition of feedfor-
ward information is sensitive to model errors that can lead to a worse performance
(Faanes and Skogestad, 1999). Feedforward control action has been investigated in
benchmark case studies using mainly linear models. In this application, obtaining
feedforward information should be investigated. Initially, an approximate feedfor-
ward coupling could be used since any misalignment will be handled by feedback
action.

The monitoring system design can be extended including alternative potential
manipulated variables to control pH in the fermenter. In practice, to use the flow
rate through the REED as manipulated variable could be relevant. However, the
presented model has not been validated at different flow conditions and therefore
this aspect has not been investigated in the present work.

7.6 Conclusions

The process and operability design of an integrated bioreactor and membrane sepa-
ration process has been investigated in the present contribution. The investigation
has been based on dynamic models previously developed to investigate lactic acid
fermentation and Reverse Electro-Enhanced Dialysis. The original process models
are adapted for the purpose of the processes integration. Due to the model com-
plexity and the design constraints, an ideal simultaneous process design and process
control could not be applied. A sequential goal driven process design and control
strategy is adopted. From a goal methodology, the requirements to integrate the
processes model were identified. Biomass and substrate mass balances are included
in the REED model and the total protein production rate in the fermenter defined.

In order to fulfill model validity constraints, the design strategy is limited to fix
the dimensions of the REED module and then fermenter is designed according to the
particular role of the REED unit in the integrated process. From the goal driven
design methodology, the need of a pH control in the fermenter was identified. A
continuous PI pH controller is implemented for the bioreactor and its performance
evaluated during a simulated reactor start up. The pH controller is able to regulate
the fermenter pH at the desired point until static operation is achieved. Incorpo-
rating this controller with the input resetting control structure, the final integrated
system control pH architecture is obtained. Where the pH in the fermenter is regu-

169



Chapter 7. Integrated system behavior

lated by the continuous PI controller and the pH change along the feed channel in
the REED is controlled by the input resetting control structure of this unit.

The integrated process is investigated for two different production targets: the
fetbatch production of lactic acid bacteria starter culture and the continuous pro-
duction of lactic acid. In both cases, controllability problems are encountered either
in the actuator behavior or pH regulation with the proposed decentralized control
structures.

During the batch integrated process, the fixed REED module design is not ca-
pable to supply the required hydroxide along the process. Thus, the rigid design
of REED can only partially facilitate the pH control in the fermenter. The final
biomass concentration, biomass yield and productivity are increased in the REED
process compared to the batch fermentation and the integrated fermentation and
electrodialysis.

In the second case study, a suboptimal productivity operation point is investigated.
Once again, it was evidenced that the rigid design strategy leads to over designed
fermenter and therefore REED only can facilitate pH control and not substitute it.
Under stationary operation, the total lactate productivity is 2.5 times larger than
during the continuous fermentation. Besides, there is a higher biomass growth and
better substrate utilization.

The issues evidenced during the design and control of the integrated system are
challenging and are the motivation to continue investigating this type of dynamic
system. A promising approach which may be useful for both scenarios is to use
multiple REED modules sequentially as biomass concentration in the fermenter in-
creases. The different REED modules may then also using different phasing in their
periodic controls such that the load on the fermenter control would be significantly
reduced. The limitation for such a design would then be the operation of the REED
at high biomass concentrations.

7.7 Nomenclature

C Concentration (mol m−3)
D Diffusion coefficient (m2 s−1)
HL Lactic acid
HP Undissociated protein
Id Current density (A m−2)
Kp Controller gain
L− Lactate ion
Na+ Sodium ion
OH− Hydroxide ion
P− Dissociated protein
q Flow rate (m3 s−1)
REED Reverse Electro-Enhanced Dialysis
Rk Total reaction rate of k (mol m−3 s−1)
ri Reaction rate i (mol m−3 s−1)
s Substrate concentration (mol m−3)
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t Time (s)
trev Reversal time (s)
x Spatial direction (m)
x Biomass concentration (mol m−3)
z Dimensionless distance z = x/δm (-)
zk Valence of k (-)

Greek letters

δm Membrane thickness (m)
ψ Electrical potential (V)
ψn Nominal potential (ψn = RT/F ) (V)
τdiff Diffusion time (τdiff = δ2

m/Dk,p) (s)
τi Integral time
τn Nominal time (τn = 1 (s))
υbase Base inlet flow rates to the fermenter (m3 s−1)
ϕ Dimensionless potential (ϕ = ψ/ψn) (-)

Subscripts

dia Dialysate channel
feed Feed channel
k Specie
OH− Hydroxide ion
p Zone (phase)
s Substrate
set Setpoint

Superscripts

dbin Dialysate bulk inlet
fbin Feed bulk inlet
fer Fermenter
in Inlet
REED Reverse Electro-Enhanced Dialysis
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8

Conclusions

In this thesis a model based approach for design, operation, control and optimization
of an integrated process for lactic acid fermentation has been investigated. Especial
focus has been paid to the Reverse Electro-Enhanced Dialysis process due its novelty
and lack of understanding. This thesis’ contributions can be classified into two main
areas: transport phenomena in membranes and process system engineering.

In membrane separation processes area, the developed modeling work constitutes
the pillar for the Reverse Electro-Enhanced Dialysis analysis. The static and dy-
namic simulation results have been combined to the available experimental evidence
in order to provide insights of the membrane separation process, vital for the inte-
grated system design and operation as a function of different production objectives.

A short review of membrane based separations employed to remove lactate from
a diluted solution has been presented in a chronological manner. The most impor-
tant achievements and limitations of each application are highlighted. The Reverse
Electro-Enhanced Dialysis understanding prior to this thesis is described. The novel
membrane separation system analysis has been divided into three contributions.

The starting point is the dynamic model development from first principles to de-
scribe the simultaneous ion transport in a Dialytic module. The model is based
on diffusion, convection and migration of the modeled species. Additionally, the
dissociation reactions are accounted for in order to model their influence in the pH
of the cultivation broth. The model structure has been evaluated statically using
experimental data for Donnan Dialysis recovery of monoprotic carboxylic anions,
where the unknown model parameters are regressed. The model has satisfactorily
reproduced the anion fluxes and qualitatively described previously predicted con-
centration profiles in the module.

A step further in this investigation is aimed to contribute in the understanding of
the competitive ion transport in the dialytic module under current load conditions,
so called Electro-Enhanced Dialysis operation. By imposing an external electrical
field, the target ion static fluxes has been enhanced more than two times compared
to Donnan Dialysis recovery. The static analysis predicted ion fluxes inversion and
asymmetric concentration profiles within the module, which are responsible for the
total flux enhancements. From the simulation results, the system operative win-
dow has been identified for the current density and inlet base concentration to the
dialysate channel. The most important inlet constraint is found for the imposed
current density, referred to as current saturation conditions.

The periodic operation of the REED module is studied employing a wave function
for the imposed electrical field. A more diverse set of phenomena have been pre-
dicted that can explain the transient lactate recovery after the current is reversed.
These transient phenomena are the lactate accumulation within the membranes,
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flux inversion and preferable ion transport at the interfaces. A comparison of lactate
separation has been presented between the Donnan Dialysis and Reverse Electro-
Enhanced Dialysis operation. Despite the current efficiency loss by reversing the
current density, the average lactate recovery under current reversal conditions is
higher than during Donnan Dialysis. The tradeoff between input variables in the
REED module is predicted. As consequence, the reversal time must be selected as
a function of the energy consumption and the current efficiency loss.

From the modeling work some model advantages can be highlighted:

• The general description of the accounted transport phenomena and species
allows to apply this model in diverse electrically driven membrane separation
setups. Especially under no current, current load and variable current density
conditions.

• The dynamic nature of the model make it suitable to perform both static and
dynamic predictions

• The introduction of the dissociation reactions in the mass balances allows to
model the pH either for pure solutions and fermentation broths.

• The tank in series description of the concentration profiles along the channels
(y-direction) make the model flexible enough to apply for larger equipment
setups

• The initialization procedure guarantees, at least in all evaluated scenarios, to
have a suitable set of initial conditions to perform the simulations.

• The model implementation is made as a tool which is very flexible to use for
different purposes such as simulation of the individual unit, control systems
development and integration with the bioreactor.

On the other hand, the presented model of the REED process has the following
limitations:

• The model validity under current load conditions maybe questionable. The
issue is that the model parameters were estimated under Donnan Dialysis
conditions. Due to the absence of experimental data under current load and
current reversal conditions, it remains to corroborate the validity of the ion
diffusion coefficient model under current load conditions.

• The model parameters were estimated for well defined flow conditions. Differ-
ent flow regime will require the re-estimation of the model parameters.

• Despite the model was derived for any multicomponent system, the model im-
plementation was developed for monoprotic anions. In the case of a polyprotic
system, modifications should be introduced in the model solution.

• The presence of other ions, such as nutrients and fermentation subproducts,
are not included in the model. Therefore, the current efficiency loss due to
their transport is not currently predicted.
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• Water transport due to electro-osmosis is not investigated in this application.
In a long term batch or fedbatch fermentation it may be relevant since it will
affect the fermentation volume.

