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ABSTRACT

Precise navigation with high update rates is essential for automatic landing of

an unmanned aircraft. Individual sensors currently available - INS, AHRS, GPS,

LORAN, etc. - cannot meet both requirements. The most accurate navigation sen

sor available today is the Global Positioning System or GPS. However, GPS updates

only come once per second. INS, being an on-board sensor, is available as often as

necessary. Unfortunately, it is subject to the Schuler cycle, biases, noise floor, and

cross-axis sensitivity. In order to design and verify a precise, high update rate navi-

gation system, a working model of Differential GPS has been developed including all

of the major GPS error sources - clock differences, atmospherics, Selective Availabil-

ity and receiver noise. A standard INS system was also modeled, complete with the

inaccuracies mentioned. The outputs of these two sensors - inertial acceleration and

pseudoranges - can be optimally blended with a complementary Kelman filter for

positioning. Eventually, in the discrete case, the high update rate and high precision

required for autoland can be achieved.
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I. INTRODUCTION

Precise navigation has been one of mankind's endeavors for thousands of years.

Even prehistoric maw had to answer the question, "Where am I?" frequently. Celestial

navigation, landmark navigation, and other forms of "natural" navigation suffice for

some purposes even today. But the human race's non-stop technological progress has

both enabled and created a need for more precise navigation. The advent of aviation

and space travel have placed greatly increased demands on navigation. Recently

developed "smart" weapons, as well, require exact knowledge of their position in

order ,.) find their targets. Furthermore, unmanned recoverable aircraft could benefit

greatly from improving navigation accuracy.

Today, work in remotely piloted vehici .s is at the forefront of technology. The

goal of the current research and development on the "Archytas" (taking place here

at The Naval Postgraduate School) is totally autonomous flight in all regimes --

automatic take-off, transition from vertical take-off to horizontal flight, automatic

waypoint tracking, and finally automatic landing. The task of automatically landing

an aircraft, on land or on a pitching ship at sea, requires nearly flawless guidance,

navigation, and control. Positioning errors which would be considered minuscule

under normal circumstances could easily be disastrous during an automatic landing.

"Autoland" requires not only exceptional positioning accuracy in three dimensions,

but also rapid updates. Thus, the goal of this undertaking is to provide the most

accurate, most rapidly updated, three-dimensional navigation system available.

Many existing navigation systems provide either a high update rate or accuracy.

Probably the most popular long-range navigation system in use is the Inertial Nav-

igation System (INS). This system is entirely self-contained on the platform which
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carries it. It senses aircraft acceleration which it converts to velocity and position.

Inertial navigation is subject to numerous errors, among them the notorious Schuler

cycle, which make the position accuracy degrade over time. This drift is typically

around one nautical mile per hour. While the INS position can be updated many

times each second, its accuracy is insufficient as a stand-alone navigation sensor for

autoland. There are several radio navigation aids currently available - GPS, LO-

RAN, OMEGA, TACAN, VOR/DME. They offer various degrees of precision due to

their technical sophistication and overall age.

LORAN, short for Long Range Navigation, is a low frequency system which

allows receivers to estimate their position by time-difference-of-arrival. First, a re-

ceiver calculates its position along a hyperbolic, earth-bound curve by using a pair of

LORAN transmitters. A second pair of transmitters allows the receiver to generate

another hyperbola representing the locus of possible positions. It is now possible

to resolve its two-dimensional position as the intersection of the two hyperbolas.

LORAN wavelengths are approximately 1.6 miles, making truly precise positioning

impossible. Also, fixes are available only ten to 20 times per minute. This system is

unsuitable for autoland because of its imprecision, low update rate and the fact its

fixes are only two-dimensional.[Ref. 1]

OMEGA navigation is based on the phase-difference-of-arrival technique.

Rather than using time of arrival, OMEGA uses phase differences at the receiver

to generate two hyperbolas, similar to LORAN. However, this system uses a far lower

frequency giving it excellent range. ID fact, OMEGA covers the entire earth with only

eight transmitters. This low frequency yields wavelengths of approximately 16 miles.

Position accuracy can be expected to be two to four nautical miles. LORAN and

OMEGA position accuracy can be greatly improved by using the differential mode.

This mode allows a receiver's position to be calculated relative to the known position

2



of another receiver. Sub-mile accuracy can be achieved with this augmented mode.

Even in the differential mode, the OMEGA system is unacceptable for autoland as it

cannot provide the accuracy or the three dimensional fixing required.[Ref. 1]

VOR/DME (VHF Omnidirectional Range) and TACAN (Tactical Air Naviga-

tion) systems both provide bearing and range information to aircraft within their

line-of-sight. The bearing portion of these systems is composed of two signals -

a rotating "lighthouse" signal and an omnidirectional signal. The "lighthouse" por-

tion of the signal rotates continuously at 30 revolutions per minute. Each time it

reaches magnetic north, the omnidirectional signal transmits one pulse. A receiver's

magnetic bearing to the transmitter is a linear function of the difference in arrival

time between the omnidirectional pulse and the "lighthouse pulse". This method is

accurate to within approximately three degrees [Ref. 2, p. 36]. The ranging portion

of these systems uses two way spherical ranging. Equipment on board the aircraft

broadcasts a pulse which the station immediately rebroadcasts on another frequency.

Once again, the difference in time between transmission and reception of this pulse

multiplied by half of the speed of light yields slant range to the station. Overall range

accuracy of DME can be expected to be ±0.5 nautical miles or three parts in 100,

whichever is greater [Ref. 1]. TACAN range accuracy is approximately ±0.1 nautical

miles. VOR uses VHF frequencies while DME and TACAN use UHF. Both systems

are limited by line-of-sight. This limitation is troublesome for an aircraft needing

precise data at low altitude. While position updates from these systems are available

virtually continuously, their accuracies are insufficient for the autoland problem.

The remaining sensor is the Global Positioning System (GPS). This is the newest

and most accurate radio navigation aid available. GPS provides positioning accuracy

on the order of 100 meters to everyone via the Standard Positioning Service (SPS),

and 16 meters in three dimensions via the Precise Positioning Service (PPS) to those

3



authorized by the United States Department of Defense. [Ref. 3, p. 3-1]. GPS

accuracy can be further improved to just a few meters by using differential correc-

tions (see Chapter II. ). While its title as most precise navigation aid available is

unchallenged, its update rate is currently once per second. Thus, it too is insufficient

as a stand-alone navigation sensor in the autoland phase of flight.

It seems that no single sensor can provide highly precise, rapidly updated posi-

tioning information. The high update rate of INS coupled with the superb precision

of differential GPS can solve the autoland navigation problem. By using the tech-

niques of optimal estimation, these two sensors can be blended to produce optimal

estimates of position and velocity. The estimates will be both precise and rapidly

updated, thus meeting the established criteria.

This thesis is composed of 4 basic parts. The first portion discusses background

material related to DGPS/INS navigation including basic coordinate systems. The

following section describes, in detail, the SIMULINK computer models of DGPS and

INS. The heart of this work, the Kalman filter which integrates the outputs of the

two sensors, is described and verified in the third section. The final section offers

suggestions for further refinements of the concepts advanced in this thesis.
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II. BACKGROUND

Before embarking on a study of the intricacies of integrated Global Positioning

System (GPS) and Inertial Navigation System (INS) navigation, it is necessary to

be familiar with some underlying concepts. For example, a GPS/INS navigation

system uses a minimum of three coordinate systems. In this chapter, these reference

frames are explicitly defined, as well as the transformations between them. Secondly,

an overview of GPS is presented to highlight the principles which are used and the

errors which effect the resulting system. The chapter concludes with an overview of

inertial navigation.

A. COORDINATE SYSTEMS

GPS-aided inertial navigation involves the use of three distinct coordinate sys-

tems. They are:

"* earth-centered, earth-fixed Cartesian

"* latitude, longitude, altitude (geodetic)

"* tangent-plane Cartesian (local geodetic)

The earth-centered, earth-fixed system is independent of the mathematical

model of the earth's surface. However, both the geodetic and the local geodetic

systems depend on the specification of the earth model. The current standard for

modeling the surface of the earth is the WGS-84 ellipsoid. This ellipsoid is generated

by rotating an ellipse, whose semi-major axis is 6378137.0 meters and whose semi-

minor axis is 6356752.3 meters, about its minor axis. The resulting closed surface is

5



the model of the earth's surface. The true north pole (conventional terrestrial pole)

and true south pole are the endpoints of the minor axis of the ellipsoid.

The remainder of this section will define the three coordinate systems in detail.

1. Earth-Centered, Earth-Fixed Cartesian Coordinate System

GPS uses the earth-centered, earth-fixed Cartesian system for fixing satel-

lite positions. Likewise, GPS receivers calculate their navigation solutions (i.e., po-

sition) in the ECEF system before transforming to latitude, longitude, and altitude

(geodetic). The origin of this system, as the name implies, is at the center of the

earth. The X-axis goes through the intersection of the equator (00 of latitude) and

the prime meridian (00 longitude). The Y-axis departs the origin and passes through

the intersection of the equator and 900 E longitude. To complete the right-handed

triad, the Z-axis leaves the origin and passes through the true north pole. Many

surveying oriented texts refer to this system as the Conventional Terrestrial System

(CTS). It is depicted in Figure 2.1.

prime
meridian

e equator
X

Figure 2.1: Earth-centered, Earth-fixed Coordinate System
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2. Geodetic Coordinate System

The output of navigation systems used on aircraft today is generally lati-

tude, longitude, and altitude - i.e. resolved in the geodetic coordinate system. This

is the system used for describing positions of most earth bound objects. Charts

developed for long range land and sea navigation invariably use geodetic coordinates.

The geodetic coordinate system is somewhat analogous to spherical coor-

dinates. The primary difference is that the elevation angle or latitude, 0, is the angle

between the ellipsoidal normal and the equatorial plane. This means that the ray

that defines this angle does not intersect the equatorial plane at the exact center of

the earth. Instead, it intersects the equatorial plane at a small radius outside of the

center as shown in Figure 2.2. The longitude, A, is identical to the spherical concept

prime
meridian h

: eqruator

II

Figure 2.2: Geodetic Coordinate System

of that angle. It is the angle in the equatorial plane from 00 latitude and 00 longitude

to any given point. Finally, h, the geodetic height or altitude, is the distance along

the ellipsoidal normal away from the surface of the earth.
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3. Tangent Plane (Local Geodetic) Cartesian Coordinate System

Typically, pure inertial systems navigate in a so-called tangent plane coor-

dinate system, before outputting position in geodetic coordinates. The tangent plane

system is defined by passing a plane through any point on the earth's surface (see

Figure 2.3). The intersection of the plane with the surface of the earth becomes the

prime

meridian z

equator

Figure 2.3: Tangent Plane Coordinate System

origin of the system. The X-axis points toward true east. The Y-axis points toward

true north. Lastly, the Z-axis is perpendicular to the defining plane of the system,

away from the center of the earth. It is the Z coordinate of the triad which defines a

point's altitude in this system.

B. COORDINATE TRANSFORMATIONS

In order to use these three coordinate systems, one must be able to transform be-

tween them freely. For example, satellite coordinates enter the DGPS model (detailed

in a later chapter) in ECEF coordinates. However, the ranges to the satellites are

calculated in the tangent plane coordinate system. Therefore, a transformation be-

8



tween ECEF and tangent plane systems is required. For other similar circumstances,

transformations are necessary between all systems. With a total of three systems, six

conversions are required - one from each system to the two others, multiplied by

three systems, yields six transformations. However, two of these algorithms can be

assembled as combinations of the others. By being able to convert from geodetic to

ECEF, and ECEF to local geodetic, one can convert from geodetic to local geode-

tic by chaining the two conversions together. Thus, the only four transformations

discussed are

* geodetic to ECEF

* ECEF to geodetic

* ECEF to tangent plane

* tangent plane to ECEF

Since the vectors to be transformed are all position (not free) vectors, the transfor-

mations are defined for non-free vectors.

1. Geodetic to ECEF Coordinate Transformation

In order to compute the transformation from geodetic to ECEF coordi-

nates, three auxiliary quantities - f, e, and N - must first be defined. The flat-

tening factor, f, represents the relative flatness of the ellipsoid. A zero flattening

factor would mean an unflattened ellipse (a sphere), while a unity value would mean

a totally flattened ellipsoid (a circle in the plane perpendicular to the minor axis).

