S. Ozdemir H. Cam

in Wireless Sensor Networks

IEEE/ACM Transactions on Networking, 2009

Presented by Gowun Jeong

### Outline

### Introduction

### Assumptions and Limitations

### Data Aggregation and Authentication Protocol (DAA)

Step 1: Monitoring Node Selection for an Aggregator

Step 2: Sensor Node Pairing

Step 3: Integration of Secure Data Aggregation and False

Data Detection

### Performance Analysis

### Conclusion

## Outline

### Introduction

Introduction

Step 1: Monitoring Node Selection for an Aggregator

Step 2: Sensor Node Pairing

Step 3: Integration of Secure Data Aggregation and False

## Security Vulnerability of Wireless Sensor Networks

- Security attacks
  - False Data Injection (FDI)
    - Compromised nodes (CNs) decrease data integrity.
  - Data Forgery
  - Eavesdropping

## Security Vulnerability of Wireless Sensor Networks

Security attacks

Introduction

- False Data Injection (FDI)
  - Compromised nodes (CNs) decrease data integrity.
- Data Forgery
- Eavesdropping
- Where FDI by CNs possibly occurs?
- False data transmission depletes

## Security Vulnerability of Wireless Sensor Networks

Security attacks

Introduction

- False Data Injection (FDI)
  - Compromised nodes (CNs) decrease data integrity.
- Data Forgery
- Eavesdropping
- Where FDI by CNs possibly occurs?
  - Data Aggregation (DA)
  - Data Forwarding (DF)
- False data transmission depletes

## Security attacks

Introduction

- False Data Injection (FDI)
  - Compromised nodes (CNs) decrease data integrity.
- Data Forgery
- Eavesdropping
- Where FDI by CNs possibly occurs?
  - Data Aggregation (DA)
  - Data Forwarding (DF)
- False data transmission depletes
  - the constrained battery power; and
  - the bandwidth utilisation.

- Conventional work
  - Most discussed FDD during DF.

- - A Data Aggregation and Authentication protocol
    - against up to T CNs
    - over the encrypted data
    - for FDD both by a data aggregator and by a non-aggregating

Conventional work

Introduction

Most discussed FDD during DF.

Challenge! Any data change between two communicating endpoints is considered as FDI.

- - A Data Aggregation and Authentication protocol
    - against up to T CNs
    - over the encrypted data
    - for FDD both by a data aggregator and by a non-aggregating

- Conventional work
  - Most discussed FDD during DF.

Challenge! Any data change between two communicating endpoints is considered as FDI.

- Ozdemir and Cam's approach
  - attempts to correctly determine whether any data alteration is due to DA or FDI.
  - A Data Aggregation and Authentication protocol
    - against up to T CNs
    - over the encrypted data
    - for FDD both by a data aggregator and by a non-aggregating node

- Conventional work
  - Most discussed FDD during DF.

Challenge! Any data change between two communicating endpoints is considered as FDI.

- Ozdemir and Cam's approach
  - attempts to correctly determine whether any data alteration is due to DA or FDI.
  - A Data Aggregation and Authentication protocol
    - against up to T CNs
    - over the encrypted data
    - for FDD both by a data aggregator and by a non-aggregating node

### Outline

### **Assumptions and Limitations**

Step 1: Monitoring Node Selection for an Aggregator

Step 2: Sensor Node Pairing

Step 3: Integration of Secure Data Aggregation and False



## Basic Assumptions

- Network
  - A densely deployed sensor network of certain large size
- Sensor
  - Overlapping sensing ranges
  - Role change
    - Sensor nodes rotatively assumes the role of data aggregator.
  - Limited computation and communication capabilities
- Message
  - Time-stamped
  - Nonce used to prevent reply attacks
- Intrusion ways to compromise nodes
  - Physical capturing
  - Radio communication channel attack

## **Network Topology**

- Data aggregators are chosen in such a way that
  - 1. there are at least T nodes, called **forwarding nodes**, on the path between any two consecutive data aggregators; and
  - 2. each data aggregator has at least T neighbouring nodes.