The investigation of the Electrodialysis with bipolar membranes is an example of
the developed model flexibility. Only few modifications are required to include the
effect of ideal bipolar membranes into the mathematical description of the system.
The module static analysis has confirmed the potential ion flux enhancement under
current load conditions. However for this system arrangement, the lactate and
hydroxide ions must be present in a certain concentration ratio to favor lactate
transport. When hydroxide is transported through the anion exchange membrane,
water is formed in the acid channel instead of lactic acid, resulting in a current
efficiency loss. The tradeoff between simulation time and numerical accuracy of the
concentration profiles along the channels has been investigated, concluding that for
the used module, the tank is series approach is not required.

In the process system engineering area, there are three main contributions which
have been investigated in separated chapters. These contributions can be classified
as: dealing with parameter estimation issues in bioprocesses modeling, extension of
the available methodology for control structure design for dynamic systems and the
goal driven process design and control issues of the integrated system.

Using correlation and sensitivity analyses, a parameter identifiability problem has
been found in the proposed unstructured model for the fermentation. Therefore,
despite the reasonable good agreement of the predictions and experimental data, the
full model is falsified. Extra experimental work was not possible to perform within
this project, thus a parameter set reduction has been the adopted strategy to obtain
an identifiable set of parameters. The selection of the appropriate seven parameter
subset is assisted by an identifiability analysis and sensitivity based metrics. A
reasonable model has been obtained but there is no sufficient experimental data to
validate the model.

The analyzed bioreactor model is advantageous since it is simple and can reproduce
experimental data of either batch or continuous cultivations. However, it barely
provides insight of the microorganism growth and it predictive power is limited
to the neighborhood of conditions where the experiments were performed. The
sensitivity analysis results could be used in order to design future experiments and
eventually validate the model.

Investigation of the REED module operability led to other contribution to the pro-
cess engineering area. The conventional methodology for goal driven control system
design is adapted to handle this periodically operated system. The drawback dur-
ing the top down analysis lies on the coupling between manipulated and controlled
variables for non linear dynamic systems. Therefore, the available guidelines for
selection of the appropriate manipulated variable according to a specific goal have
been expressed as a quantitative index. This index is based on the controlled vari-
able dimensionless sensitivity towards each potential manipulated variable. From
the proposed analysis, a non conventional input resetting control structure for pH
control at the outlet of the REED module is obtained. Its performance is satisfac-
tory during a set point tracking test, where the desired pH can be achieved while
the input is reset. This control structure is more powerful than single control loops,
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it can handle the present input constraints and the controllers can be tuned sepa-
rately. However, the controllers must be re-tuned if the setpoints change due to the
large variation on the pH sensitivities towards the manipulated variables within the
operating window.

The study of the integrated system through the continuous and batch case studies
has revealed the potential of this technology to increase the target product produc-
tivity and substrate utilization while reducing the operation time (for batch case).
Despite the promising results, several design and operability problems have been
encountered during this investigation that are encouraging to further investigate
such integrated system. The main limitation is the sequential process design and
control strategy, which is adopted due to the model complexity and design con-
straints. From the investigated case studies it is concluded that in the proposed
REED module design is only able to facilitate the pH control in the fermenter and
not completely substitute it.

The sources operability problems in the integrated system set up are: the decou-
pled control structure plus the process design issues, since the system controllability
is tightly related to the process design. Therefore the issues in both layers are ex-
pected to be coupled. The main concern lies in an inherent characteristic of the
recycle system, since disturbances propagate through the system. The attempts to
mitigate this issue converged to two different control approaches: discrete and con-
tinuous pH controllers in the fermenter. The actuator of continuous pH controller
in the cultivation has shown oscillations in order to keep constant the pH within the
REED periods. On the other hand, the discrete time pH controller translated those
oscillations to the pH behavior in the cultivation, generating convergence problems
and system instability. Different solutions were proposed to improve the system
design and controllability.

8.1 Future work

Several open problems and potential future work have become apparent during the
writing of this thesis, those have not been pursued due time limitations.

• Reverse Electro-Enhanced Dialysis modeling: it would be relevant to have
more static and dynamic experimental data that allows at least estimating the
model parameters under current load conditions and different flow scenarios.
This would improve the quality of the estimates for the ion diffusion coefficient
and thickness of the boundary layers estimates.

Additionally, potential model extensions might be relevant to further under-
stand the membrane separation process. Including in the model phenomena,
such as the water and other ions transport through the anion exchange mem-
branes, can have a relevant influence on the process behavior. Thus, affect the
role of the REED module in the integrated process. The lack of experimen-
tal evidence is the main obstacle to achieve a proper representation of those
phenomena. Therefore, further modeling development must be supported by
experimental work for both parameter estimation and model validation.

• Bioreactor Parameters identifiability: the parameters identifiability issue has
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been the main limitation during the bioreactor modeling. In order to estimate
the full set of parameters, new experiments should be performed to obtain the
required information. The experimental design could be partially supported by
the employed sensitivity analysis. Therefore, the methods and tools described
in this thesis can be employed to fine-tune the model parameters.

• Integrated system: the investigation of the integrated system is probably the
most fertile area for future work. A discussion of the potential challenges and
future work was presented in Chapter 7. In summary, the major challenge is to
overcome the issues of the design strategy that could limit the controllability
of the integrated system. A more appropriate integrated system design might
reduce the operability issues. In that way, problems as the controllers fighting
and poor performance could be avoided. This work might extend or adapt the
available methodologies for solving IPDC problems. In addition, it would be
interesting to evaluate the integrated system operability using more advanced
controller design. Starting with simple feedforward control actions up to model
based control.
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A

Mathematical tools employed
during the REED model solution

A.1 REED model solution

The dynamic model is based on first engineering principles for diffusion, migra-
tion and convection. Combining the equations for all sections in the REED cell
leads of a system of multiregion partial differential equations. Method of lines is
commonly used to solve partial differential equations where the spatial dimension
is discretized using Taylor expansion, resulting in a system of ordinary differential
equations (ODEs) or differential algebraic equations (DAEs) where the independent
variable is time. The obtained set of equations can be integrated simultaneously
along the line of constant spatial dimension, by employing the any of the developed
methods for the numerical integration of ODEs and DAEs (Schiesser, 1994). In this
case, variable order multistep solver for is employed based on the numerical differ-
entiation formulas (NDFs) (Shampine et al., 1999). This method is recommended
for solving stiff system of ordinary differential equations or a index-1 differential
algebraic problem represented by equation A.1.

M(t)y′ = f(t, y) (A.1)

Initially, in order to obtain a low truncation error during the discretization, a
considerable high number of cheap steps were used in the an asymmetric centered
differences second order Taylor expansion. Nevertheless, the reduction of the trun-
cation error leaded to intractable long computation time, due to the high number
of discretization steps. For that reason high order Taylor expansion was employed
instead, substituting the cheap by expensive steps and then diminishing the number
of nodes to achieve the desired accuracy. Sixth order Taylor expansion series to the
function f(x) around the point x0 is represented by the following expression.

f(x) = f(x0) + (x − x0)f
′(x0) +

(x − x0)
2

2!
f ′′(x0) +

(x − x0)
3

3!
f (3)(x0)+

(x − x0)
4

4!
f (4)(x0) +

(x − x0)
5

5!
f (5)(x0) +

(x − x0)
6

6!
f (6)(x0)+

O
(

(x − x0)
7

7!

)

(A.2)
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The truncation error in this case is reduced up to O ((x − x0)
7/7!). The function

value for x is calculated using another six points. This method is referred to as
seven point difference equations. It means, each phase in the REED module must
have at least seven discretization points. As mentioned above, asymmetric centered
differences are used, it means the step length can change from point to point, smaller
steps are used close to the interfaces as it can be seen in Fig. A.1. In each discretiza-
tion point, a system of six algebraic equations must be solved (obtained from Taylor
expansion). The steps are summarized in table A.1.

Figure A.1: Step distribution for the 7 point asymmetric centered differences

Table A.1: Steps used for the seven points asymmetric centered differences

(x0) 1 2 3 4 5 to NX-4 NX-3 NX-2 NX-1 NX

x-x0

h/2 -h/2 -3h/2 -5h/2 -3h -3h -4h -5h -11h/2
3h/2 h -h -2h -2h -2h -3h -4h -9h/2
5h/2 2h h -h -h -h -2h -3h -7h/2
7h/2 3h 2h h h h -h -2h -5h/2
9h/2 4h 3h 2h 2h 2h h -h -3h/2
11h/2 5h 4h 3h 3h 5h/2 3h/2 h/2 -h/2

The derivation and implementation of the difference equations was validated by
comparison of the analytical solution of the first and second derivative of the func-
tion f(x) = sin(x) with those computed numerically (Møllerhøj, 2006). For the
numerical implementation, 12 discretization points were employed between x=[0 1].
The results are depicted in Fig. A.2. As it can be seen, the largest absolute errors are
obtained at the interval endpoints with a value of approximately 10−7.5 and 10−5.7

for the first and second derivatives, respectively. The smallest errors are obtained
for the inner points x5 to x8, since symmetric centered differences have been applied
for these.

A.2 Initialization of the REED model

After the discretization of the system of PDEs, a system of equations such as equa-
tion A.1 is obtained where M(t) is a singular matrix, meaning that it is a set of
DAEs. The algebraic states correspond to the concentrations of the species at both
sides of the interface located at zj (Ck|z=z−j

= Ck|z=z+

j
) and the electrical potential

gradients int he interfaces. The number of total equations depends basically on the
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Figure A.2: Validation of the derivation and implementation of the 7 point difference
equation

summation of discretization points in each phase times the number of species in each
phase, that product is amplified by the number of tanks in series in the y-direction.

