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Abstract

Ovarian cancer is asymptomatic at early stages and most patients present with advanced levels of

disease. Lack of cost-effective methods that can achieve frequent, simple and non-invasive testing

hinders early detection and causes high mortality in ovarian cancer patients. Here, we report a

simple and inexpensive microchip ELISA-based detection module that employs a portable

detection system, i.e., a cell phone/charge-coupled device (CCD) to quantify an ovarian cancer

biomarker, HE4, in urine. Integration of a mobile application with a cell phone enabled immediate

processing of microchip ELISA results, which eliminated the need for a bulky, expensive

spectrophotometer. The HE4 level detected by a cell phone or a lensless CCD system was

significantly elevated in urine samples from cancer patients (n = 19) than normal healthy controls

(n = 20) (p < 0.001). Receiver operating characteristic (ROC) analyses showed that the microchip

ELISA coupled with a cell phone running an automated analysis application had a sensitivity of

89.5% at a specificity of 90%. Under the same specificity, the microchip ELISA coupled with a

CCD had a sensitivity of 84.2%. In conclusion, integration of microchip ELISA with cell phone/

CCD-based colorimetric measurement technology can be used to detect HE4 biomarker at the

point-of-care (POC), paving the way to create bedside technologies for diagnostics and treatment

monitoring.
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Introduction

Ovarian cancer is the fifth leading cause of all cancer related mortality among women 1.

Since ovarian cancer is asymptomatic at early stages, most patients present with advanced

disease (stage III/IV) when diagnosed. Despite radical surgery and chemotherapy, 5 year

survival rate of ovarian cancer at stage III and IV is only 33% compared to 90% at stage I 1,

highlighting the need for early diagnosis and large scale screening among high-risk

populations. However, existing diagnosis methods such as biopsy, medical imaging and

genetic analysis cannot be used frequently for routine screening 1, 2. A medical survey

revealed that lengthy and complex testing procedures associated with those methods hinder

high-risk populations from seeking immediate medical care 3. Annual transvaginal

sonography has been used to screen for ovarian cancer among subjects with a family history

of ovarian cancer, which showed limited efficacy, when the ovarian volume remains

normal 4, 5. Another common screening method is serum CA125, which is an enzyme-linked

immunosorbent assay (ELISA), and has a sensitivity of 72% at specificity 95% 6.

Technically, these two screening methods are invasive, costly and instrument dependent,

and they cannot be established at the point-of-care (POC). Current ovarian cancer biochips

based on the detection DNA sequences 7, 8 or protein biomarkers 9, 10 rely on fluorescence

or chemiluminescence detection, which are designed and developed only for laboratory

settings. Hence, there is an unmet need for developing a simple method to detect early-stage

ovarian cancer at the POC.

POC diagnostics are appealing in terms of disease monitoring and control, including

infectious diseases, cancer and diabetes, in both resource-limited and resource-rich settings.

To offer POC testing by the bedside, the World Health Organization (WHO) has expressed

the need for inexpensive, disposable and easy-to-use diagnostic devices 11, 12. This is

particularly important for resource-limited settings, where there are limitations with trained

personnel, infrastructure and medical instruments. Thus, the state-of-the-art diagnostic

technologies such as polymerase chain reaction (PCR), ELISA or microarray have practical

challenges to be established at the POC 13.

With advances in microelectromechanical systems (MEMS), miniaturization of ELISA on a

single microchip has become feasible, coupled with detection technologies such as

fluorescence detection 14–17, chemiluminescence 18, electrical detection 19–21 or

colorimetric detection 22. However, these methods are expensive and technologically

complex, and require bulky detection setups, which are not ideal for POC testing despite the

use of miniaturized microchips. For instance, fluorescence or chemiluminescence detection

often requires the use of a charge-couple device (CCD) camera interfaced with an expensive

fluorescence microscope 23. Electrical detection of microchip ELISA requires reliable power

supply and delicate circuitry to measure the change in impedance induced by the analyte.