The mathematical definition of f is

f = a -b (2.1)

a

where a and b are the semi-major and semi-minor axes of the ellipsoid, respectively.

9



Directly related to the flattening factor is the eccentricity, e. It is defined

by

e 2 = 2f-f 2 . (2.2)

The eccentricity is a variable similar to the flattening factor. It represents how close

the ellipsoid is to a sphere. It, too, is one for a sphere and zero for a completely

flat figure. The eccentricity, rather than the flattening factor, is typically used in

coordinate transformations.

Lastly, N is the length of the ellipsoidal normal from the ellipsoidal surface

to its intersection with the ECEF Z - axis. Mathematically, N is

N a (2.3)

V1 - e2 sin2 €

where 0 is the geodetic latitude.

Using these quantities, one may define the transformation

X = (N + h) cos€ cosA

y = (N+ h) coso sinA

z = [N(1 - e2) + h]sinO. (2.4)

2. ECEF to Geodetic Coordinate Transformation

The transformation from ECEF to geodetic coordinates is clearly the in-

verse of the process presented in the previous section. First, A, the longitude, can be

found by dividing first two expressions of Equations 2.4 yielding

tanA = Y. (2.5)

x

By examining the geometry in Figure 2.2, one can determine the following relationship

(N + h) sine

tan 1= 0, (2.6)
10



which is a non-linear equation in 0. Solving the third of Equations 2.4 for (N+h) sin 4

and sabstituting into Equation 2.6 yields

z e2N sine) (.7

tan = Z (I1+ O io(2.7)

which is still an analytically unsolvable equation in geodetic latitude. To solve this

equation, one initially assumes that h is zero, an excellent assumption for intra-

atmospheric flight. Now, the Z equation of Equations 2.4 can be simplified to

Zh=o = N(1 - e2) sine. (2.8)

This equation can be substituted into Equation 2.7 to give the initial solution for 4)

1 w
tan i = 1 - e2  " (2.9)

This initial solution for 0 can be substituted back into the second term of Equation 2.7

to yield an updated 4). Iteration of this process commencing with Equation 2.7

continue until the geodetic latitude stops changing. Finally, solving Equation 2.6

for h

h =N, (2.10)

which completes the conversion.

3. ECEF to Tangent Plane (Local Geodetic) Coordinate Transfor-

mation

Anytime one uses a local geodetic or tangent plane coordinate system, one

must first specify the geodetic coordinates - latitua, and longitude - of the origin.

Once specified, the origin must be expressed in ECEF coordinates. Then, a vector

from this origin to the point being transformed can be formed, resolved in the ECEF

system

AY = j Y2 1Yi (2.11)

Az ECEF Z2 - ZJ

11



where the '2' subscript denotes the point being transformed. The product of two

rotation matrices operates on the difference vector defined in Equation 2.11 to yield

the local geodetic coordinates of P 2

[ t - sinA c~osAA 01O [AX]
P 2 = = - sine cosA - sineo sinA cos€ Ay , (2.12)

"cos4) cosA cosO sinA sinJ I I ECEF

where A is the geodetic longitude and 0 is the geodetic latitude.

4. Tangent Plane (Local Geodetic) to ECEF Coordinate Transfor-

mation

Unlike converting between geodetic and ECEF, transforming between local

geodetic and ECEF is invertible. The transformation from tangent plane to ECEF

can be derived by merely reversing the process developed in the previous section.

First, the origin of the local geodetic system must be converted from geode-

tic to ECEF coordinates. Next, the inverse of the rotations performed in Equa-

tion 2.12 must be executed yielding the A vector from the origin of the tangent plane

system to the point being transformed. This vector, expressed in ECEF coordinates

is [ Ax1 [- sinA - sinO cosA coso cosA] [x]

AV = cosA -sine sinA cost sinA y (2.13)
Az ECEF 0 COSt sine [zJt

Clearly, adding the A vector to the position of the origin of the tangent plane system

(both now in ECEF coordinates) completes the transformation:

Y Yorig Ay (2.14)
TZ ECEF Xoi ECEF + AX ECEF

J. THE NAVSTAR GPS

The NAVigation Satellite Timing And Ranging Global Positioning System is a

satellite-based radio navigation system with the capability to provide locating data

to an unlimited number of users. The first satellite was deployed in 1978 although the
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first receiver did not become commercially available until 1982 [Ref. 4, section 1.2].

This system is the product of experience gained from several previous space-based

navigation systems like TRANSIT AND USAF System 621B. It is comprised of three

segments:

"* Space segment

"* User segment

"* Control segment

Each segment is discussed in the following sections.

1. Space Segment

A total of 24 satellites now constitute a fully operational space segment.

Twenty-one of theses space vehicles (shown in Figure 2.4 operate continuously, while

the remaining three act as orbiting spares. Today, only three Block I satellites remain

in orbit. These satellites were the first GPS satellites in space. They were launched

Figure 2.4: A NAVSTAR GPS Satellite from [Ref. 5, p. 4.01]
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from 1978 through 1985 [Ref. 4, section 1.2]. Block I space vehicles weigh 960 pounds

and generate 420 watts of electrical power [Ref. 2, p. 27]. The remaining satellites in

orbit were creatively named the Block II vehicles. These vehicles are less vulnerable

to radiation and have more memory. With this increase in capability has come an

increase in weight and power requirements. These newer satellites weigh 2000 pounds

and generate 700 watts of electrical power.

The space vehicles are inserted into orbits defined by the six Keplerian

constants:

"* semi-major axis, a

"* orbital eccentricity, e

"* orbital inclination, i

"* ascending node, 0

"* argument of perigee, w

"* time of perigee passage, T

The semi-major axis of a GPS satellite orbit is nominally 26,560 kilometers.

It is half of the length of the ellipse which defines the space vehicle's path. Second.

the eccentricity (different from the eccentricity defined with respect to the shape of

the WGS-84 ellipsoid) or oblateness of the satellite's orbit is defined as follows:

ra - rp (2.15)

ra + rp

where ra is the apogee radius and rp is the perigee radius. For GPS satellites, the

eccentricity cannot exceed two percent. The third of the Keplerian elements is orbital

inclination. It is the angle between the plane defined by the orbit and the equator.
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For example, satellites in a polar orbit have a 900 orbital inclination; those in an

equatorial orbit have 00 orbital inclination. Block I NAVSTAR GPS vehicle orbits are

inclined at 630 while Block II satellites are inclined at 550. The ascending node is the

satellite's geodetic longitude as it passes through 00 of latitude toward the northern

hemisphere. GPS satellites orbit in six different planes. Thus, there are exactly six

different ascending nodes. The last two Keplerian elements are the argument of the

perigee and the t;me of perigee passage. The argument of the perigee is the angle

in the orbital plane between the ascending node and the closest point of approach

of the satellite to earth. The time when the vehicle reaches this point is the time of

perigee passage. The ranges of these last two parameters span all possible values for

GPS satellites. That is, satellites reach their perigee at all different times of day and

different locations.

Ideally, the six Keplerian elements would be sufficient to define any satel-

lite's three-dimensional position and velocity vectors for all time. However, the "orbits

become perturbed by lunar and solar gravity and the earth's equatorial bulge, as well

as several other less significant effects. Thus, the number of quantities required to

fully specify the position and velocity of a satellite in a real orbit is increased to 16.

The extra elements consist of time rates of change of the asc-ending node and inclina-

tion, i. e. 2 and i, as well as six other coefficients which account for variation in the

earth's gravitational field. These 16 coefficients must become part of the navigation

message.

The navigation message is the framework in which the GPS satellites broad-

cast their data. One "frame", the complete message, consists of five subframes of 300

bits each. Subframe one contains coefficients used to correct the satellite's clock to

exact GPS time. The 16 pieces of ephemeris data are broadcast in the second and

third subframes. Subframe four contains special messages, ionospheric correction co-
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efficients, and coefficients for conversion of GPS time to Universal Coordinated Time.

Ephemeris and health data for the entire GPS constellation is transmitted in sub-

frame five. Because of the volume of data in subframes four and five, both must be

subdivided into 25 pages. Therefore, it takes 25 full frames, broadcast at the rate of

30 seconds per frame, or 750 seconds (12.5 minutes) to receive the entire navigation

message. Critical navigation data - ephemerides, and clock correction coefficients -

are updated every frame. Secondary data transmitted in subframes four and five is

provided primarily to assist the receiver in acquiring other satellites. These data are

not intended to be precise so the lower update rate of once every 12.5 minutes is

satisfactory.

Satellites use a pseudorandom binary code superimposed on the two carrier

frequencies to communicate. The two frequencies are Li (1575.42 MHz) and L2

(1227.6 MHz). The LI frequency carries both the C/A- (coarse acquisition) and

P-(precise) codes, while L2 carries only the P-code. The less precise C/A-code is

broadcast at a rate of 1.023 million bits per second (Mbps) and is 1023 bits long.

Therefore, this code repeats itself every millisecond. The C/A-code is unique to each

satellite and does not change, allowing GPS receivers to quickly distinguish between

space vehicles, even without access to the P-code. The P-code, being more precise,

is transmitted at 10.23 Mbps with a code length of approximately six trillion bits.

This code takes 37 weeks to repeat. Since the codes are reset every week at midnight

between Saturday and Sunday, there are sufficient "code weeks" available in the P-

code such that one can be assigned to each space vehicle each week. Therefore,

GPS receivers can easily distinguish satellites from each other with their individual,

weekly-assigned P-codes. The remaining code weeks are available for uplink from

the control segment to the satellites.
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2. User Segment

The many thousands of GPS receivers constitute the user segment. The re-

ceiver's functions are to receive and interpret the navigation message and to calculate

and output position. GPS receivers must determine the time the navigation message

takes to travel the distance from the satellite to the receiver. This is achieved by

autocorrelating the pseudorandom binary pulse train received from the satellite with

the one in memory. A typical civilian GPS receiver must have the C/A-codes for all

24 satellites in its memory (requiring only three kilobytes). As the pseudorandom

code is received, the receiver slews its code until the result of the autocorrelation

function jumps to one. The receiver is now "locked-on" to that code. Multiplying

the length of time that the receiver must slew its code to achieve a unity correlation

by the speed of light yields the "pseudorange". This is not the actual range because

the offset of the receiver clock is uncertain. When the receiver can lock-on to four

satellites and thus measure pseudoranges to each, is three-dimensional position and

clock error can be solved for by inverting this set of four equations

PI = V(Xsat, - Xrcr)2 + (yat, - Yrcr)
2 + (Zsat, - Zrcvr)

2 + CAt

P2 = VXa2- XTcv )2 + (Ysat2 - !Ircvr)2 + (-sat 2 - Zrv )2 + cAt

P3 = V(Xso,3 - Xrcvr,)
2 + (yat3 - Yrcvr )2 + (Zsat 3 - Zcvr )2 + CAt

P4 = V(Xat, - Xrcvr )2 + (Yoat 4 - Ycvr,) 2 + (Zst 4 - ZTcvT)2 + cAt, (2.16)

where pi are pseudoranges, [Xsat,, Ysat,, Zsat,] are the ECEF coordinates of a satellite,

[xrcv, Yrcvr, ZrcvrI are the ECEF coordinates of the GPS receiver, c is the speed of

light, and At is the receiver's clock error. Having solved this set of equations, the

receiver now need only transform the solution to the geodetic system and display the

results.
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3. Control Segment

The GPS Control segment is responsible for generating and uplinking clock

correction coefficients and ephemeris corrections for all satellites in the constellation.

Five control stations - Hawaii, Ascension Island, Diego Garcia, Kwajalein, and Col-

orado Springs, Colorado - comprise this segment. These control stations are essen-

tially GPS receivers capable of constantly tracking all satellites in view. Additional

capabilities include highly accurate Cesium clocks and recording facilities. The first

four of these stations track all satellites in view and record pseudorange information

continuously. This data is sent to the Master Control Station at Colorado Springs

where it is processed. When all four monitor stations have locked-on to a single

space vehicle simultaneously, the exact inverse of the standard navigation problem

mentioned in the previous section exists. Since the exact locations of the monitor

stations are known and their clocks are extremely accurate, the four unknowns be-

come the three coordinates of the space vehicle position and its clock offset. The

Master Control Station calculates these quantities and from them, derives the nec-

essary ephemeris and clock corrections. This information is uplinked to each space

vehicle at least daily.