Solving a DAE system of equations is complex since it only has a solution if the
set of initial conditions are consistent, it means that a feasible set of initial condi-
tions must be known in order to have convergence. The most important limiting
conditions are the algebraic equations at the interfaces, then an inconsistent set of
initial conditions leads to numerical problems (index of the DAE’s is larger than
one). Møllerhøj (2006) proposed an initialization procedure in order to guaranty, to
some extend, convergence. Experimental data are used as initial condition for the
procedure using a high pH value of the feed solution (pH=10). When the steady
state is achieved, the pH value is reduced to 5.75, corresponding to an experimen-
tal data for a fermentation broth. After the step change, there is a fast change in
pH. This period is the most time consuming part of the initialization procedure.
Reasonable changes in parameters such as input concentrations, liquid flow rates,
boundary layer thickness and membrane water content do not require a new initial-
ization. However, changes in the dissociation constants or fixed charge concentration
of the membrane demand the estimation of a new initial profile.

A.3 Optimization methodology

The methodology used for parameter estimation is a numerical method for large
scale optimization, this algorithm is a subspace trust region method based on the
interior reflective Newton method for non linear minimization subject to bounds
(Coleman and Li, 1994; Mathworks, 2006). The nonlinear data-fitting problem was
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solved by defining a function to compute the vector-valued expression F (x, xdata).
Where x is a vector containing the parameter to be estimated, xdata is the vector
with the independent variable and F (x, xdata) is the model prediction. The size
of the vector returned by the defined function is the same as the size available
experimental data set. The optimization method, referred as interior points method
provides an alternative means of solving bound-constrained problems. The idea is to
trace approximate minimizers of φ(x, µ) as µ approaches zero, where µ is a positive
parameter called barrier :

φ(x, µ) = f(x) − µ
n

∑

i=1

log(x)i (A.3)

Then, φ is a logarithmic barrier function. Under reasonable assumptions, and for a
sufficiently small positive values of µ, local minimizers of φ(x, µ) describe continuous
trajectories converging to the local solutions of the required problem (Gould et al.,
2004). The interior reflective Newton approach generates strictly feasible iterates
by using a scaling transformation and following the reflections paths (Coleman and
Li, 1994).
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B

Donnan dialysis modeling using
back box models

The experimental data for lactate, acetate and propionate fluxes are depicted in the
Fig. B.1. From the figure, it can be seen that experimental fluxes for lactate and
propionate don not achieve a maximum value for the flux (Jmax) as it is predicted
by the reaction-diffusion model, which follows a Langmuir behavior as function of
the inlet base concentration in the dialysate channel. This could be the evidence of
a dual mechanism. Using the experimental data, the parameters for the proposed
models are estimated by minimizing the squared prediction error. The estimated
parameters for each model are summarized in Table B.1 and the prediction shown
in Fig. B.1.

Table B.1: Estimated parameters for Reaction-Diffusion (RD) model and Reaction-
Diffusion+Solution-Diffusion (RD+SD) model

Ion Model
Parameter Squared norm

Jmax K P of Residuals

Lactate
RD 7.9996x10−4 1.2882x10−2 - 6.765x10−9

RD+SD 6.7139x10−4 1.8819x10−2 1.03467x10−7 2.938x10−9

Acetate
RD 8.9673x10−4 9.2518x10−3 - 2.638x10−9

RD+SD 8.9807x10−4 9.1907x10−3 2.2000x10−14 2.643x10−9

Propionate
RD 4.8304x10−4 2.8462x10−2 - 7.111x10−9

RD+SD 4.2139x10−4 4.8694x10−2 8.76443x10−8 4.489x10−9
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(a) Lactate fluxes (b) Propionate fluxes

(c) Acetate fluxes

Figure B.1: Lactate, propionate and acetate fluxes through an anion exchange membrane
as a function of the base concentration in the dialysate channel. Besides, fitted model
for different mechanisms. RD: reaction-diffusion mechanism, SD: solution-diffusion
mechanism
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C

Operational degrees of freedom
analysis

The degree of freedom analysis is a methodology used to identify the number of
variables to be specified such that the system can be solved. For an operating plant
these degrees of freedom includes both the disturbances and the variables which will
be used to reject the disturbances, i.e. manipulated variables, such that the opera-
tional goal of the plant may be fulfilled. The division of degrees of freedom between
manipulated inputs and disturbances is performed through the top-down analysis
during the control structure design (Skogestad, 2000, 2004; Jørgensen, 2006). Once
the disturbance variables have been selected, the plant operating window can be
mapped and the required span of the manipulated variables can be determined. The
degrees of freedom (DOF) of a system are calculated from the following expression:

DOF = Nx + Nu − Ne (C.1)

Where Nx is the number of dependent variables, Nu is the number of inputs or
disturbances and Ne is the number of equations available. The DOF analysis is
performed for the REED module, the fermenter separately and for the integrated
system (tables C.1, C.2 and C.3). In this analysis it is considered that the initial
conditions, kinetic model parameters and equipment design are defined. In order
to simplify, the analysis is performed for one tank in the y-direction for the REED
module. If more tanks are used, the number of variables and equations are increased
by the changed number of tanks, without affecting the degrees of freedom. In
addition, the algebraic variables that can be substituted in the PDEs or ODEs are
not counted since they are explicitly given, this means that there is and extra variable
but also an extra equation. Therefore, the degrees of freedom do not change.

The REED module has 15 degrees of freedom, the fermenter has 14 and the inte-
grated system has 12, as it is shown in the last row of the presented Tables. For the
three cases, some of these degrees of freedom can be used as possible manipulated
variables in order to achieve a desired goal. The remaining degrees of freedom are
considered as disturbances. The introduction of a control law modifies the degrees
of freedom since the controller relates the target state and the manipulated actuator
variable by an additional equation. The degrees of freedom are reduced if the set
points are known. Furthermore, the variation required to reject the disturbance or
fulfill the required set point change is shifted to the manipulated variable which is
supposed to have the necessary range to accommodate this variation.
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Table C.1: Degrees of freedom analysis for the REED module. PDE, ODE and AE
stand for Partial differential equation, Ordinary differential equation and Algebraic
equation, respectively

Variable Inputs Equations

Variable # Variable # # Type of equation

Crec
L− 6 6 PDE equations

Crec
OH− 6 6 PDE equations

Crec
Na+ 6 6 PDE equations

Crec
P− 2 2 PDE equations

Crec
HP 2 2 PDE equations

Crec
HL 2 2 PDE equations

Crec
s 2 2 PDE equations

Crec
x 2 2 PDE equations

56

16 ODE mass balances in feed channel
6 ODE mass balances in dialysate channel

Boundary 8 Donnan equilibrium (AEs)
conditions 4 Faraday’s law (AEs)

12 No accumulation (AEs)
10 Zero flux (AEs)

Potential
12

8 Electroneutrality condition
gradient 4 Faraday’s law

qfeed 1
qdia 1
Id 1
trev 1

Cfeed,in
k 8

Cdia,in
k 3

Total 96 15 96

Table C.2: Degrees of freedom analysis for the fermenter. ODE stand for Ordinary
differential equation

Variable Inputs Equations

Variable # Variable # # Type of equation

CL− 1 1 ODE mass balance equation
COH− 1 1 ODE mass balance equation
CNa+ 1 1 ODE mass balance equation
CP− 1 1 ODE mass balance equation
CHP 1 1 ODE mass balance equation
CHL 1 1 ODE mass balance equation
Cs 1 1 ODE mass balance equation
Cx 1 1 ODE mass balance equation
V 1 1 ODE mass balance equation

qfeed 1
Continued on next page
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Table C.2 – continued from previous page
Variable Inputs Equations

Variable # Variable # # Type of equation

υfeed 1
υbase 1
Cin

k 3
Crec

k 8

Total 9 14 9

Table C.3: Degrees of freedom analysis for the integrated system. PDE, ODE and AE
stand for Partial differential equation, Ordinary differential equation and Algebraic
equation, respectively

Variable Inputs Equations

Variable # Variable # # Type of equation

REED 96 96 PDE’s + ODE’s + AE’s
Fermenter 9 9 ODE mass balance equations

qfeed 1
qdia 1
Id 1
trev 1

Cdia,in
k 3

υfeed 1
υbase 1
Cin

k 3

Total 105 12 105
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D

Parameter estimation of the
bioreactor model through
regularized optimization

The parameter estimation problem shown section 5.5.4, was solved using the least
squared method combined with a regularization according to the following expres-
sion:

minθF =
L

∑

l=1

Wl

Il
∑

i=1

w2
il

Nli
∑

n=1

(ylin − ȳlin)2 + Wreg

np
∑

j=1

λj

(

θin − θ

θin

)2

(D.1)

The optimization problem is implemented in Matlab 2007a and solved using the
function “fmincon”(Mathworks, 2006). The regularization weights, λj, are set to
1 since the contribution of each parameters is already normalized in the objective
function (division by θin). The regularization term weight Wreg must be carefully
selected in order to make negligible the model bias that is introduced by the regu-
larization, this is done using the L-criterion (Hansen, 1996). The objective function
is evaluated for a wide range of Wreg using the experimental data, the θ̂ obtained
from the pure least squared optimization and θin shown in Table D.1. For very
low regularization weight, the objective function is not sensitive. However, there
is a Wreg where the objective function starts growing very fast. The regularization
weight is selected in that neighborhood, the used regularization term is Wreg = 300.