Colorimetric detection has been reported for on-chip ELISA using a CCD camera coupled to

a microscope, which requires a computer and an analysis program 22. Although microchip

ELISA results can also be seen by the naked eye, the analyte concentration cannot be

quantitatively measured 24. Thus, inexpensive, simple and quick detection methods are

desirable to facilitate microchip ELISA at the POC 25–27.

Human epididymis protein 4 (HE4) has been reported as a biomarker for ovarian cancer

detection. Its concentration in serum has been shown to be correlated with the clinical status

of ovarian cancer 28, 2930. Here, we demonstrated a non-invasive detection strategy that

combines microchip ELISA and cell phone/CCD camera based colorimetric measurement to

detect HE4 in urine. Although cell phones have been previously evaluated as an imaging

apparatus for medical diagnosis 31, 32, their capability to measure the biomarker

concentration in clinical samples has not been reported. The cell phone integrated with the
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mobile application enabled immediate data processing of microchip ELISA results without

referring to peripheral equipment for read-out and analysis. Via established mobile

networks, this presented platform technology can be potentially used as a broadly applicable

tool to diagnose other clinical diseases or to monitor treatment efficacy in resource-limited

settings.

Materials and Methods

Microchip design and fabrication

We used a non-lithographic technique to fabricate microchips as previously published 26, 27.

Polymethyl-methacrylate (PMMA) (McMaster Carr, Atlanta, GA) and double-sided

adhesive film (iTapstore, Scotch Plains, NJ) were first cut using a laser cutter (VersaLaser™,

Scottsdale AZ). The pieces were cut with dimensions of 24 × 40 mm2. On the top of the

PMMA base (Figure S1), an inlet and outlet were cut with a diameter of 0.375 mm. Then,

two layers of PMMA were assembled onto a polystyrene petri dish (BD Biosciences, San

Jose, California) via two layers of double-side adhesive film, forming three microchannels.

These microchannels had dimensions of 4 × 7.5 × 3.225 mm3 comprising an inlet and outlet

at each end.

HE4 quantification with microchip ELISA and microplate ELISA immune assays

As shown in Figure 1, a urine sample was first loaded onto a postage stamp sized microchip

(Figure 1A). On the microchip, the protein biomarker, i.e., HE4, was detected using a

sandwich ELISA (Figure 1B). Once HE4 was captured by the immobilized capture antibody

on-chip, a horseradish peroxidase (HRP) conjugated secondary antibody against HE4 was

added, forming a sandwich immuno-complex. Upon addition of a substrate,

tetramethylbenzidine (TMB), HRP catalyzed the substrate, and initiated a blue color

development. The color intensity in each microchannel was correlated with the

concentration of HE4 captured in urine. The colorimetric reaction was imaged using a cell

phone camera (Figure 1C). The obtained ELISA images were instantly analyzed using an

integrated mobile application and the HE4 concentration was reported on the cell phone

screen (Figure 1D). Additionally, microchips were imaged with a lensless CCD (Figure S2).

For microchip ELISA, samples and reagents were manually pipetted into the microchannel

and incubation of samples and reagents (without mixing) were involved. The following

testing procedure was listed, (1) pure HE4 peptide antigen was serially two-fold diluted in

sodium bicarbonate (0.1 M, pH 9.7) to obtain final concentrations of 1,250, 625.0, 312.5,

156.3, 78.1, 39.1 and 19.5 ng/mL. Urinary peptides derived from human protein HE4 were

modified for enhanced antigenicity. The optimized peptide sequences

(CSLPNDKEGSCPQVNINFPQL) were synthesized and used to generate a rabbit

polyclonal antibody (21st Century Biochemicals, Inc. Marlborough, MA). (2) One hundred

microliters of each concentration was injected into the three-channel microchip with a

pipette. (3) The HE4 quantification standards were incubated at room temperature for an

hour. (4) The microchips were washed 3 times by injecting 200 μL of ELISA washing

buffer (50 mM Tris-HCl, 150 mM NaCl and 0.05% Tween-20). (5) Microchips were

blocked with 3% bovine serum albumin (BSA, m/v, Fischer Scientific, Pittsburgh, PA) at 37