4. Differential GPS

Although GPS alone provides highly accurate positioning, it can be made

still more accurate by augmenting it with a differential station. A differential station

is merely another GPS receiver whose exact location is known. When this second

receiver is near the first receiver, both are subject to nearly the same errors, i. c. the

same local atmospheric properties, nearly identical elevation angles and propagation

paths to any given GPS satellite, the same clock errors and the same ephemeris

errors for each satellite. By employing the Pythagorean theorem on its position and

the satellite position broadcast in the navigation message, the differential station
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can calculate the exact range to that satellite. Meanwhile, it can also calculate

pseu " ange in the standard way (see Section 2.). By comparing these two values

for each satellite in view, the differential station can evaluate the pseudorange error

to each satellite. These values can be broadcast periodically to be used by receivers

in the local area to improve accuracy. By using the differential corrections, GPS

accuracy, even for single frequency C/A-code users, can be improved to one to seven

meters rms [Ref. 2, p. 64].

D. GPS ERROR SOURCES

Despite its exceptional accuracy, GPS is subject to numerous error sources.

Clearly, the major error sources must be included in the DGPS model. Error sources

are:

* atmospheric delays

* Selective Availability

* clock differences

* ephemeris error

* multipath

9 receiver noise

* Dilution of Precision (DOP)

Each of these error sources is '--scussed in detail in the following sections.

1. Atmospheric Delays

a. Ionospheric Delays

The ionosphere is a layer of charged particles between 100 and 1000

kilometers above the earth's surface. These particles interact with the transmitted
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GPS signal and slow it, increasing pseudoranges. The equation describing this delay

is

At = 40.3 TEC, (2.17)
cf2

where At is the delay in seconds, c is the speed of light (3 x 108 m/s), f is the

system frequency (1575.42 MHz for LI), and TEC is the Total Electron Content

(electrons/mr2) along the signal's path. The TEC is strongly effected by the solar

cycle, season, time of day, and latitude. TEC maxima occur:

"* daily: 1400 local

"* seasonally: spring equinox

"* solar cycle: every 11 years (next 2001-2002)

"* geographic: 200 magnetic latitude

It varies ± 25%• rms at all latitudes during daylight [Ref. 4, section 2.5, p. 24]. The

pseudorange error due to ionospheric effects can be as great as 40 meters [Ref. 4,

section 2.5, p. 13].

The algorithm described in [Ref. 6] which removes 55-60% of the

ionospheric delay is based on Figure 2.5, which shows the typical diurnal variation of

the ionospheric delay. The "ACTUAL DATA" curve shown in Figure 2.5 is modeled

with the "COSINE MODEL" curve, a half-cosine. The equation of the model curve

is

At = DC + A-os 27r(t - Tp)ptD +Ao , (2.18)

where DC, A, Tp, and P (constant offset, amplitude, phase, and period, respectively)

describe the diurnal variation of the ionospheric delay. DC and Tp afe assumed

constant at five nanoseconds and 1400 local time, respectively. Amplitude and period

20



~30-

~25

515- ETIDE

10' SEPTEMBER 1970
-ACTUAL DATA

COSINE MODEL-0 o1 -- .. . I ... . ,, I

0 4 8 - 12 16 -20 24

LOCAL TIME

Figure 2.5: Diurnal Ionospheric Delay from [Ref. 6, p.208]

are each modeled as four term power series as follows:

3

A ,"O

n0O

3

P = y nM1 (2.19)
n0O

where the a,'s and /3n's are constants which are broadcast in the GPS navigation

message, chosen based on the day of the year and average solar flux over the past five

days, and k.. is the geomagnetic latitude of the ionospheric subpoint. The ionospheric

subpoint is the intersection of the line between the space vehicle and the receiver with

the surface at the mean height of the ionosphere.

Next, one must first find the subtended earth angle between the user

and the satellite, EA (degrees)

445

EA = -45 ,(.0
el + 20 (2.20)

where el is the elevation angle of the satellite with respect to the user in degrees.

Knowing EA, the geodetic location of the ionospheric subpoint can be approximated

by

€ = krcr + EA cos az
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FA sin a
Ai = Arv + , (2.21)cos 01

where 6 and A denote geodetic latitudes and longitudes, respectively and a- is the

azimuth of the satellite with respect to the receiver. Now the geodetic latitude can

be converted to geomagnetic latitude (the required quantity) with the following ap-

proximation:

01= + 11.6cos(Al - 291), (2.22)

where all angles are in degrees.

The dimensionless scale factor (SF) which scales the entire delay is

SF = 1 + 2(96- el) 3 . (2.23)

The final expression for At is a three term Taylor series expansion of

Equation 2.18 is

At f=SF.[DC+A(1- +-4)] for IxI<;
SF. [DC] for I>xI

where

X = 2r(t-T) (2.24)

P

Due to the 25% rms variation, the error is modeled with a 25% stan-

dard deviation. Therefore, the random part of the error remains within ±25% of

nominal 68% of the time.

b. Tropospheric Delays

The lower section of the atmosphere also causes signal propagation

delays. Typical tropospheric delay is approximately two meters for 900 satellite el-

evation (directly overhead) up to 28 meters at a five degree elevation angle [Ref. 7,

p. 218]. In this application, the atmosphere can be modeled as being composed of
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"wet air" and "dry air". Dry air is responsible for 90% of the total tropospheric de-

lay, whereas, wet air is responsible for only ten percent. While the moisture content

in the troposphere is virtually impossible to model accurately, this inaccuracy has

minimal impact. Numerous models which calculate the tropospheric delay have been

developed. Black developed the following model in [Ref. 8]. Let

As = ASd + As,,

where

(T- 4.12)
Asd = 2.343P [ T I ](h = hd,E),

As.. = k,.. I(h= h.,E),

I(h,E) = - + cosE 1(-/2)
(+ -- A"

hd = 148.98(T - 4.12) m,

h, = 13,000m,

k. = 0.2,

r, = 6378137 m,

P = 1atrm,

T = 150 C, (2.25)

and As is the wet or dry delay in meters, r, is the distance from the center of the earth

to the station, P is the surface pressure in atmospheres, E is the satellite elevation

angle, and T is the surface temperature in degrees Celsius. It should be noted that l1

is an empirical constant. The value of 0.85 is only valid for elevation angles above five

degree (GPS receivers typically ignore satellites at lesser elevation angles). Similarly,

k. is an empirical constant which varies based on latitude and season. The value 0.20

corresponds to the value for spring or fall in mid-latitudes.
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This model has been shown to be virtually exact at elevation angles

greater than 40", with its worst error of about 0.045 m occurring between five and

ten degrees of elevation.

This tropospheric model is assumed to vary 15% from the nominal

value. Therefore, it is modeled with a 7.5% nominal standard deviation. This main-

tains the random part of the error within 15% of the model value 95% of the time.

2. Selective Availability

Selective Availability is a method that the Department of Defense can use

to intentionally degrade the accuracy of pseudorange measurement,. Typically, this is

accomplished by dithering the space vehicle clock signal. Dithering the clock involves

encoding the binary time signal the space vehicle broadcasts. The decryption process

is classified and available only to DOD authorized users.

The use of SA essentially results in the satellites' "lying" to the receiver

about their position. Clearly, this adversely impacts precision. Currently, SA is in op-

eration on all Block II space vehicles which comprise the majority of the constellation.

The DOD's stated goal for the positioning accuracy under SA is 100 meters (twice

rms) for a two-dimensional fix [Ref. 9]. According to [Ref. 10, p. 420], the selective

availability error can be modeled as a zero-mean, five meter standard deviation low

frequency noise. The suggested cutoff frequency for SA noise is 1/180 Hz.

3. Clock Differences

The clock model used in this treatment of DGPS is a two state model

shown in Figure 2.6. It is reasonable to expect the clock to have both a bias and

drift. From daily exposure to clocks, the average person realizes that most clocks

are slightly offset from correct time (bias), and that their accuracy tends to degrade

with time (drift). From an engineering standpoint, these two phenomena can be best

modeled with zero mean, white, Gaussian noise. Rewriting the model in state space

24



Sclock noise (bias)

~W1

x,2 Sum X1 delta t

clock noise (drift)
w2

Figure 2.6: Receiver Clock Model

form for further analysis yields

S [= 0 0 0+ [ 1w

where

E(wwT )- 0 [S 0 ] (2.26)

The covariance of the clock error state (xj) can be found by solving the Lyapunov

equation which can be found numerous control textbooks, one of which is [Ref. 11, p.

104]. This equation must be solved over a finite time interval (At) because the two

state clock model is unstable. This interval would normally be the sampling time, if

the model were discrete. The result is

E(X2) = S 1At + S 
(2.27)

By taking the square root of the variance and dividing by At, one finds the more

standard clock parameter the Allan variance, VA
•SiS 2 At

VA= I -- + - (2.28)

A representative plot of the two state model Allan variance as a function of averaging

time (i. e. At) is shown in Figure 2.7.
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Figure 2.7: Ideal Allan variance

Real clocks behave somewhat differently from this simple model. A typical

Allan variance plot for a real clock is shown in Figure 2.8.
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Figure 2.8: Real Allan variance
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The flat portion of the curve is called the flicker floor. It is the result of

a non-linear effect which cannot be modeled by the two state model. This causes a

significant discrepancy between this simple model and the real world.

In order for the model to better represent reality, it must be carefully

crafted to fit the actual plot as much as possible. By carefully choosing the values of

S, and S2, it is possible to make the actual and model curves fairly close. The key

Allan variance parameters between 0.1 and ten seconds of averaging time are h0 , h- 1 ,

and h-. 2 [Ref. 12]. Values of these three parameters for three common GPS timing

standards are shown in the Table 2.1 from [Ref. 10, p. 428].

TABLE 2.1: ALLAN VARIANCE PARAMETERS FOR THREE COM-

MON TIMING STANDARDS

II timing standard II h0  h-1 h_2

crystal 2x10" 7X10-21 2X 10-20

ovenized crystal 8 x 10-20 2 x 10-21 4 X 10-23

Rubidium 2 x 10"2 7 x 10-4 4 x 10-

Brown [Ref. 10] finds that one must choose where the 2-state model is

accurate. Since normal averaging times are in the 0.1 to ten second interval already

mentioned, this is the region where the model is made accurate. Maximizing the

accuracy of the model in that region dictates the following values for the noise spectral

densities:

S, ho

2

S2 -• 21r 2 h- 2 S-2. (2.29)

In order to remain conservative in this generic model of DGPS, the least

accurate clock - the crystal clock - is used. The values for S and S 2 for this clock
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are

S1 = 4x10-1 9

$2 = 1.58 X 10-18 s-2. (2.30)

These values are be used in the DGPS error model.

4. Ephemeris Error

In converting the pseudoranges of at least four satellites (six in this model)

to a three-dimensional position and clock error, one must solve a series of non-linear,

coupled algebraic equations. In these equations, the positions of the satellites are

critical. The only way a GPS receiver or navigation filter knows the space vehicle

positions is the navigation message. If broadcast satellite positions are incorrect.

the accuracy of the resulting receiver position suffers. The control segment of the

GPS system maintains positions on the entire constellation quite accurately.However,

it would be folly to expect the satellites to broadcast inerrantly accurate positions.

Typical ephemeris inaccuracies according to [Ref. 13] are shown in Figure 2.9.

These errors are resolved in a coordinate system local to each space vehi-

cle. The three mutually perpendicular directions are radial, along track, and cross

track. Because the DGPS model developed in this thesis does not account for satel-

lite motion, along track and cross track directions cannot be resolved. To remain

conservative, these two errors are combined into a circular error in the plane they

define. This error is modeled as zero mean, white, Gaussian noise with a standard

deviation of 3.5 meters. Likewise, the radial error is modeled as zero mean, white

Gaussian noise with a 0.5 meter standard deviation. Both of these errors make the

stated accuracy the two rms point. In other words, the value stays within the stated

accuracy 95% of the time.