When the optimization problem was solved using different sets of initial guesses,
the solution was very close to the initial values. Therefore, a set of initial guesses
relatively close to the solution found with the pure least squares method is used, since
it was the best solution found. The initial guesses and optimal parameters are listed
in Table D.1. The results obtained using regularization confirm the identifiability
problem. It can be seen how most of the parameters are basically the same initial
values, since the function of the regularization term in the objective function is to
keep close to the initial value the parameters with a small significance.

It could be argued that the weight factor is responsible for this result. However,
the optimization is repeated with different Wreg withing a range of three orders of
magnitude and there is not a significant difference in the results.

If regularization is used, the quality of the set of initial parameter guesses is even
more important than in the conventional least squares optimization problem.
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Table D.1: Estimated kinetic parameters for the proposed fermentation model using the
regularized objective function

Parameter Initial guess Estimates Units
1 µmax 1.2500 1.2505 1/h
2 Ksx 6.0000 6.0034 g/l
3 Kix 302.0000 301.9929 g/l
4 CL,1/2x 22.0000 22.0041 g/l
5 k 9.0000 9.0001 g/l
6 qs,max 7.0000 7.0035 g/g/h
7 Kss 5.0000 5.0022 g/l
8 Kis 145.0000 144.9969 g/l
9 CL,1/2s 63.0000 62.9891 g/l
10 qp,max 6.0000 5.9957 g/g/h
11 α 1.0000 1.0004 g/g
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E.1 Abstract

An integrated bioreactor and electrically driven membrane separation processes is
under investigation to recover lactic acid from the fermentation broth. A previously
developed dynamic model for ion transport in a dialytic module is extended to
account for the presence of bipolar membranes. This model describes convective
transport of the dissociated and undissociated species in the channels with diffusion
and migration across the boundary layers and membranes. The model consists of
a system of multiregion partial differential equation which is solved numerically.
The operative window is explored by investigating the influence of the imposed
current density and the lactate/hydroxide concentration ratio on the ion fluxes and
concentration profiles. Finally, a numerical study of the concentration changes along
the bulk channel is performed.

E.2 Introduction

A novel process was proposed to integrate lactic acid fermentation and in situ main
product removal. This integrated system consists of one fermenter and two elec-
trically driven membrane modules (Rype, 2003). The cultivation broth coming
out of the fermenter contains lactate, which is separated by means of anion ex-
change membranes and sodium hydroxide using Reverse Electro-Enhanced Dialysis
(REED). The sodium lactate obtained from REED is further converted to lactic
acid, and sodium hydroxide is generated in an Electrodialysis process with Bipolar
Membranes (EDBM).

Electrodialysis with bipolar membranes is used in the production of an acid or base
from the corresponding salt in a cell arrangement consisting of cation and/or anion
exchange membranes and bipolar membranes in alternating series (Strathmann,
2004).

Previously, some models have been developed for the ion transport through bipo-
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lar membranes. Lee et al. (1998b) proposed a simple dynamic model for a batch
operation mode. Two-compartment configuration with a cation exchange mem-
brane was used. Sodium ion was assumed to be the only transported ion across
the membrane. During the water-splitting electrodialysis, volume changes due to
electroosmosis were significant for feed and the permeate solutions. Water transport
index (litre of water per mol of ion) was determined with sodium lactate and with
sodium ion. The calculated results for these two cases are 0.286 and 0.043 (litre
water per mol of NaL/Na+). The drawbacks of this model are that it excludes the
transport phenomenon caused by diffusion, and that it does not account for the
Donnan equilibrium at the interfaces.

Wilhelm (2001) in his thesis proposed a more concrete model which employs
Nernst-Planck approach including both concentration and electrical potential gradi-
ents. Additionally, coupling phenomena such as Donnan equilibrium and electroneu-
trality conditions are also included. The model uses identical salt solutions in both
sides of the bipolar membrane, and is developed for quasi-symmetric membranes
(the layer thicknesses, the fixed charged group concentrations and the diffusion co-
efficients of both permeable layers are the same). However, in this static model, the
average concentration at the solution-membrane interface is taken as the concen-
tration inside the membrane. Furthermore, the boundary layer effects in the salt
solutions are neglected, which results in a constant ion concentration at the mem-
brane surface adjacent to the solution. A limitation of this model is the assumption
that acids, bases and salts are completely dissociated under all conditions. But in
practice, the dissociations of these solutions are strongly dependent on the pH value
of where they locate.

Sonin and Grossman (1972) studied the ion transport of laminar membrane con-
sisting of alternating layers of cation and anion exchange materials. Up to four layers
are considered. The motion of the ions is governed by the transport law (Nernst-
Planck model is used) of the dilute solution. Donnan equilibrium is employed to
describe interfacial conditions. Only the dissociated salt is considered, the undis-
sociated forms of the solution (weak acid) are not investigated. Transport number
is defined for the positive and negative ions. The sum of these transport numbers
should equal unity. Usually these numbers are positive and less than unity, but
when the current density approaches zero, one of them might become larger than
unity thus causing the other number becomes negative. The negative transport
number signifies that, due to diffusion in a concentration gradient, the net ion flux
is in an opposite to the expected direction of migration. Therefore, even if there is
no current, salt ions can still be transported from one side to the other side of the
membrane as long as the concentrations of the solutions in both sides do not equal.
Similar to Wilhelms study, this paper also only deals with ion transport at steady
state.

Jaime-Ferrer et al. (2009) proposed a dynamic model for formic acid production
by a cell design consisting of cation exchange membranes and bipolar membranes.
Both diffusion and migration phenomena are considered, and the mass balances
for acid, salt, and hydroxide ions are specified. This study found out that it is
possible that the formed formic acid can diffuse through bipolar membrane and enter
the channel of sodium hydroxide solution. Besides, formate ion leaks through the
bipolar membrane and contaminate the sodium hydroxide solution. Furthermore,

194



E.3. Process description

the hydroxide ion leaks through the cation-exchange membrane. The impacts of the
diffusion of formic acid and the leakage of formate ion through the bipolar membrane
on the current efficiency are small. The current efficiency is defined by the leakage of
hydroxide ion through CEM. The current efficiency decreases as time increases. This
is because the sodium hydroxide concentration increases, which leads to an increase
of hydroxide ion leakage. The leakage of formate ion is proportional to the current
density and sodium hydroxide concentration. The sodium hydroxide concentration
needs to be low (but not too low, at an optimal value) in order to maintain a high
current efficiency.

This contribution is structured as follows. The Electrodialysis with bipolar mem-
branes process is described and the current process understanding is presented. The
previously derived model is briefly summarized and the model extensions presented.
Based on a degrees of freedom the model inputs and parameters identified. After-
wards, simulations are performed to investigate the influence of the current density
and inlet ion concentrations to the base channel. A numerical study of the convec-
tive transport along the bulk channels is performed. Finally, the conclusions are
drawn.

E.3 Process description

In this investigation, a two compartment electrodialysis cell design with anion ex-
change membranes is studied. This configuration is selected since it separation pur-
pose is to recover and concentrate lactic acid from the corresponding salt solution
(sodium lactate). A sketch of the modeled cell is depicted in Fig. E.1.

Figure E.1: Schematic drawing illustrating the expected ion transport in a two com-
partment electrodialytic cell with anion exchange membrane (AEM) and bipolar
membranes (BM)

In this configuration, both the salt and acid solution flow in parallel separated by
the membranes arrangement. Lactate and hydroxide ions present in the salt stream
can be transported through the anion exchange membrane driven by concentration
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and electrical potential gradients. The hydrogen and hydroxide ions required to re-
cover the lactic acid and sodium hydroxide are produced by the bipolar membranes
adjacent to the channels. Those ions are generated by the water splitting in the
contact region between the cation permeable layer and anion permeable layer. This
phenomenon originates from a reaction between the water molecule and the cata-
lysts, which are immobilized on the surface of the membrane. Water is diffused into
the contact region by a concentration gradient. The catalysts reduce the electric
potential of a bipolar membrane and the activation energy requirement for water
dissociation (Wilhelm, 2001). The reactive parts of the catalysts are the cation ex-
change group such as the carboxylic acid and the phosphoric acid groups, and the
weak anion exchange groups such as tertiary and secondary amines. Not all fixed
groups in the membranes show catalytic properties. Sulfonic acid group is known
not enhancing the water splitting reaction (Mafé et al., 1998), while all membranes
with weakly basic amino and weakly acidic carboxylic acid groups involve in water
splitting process (Simons, 1985).