°C for an hour, and step 4 was repeated. (6) An in-house developed anti-HE4-rabbit primary

antibody (0.61 mg/mL) by Dr. Bin Ye was diluted in 1:50,000 in 3% BSA blocking buffer

and injected into the microchips for incubation at 37 °C for an hour, and step 4 was repeated.

(7) The secondary antibody, anti-rabbit-HRP (1 mg/mL, Abcam, Cambridge, MA), was

diluted in 1:3,000 in Tris-buffered saline and Tween-20 (0.05%), and incubated at 37 °C for

an hour, and step 4 was repeated. (8) For color development, 100 μL of one-Step ultra TMB

(Thermo Fisher Scientific Inc., Waltham, MA) was injected, and incubated at room
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temperature in the dark for 9 minutes. (9) The color solution in microchannels was mixed by

gentle pipetting. The optical color development was rapidly imaged using a cell phone

camera or a portable lensless CCD (Figure S2). The total assay time was approximately 5

hours. Recently, there are techniques to decrease on-chip ELISA time within 15 minutes

using magnetic particles because of significant increase of the surface area, which is

applicable to the presented technology 33.

For conventional 96-well microplate ELISA, we followed the above procedure except at the

detection step. Following addition of 100 μL of TMB, the microplate was incubated for 15

minutes at room temperature, and the color development was stopped by adding 100 μL of

1M H2SO4. The color intensity was measured by a microplate reader (BioTek, Winooski,

VT) at a wavelength of 450 nm.

Quantitative image processing

A cell phone (Sony Ericson i790) with a 3.2 megapixel camera was used to image color

development with ELISA. Alternatively, a lensless charge-coupled device (IPX-11M5,

Imperx, Boca Raton, FL) with a resolution of 11 million pixels was utilized. The color

intensity of red, green and blue pixel values was measured using a customized MATLAB

(MathWorks, Natick, MA) code (see Supplementary Information S3). With this code, red,

green and blue pixel values of each channel were reported within seconds as mean value ±

standard deviation. We used the red (R) pixel values for our data analysis, since they

demonstrated the widest range of color intensity for the catalyzed TMB substrate as

measured using the CCD and cell phone.

To facilitate data processing, a mobile application (for source code and instructions see

Supplementary Information sections S1 and S2) was developed to analyze microchip ELISA

images and to report the levels of HE4 on the cell phone screen. The cell phone with the

integrated mobile application carried out the following steps: (i) taking images or loading

previously saved images for processing, (ii) selecting the regions within the channels for

data analysis, (iii) converting color intensity into R values, (iv) normalizing R values from

tested samples by that of the background, (v) calculating and storing the standard curve, and

(vi) reporting the concentration of the patient samples. Based on the obtained cell phone

images from the standards, the mobile application calculated the parameters of the standard

curve and reported the concentrations of tested samples (ng/mL). For validation, the selected

region from each channel by the mobile application was transferred to a laptop and

processed using MATLAB (Table S1).

Clinical testing and statistical analysis

Forty de-identified and discarded clinical urine samples were obtained from Brigham and

Women’s Hospital (Boston, MA) with approval from the institutional review board (IRB:

2006-P-001558/8, BWH). These urine samples were diluted 20 times in PBS, which had a

pH of 7.2. One ovarian cancer patient was excluded for statistical analysis because of its

aberrant urine creatinine concentration. The obtained HE4 concentrations were log-

transformed, since they were not in normal distribution. Thus, the concentrations below 1

ng/mL appear as negative values after log-transformation. Box-Whisker analyses were

performed using MedCalc Version 11.5.1 (Mariakerke, Belgium). Two-sample Wilcoxon

ranks-sum test was used to determine whether the HE4 concentration from the ovarian

cancer group, and the control group was within the same population. Bootstrapping was

used to calculate 95% confidence intervals of AUROC and sensitivity given specificity. In

each bootstrapping replicate, we first randomly sampled 39 subjects with replacement from

the original data set. We then calculated the area under receiver operating characteristic

curve (AUROC) and sensitivity given specificity based on this replicate. The 2.5 and 97.5
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percentiles of the 10,000 estimated AUROC (sensitivity given specificity) were used as the

lower and upper limits of the 95% CI. Statistical Software R (available at http://www.r-

project.org/) was used to estimate the sensitivity given specificity and their 95%

bootstrapping confidence intervals.

Results

To validate ELISA on-chip, we first measured off-chip readings from the microchip ELISA.

The resultant color solution from each microchannel was transferred to a 96-well microplate,

and the optical density (OD) was measured using a spectrophotometer. The HE4 standard

curves from the microchip ELISA and conventional microplate ELISA presented similar

linearity for HE4 peptide concentrations such as 1,250, 625.0, 312.5, 156.3, 78.1, 39.1 and

19.5 ng/mL, with an R2 of 0.94 (Figure 2A). The observed detection limit of HE4 in

microchip ELISA was 19.5 ng/mL (8.48 nM). The results indicated that ELISA was reliably

carried out on a microchip with a performance comparable to that on a 96-well microplate.

Because of increased surface-to-volume ratio in the microchip, 9 minute TMB incubation

was chosen for the HE4 microchip ELISA throughout this study to avoid saturated signals.

Notably, lower OD readings were observed for the microchip ELISA than microplate

ELISA, which was most likely due to the shorter incubation of TMB on-chip compared to

15-minute incubation on-plate.

To achieve rapid detection using the microchip ELISA at the POC, we developed a detection

algorithm using portable cell phone and lensless CCD imaging systems. Both systems relied

on the analysis of red, green and blue pixel values of the color solution developed on-chip as

a result of the ELISA reaction. In our study, the red pixel value had the widest changes

among the tested standard concentrations ranging from 1,250 to 19.5 ng/mL (data not

shown), and the changes in red pixel values were strongly correlated with the HE4

concentration (Figure 2). In the cell phone based approach, the integrated mobile application

reported an R2 value of 0.98 for the standard curve over a range of 19.5 – 1,250 ng/mL

(Figure 2B). In the CCD based approach, MATLAB was utilized to perform data analysis,

and the R2 value of standard curve (0.93) was comparable to that obtained in microplate

ELISA (Figure 2C).

The detection systems were further validated using urine samples from ovarian cancer

patients (prior to surgery, n = 19) and age-matched healthy controls (n = 20). To determine

whether these two groups were within the same distribution, we used a two-sample

Wilcoxon ranks-sum test. For the microplate method, the means, standard errors of the

sample mean (SEMs), and 95% CIs were −1.69, 0.31, [−2.29, −1.08] for normal urine

samples and were 2.95, 0.27, [2.42, 3.47] for cancer urine samples. For the cell phone

method, the means, SEMs, 95% CIs were 5.35, 0.09, [5.17, 5.52] for normal urine samples

and were 6.68, 0.09, [6.50, 6.86] for cancer urine samples. For the CCD method, the means,

SEMs and 95% CIs were 5.44, 0.08, [5.27, 5.61] for normal urine samples and were 6.79,

0.13, [6.54, 7.03] for cancer urine samples (Figure S3). P-values of two-sample Wilcoxon

tests for these three methods were all < 0.001. The low p-values obtained by microchip

ELISA and microplate ELISA indicated the logarithm-transformed HE4 concentrations for

the majority of cancer urine samples was significantly greater than that of normal urine

samples. Parallel boxplots showed that the detected level of HE4 after log-transformation in

urine was significantly (p < 0.001) elevated in the ovarian cancer group compared to the

control group using the cell phone and CCD based microchip ELISA, which was also

observed in convention microplate ELISA (Figure 3, A–C).