Since the space vehicle location enters the model in earth centered, earth
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fixed Cartesian coordinates while the error is added in geodetic coordinates, a trans-

formation is between the two coordinate systems must be performed (see Subsection 2.

of Section B., Chapter II. ). Having converted the satellite positions to geodetic co-

ordinates, the random errors can be added. However, since the geodetic coordinates

contain angles, the random errors in position must be converted to equivalent an-

gles in latitude and longituIde by dividing by the radius of the space vehicles' orbits,

-26,560,000 meters. The position and the error are now in compatible coordinates

and can thus be summed.

5. Multipath

The signal radiated by a satellite is not required to take a direct path to

a receiver. If the signal encounters an electromagnetically reflective object, it may

bounce off that object and still find its way to the receiver. This signal has now

traveled a greater distance than the straight line joining the space vehicle and the
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receiver. Because the receiver assumes the direct path is used, this multipath phe-

nomenon can introduce pseudorange errors. Due to the satellite/receiver geometry,

multipath is far more likely at low elevation angles. The GPS system has several

attributes that minimize multipath effects [Ref. 4]:

"* The L band frequency (1227.6 MHz) tends to undergo diffuse rather than spec-

ular reflection.

"* The receiver antennas tend to reject multipath signals.

"* The navigation message is broadcast with circular polarization. Circularly po-

larized signals undergo reversal upon reflection.

"* GPS receivers generally use mask angles (the elevation angle below which the

satellite is ignored) of at least five degrees.

All of these factors tend to attenuate the strength of any reflected signal making the

multipath effect insignificant. Therefore, it is not modeled.

6. Receiver Noise

All receivers corrupt the signals they receive. GPS receivers are no excep-

tion. Inaccuracies resulting from quantization error, loop tracking errors and other

hardware inadequacies corrupt the pseudorange accuracy. According to [Ref. 4], rep-

resentative GPS receiver noise has a standard deviation of 7.5 m. Receiver noise is

thus modeled as a zero mean, white Gaussian noise with 7.5 m standard deviation. As

the differential station and the aircraft receivers are assumed identical, both aircraft

pseudoranges and differential station pseudoranges are contaminated with this noise.

The noise in the two receivers is assumed to be independent.
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7. Dilution of Precision

All of the errors discussed to this point directly effect pseudorange accu-

racy. The various delays and noise sources can cause the receiver's evaluation of range

to the space vechicle's to be inaccurate. However, the pseudoranges themselves are

irrelevant. The science of navigation is concerned with positioning. Dilution of Pre-

cision is the effect that links pseudorange accuracy to position accuracy. DOP can

be further classified into several different types:

"* VDOP - Vertical DOP (z)

"* HDOP - Horizontal DOP (x,y)

"* PDOP - Position DOP (x,y,z)

"* TDOP - Time DOP (t)

"* GDOP - Geometric DOP (x,y,z,t)

The equation which relates DOP and pseudorange error is

ap = DOP -a0, (2.31)

where ap is the standard deviation of the position error and ao is the standard devia-

tion of the pseudorange error, often called the User Equivalent Range Error (UERE).

Dilution of Precision is a function of satellite to receiver geometry. As

Figure 2.10 shows for a four satellite constellation, GDOP is minimized with the

space vehicles spread out as much as possible. In fact, the volume of the tetrahedron

formed by the unit vectors from the receiver to each satellite is an empirical measure

of DOP. PDOP is inversely proportional to the volume of the tetrahedron. If, for

example, all of the space vehicles a receiver was using for positioning were in the

same plane, PDOP would approach infinity (the volume of the tetrahedron would be
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Figure 2.10: Dilution of Precision from [Ref. 5, p. 4.22]

zero). Likewise, minimum PDOP is achieved with the geometry shown at the right

of Figure 2.10.

The goal for the design of the entire GPS constellation of satellites is a

PDOP no greater than six everywhere on the earth. With the entire set of 24 space

vehicles now in orbit, users can expect PDOP values under three [Ref. 14].

The entire concept of GPS navigation has now been thoroughly discussed.

All of the information put forth in this discussion will be used in developing the DGPS

computer model in the next chapter. To complete the sensor discussion, a description

of INS follows.

E. INERTIAL NAVIGATION

Inertial navigation has long been the standard for self-contained, long-range

aircraft navigation. An Inertial Navigation System (INS) senses aircraft thrust accel-

eration, angular rates and spatial orientation resolved in an orthogonal system and
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computes the inertial acceleration. This acceleration can now be integrated - once

to find velocity, and twice to find position.

The primary component in any inertial navigation system is the Inertial Measur-

ing Unit (IMU). The IMU is composed of three accelerometers, three rate gyros, and

two inclinometers. The accelerometers measure thrust acceleration. Thrust accelera-

tion is composed of linear, centripetal, and gravitational effects. Einstein's Principle

states that it is impossible for a sensor to distinguish between the effects of gravity

and acceleration. Thus, the thrust acceleration that it provides is

Ba =Bý + W X BV + g, (2.32)

where Ba is the thrust acceleration, B?, is the linear acceleration, BW is the angular

velocity, By is the velocity, and Bg is gravity. All quantities are in the body frame.

This principle necessitates that the computation portion of the INS compute and

remove local gravity from the measured accelerations.

Rate gyros sense angular velocities. These angular velocities can be resolved

in either the body or inertial frame, depending on the type of IMU implementation.

The two inclinometers sense aircraft inertial orientation, i.e., Euler angles.

There are two conceptual methods for implementing inertial navigation:

9 Gimbaled IMU

* Strapdown IMU

Brief discussions of each method follow.

1. Gimbaled IMU

A gimbaled IMU rotates about its four gimbals during operation (see Fig-

ure 2.11. Aircraft IMU's must have four gimbals to prevent gimbal lock, while earth-

bound IMU's require only three gimbals [Ref. 15, p. 192]. A controller maintains
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Figure 2.11: Gimbaled IMU from [Ref. 15, p. 193]

the IMU in a constant inertial orientation toward true North and lying in the locally

horizontal plane. By maintaining this orientation, the gimbaled IMU measures iner-

tial quantities directly. This data can be integrated without transformation to yield

inertial velocity, position and Euler angles. From a navigation standpoint, this con-

figuration seems ideal. However, gimbaled systems are large and heavy, making them

impractical for small aircraft. Also, kinematic quantities resolved in the aircraft-fixed

coordinate system, necessary for stability augmentation and control, are not directly

available. Instead, they must be computed through a series of Euler rotations. The

computations required take time and thus introduce delays into an often time critical

control problem. This fact makes the gimbaled system less than desirable for control.

2. Strapdown IMU

Strapdown IMU is conceptually the reverse of the gimbaled system men-

tioned above. Rather than maintaining a constant inertial orientation, a strapdown

system is "strapped down" to the aircraft, thus maintaining a constant orientation

in the aircraft-fixed coordinate system. Therefore, the output of the IMU is resolved

in the local coordinate system. Kinematic quantities are immediately available for
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the control system. The extra computational burden now rests on the navigation

computer which must transform the accelerations and angular velocities sensed in

the local coordinate system to the inertial system. Currently, most inertial systems

are of the strapdown variety. With the advent of high speed, low cost, lightweight

computing power, the required calculations in transforming from the aircraft-fixed

to the inertial coordinate system are no obstacle to navigation. This is the system

which is modeled in this thesis.

F. INS COMPUTATIONS

In the strapdown configuration, the IMU measures angular velocities and thrust

acceleration in the body frame, as well as Euler angles. However, the INS must provide

position and orientation, both in the inertial frame. In order to compute position and

orientation in the inertial, tangent plane coordinate system, inertial accelerations and

Euler rates must be calculated.

Before converting the ine-tial acceleration from the body frame to the inertial

frame, it is necessary to compute the inertial orientation. Computing the Euler rates

is a tricky endeavor. The Euler rates are simply related to the body angular rates by

Poisson's equation

S1 sin4 tanE cos4tane [(3
0 cos4 -sine Iq, (2.33)

sin 0sece cosDsece r

where p, q, and r are the components of Bw, the body's angular velocity. Obviously,

this formula requires the exact Euler angles. However, one can only measure these

angles directly at very low frequency. At frequencies greater than a fraction of a Hertz,

one must integrate the Euler rates found from Equation 2.33 to find the angles. This

presents the seeming paradox of needing to know the Euler angles in order to find

the Euler rates which must be integrated to find the Euler angles. This process
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must be implemented recursively. That is, the results of the integration to find the

angles must be fed back into Equation 2.33. Furthermore, a complementary Kalhan

filter is necessary to provide an optimal estimate of the Euler angles, trusting the

inclinometers at the low frequencies and the rate gyros at high frequencies. This

process will be discussed in detail in Chapter IV.

Now having inertial acceleration in expressed in the body frame and the orien-

tation of the body (Euler angles), the transformation from body to inertial can be

executed. This coordinate transformation is defined by

U B= R~a + Ug, (2.34)

where 0, 0, and TI are the roll, pitch and yaw Euler angles, respectively, L7P is the

aircraft's acceleration in inertial coordinates, Ba is thrust acceleration in the aircraft-

fixed coordinate system, U9 is gravity in inertial coordinates and UR is the transfor-

mation matrix from the body-fixed coordinates to inertial tangent plane coordinates

as follows

[Cos' IFCose0 cos 1P sine0 sin 0- sin' cos 4' cos 1P sine0 cos 0+ sin T sin~ 1
- sinT cos 0 -sine sint singI +cos cos$ -sine cos4 sin lI -cos 1sin$ .

sin e - cos e sinf - cos e cosb J

It is UP which can be integrated to provide velocity and position in the inertial,

tangent plane frame.

G. INS ERROR SOURCES

The Inertial Measuring Unit is subject to a few main error sources. These are:

"* bias

"• cross-axis sensitivity

"• noise floor
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All of these errors apply to both accelerometers and rate gyros. Brief descriptions of

these problems follow.

1. Biases

A bias in an accelerometer or a rate gyro is defined as a constant offset of

the output of the device from the true value. In other words, an accelerometer might

constantly read 0.01 m/s 2 while the device is not accelerating. This 0.01 m/s 2 would

be referred to as a bias. This error is modeled with a series of small step functions,

one for each accelerometer and rate gyro.

2. Cross-Axis Sensitivity

Cross-axis errors are caused by misalignment of the IMU with the aircraft

coordinate axes. Ideally, the components of the IMU - the accelerometers and the

rate gyros - would each be perfectly aligned with the three axes of the aircraft-fixed

coordinate system. Unfortunately, even the highest fidelity inertial sensors are never

precisely coincident with the appropriate axes. Misalignment of both types of devices

causes errors. The cross-axis errors are modeled with the following equation:

0 ey ez
aca = ex 0 ez a, (2.35)

ex ey 0]

where aca is the cross-axis error, ex, ey, and ez are the cross-axis error terms and

a is the actual acceleration resolved in the aircraft coordinate system. The e's from

the previous equation are determined by the amount of angular offset of each sensor

from the correct position.

3. Noise Floor

All sensor devices corrupt the quantities they measure. Various factors

including thermal noise can cause a constant output of white noise, regardless of the

actual acceleration (or angular velocity). This noise floor makes accelerations below it

not measurable. That is, the output of the sensor still includes the actual quantities,
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but it is "invisible" because the noise floor obscures it. This process is modeled by in-

troducing a threshold to the actual acceleration in the aircraft coordinate system and

adding white noise. Taking these steps result in the accelerometer always reporting

noisy, zero-mean acceleration unless the actual value is above the threshold. When

the actual value exceeds the threshold, that value is added to the noise floor value

(and the bias) to create the output of the accelerometer. This process also applies to

the rate gyros.

Now both of the sensors - CPS and INS - have been completely inves-

tigated. In the following chapter, computer models of both sensors are constructed

using the basic principles of operation of each sensors and all of the error sources.
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III. SIMULINK MODEL

A. DGPS SIMULINK MODEL

The discussion of the basic principles of GPS navigation and the various phe-

nomena effecting its performance can now be used to model the system. The system

shown in Figure 3.1 is a complete working model of Differential GPS constructed with

SIMULINK.

SIMULINK is a non-linear simulation package based on MATLAB©. This lan-

guage uses block diagrams and embedded MATLAB routines to model arbitrarily

complex systems. SIMULINK allows simulations to be carried out in continuous or

discrete time. It also has several choices of integration routine - Euler, Adams,

Adams-Gear, Runge-Kutta, etc. Simulation results can be viewed as they happen

or sent to the MATLAB workspace for future analysis or plotting.