One model that explains this reaction in the contact region is proposed by Simons
(1985). With a weak acid (AH) as the catalyst:

A−+H2O
k1−−⇀↽−−
k
−1

AH+OH−

AH+H2O
k2−−⇀↽−−
k
−2

A−+H3O
+

With the corresponding acid BH+ of a weak base B as a catalyst:

B+H2O
k1−−⇀↽−−
k
−1

BH++OH−

BH++H2O
k2−−⇀↽−−
k
−2

B+H3O
+

The rate constants for all the forward reactions are generally larger than the one
found in free solution situation. This might be caused by the favorable orientation
of water molecules under high electric field in the contact region (Mafé et al., 1998).
According to Simons (1985), the reactions which involve amino and phenol groups
have rate constants that are up to 50 times higher than in free solution in general.
Looking into different kind of membranes, during water splitting, for strongly basic
membrane, k2 value is two orders of magnitude greater than the free solution value.
For sulfonic membrane, as explained previously the functioning group on sulfonic
membrane does not enhance water splitting, thus electrolyte solutions are added.
When doing so, the rate constants in the forward reactions between the surrounding
electrolyte solutions and the water molecule would be six to thirty times greater than
the free solution value. On the other hand, for weakly basic or acidic membrane,
the rate constants are in the same order of magnitude (Simons, 1985). A model
employing an exponential function was even developed to rationalize the relation
between these rate constants under two different conditions (Mafé et al., 1998).

The major limitation of EDBM process is the coion transport. Due to the interface
equilibrium, the salt coions can also pass the membrane. This means, that in Fig.
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E.1, the cations of the salt in the base chamber diffuse across the anion permeable
layer and reach the acid chamber. This undesired transport is driven by the concen-
tration gradients, and could finally result in contamination of the desired products.
Additionally, EDBM also faces other limitations such as accumulated electrical resis-
tance and instability under alkaline solutions. However, those problems are beyond
the scope of this study.

E.4 Model development

The modeled section of two compartment bipolar membrane employing an anion
exchange membrane is sketched in Fig. E.2. The effluent of REED module contain-
ing sodium (Na+), lactate (L−) and hydroxide (OH−) ions, enters the base channel.
The bipolar membrane (BM2) to the right side of anion exchange membrane (AEM)
produces hydroxide. Under an electrical field, lactate and hydroxide might be trans-
ported towards the anode side. Due to the concentration gradient, a small amount
of the sodium ions might pass through the AEM and reach the acid chamber. In the
acid channel, diluted sodium lactate is added as the electrolyte solution. The bipolar
membrane (BM1) to the left side of AEM produces hydrogen ion, which, together
with lactate forms lactic acid (HL) due to the low pH. Assuming that hydrogen
and lactic acid do not pass AEM, there are thus five components acid channel and
adjacent boundary layer (BL1). However, there are only three components in base
channel and corresponding boundary layer (BL2). The interfaces are denoted from
z0 to z3. Relating to the current direction, positive fluxes are towards the cathode,
while negative fluxes are towards the anode.

Figure E.2: Schematic drawing of a two compartment cell configuration using anion
exchange membrane (AEM) and bipolar membranes (BM). z0 to z3 indicate the
interfaces between the solution and boundary layers, boundary layers and anion
exchange membranes. Components in the acid and base channels are depicted

The previously developed model for simultaneous ion transport through ion ex-
change membranes and adjacent boundary layers is employed as starting point for
the development of the model for the EDBM cell. The details of the model are
described in Prado-Rubio et al. (2010b). Basically, all the assumptions presented
previously holds. Those are summarized as follows:
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General assumptions (GA)

GA1. Electroneutrality condition is valid at any location.

GA2. The electrical current is only carried by ions.

GA3. Constant temperature.

GA4. The diffusion coefficients of the components in the solution are constant.

GA5. The solutions are ideal (activity coefficient equals 1).

GA6. There is no osmotic pressure difference between the solution and the mem-
brane phase.

GA7. The bipolar membrane is 100% efficient. It means that the current is carried
just by hydrogen and hydroxide ion in the cation and anion exchange layers,
respectively.

GA8. Ion transport through the boundary layers adjacent to the bipolar membranes
is not investigated.

GA9. Species included in the model are: lactate (L−), hydroxide (OH−), sodium
(Na+), hydrogen (H+) and lactic acid (HL). H+ and HL exist only in the acid
bulk channel and boundary layer 1, while the other ions exist everywhere.

The extra assumptions that are required in this model are GA7 and GA8, that ac-
count for the bipolar membranes contribution. The bipolar membranes on both sides
of the anion exchange membrane produce proton and hydroxide ions, respectively.
The complexity of the bipolar membrane requires a separate modeling work. In this
model it is assumed that the bipolar membranes are 100% efficient on producing
proton and hydroxide. In other words, the fluxes of these two ions are completely
controlled by Faraday’s law, since only OH− and H+ are transported. As a con-
senquence of GA7, the ion transport across the boundary layers adjacent to the
bipolar membranes is not investigated. As can be noticed in GA9, in this model the
hypothetical protein which generates an extra pH buffer is eliminated. The reason
is that that specie is not transported through the anion exchange membranes in the
REED module.

Membrane assumptions (MA)

MA1. The transport through the membrane in the x-direction is defined by multi-
component diffusion and migration transport.

MA2. Convective transport is neglected.

MA3. The membrane surface is in equilibrium with the solution.

MA4. The influence of the water content on the size of the membrane is neglected.

MA5. Water flux caused by electroosmosis is not investigated.
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Boundary layer assumptions (BLA)

BLA1. There are only diffusive and migrational transports in the x-direction.

BLA2. Convective transport is neglected.

BLA3. The diffusion coefficients for each ion in BL1 and BL2 are equal.

BLA4. The thickness of BL1 and BL2 are equal.

E.4.1 Model extension

As mentioned before, the mass balances describing the concentration profiles across
boundary layers and the anion exchange membrane that were developed for the
REED module remain in this model. The mass balances in the bulk channels are
modified in order to account for the presence of the bipolar membranes. There are
two changes that are introduced, the hydrogen and hydroxide fluxes from the bipolar
membranes and how the acid channel inlet concentrations are estimated.

E.4.2 Bulk channels model

The concentration profile along the channels are estimated using tanks in series
approach. Analogously to the REED model, a system of differential algebraic equa-
tions describes the convective transport along the bulk channels (y-direction). In
each tank there is mass exchange with the adjacent boundary layers and the disso-
ciation reactions are present. The dimensionless mass balances for the acid channel
is expressed in the following way (Prado-Rubio et al., 2010b):

dCacid
k

dτ
=

τn

τacid

(

Cacid,in
k − Cacid

k

)

+
τn

hacid

(

Jk,BM1 − Jk|z=z0

)

+ τnRk (E.1)

It can be noticed that the term Jk,BM1 was introduced. This term represent the
ion flux which come from the bipolar membrane (BM1), and can be estimated from
Faraday’s law.

Id = F
∑

k

zkJk,BM1 (E.2)

Since only hydrogen ion (H+) is transported from bipolar membrane to the acid
chamber, then:

JH+,BM1 =
Id

zH+F
(E.3)

The mass balance in the base channel is expressed as following:

dCbase
k

dτ
=

τn

τbase

(

Cbase,in
k − Cbase

k

)

+
τn

hbase

(

Jk,BM2 − Jk|z=z3

)

(E.4)
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where the reaction term is not included due to the high pH in this channel, thus
the species are completely dissociated. The terms involved in this expression are
analogous to the acid channel. Since only hydroxide ion (OH−) is transported from
bipolar membrane to the base chamber, then:

JOH−,BM1 =
Id

zH+F
(E.5)

E.4.3 Acid channel inlet concentration model

The inlet concentrations to the acid channel need to be specified for the model.
This would include five species: lactate, hydroxide, sodium, hydrogen and lactic
acid. Therefore a small model is made for acid channel initial concentrations.

The water dissociation is expressed as following:

H2O
Kw−−⇀↽−−H++OH−

Kw = Cacid
H+ Cacid

OH− (E.6)

where Kw is the water dissociation constant. The dissociation of lactic acid can be
expressed in the base form:

HL+OH−
Kb−⇀↽−L−+H2O

Kb =
Cacid

HL Cacid
OH−

Cacid
L−

(E.7)

The total lactate concentration consists of both the concentration of lactate ion
and of lactic acid.

Ctot
L− = Cacid

L− + Cacid
HL (E.8)

Due to the electroneutrality condition in the acid chamber,

Cacid
L− + Cacid

OH− = Cacid
H+ + Cacid

Na+ (E.9)

Therefore if the pKa value the total lactate concentration and the sodium concen-
tration at the inlet of the acid channel are given, the four unknowns (Cacid

L− , Cacid
OH− ,

Cacid
H+ and Cacid

HL ) can be calculated from four equations (E.6, E.7, E.8 and E.9).
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E.4.4 Model solution

The extended dynamic model from REED which is used to model the EDBM module
consists of a system of multiregion partial differential equations (PDEs). Once again,
the method of lines is used to discretize the spatial dimension using sixth order Taylor
expansion with asymmetric centered differences (Prado-Rubio et al., 2010b).

E.5 Results and discussion

Simulations are performed in order to explore the operative window as a function of
the imposed current density and lactate/hydroxide concentration ratio in the base
channel. Finally, tank in series description of the convective transport along the
channels is investigated.

E.5.1 Model parameters and inputs

Parameters and inputs are identified through a degree of freedom (DOF) analysis.
Studies on parameters have been done by Prado-Rubio et al. (2010b). The relevant
parameters to this model are summarized in Table E.1.