We compared our microchip ELISA with conventional 96-well microplate ELISA in both

cancer and control groups using the Bland-Altman analysis method (Figure 4). The results
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indicated that microchip cell phone ELISA had bias in measuring log-transformed HE4

concentrations compared to microplate ELISA in both cancer patients (−0.7 to −6.8) and

normal healthy controls (−3.5 to −10.6). Microchip CCD ELISA had bias in measuring log-

transformed HE4 concentrations compared to microplate ELISA in both cancer patients

(−0.7 to −7.0) and normal healthy controls (−3.6 to −10.6). Log-transformed HE4

concentrations measured by microchip cell phone ELISA and microchip CCD ELISA were

in agreement, with a bias of 0.68 to 0.89 in cancer patients and a bias of 0.66 to 0.84 in

normal healthy controls.

To further evaluate the prediction power of the urine HE4 concentration, we constructed the

ROC curve, and calculated the AUROC, sensitivity given specificity, and their 95%

confidence intervals (CIs) (Figure 5). The 95% CIs of these parameters were based on

10,000 bootstrapping samples. We observed a sensitivity of 94.7%, 89.5% and 84.2% for the

conventional 96-well microplate ELISA, microchip cell phone ELISA and microchip CCD

ELISA with the specificity set to 90% for all three approaches (Table 1). The AUROCs

were 0.979, 0.940 and 0.916 for microplate, microchip cell phone and microchip CCD

ELISA, respectively. Since the AUROCs were close to the maximal possible value of 1, the

urine HE4 concentration measured by all three methods had high accuracy to identify

ovarian cancer patients from normal controls.

Discussion

In this study, our goal was to demonstrate the feasibility of using a cell phone to facilitate

microchip ELISA based non-invasive detection of HE4 in urine. We developed a

colorimetric detection coupled with a cell phone/CCD for microchip ELISA readout, and a

mobile application that measures the color intensity and reports the analyte concentration on

a cell phone screen. The mobile application program can be installed on a smart cell phone

to measure/analyze ELISA results without specialized instruments (e.g., a microplate reader

and a computer). The developed microchip ELISA either coupled with cell phone detection

or CCD detection demonstrated the reliability to differentiate cancer patients from their

healthy controls, as indicated by p values (< 0.001) (Table 1). Identification of cancer

patients among high-risk populations would potentially enable early treatment, which is key

to reduce the high mortality 1. In addition, the message texting capability of cell phones via

mobile networks allows important demographic or epidemiologic variables to be inputted by

the end-user to improve diagnosis (e.g., the risk of malignancy prediction required

menopausal status to be known 34). Most importantly, non-invasive urine testing offers easy

sample collection and frequent testing, as it has been used to detect ovarian cancer 30, 35, 36.

Thus, this cell phone based detection module can be potentially used for early detection of

ovarian cancer among high-risk populations as well as follow-up treatment monitoring at the

POC.

To adapt a simple detection method for microchip ELISA, we developed cell phone based

colorimetric detection of HE4 concentrations ranging from 1,250, 625.0, 312.5, 156.3, 78.1,

39.1 to19.5 ng/mL (Figure 2). As tested, the LOD for HE4 in this study was 19.5 ng/mL

(8.48 nM). Although electro-immunosensing (10−3–10−1 μg/mL) 37 or a bio-barcode assay

(BCA) technologies (500 aM) 38 are more sensitive, they require special instruments for

rapid quantification readout. Recently, another rapid method i.e., surface-enhanced Raman

spectroscopy (SERS) was used to measure analytes in urine in seconds that detected analytes

at relatively high concentrations (0.5 μg/mL) 39. Although the cell phone based detection is

simple, we found that detection of color change in microchannels was limited by the height

of microchannels. To overcome this limitation, we built microchannels to be as thick as

3.225 mm to ensure that color development can be detected by a cell phone camera. Some

other physical limits (e.g., reaction and diffusion) also play important roles in microscale
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sensing 40. We overcame these limitations by mixing the color solution in microchannels

using a pipet.