Figure 3.1 depicts the inputs to the DGPS simulation - "Aircraft position",

"Satellite positions", and "Differential Station position" - which are used to com-

pute pseudoranges. The receiver position and the satellite positions are multiplexed

together before they enter the "Aircraft Pseudorange" block (multiplexing assembles

an arbitrary number of separate vectors into one vector for use by a program block).

The "Aircraft Pseudorange" block produces pseudoranges complete with ephemeris

error, ionospheric delay, and tropospheric delay. The receiver noise, clock error, and

Selective Availability error, are subsequently added to the pseudoranges. The remain-

ing portion of the simulation removes some of the errors. The "correct Pseudoranges"

block takes receiver position, satellite positions, and corrupted pseudoranges as a mul-

tiplexed input vector, and removes the non-random tropospheric and atmospheric

39



AimSA

Figur 3WC -V.1 D G S Mod el

"6-P 1 .40



delays. Lastly, the atmospherically corrected pseudoranges are further corrected using

the "DELTAS" from the differential station. Six differential pseudoranges are outputs

of the model and become inputs to a Kalman filter.

The calculation of the "DELTAS" is accomplished as follows. As in the Aircraft

pseudorange calculations above, the "Differential Station Pseudoranges" accept the

Differential Station position and the Satellite positions as a multiplexed vector input.

The pseudorange is calculated with a routine identical to that used in calculating the

Aircraft Pseudoranges, but with independent random variations. Corrupted differen-

tial station pseudoranges are outputs of the "Differential Station Pseudoranges" block.

Clock error, receiver noise, and selective availability noise are added. The "correct

Pseudoranges" block is identical to the one used to adjust the aircraft pseudoranges.

Having used the Pythagorean theorem to pre-compute the exact ranges from the

differential station to the satellites, the simulation now calculates the "DELTAS",

the error in the differential station pseudorange. These values are used to adjust the

aircraft pseudoranges.

Next, each of the major sections of the model will be discussed in more detail.

1. Ephemeris Model

The "Satellite Position" block computes the noisy space vehicle positions

in tangent plane (Local Geodetic) coordinates for use by the DGPS model (see Fig-

ure 3.2). The satellite positions enter from the left in earth-centered, earth-fixed

Cartesian coordinates (Conventional Terrestrial System). The block "Convert to

latitude, longitude, elevation", a MATLAB m-file eceffll.m which encodes the trans-

formation defined in Subsection 2., Section B. in Chapter II. , must first be used to

transform the satellite positions to the geodetic system. Next, the ephemeris errors,

resolved in the geodetic system, are added to the space vehicle positions. Finally', the

corrupted positions are transformed to the tangent plane system by the block "Con-
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Figure 3.2: Ephemeris Model

vert to tangent plane", a MATLAB r-file ll2tanp.m which resolves the corrupted

satellite location in the local geodetic or tangent plane coordinate system.

2. Pseudorange Computation

The pseudorange computation blocks "Aircraft Pseudoranges" and "Dif-

ferential Station Pseudoranges" take space vehicle positions, receiver (either aircraft

of differential station) position as applicable, take-off time, atmospheric pressure and

temperature and computes the pseudoranges as shown in Figure 3.3. The block "con-

vert seconds to minutes" merely converts the output of the clock in seconds to minutes

and seconds. This value is added to the "take-off time" in order too maintain accu-

rate time for use in the ionospheric delay calculation. The "Ionospheric delay" block

uses this time ndom te oe delay to be applied to all six pseudoranges. Unlike

the model previously discussed, a generic set of coefficients (a,s and t3,) has been

assumed for this model yielding: A= 20 nanoseconds and P=12 hours. The scale
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Figure 3.3: Pseudorange Computation Model

factor SF, is assumed to be one. In order to achieve the 25•X random error discussed

in Section 1., the output of the "Ionospheric delay" block is multiplied by a gain of

0.125. The output of this gain block is multiplied by white, Gaussian noise with unity

variance, by adding this value to the nominal delay, the desired nominal ±4 25% delay

is achieved 95%• of the time. Since this value applies to all six pseuodranges, the one

value is converted to a vector of six with the multiplexer.
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The block "Exact ranges" uses the MATLAB subroutine ezact.m to com-

pute the exact geometric range from the receiver to each satellite. It accepts the

receiver position and the positions of the six satellites as a multiplexed input vector.

Using the Pythagorean theorem in three dimensions, this block outputs the exact

ranges to all six space vehicles.

The remainder of the simulation diagram calculates the tropospheric delay.

The "Satellite elevations" block accepts the receiver position and the satellite posi-

tions and computes the elevation angle to each satellite. Since all quantities are in the

tangent plane Cartesian coordinate system already, this is a very simple operation.

First, the vector from the receiver to the satellite is found by subtracting the receiver

position vector from the satellite position vector

Ysat - Y •c (3.1)
•. ZSat Zrcvr

Next, the vector is normalized to unit length

W 1+

Lý =T 1YJ (3.2)

Finally, the elevation angle is given by

0 = arcsin i. (3.3)

Note that normalizing the vector and taking the arcsin is an equivalent process.

The "Tropospheric delay" block takes the output of the "Satellite eleva-

tions" block, the surface temperature, and the surface pressure as inputs to compute

the tropospheric delay to each individual satellhte. This block executes the MATLAB

function tropdel.m which is the tropospheric delay algorithm discussed eatlier imple-

mented in MATLAB. The 7.5% random error is added by multiplying the output of

the "Tropospheric delay" block, the six element vector of delays to the satellites, by
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0.075 to form a "vector gain". This output is multiplied, element by element, by

white noise with unity variance to produce a scaled noise vector. The result of this

operation is the output of the block "Element by element multiplication". Adding

this error vector to the nominal tropospheric delay vector yields the desired randomly

varying delay vector.

The outputs of each of these processes - exact range, tropospheric delay,

and ionospheric delay - are summed to form the noisy pseudoranges. An identical

process occurs in finding the differential station pseudoranges. However, the noise

added in the differential station calculation is uncorrelated with that added in the

aircraft calculation.

3. Clock Model

The clocks of the differential station and the aircraft receiver are both

modeled as previously shown in Figure 2.6. The variances of the white noise for the

aircraft and differential station clocks are identical, but the random seeds are different.

This makes the white noise in the two models uncorrelated. The outputs of the clock

models are multiplexed into six element vectors and multiplied by the speed of light

to convert them to range errors.

4. Selective Availability Model

Selective availability is modeled identically for each satellite. As shown in

Figure 3.4, the error is white noise put through a low pass filter. As discussed in

Section 2., the low pass filter has a time constant of three minutes (180 seconds). All

of the white noise sources driving the errors for each satellite are independent because

they have different random seeds.
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Figure 3.4: Selective Availability Model

5. Pseudorange Correction

In a manner similar to the way the pseudoranges are calculated, the cor-

rupted pseudoranges are corrected with known tropospheric and ionospheric models

as shown in Figure 3.5. The only difference between this part of the model and

the initial pseudorange calculation is that this portion subtracts the nominal delays

in an attempt to remove the atmospheric errors. Obviously, this correction cannot

compensate for the random part of the errors.

B. DGPS MODEL VERIFICATION

This model of Differential CPS was verified by simulating it under the following

circumstances:

"* receiver is stationary at the origin of the tangent plane system

"* differential station is stationary at the origin of the tangent plane system
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Figure 3.5: Pseudorange Correction

* six satellites are uniformly distributed at elevation angles greater than ten de-

grees

* the origin of the tangent plane system is at 450 N latitude and 450 E longitude

(on the earth's surface)

The values of the differential station exact ranges are computed directly (with the

Pythagorean theorem) in the model. Since the aircraft receiver is stationary at the

same location as the differential station, any differences between the aircraft pseudor-

anges and the exact ranges are errors. Comparison of the two outputs labeled "psrng

aircraft", "psrng aircraft (corrected)", and "psrng" (for only satellite #1) confirms

the validity of the model. That is, the magnitude of the mean error (the difference

between the aforementioned outputs and the exact range) at each of these stages

should decrease at each subsequent output. Examination of the "DELTAS" output

reveals the benefit of the Diffecrential correction.
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1. Verification with Clock Error

a. Atmospheric Correction

As Figure 3.6 shows, the atmospheric correction subroutine decreased

the pseudoranges. This figure depicts the difference between the pseudorange before

it enters the correction block and after it exits. Since the ionospheric and tropospheric

delays are assumed to always be positive, the correction routine should always reduce

the pseudoranges, resulting in a positive correction on the plot. The increase in the

atmospheric correction with time is due to the ionospheric error increasing because of

the time of day. The simulation starts at 1300 local, one hour before the maximum

ionospheric delay. Thus, the correction monotonically increases and would continue

to increase until 1400 local.
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Figure 3.6: Atmospheric correction for pseudorange #1 (with clock error)
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b. Differential Corrections

All differential corrections increased during the simulation time (ten

minutes), reaching about 4000 meters for some of the satellites. Figure 3.7 shows

4MC

13500-3000I:

0W 100 2006 300 400 500 600
time in seconds

Figure 3.7: Differential Corrections for pseudorange #1 (with clock error)

the differential correction for pseudorange #1 monotonically increasing during the

simulation. The reason for the constant increase in the differential correction is its

clock instability. The differential correction algorithm can only interpret differences

between the pseudorange and exact range to a given satellite as error. Unfortunately,

this means that any error in the differential station clock results in an error in the

differential correction. In fact, this situation causes differential correction #1 (as well

as the other undepicted corrections) to increase so rapidly.

c. Differentially Corrected Pseudoranges

This exacerbating effect of the differential clock error on the pseudo-

range error is further illustrated in Figure 3.8. While the pseudorange error is slowly
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Figure 3.8: Corrected and differentially adjusted pseudorange errors to
satellite #1 (with clock error)

diverging before it is differentially corrected, it is obviously worse after the correc-

tion. The reduced accuracy of the differentially corrected range is due to the clock

divergence discussed in the previous section.

2. Verification without Clock Error

The clock error of the Differential station causes the differential correction

to diverge, however, the clock error is removed by the Kalman filter. Therefore, to

better understand the effect of the differential correction, the simulation should be

repeated without clock errors. This should highlight the effects of selective avail-

ability, receiver noise, and the differential correction and can be achieved by simply

disconnecting the clock error segment from the rest of the model.

In this "clock error free" model, one expects much better accuracy in the

differentially adjusted pseudoranges. Selective availability errors should be largely
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canceled by the differential adjustment. The primary remaining errors are receiver

noise, both on the aircraft and at the differential station. The mean pseudorange

errors should be near zero; the standard deviation of the error should be one to seven

meters [Ref. 2, p. 64].

a. Atmospheric Correction

As expected, the atmospheric correction remained the same (see Fig-

ure 3.9). It turns out that atmospheric effects are totally independent of the clock
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Figure 3.9: Atmospheric correction for pseudorange #1 (without clock
error)

errors. Thus, they are expected to remain unchanged in this simulation.

b. Differential Corrections

The benefit of the differential correction can be seen in Figure 3.10.

The high frequency variations in the differential correction are due to receiver noise

and ephemeris error. The low frequency variation is clearly due to selective availabil-
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Figure 3.10: Differential Corrections for pseudorange #1 (without clock
error)

ity. Selective Availability, being the only low frequency error in this model, must be

causing the low frequency variation. Since SA is common to both the differential sta-

tion and the aircraft, the differential correction accounts for it. Therefore, SA errors

are eliminated from the aircraft pseudorange error by the differential correction.

c. Differentially Corrected Pseudoranges

Figure 3.11 clearly shows the benefits of Differential GPS. The dif-

ferentially corrected errors are now virtually zero mean. That is, the differential

adjustment has removed the biases from the pseudorange errors. The standard devi-

ations of the differentially adjusted pseudorange errors are quite reasonable. Table 3.1

summarizes the means (y) and standard deviations (a) of the differentially corrected

pseudorange errors for each satellite in meters. These figures show that the mean

pseudorange errors to each satellite are practically zero. Clearly, the differential cor-
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Figure 3.11: Corrected and differentially adjusted pseudorange errors to

satellite #1 (without clock error)

TABLE 3.1: MEAN AND STANDARD DEVIATION OF DIFFER-

ENTIALLY CORRECTED PSEUDORANGE ERRORS (WITHOUT

CLOCK ERROR)

Satellite 1 Satellite 2 Satellite 3 Satellite 4 Satellite 5 Satellite 6

p -0.0060 -0.0133 -0.0051 -0.0498 0.0024 1 0.0127

S2.765 1.831 1.602 1.653 2.456 2.319

rection has resulted iu the error becoming zero mean.