Table E.1: Parameters used in the EDBM model, taken from Prado-Rubio et al. (2010b)

Parameter Value Units
Gas constant (R) 8.3145 J/mol/K
Faraday number (F) 96487 C/mol or As/mol
pKa for HL 3.860 -
DL− in solution 1.033x10−9 m2/s
DOH− in solution 5.273x10−9 m2/s
DNa+ in solution 1.334x10−9 m2/s
DHL in solution 0.848x10−9 m2/s
DH+ in solution 9.311x10−9 m2/s
Membrane thickness 0.27x10−3 m
Boundary layer thickness 70x10−6 m
Fixed charge conc. 7500 mol/ m3

Channels length 0.373 m
Channels width 0.15 m
Channels height 0.6x10−3 m

The ion diffusion coefficients in the membrane are estimated using an empirical
correlation that was previously regressed (Prado-Rubio et al., 2010b). This expres-
sion proposed by Mackie and Meares expresses the tortuosity factor as a function
of porosity of the membrane (Eq. E.10, cited by (Jonsson, 1980)). The smaller
diffusion coefficient inside the membrane than in solution is explained by the fact
that the membrane has an structural resistance to the transport. Additionally, that
relation accounts for the increasing diffusivity of the ion when free volume in the
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membrane increases. However, it neglects the coupling effect due to interactions be-
tween molecules, which means, that diffusion coefficients of all ions passing through
the membrane are affected by the same factor.

Dm
k = Ds

k

(

E

τf

)

= Ds
k

(

E

2 − E

)2

(E.10)

Assuming that the membrane is completely wet, the free volume of the membrane
is the water content. A black box model was proposed in Prado-Rubio et al. (2010b)
in order to correlate the membrane water content with changes in the pH. In this
model the water content of the membrane is believed to increase nonlinearly as the
hydroxide concentration (thus also defining the average pH) in the base channel
increases (Eq. E.11):

WC = γ
(

Cbase,in
OH−

)

σ (E.11)

Where Cbase,in
OH− is the inlet hydroxide concentration in the base channel (the units

must be mol/L). γ and σ are empirical values which were estimated from experi-
mental data. For lactate transport through Neosepta-AMH, γ = 0.24 and σ = 0.1
(Prado-Rubio et al., 2010b). The fixed charge of the membrane and the thickness
of the boundary layers adjacent to the AEM were estimated through a sensitivity
analysis.

The model inputs need to be specified in order to run the simulation. Any of these
variables can be changed so as to study its impact on the system. The first studied
independent variable is the current density (Id). The other inputs are studied and
summarized in Table E.2.

Table E.2: Model inputs

Parameter Value Units
Current density range 100-550 A/m2

qacid 120 l/h
qbase 120 l/h

Cbase,in
L 80 mol/m3

Cbase,in
OH 20 mol/m3

Cbase,in
Na 100 mol/m3

Cacid,in
HL + Cacid,in

L− 20 mol/m3

Cacid,in
Na+ 10 mol/m3

Where qacid and qbase are the flow rates of acid and base channel. The value is taken
from the operational parameters for Donnan dialysis operation mode in Prado-Rubio
et al. (2010b). Cbase,in

L , Cbase,in
OH and Cbase,in

Na are the inlet concentration of lactate,
hydroxide, and sodium ions in the base channel, respectively. These ions exist as
the composing ions of sodium lactate and sodium hydroxide which come from the
REED module. Due to the high pH, all components are completely dissociated.
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In REED module, hydroxide is transported through the anion exchange membrane
to the feed channel, while lactate is recovered from the cultivation broth. In this
investigation, the input to the base channel which comes from the dialysate channel
in the REED module, is assumed to be alkaline and contains more lactate than
hydroxide. Therefore, the lactate concentration at the inlet of the base channel is
set 80 mol/m3, while the hydroxide 20 mol/m3. The sodium ion exists in the salt
form with both lactate and hydroxide ions, thus the concentration of sodium at the
inlet of base channel is the sum of the concentration of lactate and hydroxide (100
mol/m3), fulfilling the electroneutrality condition.

In the acid channel, the concentrations of total lactate and sodium at the inlet
need to be specified according to the initial condition model discussed in above.
Both concentrations should be lower than the concentrations in the base channel as
the starting solution in the acid channel is mainly used as the electrolyte solution.
As H+ ion is produced from the bipolar membrane adjacent to the acid channel,
lactic acid is formed as the pH becomes low. Thus the lactate in this channel exists
in either undissociated or dissociated form. Using the proposed model, a relation
between sodium concentration and the pH value can be found. This is depicted in
Fig. E.3. When the sodium concentration is smaller than 20 mol/m3, the solution in
the acid channel is acidic (pH below 6). But once the sodium concentration exceeds
20 mol/m3 the pH value increases dramatically. So for the simulation 10 mol/m3 is
chosen as the inlet sodium concentration in the acid channel, and for total lactate
is 20 mol/m3.

Figure E.3: pH changes at the inlet of the acid channel as a function of the Na+ con-
centration

E.5.2 Static model analysis under current load conditions

The static system behavior is investigated as a function of the strength of the im-
posed electrical potential gradient. The current density is increased from 100 A/m2

onwards until the solution of the system of equations becomes unfeasible (Prado-
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(a) Acid channel profile (b) Membrane profile

(c) Base channel profile

Figure E.4: Static concentration profiles of the system under low current density (Id=100
A/m2). (a) Acid channel; (b) Membrane and (c) Base channel

Rubio et al., 2011b). In this simulation the current density can go up till 550 A/m2.
Two simulations under two different current densities are shown in Figs. E.4 and
E.5, which shows the concentration profiles of the system under 100 A/m2 and 550
A/m2 current densities, respectively.

The Figs. E.4(a) and E.5(a) show that the concentrations of lactate and sodium
at the interface between BL1 and AEM become three times higher by increasing
the current density from 100 to 550 A/m−2. The difference between CL− and CNa+

at this location becomes five times larger. Under the higher current density, the
concentration of lactic acid is slightly increased in the acid channel. Additionally,
the pH has a sharper increase at the interface between the bulk solution and the
boundary layer, which leads to less lactic acid concentration in the boundary layer.

The Figs. E.4(b) and E.5(b) depict that when the current density becomes high,
the lactate concentration in the membrane drops, while the hydroxide concentra-
tion rises. Lactate concentration at the interface between AEM and BL2 decreases
from 6000 to 5700 mol/m3. Besides, hydroxide concentration at same interface in-
creases from 1450 to 1750 mol/m3. The lactate and hydroxide concentration inside
the membrane become almost constant at the highest current density. Due to the
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(a) Acid channel profile (b) Membrane profile

(c) Base channel profile

Figure E.5: Static concentration profiles of the system under high current density
(Id=550 A/m2). (a) Acid channel; (b) Membrane and (e) Base channel

electroneutrality condition and effectiveness of Donnan exclusion, the sum of both
concentrations basically equals the fixed concentration of the anion exchange mem-
brane.

The last two plots in Figs. E.4 and E.5 show that the concentrations of lactate,
hydroxide and sodium at the interface between AEM and BL2 are smaller and
approach zero when the high current density is applied. By increasing the current
density from 100 to 550 A/m2, the lactate and sodium concentrations at the interface
between AEM and BL2 become forty times smaller while hydroxide concentration
is thirty times smaller. As the BL2 becomes deficient of hydroxide, the pH value
also drops at this point compared to the case when 100 a/m2 is applied.

Fig. E.6 shows the concentration of the lactic acid produced in the acid channel as
a function of the current density. As the current density increases, more lactic acid
is formed in the acid channel. There is however a plateau where either the increase
of lactic acid production is somewhat hindered, or after certain period of saturation
the lactic acid formation activated again. An explanation is proposed below.

The plateau in lactic acid concentration might be caused by a certain concentration
ratio of lactate, hydroxide and sodium. The diffusion coefficient (which relates to
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Figure E.6: Static lactic acid concentration in the acid channel as a function of current
density

the ion mobility) of hydroxide is about five times larger than for lactate (as shown in
Table E.1). This means that the lactate concentration gradient across the membrane
has to be in a certain level higher than for hydroxide in order favor the production of
lactic acid by increasing the current density. As shown in Fig. E.7, the concentration
ratio between lactate and hydroxide at the interface in the base channel is high in
at low current density, and tends to keep at the same level as both lactate and
hydroxide concentrations start decreasing. This means that the production of lactic
acid should stay at a constant level. However when the current density is increased to
higher than 400 A/m2, the lactic acid concentration increases again. This situation
leads to interest in the bulk concentration behavior in the acid channel.

Fig. E.8 shows that between 200 and 400 A/m2 the pH and sodium concentration
increase. This situation can explain the plateau in lactic acid production. Meaning
that the increase in lactic acid production by an increment in current density is
compensated by the rise in pH. The pH wave behavior shown in Fig. E.8(a) is not
investigated further in this study, but can be important for future work. Especially
the dissociation phenomenon inside the boundary layer adjacent to the acid channel
might play an import role in this case.

Fig. E.9 depicts the lactate and hydroxide fluxes as a function of current densities.
Under current densities from 100 to 550 A/m2, the both ion fluxes are negative since
the ions are transported in the opposite direction to the spatial direction reference.
As the current density increases both fluxes become bigger. Besides, the hydroxide
flux is all the time higher than lactate flux and becomes even much higher when the
current density becomes larger.