In this study, the sensitivity of microchip ELISA coupled with a cell phone or a CCD was

89.5% and 84.2%, when the specificity was set to 90%. The observed sensitivity was

comparable to that obtained in a previous study using conventional microplate ELISA, in

which a sensitivity of 86.6% for early stage (I/II) and 89% for late stage (III/IV), when the

specificity was set to 94.4% 30. However, it should be noted that a combo HE4 biomarker

(weighted average of urinary HE4 level and HE4/creatinine ratio) was used for calibration in

the previous study. Currently, there is not a standard method to calibrate the urine

biomarkers. It has been reported that the urinary creatinine level may not be the ideal

calibrator for urine biomarker normalization 41, especially for cancer patients at advanced

stages, who may have renal failure or impairment due to cancer progression or

chemotherapy intervention 42, 43. In this study, the urine samples were collected from late

stages (III and IV) of ovarian cancer patients, and no creatinine-based calibration was

performed.

In both cancer patients and normal controls, we observed the bias in HE4 quantification

using microchip ELISA (both CCD and cell phone) compared to the microplate ELISA

(Figure 4, A–D), indicating that there are differences in quantifying urinary HE4 between

these two methods. This is most likely due to batch-processing of the clinical samples on

microchips. Unlike the 96-well microplate, we did not stop the color development on

microchip since the stop solution would remove the color solution. Since the time window to

take images before saturated signals occurred was narrow, we divided the 48 samples (tested

in duplicates) including quantification standards into 6 batches (8 samples per batch).

Despite this, we observed slightly over-developed signals for some cases. The slightly over-

developed signals may have contributed to higher quantification of these samples on-chip

than on the microplate. In comparison, the HE4 measurement by microchip ELISA was in

agreement (Table 1). Considering the variation between batch processing, fully automated

microchip ELISA is needed to reduce variation and improve the correlation between

microchip ELISA and microplate ELISA. Despite the bias in HE4 quantification between

these two methods, the microchip ELISA was able to differentiate ovarian cancer patients

from normal controls (Figure 3). In short, the microchip ELISA can potentially expand the

access to ovarian cancer care program at the POC as a pre-screening tool.

In this study, we developed a CCD-based colorimetric readout from microchip ELISA. The

presented CCD detector is a lensless system, which is different from a cell phone camera (as

setups were shown in Figure S2). Existing systems use CCDs coupled to lenses as a part of

an imaging apparatus such as confocal or fluorescence microscope 14–17. These existing

systems are not suitable for POC testing because of the high cost, maintenance, and

portability issues 23, 26. In comparison, we used a lensless CCD setup to detect the color

change without using a fluorescence microscope, which makes it more affordable, portable,

and simpler to maintain. Further, the lensless CCD system has a wide field of view (FOV),

which is significantly larger than that of a microscope, and can immediately capture the

whole microchip area without scanning. Scanners are also not desirable for resource-limited

settings due to the cost and difficulty of maintenance.

We also evaluated the reproducibility of the microchip ELISA coupled to a cell phone. In

three independent experiments, the linearity of the standard curve was highly comparable

with R2 of 0.938, 0.992, and 0.972 (Supplementary Information, Table S2), respectively.

These results indicated that the microchip ELISA was reproducible despite multiple testing

steps involved in the prototype. During the clinical testing, experiments were carried out by

two operators. We did not observe significant difference in the concentration of HE4
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obtained by these two operators. In the current setup, the assay involves repeatable cycles of

reagent flow into a channel by manual pipetting. This reagent flow steps can be automated

with the aid of a micro-pump, which will minimize the pipetting complexity 26, 44. Thus,

further product development can be made at a commercialization level so that it can reach

the stage of field testing at the POC.