The standard deviations are all on the order of two meters. Using a

representative PDOP (Position Dilution of Precision) of three, the DGPS fixes from

this system should be accurate to within four meters (one rms). These values are

consistent with the one to seven meter values published for DGPS accuracy.
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C. INS SIMULINK MODEL

The INS SIMULINK Model is composed of the "strapdown IMU" and the "INS

Computations" blocks as shown in Figure 3.12. At this top level, the INS accepts

I
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S• me~asured
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Figure 3.12: INS Model

"vdot" (1i% and "states" B,, Bw, 4, 0, and %P) from which it ultimately computes

"measured a.u" (Ua). The "strapdown IMU" block computes exact thrust acceleration

and subsequently subjects it, as well as the angular rates and Euler angles, to various

sensor errors and produces the measured outputs. The "INS Computations" block

subsequently uses the sensor outputs to compute inertial acceleration.

These two blocks will be explained in more detail in the remainder of this

section.

1. Strapdown IMU

The "strapdown IMU" depicted in Figure 3.13 is comprised of four sub-

groups - "Compute thrust acceleration", "Rate Gyros", "Accelerometers", and "In-

clinometers". Modeling of the rate gyros and accelerometers include all of the error

sources - bias, noise floor, and cross-axis sensitivity - defined in Section E. of

Chapter II. Inclinometer outputs are corrupted by coupling with linear acceleration.

Since Kuechenmeister developed the IMU model in [Ref. 161, this portion of the

model will not be further discussed or verified.
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Figure 3.13: Strapdown IMU Model

2. INS Computations

The "INS Computations" block converts the sensor outputs from the IMU

into inertial acceleration. The structure of this block is represented in Figure 3.14.

Inertial body acceleration in the body frame is computed by the "compute a.b" block

and provided to the "convert a-b to a-u" block for transformation to the inertial frame.

The "Estimate lambda" block provides an optimal estimate of the Euler angles based

on its inputs, "lambda" (from the inclinometers) and "omega-b" from the rate gyros.

These estimated Euler angles are used by the "convert a-b to a-u" block to compute

the rotation matrices for the transformation.
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Figure 3.14: INS Computations Model

Before transforming the acceleration from the body to the inertial frame.

L~he iiudel must compute the Euler angles. This task is performed by the -Estimate

lambda" block shown in Figure 3.15. The top half of this figure provides measured

Euler angles and calculated Euler rates for the bottom half of the figure, the com-

plementary Kalman filters, to estimate lambda. The block labeled "S(lambda) *

omega" computes Euler rates from Poisson's equation (Equation 2.33) as previously

discussed. The "rearrange into rate/angle pairs" block pairs each iiuler angle with

its derivative. Each pair then enters its own filter - "Roll filter", "Pitch filter", and

"'Yaw filter" - which provides an estimate of each respective angle. The result is fed

back to be used in the calculation of the Euler rates as shown.

Finally, with "a-b" and "Lambda" computed, the "convert a.b to au"

block in Figure 3.14 can calculate inertial acceleration, "a-u", through the transfor-

mation defined in Equation 2.34.

D. INS MODEL VERIFICATION

As previously stated, the IMU Model will not be verified. However, the remain-

der of the INS, the INS Computations portion, must be verified. Since this portion

56



of the INS is purely computational, no particular flight regime need be tested. The

circumstances of the verification simulation are:

* Bluebird aircraft flying at sea level

* elevator fixed at 00

e lateral controls fixed at 00

* trim thrust applied

Figure ~ ~ ~ ~ a 3.5 ulraglsetiao

Roll~filter

toll Ix hi• ha
Spitch - - Pitch thetahat

yaw! lambda

S• ~Yawha

filte

Figure 3.15: Euler angles estimator

57



There are two sets of data to be compared in this verification. The "INS Compu-

tations" block computes both inertial acceleration and Euler angles. By comparing

these quantities with the correct values calculated from the uncorrupted kinematic

quantities, one can evaluate the accuracy of the model. Thus, the remainder of this

section will consist of comparing exact and calculated values of inertial acceleration

and Euler angles.

1. Euler Angles

Figure 3.16 depicts the difference between the exact roll angle (which re-
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Figure 3.16: Actual and estimated roll angles

mained zero) and the roll angle calculated by the INS. At first glance, the difference

appears to be substantial. However, when one realizes that the maximum difference

between the calculated and estimated roll angle is a mere 0.420, one recognizes that

there is really very little error. This small error is due primarily to cross-axis sensi-

tivity in the rate gyros. This phenomenon is causing a small difference between the
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measured and actual roll rate. Furthermore, as the phugoid motion damps out, all

angular rates will tend to zero. Therefore, the cross-axis error will tend to zero. This

is certainly an effective estimator in the roll or X-axis. The estimates of the yaw

angle behaved similarly and were also quite accurate, with the maximum error only

0.60. The error is again a result of cross-axis sensitivity.

Pitch angles estimated by the complementary filter were also quite accurate

(see Figure 3.17). The maximum error between the estimated pitch angle and the
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Figure 3.17: Actual and estimated pitch angles

actual pitch angle is only 10. Furthermore, as can be seen from the figure, the error is

decreasing toward zero. The minimum error is driven by the noise in the IMU. Since

the angular estimator relies on the virtually noise-free inclinometer at steady state,

the error in the estimate at steady state would certainly be nearly zero.

59



2. Linear Acceleration

The inertial acceleration calculation is quite accurate, just as the Euler

angle estimation scheme is. Since the accelerometers and rate &vros are subject

to nearly identical types of errors, it is not surprising that the acceleration errors

would be similar in nature to the angular errors. For example, Figure 3.18 shows

actual and calculated inertial X acceleration. Once again, the values are quite close,
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Figure 3.18: Actual and calculated X acceleration

with the maximum deviation being around 0.5 ft/s 2 . Moreover, the error appears

to be decreasing as the phugoid motion damps out. The error, however, will not

go to zero. Because the Z accelerometer will continue to sense thrust acceleration

in steady, level flight, the X measured acceleration will have a small steady state

error due to cross-axis coupling. Furthermore, the "fuzziness", caused by noise in the

accelerometer measurement of thrust acceleration, clearly identifies the calculated
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curve. As expected, this high frequency component remains constant over the entire

curve.

Figure 3.19 more clearly exposes the effects of cross-coupling and noise

in the accelerometers. Although the aircraft never actually accelerates in the Y
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Figure 3.19: Actual and calculated Y acceleration

direction, cross-coupling with both the X and Z accelerometers causes the general

downward swing of the calculated curve. While this curve also appears to be quite

noisy, the standard deviation of the noise is actually only a fraction of a ft/s2 . Like

the X measured acceleration, the error will tend to a small, non-zero value because

of cross-coupling with the Z accelerometer. Even so, the calculation of the inertial

acceleration in the Y axis is satisfactory.

Finally, Figure 3.20 shows the accuracy of the inertial acceleration calcu-

lation in the vertical or Z direction. This acceleration error does not appear to be
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Figure 3.20: Actual and calculated Z acceleration

converging to zero as do the accelerations in the other axes. This lack of convergence

is made more clear by Figure 3 21. This effect is due to the fact that, unlike the other

accelerometers, the Z accelerometer will not measure at or even near zero acceleration

in steady, level flight. In fact, the one 'C' of acceleration that the Z accelerometer

senses in steady, level flight causes small errors in the other two axes due to cross-axis

sensitivity.

E. NAVIGATION (LOOKING AHEAD)

The simulations conducted in the previous sections clearly indicate which errors

dominate Differential GPS and INS. Certainly the most troublesome DGPS errors are

caused by clock differences. In fact, after only ten minutes of simulation time, the

clocks alone had driven the pseudorange errors for some of the satellites to two miles.
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Figure 3.21: Z acceleration error

Simulating the system without the clock errors showed that the system's accuracy

would be vastly improved if the clock errors could be eliminated. Fortunately, the INS

proved to be quite accurate. Thus, no INS errors need to considered in the Kalman

filter design. Therefore, the Kalman filter design for navigation (see next chapter)

must include a clock model of the difference between the aircraft receiver clock and

the differential station clock.
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IV. DGPS/INS INTEGRATION

Having completely defined, encoded, and tested models of Differential GPS and

INS, the issue of integration can finally be addressed. As mentioned early in this

work, the engineering device which accomplishes the task of fusing the outputs of

the INS (inertial acceleration) and the DGPS (six pseudoranges) to produce inertial

position is the complementary Kalman filter. A description of the general design

process for a complementary Kalman filter follows.

A. GENERAL LINEAR KALMAN FILTER DESIGN

Before detailing the Kalman filter design process, it is critical to define the

framework in which it operates. The mechanism which defines this process is called

the synthesis model. The synthesis model models the process whose states the

Kalman filter is designed to estimate. In general, this model is non-linear. Since this

is a linear design process, one must first linearize the synthesis model to produce a

standard linear system which can be represented by a state space

S= Ax+Blw+B 2u

z = Cx+Du+v, (4.1)

where x is the state vector, z is the measured output vector, w is the process noise

vector. u is the input vector, v is the sensor noise vector, and A, B1 , B 2, and C are

the standard matrices defining a linear, dynamic system. The feed-forward matrix.

D, is assumed to be zero. Complete explanations of all linear systems concepts can

be found in any basic control text, such as [Ref. 17, Ch. 2]. Typically, w and v are

specified as zero-mean, white, Gaussian noise vectors with covariances R,, and R.,
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respectively.

Most often, a Kalman estimator is used in estimating states which cannot be

directly measured, although they must be observable. For example, suppose the

measured output of the system defined in Equations 4.1, z, is a scalar which is the

sum of all of the system's states (plus measurement noise). A Kalman estimator could

take u, the system input vector, and z, the measured system output, and produce an

optimal estimate of each state. The estimator is constructed as follows

x = Ai + B2 u + H(z - Ci), (4.2)

where i is the estimator state vector, H is the Kalman gain, and the remaining

variables represent the same quantities as in Equation 4.1. Rewriting Equation 4.2

by collecting i's yields

X = (A - HC)i + B2u + Hz. (4.3)

This form shows that the stability of the estimator is determined by the poles of its

state matrix, A - HC. If this matrix has all stable poles, the estimates are stable.

But, will they approach the actual states, x, that they are supposed to estimate? By

defining the error, i, as the difference between the estimator states and the actual

states and subtracting Equation 4.2 from the first of Equations 4.1, one finds

x = (A - HC)i + Bu, + Hv. (4.4)

This relationship demonstrates that estimator stability alone results in the error con-

verging to zero, if there is no process or sensor noise. The filter cannot be designed

to remove the error caused by these disturbances. Thus, the accuracy of the Kalman

filter is limited by the two noise vectors. To complete the design, the Kalman gain

must be calculated.

The Kalman gain matrix is computed by solving two equations in sequence -

the algebraic Riccatti equation and the gain equation. The algebraic Riccatti equation
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solution, Po,, is the steady state covariance matrix of the error state, i, provided the

H is computed using Equation 4.6. It is (see, for example [Ref. 15, p. 132])

APo, + P .A. - POýCT RV-7CPoO + BIRWBIT = 0. (4.5)

Having solved this equation for P,,, one can use this result to compute the Kalman

gain with the following equation

H = -PWCTRR-'. (4.6)

By inserting this gain into Equation 4.3, the Kalman filter is constructed. The re-

maining issue to be resolved is the specification of the covariances, RP and R,. It is

the choice of these two matrices that determines the characteristics of the filter. The

effects of varying these covariances are discussed in the following paragraph.

Increasing the sensor noise covariance, X, results in decreased gain, as one

can see from Equation 4.6. Since the gain is a measure of the emphasis given to

the measurement, z, this makes sense. That is, a noisier measurement should be

deemphasized by the filter. Conversely, decreasing the measurement noise covariance

will increase the gain. In the limiting case, as the sensor noise covariance approaches

infinity, the filter will be identical to the dynamic system whose states it is designed

to estimate. Since the Kalman gain would be zero, the measurements, z, would be

ignored entirely. Likewise, if the sensor noise covariance becomes very small, the gain

would be very large and the system would essentially invert the measured output to

find the states.