The first round model simulations gives a clear result about the impact of cur-
rent density to the behavior of the system. When all other inputs and parameters
are fixed, increasing the current density enhances the fluxes of both hydroxide and
lactate, the latter of which leads to a higher production of lactic acid. At intermedi-
ate values of the imposed current density (200 to 400 A/m2), sodium concentration
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Figure E.7: Static ionic concentrations at the interface between membrane and the
boundary layers as a function of the current density. Acid and base refer to the acid
and base channels, respectively

and pH increase at the acid channel while lactic acid concentration is kept almost
constant. The lactic acid production rises when the pH decreases.

The concentration profiles in the membrane as well as in the boundary layers
also change significantly when the current density increases. The concentrations
of all ions at the interface between the membrane and the boundary layer in the
base channel tend to approach zero, which results in a deficiency of ions when the
current is increased. This point is referred to generates as limiting current density
(Strathmann, 2004; Sonin and Grossman, 1972). The numerical problems generated
at limiting current densities have been previously investigated for ion transport
through AEM using the same approach Prado-Rubio et al. (2011b).

(a) pH in the acid channel (b) Sodium in the acid channel

Figure E.8: Static pH and sodium concentration in the acid channel as a function of the
current density
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Figure E.9: Static lactate and hydroxide fluxes as a function of current density

E.5.3 Influence of lactate and hydroxide concentration ratio

After investigating the impact of current density, the concentration ratio of lactate
and hydroxide in the base channel is changed (lactate: 90 mol/m3; hydroxide: 10
mol/m3) to study its impact on the system performance. The sodium is still the sum
of the concentrations of lactate and hydroxide in order to keep the electroneutrality
condition. The current density is set at 100 A/m2, and all the other inputs are
unchanged as shown in Table E.2. The concentration profile of the simulation under
the condition of the new inputs is shown in Fig. E.10. This result can be compared
with the (a), (b) and (c) graphs from Fig. E.4.

From Fig. E.10(a), it is possible to see that the concentration profile for lactic
acid is slightly different, the change is significant in the boundary layer. More lactic
acid penetrates the boundary layer compared with the result in Fig. E.4(a). This
higher presence of lactic acid is accompanied by a lower pH value in the boundary
layer. Fig. E.10(b) shows that the average lactate and hydroxide concentration ratio
inside the membrane rises more than 2 folds compared to Fig. E.4(b). The lactate
concentration gradient across the membrane decreases from 220 to 160 mol/m3.
Comparing the concentration profiles in the base channel, Fig. E.10(c) and E.4(c),
it can be seen that the sodium concentration at the interface between AEM and
BL2 decreases. This is mainly due to the decrement of hydroxide concentration at
that point.

The simulation results show also that the fluxes of lactate and hydroxide vary
considerably by modifying the concentration ratio of lactate and hydroxide at the
inlet of the base channel. A comparison is depicted in Fig. E.11, which shows
that when the lactate concentration in the base channel changes from 80 to 90
mol/m3, the lactate flux increases from approximately -3x10−4 to -6x10−4 mol/m2/s.
Oppositely, the hydroxide flux decreases when the lactate concentration in the base
channel increases.

One interesting phenomenon is that when fixing all the other variables and pa-
rameters, changing the concentration ratio in the base channel results in a different
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(a) Acid channel profile (b) Membrane profile

(c) Base channel profile

Figure E.10: Static concentration profiles of the system under 100 A/m2 and inlet
lactate and hydroxide concentration to the base channel of 90 and 10 mol/m3,
respectively. (a) concentration profile in the acid channel, (b) concentration profile
in the membrane and (c) concentration profile in the base channel

preference on the ionic fluxes. As clearly shown in Fig. E.11, the hydroxide flux is
larger than lactate flux when the concentration ratio of lactate and hydroxide is 4:1.
However, when the lactate concentration is increased while the hydroxide concen-
tration is decreased, the lactate flux becomes dominant. Since one of the purposes
of the bipolar membrane electrodialysis is to produce purer lactic acid in the acid
channel and sodium hydroxide in the base chamber, which depend largely on their
fluxes, it is advantageous to reach a scenario when lactate flux surpasses the hydrox-
ide flux. As previously discussed, the current density influences the flux. Therefore,
plots are made for fluxes as a function of current density for both concentration
ratios, and for a larger range.

In Fig. E.12 the lactate and hydroxide fluxes are plotted against the current
density for two different inlet base channel concentration ratios. (b) shows that
the fluxes of lactate and hydroxide are equal when the current density is around 50
A/m2. Before this point, hydroxide flux is favored while after this point lactate flux
becomes higher. This behavior is not observed in (a), where hydroxide flux is always
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Figure E.11: Static lactate and hydroxide flux under different base channel concentration
ratios. 90/10 and 80/20 indicate the lactate to hydroxide concentration ratio at the
inlet of the base channel

higher than lactate flux, and this difference becomes even bigger when the current
density increases. It can be seen when lactate concentration in the base chamber
increases from 80 to 90 mol/m3, the change of its flux as a function of current density
tends to become steeper. Similarly, when the hydroxide concentration decreases from
20 to 10 mol/m3, the change of its flux as a function of current density becomes
steadier. Therefore, lactate flux has is able to overcome hydroxide flux. Based on
above discussion, it can be hypothesized that there is a lactate/hydroxide threshold
in order to favor the lactate transport.

(a) Ion fluxes for 80/20 (b) Ion fluxes for 90/10

Figure E.12: Comparison of lactate and hydroxide static fluxes, under different base
channel concentration ratios. (a) when lactate and hydroxide concentrations in the
base channel are 80 and 20 mol/m3, and (b) when lactate and hydroxide concentra-
tions at the inlet of the base channel are 90 and 10 mol/m3
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Another interesting phenomenon can be observed in Fig. E.12 is that under very
low current density the lactate flux becomes positive. This ion exchange transport is
generated by the pH difference between the acid and base channels. Under no/low
current conditions, the hydroxide tends to transport through the anion exchange
membrane due to the concentration difference between the two channels. The hy-
droxide transport induces a potential gradient which drives the lactate flux out of
the acid chamber, thus giving a positive value (Strathmann, 2004; Prado-Rubio
et al., 2010b). The induced potential gradient overcomes the lactate concentration
gradient and the strength of the imposed electrical potential gradient.

As previously mentioned, the concentration of lactate, hydroxide and sodium at
the interface between membrane and the bulk channel boundary layer all tend to be
zero when the limiting current density is applied. This is checked for system with
other concentration ratios in the base channel, and the result is shown in Fig. E.13.
Interestingly, it shows that when the lactate concentration goes down and hydroxide
concentration goes up in the base channel, the concentrations at the interface cannot
really reach zero under the highest current densities that are applied. This might
be caused by another numerical constraint during in the simulation under high
current densities, which results in a current limitation that is actually lower than
the expected limiting current density.

Figure E.13: Static interfacial ion concentrations between the anion exchane membrane
and the boundary layer in the base channel at the maximum current density allowed,
before the solution of the system of equations becomes unfeasible

Fig. E.14 shows the highest current densities that can be applied in the simula-
tion for each simulation for different lactate/hydroxide concentration ration in the
base channel. Based the previously concluded, when the lactate concentration is
90 mol/m3, the highest current density correspond to the limiting current density.
However, when the lactate concentration goes down, the limiting current densities
should be higher than the highest current densities shown in Fig. E.14.

Summing up all the results given above, an operative window can be defined for
further simulations. One key element of this operative window is that the concen-
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Figure E.14: Static highest current density that can be imposed as a function of the
lactate/hydroxide concentration ratio in the base channel

tration ratio of lactate to hydroxide in the base channel should be preferably high,
such as 9:1. This concentration ratio gives a reliable limiting current density in the
simulation and generates a preferable lactate flux at high current density.

E.5.4 Numerical investigation of the tank in series approach

The purpose of this investigation is to reveal whether and when it is necessary to
use tank-in-series model to describe the concentration changes in the bulk channel
along the y-direction. Two and Five tank modules are investigated separately in
order to gain the result of the gradual increase of the tank number. Additionally,
the channel length is also amplified five times to see the impact of adding more tanks
when the channel is longer.

Figs. E.15 and E.16 show the lactate and hydroxide concentrations at the outlet of
each tank when there are one and five tanks and for short and long channels. When
the channel length is small, five-tank module does not give a significant difference
in the outlet concentrations of each tank (compare first result of 5 tanks and 5xAm
with last point in 5 tanks and 1xAm, in Fig. E.15). However, when the channel
length is increased five folds, the outlet concentration of the lactate at the fifth
tank is significantly lower than the starting concentration. Similarly the hydroxide
concentration at the outlet of the fifth tank is significantly higher than its starting
concentration at the inlet of the first tank. As shown in both figures, the one tank
module for the long channel (1 tank and 5xAm, in Fig. E.15) has a similar outlet
concentration as the last outlet concentration of the five-tank module for the long
channel (last point in 5 tanks and 5xAm, in Fig. E.15). The relative error of using
only one tank is calculated using Eq. E.12. The error of using only one tank in the
y-direction when the channel length is five times larger than the reference is 0.38%
and 2.24% for lactate and hydroxide, respectively.
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Figure E.15: Static lactate concentration at the outlet of each tank. Am stands for
membrane area. The ion concentration at tank zero corresponds to the inlet con-
centration. 1xAm reference channel length (according to Table E.1). 5xAm refers
to 5 times the reference channel length)

Error(%) =

∣

∣C(5 tank 5xAm) − C(1 tank 5xAm)

∣

∣

C(5 tank 5xAm)

(E.12)

The influence of the tank in series approach can be evaluated using the mean fluxes
of lactate and hydroxide for one, two and five -tank modules respectively, and for
short and long channels. The mean flux of each tank is calculated from Eq. E.13.