In conclusion, we demonstrated the integration of a cell phone with microchip ELISA

through a mobile application that can detect the HE4 biomarker in urine from ovarian cancer

patients. This simple, non-invasive testing strategy can potentially aid early detection of

ovarian cancer among high risk populations, and monitor treatment efficacy in the follow-up

visits at the POC. With an integrated mobile application, this module can be employed in

both resource-rich and resource-limited settings because of increasingly available mobile

networks, whereby the appropriate clinical information can be instantly and remotely

transferred between patients and physicians. This microchip and cell phone-based POC

approach can become a broadly applied biotechnological tool, for any disease having a

reasonably well-described ELISA biomarker.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Schematic of microchip ELISA coupled with cell phone-based colorimetric detection of
ovarian cancer from urine
(A) A small volume of urine sample was loaded into the microchip. (B) Sandwich ELISA

was performed on a microchip. (C) The color development in the microchip was imaged

with a cell phone built-in camera. (D) The concentration of HE4 in urine was calculated

with an integrated mobile application. The mobile application reported the pixel values (red

channel) from the selected region, i.e., marked with rectangles. Based on the regression of

the standard curve, the concentration of HE4 biomarker from each microchannel was

calculated and reported on the screen.
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Figure 2. Validation of HE4 ELISA on a microchip compared to conventional 96-well microplate
ELISA
Microchip ELISA was first validated by collecting the color solution from the microchannel

and read by a spectrophotometer. The standard curve obtained from microchip was

compared with that obtained from a 96-well microplate (A). Further, HE4 microchip ELISA

was coupled with the imaging detection with a cell phone (with an integrated mobile

application) (B) or a lensless CCD camera (C). HE4 standards were tested on microchips

and color development was imaged. The standard curve of HE4 on a microchip was then

plotted. Data are presented as mean ± standard deviation (n = 8).
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Figure 3. Box-whisker analyses of log-transformed HE4 concentration in 39 clinical urine
samples
For all three methods, the logarithm-transformed HE4 concentrations for the majority (i.e.,

the “box” part of the box-whisker plot) of cancer urine samples (n=19) was greater than that

of normal urine samples (n=20). The minimum, first quartile, median, third quartile, and

maximum of the logarithm-transformed HE4 concentrations were −6.215, −1.623, 0.631,

0.572, 2.729, and 5.624 for the microplate method, 4.755, 5.188, 6.101, 5.999, 6.751, 7.965

for the cell phone method, and 4.550, 5.254, 5.844, 6.095, 6.865, 8.511 for the CCD method.

A few outliers were observed for the logarithm-transformed HE4 concentrations measured

by cell phone and CCD methods.
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Figure 4. Bland-Altman analysis of clinical samples using 96-well microplate ELISA, microchip
ELISA coupled with a cell phone or a CCD
The quantification of HE4 in clinical urine samples obtained by microchip ELISA-cell

phone was compared with that obtained by conventional microplate ELISA (A–B). The

quantification of HE4 in clinical urine samples obtained by microchip ELISA-CCD was

compared with that obtained by conventional microplate ELISA (C–D). The mean

differences in HE4 quantification are represented by solid lines, with 95% confidence

interval indicated by dashed lines.
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Figure 5. Receiver operating characteristic (ROC) analyses of conventional 96-well microplate
ELISA as well as microchip ELISA coupled with a CCD or a cell phone
The prediction accuracy of disease status based on these three methods was calculated by

ROC analysis with the aid of a statistical program R. HE4 concentrations were log

transformed. The area under ROC curves (AUROCs) for the three methods (microplate, cell

phone, and CCD) were 0.979, 0.940, and 0.916, respectively. These data indicate that there

are no statistically significant differences among the three AUROCs and these three methods

can be all reliably used to differentiate ovarian cancer patients from normal controls.
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