The concept of "emphasis" introduced in the previous paragraph is more com-

monly referred to as bandwidth. Increasing the "emphasis" of the sensor measurement

by decreasing the sensor noise covariance is equivalent to increasing the bandwidth

of the estimator with respect to that input. This concept forms the basis for the
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design of a complementary Kalman filter. Strictly speaking, the process noise and

sensor noise covariances must be measured characteristics of the noise inputs to the

system. Realistically, this measurement procedure is impractical and unnecessary. By

using the bandwidth concept, one can tailor the estimator by selecting the covariance

matrices to produce the the desired frequency characteristics.

The procedure for designing a complementary, linear Kalman filter is:

"* construct the synthesis model

"* linearize the synthesis model (if necessary)

"* set both R, and R, to the identity matrix of the appropriate dimension

"• compute the Kalman gain

"* construct the complementary filter using Equation 4.3

"* determine the sensor bandwidths using Bode analysis

"* adjust R, to increase or decrease the bandwidths as required and iterate

This procedure was used to develop the complementary linear Kalman estimator,

which integrates inertial acceleration and six DGPS pseudoranges to yield inertial

posit ion.

B. DESIGN OF THE COMPLEMENTARY, LINEAR, KALMAN FIL-

TER FOR DGPS/INS INTEGRATION

Before describing the exact design process, the goal of the process must be

established. The final filter should rely on the DGPS pseudorange errors at low

frequencies, below 0.5 Hz or about three radians per second. At these low frequencies,

the filter should essentially invert the six pseudorange errors to find position. At
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higher frequencies, the filter should rely on the inertial accelerations for positioning:

by integrating these accelerations twice, the filter will calculate position. Based on

these considerations, the Bode plot of the transfer function from pseudorange error

as input to corresponding pseudorange error estimate as output should look like a

low pass filter. Conversely, the frequency response from the accelerometer inputs to

pseudorange error estimates should be similar to a high pass filter.

As delineated in the previous section, the first step in the design process is the

construction of the synthesis model. It is shown in Figure 4.1. The synthesis model

defines the process whose states the Kalman filter will estimate. Ih this case, the

desired output of the filter is inertial position - P-x, P-y, and P.z in the synthesis

model. Since each of the scalar elements of the position vector are states of the

synthesis model, they can be estimated by the filter.

The basic construction of the synthesis model is quite simple. Each of the

scalar components of the inertial acceleration vector, a.x, a-y, and a.z, are inputs to

the model. These accelerations are integrated twice to yield the inertial positions,

P-x. P-y, and P-z. Three other inputs to the upper part of this diagram are wl,

w2, and w3. These are three scalar, independent, white, zero-mean, Gaussian noise

inputs. Integrating them before adding them to the accelerations as sensor noise

forces the filter to compensate for an accelerometer bias.

The bottom of the model defines the unstable clock dynamics. Note that this is

identical to the previously defined clock model in Figure 2.6. Once again, the purpose

of this portion of the synthesis model is to alert the design process to the dynamics

of the clock errors such that it can more effectively account for them. As before. the

clock difference must be multiplied by the speed of light to convert it from a time

error to a distance error.
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The synthesis model does not contain two separate clock models whose differ-

ence is applied to the exact ranges to create pseudoranges. The reason for this is

quite simple - only six independent integrators can be observable with six measured

outputs. Including two complete clock models as well as three independent process

noise inputs would result in seven independent noise inputs. Therefore, the model

had to be simplified to include only five independent noise inputs in order for all of

them to be observable.

The "Compute exact range." block uses the Pythagorean theorem to compute

the exact ranges to the six GPS satellites. The clock difference error, now converted

to distance, is added to each exact range to create six pseudoranges, the measured

outputs, z, of the synthesis model.

Since the use of the Pythagorean theorem causes the problem to be non-linear,

the synthesis model must be L iearized at a given space vehicle constellation and

aircraft position. The linearization process yields a state space with 11 states, five

process noise inputs, three control inputs, and six rneisured outputs. ' - to the

complexity of this state space model, the complet • model is relegated to Appendix

A.

The designer can now determine the Kalman gain. Unlike the general case, the

process noise covariance matrix is not identity in this case. Since the clock noise

variances are so small and measurable, they must be specified. If the designer uses

unity variance instead of these miniscule values, the resulting filter will not perform

satisfactorily. The process noise covariance matrix used in this design is

100 0 0
010 0 0

R,,= 0 0 1 0 0 (4.7)
0 0 0 4x 10- 19  0

0 0 0 0 1.58 x 10-1s

For the first iteration, the sensor noise covariance, R,, is set to a 6 by 6 identity
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matrix (I E R6 ). The Kalman gain is now calculated by first solving the algebraic

Riccatti equation (Equation 4.5) and then computing the gain (Equation 4.6).

The state space of the filter is now calculated according to Equation 4.3 with

computed Kalman gain, H. The frequency response of the filter from measured

pseudorange error, Lp, to the corresponding estimated pseudoranges error, Aý, can

now be evaluated. In evaluating the bandwidth of each of the pseudorange inputs,

one must consider the relative bandwidth. Since none of the zero frequency gains

are unity, the bandwidth is three decibels less than the steady state gain. The state

space of the system whose frequency characteristics must be investigated is

X = (A-HC)i+HAp

Aýp = C(4.8)

After several iterations, the design was finalized with the following sensor noise co-

variance matrix
0.11 0 0 0 0 0

0 1.1 0 0 0 0

0 0 0.28 0 0 0 (4.9)
0 0 0 1.1 0 0
0 0 0 0 0.11 0

0 0 0 0 0 0.11

Bode plots from each sensor input to its corresponding estimate are shown in Fig-

ures 4.2 through 4.4. In all of these plots, the "dash-dot" line represents thie 3 dB less

than the DC gain. Thus, the intersection of the two lines occurs at the bandwidth.
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From the Bode plots, one can see that all sensor bandwidths are near three

radians per second, as shown in Table 4.1.

TABLE 4.1: SENSOR BANDWIDTHS FOR DGPS/INS KALMAN FIL-

TER

PI I P2 IP3 I P4 I P5 P6

3 dB bandwidth 3.101 3.15 13.00 J 3.15 13.10 13."125]

It is also worthwhile to note that, as previously mentioned. the frequency re-

spouse of the transfer function from the accelerometers to the pseudorange estimates

has negligible gain at low frequencies. A few of these are shown in Figures 4.5

through 4.7.
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Once the the frequency characteristics sought at the outset of the process are

achieved, the filter can be tested in simulation.

C. FILTER VERIFICATION

The SIMULINK representation of the simulation used to verify the filter is de-

picted in Figure 4.8. The "Linear filter" block accepts nine inputs - three com-

ponents of inertial acceleration, "a-u", and six pseudorange errors. "psrng" - and

provides estimates of three dimensional position. It is important to note that this

filter. since it is linear, must be driven with pseudorange errors, rather than pseudo-

ranges. themselves.

In order to show that this navigation system is functioning, it was simulated

both with and without the accelerometer inputs. Since in normal, steady-state,

trininted flight, the accelerometer inputs are ignored (i.c., "washed--out"), it is nec-

essarv to include some high frequency dynamics. By using a five degree elevator
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Figure 4.8: Integrated Navigation System

half-doublet (zero degree elevator from zero to ten seconds, five degree nose-down

elevator from ten to 20 seconds, an~d zero degree elevator from 20 to 30 seconds), suf-

ficiently high frequency dynamics are excited enabling testing of the complementary

Kalman filter.

Due to computer limitations, the navigation model was not be tested over a

long period of time. The computers being used to perform the simulation did not

have sufficient speed or memory to run the simulation for ten minutes of real time,

as was done in verifying the DGPS Model. This shortcoming prevented a detailed

study of the individual effects of the INS and DOPS on the position output. The

goal of this verification was to show that both sensors effect the output. This was

shown by demonstrating a difference between the position errors with and without

the accelerometer inputs. One would expect the position to be less accuraite with the

accelerometer inputs since they are so much more corrupted by the various errors.
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Both simulations were performed with the following conditions:

* Bluebird aircraft flying at sea level

* lateral controls fixed at 00

* trim thrust applied

* 50 elevator half-doublet applied

1. Verification without Accelerometers

The position estimates from the simulation without accelerometers are

fiirly accurate. This system navigates entirely by the differential GPS. The following

three plots, Figures 4.9 through 4.11, show the difference between the estimated and

actual position in each direction of the tangent plane system. The estimated position

does. in fact, track the actual position quite accurately in all three directions. This

proves that the Kalman filter is capable of effectively inverting the six pseudoranges

to provide inertial tangent plane position without the assistance of the INS.

2. Verification with Accelerometers

Having shown the performance of the system with DGPS only, one can

compare the filter's performance without accelerometers to its performance with ac-

celerometers. Figures 4.12 through 4.14 show the displacement errors in all three

directions of the inertial tangent plane system.

Once again, it is clear that the position estimate tracks the actual position.

In fact, it is quite difficult to see a great deal of difference in the plots representing

navigation with and without accelerometer inputs. However, reducing the data to

means and standard deviations for each simulation reveals differences in accuracies.

Table 4.2 summarizes the difference between the two simulations where p is the

mean and a is the standard deviation. As forecast, the accelerometer augmented
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Figure 4.9: X displacement error without accelerometers

TABLE 4.2: MEAN AND STANDARD DEVIATION OF X, Y, AND

Z ESTIMATED POSITION ERRORS WITH AND WITHOUT AC-
CELEROMETERS

Iters II X error I Y error IZ error

Hp w/o accel 0.0200 -0.4481 0.0607

a w/o accel 6.323 5.194 14.84

P with accel 1.679 0.4093 2.0084

Ha with accel 6.594 5.174 14.86

positioning data demonstrated a slightly greater standard deviation than the pure

DGPS positioning. Furthermore, it has a significant, non-zero mean error, while the

system which did not use the accelerometers did not.
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V. CONCLUSIONS

It has been shown that raw Differential GPS outputs (pseudoranges) and raw

INS outputs (inertial accelerations) can be effectively blended to yield a highly accu-

rate position using a complementary Kalman filter. Furthermore, complete models

of INS and DGPS have been developed and rigorously verified. These high fidelity

models can be "transplanted" to any other work in this area.

Despite the successes just mentioned, there yet remains a great deal of work to

do before this concept can be actually implemented on an aircraft. The additional

refinements required are

* discretize the entire system

* use an extended Kalman filter

* account for changing satellite geometries

* use carrier phase DGPS

Each of these elements will be discussed briefly.

A. DISCRETIZE

All of the modeling done in this thesis has been done in continuous time, since

it is really a proof of concept. Since computers cannot operate with zero sampling

time, this is not realistic. The entire system must be implemented in discrete time.

For the DGPS model, this fact necessitates no change. Nor does it require any change

in the INS model. Because there is no dynamics in either the DGPS or INS model,

the continuous models is identical to the discrete models.
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The dynamic model of the aircraft must also be discretized. This could be

easily accomplished by first linearizing the model around a cruise condition. This

linear model could then be easily discretized by converting the plant matrix. .4, anid

the input matrix, B2, to their discrete time counterparts. The output matrices, C"

and D do not change.

Obviously, changing to discrete time will require the complementary filter to be

implemented discretely as well. This will require the solution of thl discrete, rather

than the continuous, Riccatti equation. This equation is far less computationally

intensive and will cause still greater rewards in the next section.

B. EXTENDED KALMAN FILTER

The navigation system designed in this work proved quite accurate, but it suffers

from some unrealistic assumptions. One of these assumptions is stationary GPS

satellites. This assumption allowed the complementary Kalman filter to be designed

for a single, hypothetical case of space vehicle constellation to aircraft geometry. Since

the satellites are in 12 hour orbits, it will be critical to account for their motion in

the actual system. Therefore, an extended, complementary, Kalman filter will be

required. The extended filter differs from the regular filter in that it is redesigneod

each time step. Rather than having a fixed linear system that the filter operates on.

the system is re-linearized every time step at the estimated state. The new state

space is used in the discrete Riccatti equation to find new Kalman gains. The new

state space and Kalman gain matrix is used for only one iteration. Clearly, with the

flight times of more than 30 minutes, this extended filter will prove necessary.