J̄i =

(

Coutk
i − Cink

i

)

qbase

Amk

(E.13)

where J̄i is the mean flux of ion i, Am is the membrane area of the k-th tank,
and Cout

i and Cin
i are the outlet and inlet concentrations to each tank, respectively.

The total average flux in the module is calculated averaging the mean fluxes of all
individual tanks.

The results are shown in Fig. E.17. They show that by adding more tanks in
the channel, the averaged lactate flux will increase while the averaged hydroxide
flux decreases. These changes become clearer when the channel length increases.
This means that when the channel is long it might be necessary to consider using
tank-in-series module as higher deviations are obtained. Quantifying the error in
the mean flux by using an expression analogous to Eq. E.12, it gives a results that
the 1-tank approach for lactate is deviated 1.2% and 2% from the 2-tank and 5-tank
description, respectively. For the longer channel, the differences are 4.5% and 7.5%
respectively. Similar results are obtained for hydroxide mean flux.

When the channel is long, it might be necessary to include more tanks in the tank
in series description, as the deviation from the 1-tank approach increases. On the
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Figure E.16: Static hydroxide concentration at the outlet of each tank. The ion concen-
tration at tank zero corresponds to the inlet concentration. Am stands for membrane
area. 1xAm reference channel length (according to Table E.1). 5xAm refers to 5
times the reference channel length

other hand, when the channel length is small, adding more tanks does not make a
big difference in the fluxes, thus one tank CSTR module can be considered as the
appropriate setup.

Using tanks-in-series module might be beneficial for long channels regarding to the
averaged fluxes, but might asks for a price when talking about the simulation time.
Fig. E.18 shows the change of the simulation time as the tank number increases.
It can be seen that the simulation time increases exponentially as the tank number
increases. When the channel is longer, the simulation time is higher compared to
the one for a short channel. This result confirms previous investigations where

(a) Lactate (b) Hydroxide

Figure E.17: Comparison of static mean lactate and hydroxide fluxes between short and
long channel systems
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Figure E.18: Simulation time as a function of the number of tank in series employed

it was stated that the simulation time increases exponentially as the number of
discretization points in the Taylor expansion series increases (Møllerhøj, 2006). As
the channel length increases, the total number of equations increases analogously
to have more discretization points. Thus, the simulation time exhibits a similar
response.

Therefore, it is concluded that although adding more tanks in the channel leads
to a higher accuracy, the dramatic increase in simulation should also be taken into
account. The pros and cons should be well balanced when designing the simulation
work.

E.6 Conclusions

A dynamic model was developed for the transport of ions in the two compartment
electrodialysis with bipolar membranes for lactic acid recovery, employing an anion
exchange membrane. The model is based on first principles for dissociation, diffusion
and migration of the species. The transport phenomena through the boundary layer
and the anion exchange membrane, in the bulk solutions and at the interfaces are
modeled separately. The link between zones in the model are boundary and field
conditions given by algebraic and differential algebraic equations. The combined
model leads to a system of partial differential equations which is solved numerically.
The major modifications to the original model are the dissociation model in the acid
channel and the introduction of bipolar membranes. The model is able to predict
concentration profiles as well as fluxes in the modeled zones in presence or absence of
a current load. Thus it provides useful understanding for the interactions between
the membrane separation processes involved in the entire lactic acid production
process.

The operating window of the process was investigated as a function of the current
density and the ion concentration ratio in the base channel. Increasing the current
density, the ion fluxes were enhanced and thus the lactic acid production. However,
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the observed pH wave behavior in the feed channel could be unfavorable. Therefore,
future investigations are required to reveal the source that behavior. The concen-
tration ratio between lactate and hydroxide in the base channel should be as high as
9:1. Such concentration ratio provides the necessary conditions for having preferable
lactate transport through the anion exchange membrane and for obtaining reliable
estimation of the limiting current density.

From the numerical investigation of the tank in series approach it was observed that
for short channel lengths, only one CSTR is an appropriate assumption to model the
ion concentration in the bulk channels. As the channel length increases, convective
transport along the channel plays a significant role, thus requiring more tanks in
the model. This modification leads to an exponential increase in the simulation
time. Therefore, the selection of the number of tank in series represents a trade off
between accuracy and simulation time.

E.7 Nomenclature

A− Acid ion
AEM Anion exchange membrane
Am Membrane area
B Weak base
BL Boundary layer
C Concentration (mole m−3)
D Diffusion coefficient (m2 s−1)
E Fractional membrane water content (-)
EDBM Electrodialysis with bipolar membranes
F Faraday constant (C mole−1)
H+ Hydrogen ion
HA Weak acid
HL Lactic acid
Id Current density (A m−2)
J Flux (mole m−2 s−1)
hi Channel i height (m)
k Kinetic parameter (-)
Kb Dissociation constant (mol m−3)
Kw Ionic product for water (mol2 m−6)
L Channel length (m)
L− Lactate ion
Na Sodium ion
OH− Hydroxide ion
q Flow rate (m3 s−1)
Rk Total reaction rate of k (mol m−3 s−1)
R Universal gas constant (J mol−1 K−1)
REED Reverse electro-enhanced dialysis
t Time (s)
y Spatial direction (m)
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W Channel width (m)
z Dimensionless distance z = x/δm (-)
zk Valence of k (-)

Greek letters

δBL Boundary layer thickness (m)
δm Membrane thickness (m)
γ Parameter in the WC model (-)
σ Parameter in the WC model (-)
τ Dimensionless time (τ = t/τn) (-)
τacid Residence time in dialysate channel

(τacid = hacidWL/qacid) (s)
τbase Residence time in feed channel

(τbase = hbaseWL/qbase) (s)
τf Tortuosity factor (-)
τn Nominal time (τn = 1 (s))

Subscripts

A− Anion
acid Acid
base base
BL Boundary layer
fix Fixed charges in the membrane
HL Lactic acid
i Specie
j Discretization point
k Specie
L− Lactate ion
Na+ Sodium ion
OH− hydroxide ion
p Zone (phase)
z specific location

Superscripts

acid Acid
base Base
in Inlet
m Membrane
s Solution
−/+ Left/Right side of a section
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Mafé, S.; rez, R. and Alcaraz, A. (1998). Electric Field-assisted Proton Transfer
and Water Dissociation at the Junction of a Fixed-charge Bipolar Membrane.
Chemical Physics Letters , 294(4-5), 406 – 412.

Malcolm, A.; Polan, J.; Zhang, L.; Ogunnaike, B. A. and Linninger, A. A. (2007). In-
tegrating Systems Design and Control Using Dynamic Flexibility Analysis. AIChE
Journal , 53(8), 2048–2061.

Mathworks (2006). Matlab Full Product Family Help, version 7 (r14) edition.

Matros, Y. S. (1989). Catalytic processes under unsteady-state conditions. Elsevier:
Amsterdam.

Matros, Y. S. and Bunimovich, G. A. (1996). Reverse-Flow Operation in Fixed Bed
Catalytic Reactors. Catalysis Reviews , 38(1), 1–68.

Mauritz, K. and Moore, R. (2004). State of Understanding of Nafion. Chem. Rev.,
104, 4535–4585.

McKlay, M.; Morrison, J. and Upton, S. (1999). Evaluating Prediction Uncertainty
in Simulation Models. Computer Physics Communications , 117(1-2), 44–51.

Miyoshi, H. (1997). Diffusion Coefficients of Ions through Ion-Exchange Membranes
for Donnan Dialysis using Ions of the same Valence. Chemical Engineering Sci-
ence, 52, 1087–1096.

Møllerhøj, M. (2006). Modeling the REED Process . Master’s thesis, Technical
University of Denmark.

224



Moon, P.; Sandi, G.; Stevens, D. and Kizilel, R. (2004). Computational Modeling
of Ionic Transport in Continuous and Batch Electrodialysis. Separation Science
and Technology , 39(11), 2531–2555.

Morari, M. (1982). Integrated Plant Control: A Solution at Hand or a Research
Topic for the Next Decade? In T. Edgar and D. Seborg, editors, Chemical Process
Control 2 , pages 467–495.

Morari, M. (1983). Flexibility and Resilience of Process Systems. Computers &
Chemical Engineering , 7(4), 423–437.

Morari, M.; Arkun, Y. and Stephanopoulos, G. (1980). Studies in the Synthesis of
Control Structures for Chemical Processes: Part 1: Formulation of the Problem.
Process Decomposition and the Classification of the Control Tasks. Analysis of
the Optimizing Control Structures. AIChE Journal , 26(2), 220–232.

Mulder, M. (1997). Basic Principles of Membrane Technology . Kluwer Academic
Publishers.
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Narbȩska, A. and Staniszewski, M. (1998a). Separation of Fermentation Products by
Membrane Techniques. Part III. Continuous isolation of Lactic Acid by Facilitated
Membrane Extraction. Separation Science and Technology , 33(10), 1455–1465.
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