C. ACCOUNT FOR CHANGING SATELLITE GEOMETRIES

A separate but significant problem resulting from the use of stationary satellites

is that the effects of altering satellite to aircraft geometry cannot be established.
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Dilution of Precision is a very troublesome aspect of CPS and must be considered

in a real world navigation system. There are several ways one could investigate the

effects of changing geometry. One way is to actually model the satellites' orbits as a

function of time. To do this accurately could prove quite cumbersome. The fact that

the space vehicles broadcast 16 different coefficients which describe their trajectories

indicates the complexity of the orbits.

Rather than develop a model of the entire constellations positions as a function,

of time, several geometries with stationary satellites can be investigated. Since the

exact paths of the satellites is of no concern, there is no benefit to determining it

exactly. One can just as easily verify that the Kalman filter is effectively accounting for

satellite geometry by merely considering several different cases of satellite orientation.

This method should provide an equally sound test of the entire scheme while greatly

simplifying the process itself.

D. CARRIER PHASE GPS

Even Differential CPS based on pseudoranges turned out to be insufficiently

accurate for autoland. If this is the best sensor available, how can this be improved?

"[he answer lies with Carrier Phase GPS. This system uses a phase difference of

arrival technique, like OMEGA, to evaluate position. Unlike OMEGA with its long

wavelengths, GPS signals have wavelengths less than a meter. In fact, static Carrier

Phase GPS positioning accuracies on the order of one centimeter have been achieved

[Ref. 2, p. 64]. While the computational demands of this may still be too great for

most computers light enough to fly, this method may be feasible in the near future.
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APPENDIX A: LINEARIZED SYNTHESIS

MODEL

This appendix includes the state space of the model derived by linearizing the

non-linear synthesis model depicted in Figure 4.1. The standard state space matrices

- A, B, C, and D are defined below.

0000 00 0000
00000000000
00000000000
00001000000
00000000000

A = 10000000000
01000000000
00100000000
O0000100 000

00000010000
00000001000

10000000
01000000
00100000
00010000

o 0 0 0 1 0 0 0000

0 00001000

B = 0 100 001 0 0 00

00000010
00000001
00000000
00000000
00000000
0 0 0 3 x 10s 0 0 0 0 0.86203 0.14603 -0.48541
0 0 0 3x100 0 0 0 0 0.53793 -0.29281 -0.79051

0 0 0 30x 0 0 0 0 0 0.15274 -0.54389 -0.98683

0 0 0 30x 0 0 0 0 0 -0.34384 -0.12182 -0.93095

0 0 0 3x 0s 0 0 0 0 -0.56140 0.44964 -0.69477
0 0 0 3 x 108 0 0 0 0 0.25146 0.57295 -0.78008
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000000000

000000000

D 0 0 0 0 0 0 0 0 0 (A.1)

000000000

000000000

Note that the fourth state is clearly the clock difference while the last three

states are obviously the position states.
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APPENDIX B: MATLAB FILES

This appendix is composed of all of the MATLAB m-files which are used by the

SIMULINK diagrams. They are in alphabetical order, since no other order suggests

itself.

AB.AU.M

function au=ab-au(x)

% this function converts the noisy "sensed" body acceleration

% to inertial coordinates and adds gravity back in

% assign local variables

ab=x(1:3) ;Eulers=x(4:6);

% transform to inertial coordinates

auhat-El 0 0;0 -1 0;0 0 -1]*ru2b(Eulers)'*ab;

%. add inertial gravity

au=(auhat-[O 0 32.174]');

ECEF2LL.M

function ll=ecef211 (w)

% converts from earth-centered, earth-fixed Cartesian coordinates

%, to latitude, longitude, altitude (geodetic)

x'v(1) ;y-v(2) ;zmv(3) ;

% define semi-major and semi-minor ellipsoid axes

a-6378137;b-6356000;

% define auxiliary parameters e and f
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ft(a-b)/a;e-f*(2-f);

% convert to geodetic latitude, longitude, height

lamnbda-atan(y/x);

phimatan(inv(l-e-2)*z/sqrt(xz2+y-2));

% calculate N

Nma/sqrt(I-(e*sin(phi))-2);

% find geodetic height h

h-sqrt (x2+y-2)/cos(phi)-N;

11= [phi; lambda;h];

ECF2TAN.M

function tanp=ecf2tan(w,phi,lambda)

% converts from earth-centered, earth fixed Cartesian coordinates

% to tangent plane

% given the latitude and longitude from the workspace

% convert tangent plane origin to radians

phi-phi ; lambda=lambda;

% transformation matrix

T=[-sin(lambda) cos(lambda) 0

-sin(phi)*cos(lambda) -sin(phi)*sin(lambda) cos(phi)

cos(phi)*cos(lambda) cos(phi)*sin(lambda) sin(phi)];

% convert to tangent plane

tanp=T* (v-ll2ecef ([phi, lambda, 0]));
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ELEMULT.M

function product elemult (x)

X multiplies 15% of tropospheric delay noise by univariant white noise

% for randomness simulation

for i-1:6

new(i)-x(i)*x(7);

end

product =new;

EXACT.M

function r = exact(x)

% this function computes the exact range to six satellites

% given receiver position and the satellite position

satpos=zeros(6,3);

%. define receiver position

recpos=x(1 :3);

%. define satellite position matrix

for j=1: 6

satpos(j, :)=x(3*j+1 :3*(j+l))';

end

%, compute ranges to each satellite

for j=1:6

ra(j)=sqrt((recpos(1)-satpos(j, 1)Y)2+(recpos(2)-..,

satpos(j,2)Y)2+(recpos(3)-satpos(j,3)Y)2);

end

r=ra;
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IODEL.M

function io-,del = iodel(time)

X computes propagation delay length for signal transmitted

X from GPS satellite due to troposphere based on time of day

if time < 900

delay=5;

elseif time > 1900

delay-5;

else

delay=5+20*sin( (time-900)*pi/1000);

end

iodel=delay;

LAMDOT1.M

function lam-dot=lamdotl(x)

% computes Euler derivatives given Euler angles and omega

phi=x(1) ;theta=x(2) ;psi=x(3) ;p=x(4);q=x(5) ;r=x(6);

lamindot= [p+q*sin (phi)*tan(theta) +r*cos (phi)*tan(theta)

q*cos (phi) -r*sin (phi)

(q*sin(phi)+r*cos (phi))/cos (theta)];

LL2ECEF.M

function ecefull2ecef (x)

% converts from geodetic latitude, longitude, elevation to

% earth-centered earth-fixed Cartesian coordinates
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phi-x(1) ;lambdaux(2);h-x(3);

% define semi-major and semi-minor earth axes

a-6378137;b=6356000;

% define auxiliary quantities fe, and N

f= (a-b)/a; e-f,(2-f) ;N=a/sqrt (1-(e~sin (phi)) -2) ;

% convert to Cartesian

ecef= [ (N+h) *cos (phi) *cos (lambda)

(N+h) *cos(phi) *sin(lambda)

(N* (1-e-2) +h)*sin (phi)] ;

LL2TANP.M

function tanp=ll2tanp(x,lat,long)

% convert from latitude, longitude, altitude to

% tangent plane coordinates given tangent plane origin

% convert to ecef

ecef=l12ecef(x);

% convert to tangent plane

tanp-ecf2tan(ecef ,lat,long);

REARRANGE.M

function new=rearrange (x)

% rearranges lambda and omega into corresponding pairs

nev=[x(4) x(1) x(5) x(2) x(6) x(3)]';
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RU2B.M

function Rub a ru2b(e)

% Euler angle transformation from WU to {B}

Tpsi-[cos(e(3)) sin(e(3)) 0; -sin(e(3)) cos(e(3)) 0; 0 0 1);

Tthetau'Ccos(e(2)) 0 -sin(e(2)); 0 1 O;sin(e(2)) 0 cos(e(2))];

Tphi-In( 0 0;0 cos~e~i)) sin(e(1));O -sin~e~i)) cos(e(1)));

Rub-Tphi*Ttheta*Tphi;

SATELEVS .M

function elevs-satelevs(x)

% this function computes the elevation angles in radians of

% all six satellites

recpos-x(1:3)' ;satpos(1, :)-x(4:6)' ;satpos (2, :)=x(7:9)';

satpos (3,:)=x(10:12) ;satpos (4,:)=x(13:15) '

satpos(5, :)-x(l' 18)' ;satpos(6, :)=x(19:21)';

for i-1:6

diff-satpos(i,:) -recpos;

% normalize difference vector to a unit vector

diff(3)=diff(3)/sqrt(diff(l)-2+diff(2)-2+diff(3)-2);

% the angle is computed

satelev(i)=asin(diff (3));

end

elevs-satelev;
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TAN2ECF.M

function ecef=tan2ecf(x,phi,lambda)

% converts from tangent plane coordinates

% to earth-centered, earth fixed Cartesian

% given the latitude and longitude of the

% origin of the tangent plane system

% convert tangent plane origin latitude and longitude to radians

phi=phi: •i/180;lambda=lambda*pi/180;

% define transformation matrix

T=[-sin(lambda) -sin(phi)*cos(lambda) cos(phi)*cos(lambda)

cos(lambda) -sin(phi)*sin(lambda) cos(phi)*sin(lambda)

0 cos(phi) sin(phi)];

% convert back to degrees for ll2ecef

phi=phi*180/pi ; lambda=lambda*180/pi;

% convert

ecef=T*x+ll2ecef ([phi, lambda, 0]);

TANP2LL.M

function ll=tanp2ll(x,lat ,long)

% converts from tangent plane to latitude, longitude,

K and altitude given tangent plane origin

% convert to ecef

ecef-tan2ecf (x, lat,long);

% convert to 11

llecef211 (ecef);
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TIMING.M

function minute-timing(x)

% computes number of hours and minutes elapsed since

% clock start to be added to take-off time for use in

% computing ionospheric delay

min-x/60;

% check to see if an hour has passed

if min > 60

hour-round (min/60);

else

hour0;

end

minuteihour* 10+min;

TROPDEL.M

function tropdel=tropdel (x)

%. used a complex model to compute the tropospheric delay for

% all six satellites in meters

% first calculate "dry" portion, 90%.

elev=x(1:6) ;temp=x(7) ;press=x(8);

ae=6378137;

hdry=148.98*(temp-4.12);

for i=1:6

idry(i) (1-(cos(elev(i))/(1+(1-0.85)*hdry/ae))-2)-(-0.5);

sdry(i)in2.343*press*((temp-4.12)/temp)*idry(i);

end
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% nov the vet contribution

hvet* 13000;

for i-1l:6

ivet(i)uC1-(cos(elev(i))/(l4(0.15)*hvet/ae)-2))Y(-0.5);

end

% total delay in meters is the sum of the two

tropdelzsdry+svet;
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APPENDIX C: USER'S MANUAL

This appendix describes in detail the steps required to open and run the software

which generated the final results in Chapter IV. A basic familiarity with MATLAB

must be assumed. Additionally, it is assumed that the user is already logged on to a

SIMULINK capable Unix work station.

Before entering the MATLAB environment, one must change the working direc-

tory to the one which contains all of the code, "thesis", in this case. The command

is

cd thesis

If the user is remotely logged on to a work station, he must set the DISPLAY en-

vironment variable appropriately in order to display graphics. The command which

sets this variable to intrepid, a Sparc 2 work station in the Avionics Lab is

setenv DISPLAY intrepid.aa.nps.navy.mil:O

Now it is time to begin the MATLAB session by typing

matlab4

Still two more tasks must be accomplished within MATLAB before the simula-

tion can be started. First, the numerous parameters which initialize the model must

be loaded from a data file with the command

load bluinit

To bring up the SIMULINK diagram, type the command

bird3
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It will take approximately 15 seconds for the simulation diagram to appear on the

screen. Once it does, double click on the icon which looks like a clock at the top of

the diagram. This will allow you to see the elapsed time as it slowly counts up in

hundredths of a second. Finally, a single click on the "Simulation" pull down menu

will reveal several choices. Choose the first of them

Start -t

This particular simulation takes several hours to run. i7. outputs "P", the ac-

tual aircraft position, "v-u", the actual aircraft velocity, "time", simulation time in

seconds, and "Phat", the estimated aircraft position to the workspace. Once the

simulation is complete, these data can be accessed like any other MATLAB data.
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