## Generation of MACs

- Only data aggregators encrypt and decrypt the aggregated data.
- The forwarding nodes first verify data integrity using MACs and then relay the data if it is not false.
  - Two Full-size MACs (FMACs), each of which consisting of T+1 subMACs, for a pair of plain and encrypted data
    - One computed by a data aggregator
    - T subMACs generated by its T monitoring nodes
  - The same Pseudo-Random Number Generator (PRNG). termed f
    - Bandom numbers between 1 and 32

## Generation of MACs

- subMAC generation of data D by neighbouring node N<sub>i</sub> of data aggregator  $A_u$  for its pairmate  $F_i$ 
  - 1. Establish the shared key  $K_{i,j}$  between  $N_i$  and  $F_i$ .
  - 2. Compute MAC(D) using  $K_{i,i}$ .
  - 3. Assuming that S denotes the size of MAC(D) in bits, selects S/(T+1) bits to form subMAC(D) using its PRNG and  $K_{i,i}$ as the seed.
- subMAC verification of D by F<sub>i</sub> for its pairmate N<sub>i</sub>
  - 1. Compute the MAC(D).
  - 2. Run its PRNG S/(T+1) times to generate subMAC(D) with  $K_{i,i}$  as the seed.
  - Compare two subMAC(D)'s.
- PRNG synchronisation achieved by packet sequence numbers

## Key Establishment

- Pairwise key establishment
  - Sybil attacks
    - A compromised node fakes multiple identities to establish pair relations with more than one monitoring nodes.
  - To prevent from Sybil attacks, a monitoring node can share a pairwise key with another node in multiple hops.
- Group key establishment
  - Group key  $K_{group}^u$  for data aggregator  $A_u$  and its neighbouring nodes is used to select the monitoring nodes and to protect data confidentiality while data transmitting.

## Limitations

- The value of T depends strictly on several factors, such as geographical area conditions, modes of deployment, and so on.
- The pairwise key establishment between non-neighbouring nodes takes more time than that between direct neighbouring nodes.
- Compromising only one legitimate group member discloses not only some or all of the past group keys but also the current group key.

### Outline

DAA

### Data Aggregation and Authentication Protocol (DAA)

Step 1: Monitoring Node Selection for an Aggregator

Step 2: Sensor Node Pairing

Step 3: Integration of Secure Data Aggregation and False

Data Detection

## Notations used in DAA

TABLE I SUMMARY OF NOTATIONS

| Notation          | Explanation                                                               |
|-------------------|---------------------------------------------------------------------------|
| $A_u$             | Current data aggregator.                                                  |
| $A_f$             | Forward data aggregator.                                                  |
| $A_b$             | Backward data aggregator.                                                 |
| BS                | Base Station.                                                             |
| $N_i$             | Neighboring node $i$ of $A_u$ or $A_f$ .                                  |
| $F_{j}$           | Forwarding node $j$ of $A_u$ .                                            |
| $M_k$             | Monitoring node $k$ of $A_u$ .                                            |
| $K_{group}^u$     | Group key of $A_{tt}$ and its neighbors.                                  |
| $K_{i,j}$         | Shared key between sensor nodes i and j.                                  |
| $E_{K_{ij}}(D)$   | Encryption of data $D$ with key $K_{ij}$ .                                |
| $MAC_{K_{ij}}(D)$ | Message Authentication Code of data $D$<br>calculated with key $K_{ij}$ . |



### Outline

### Data Aggregation and Authentication Protocol (DAA)

Step 1: Monitoring Node Selection for an Aggregator

Step 2: Sensor Node Pairing

Step 3: Integration of Secure Data Aggregation and False

# **Algorithm** MNS (Monitoring Node Selection)

Table: Choose T monitoring nodes from n neighbouring nodes of  $A_{ij}$ 

| 1.   | $A_u \Rightarrow$ all nodes   | request two random numbers with node ID                                               |
|------|-------------------------------|---------------------------------------------------------------------------------------|
| 2.   | $N_i \rightarrow A_u$         | $R_a$ and $R_b$ generated by $f(K_{u,i})$                                             |
|      |                               | $MAC_{K_{u,i}}(R_a \mid R_b)$                                                         |
| 3.   | $A_u \Rightarrow$ all nodes   | $\{N_1,\ldots,N_n\}$ in the receiving order                                           |
|      |                               | $\{R_1,\ldots,R_{2n}\}$ labeled in an ascending order                                 |
|      |                               | $\mid MAC_{K^u_{group}}(R_1 \mid \cdots \mid R_{2n}) \mid$                            |
| 4-1. | $N_i \rightarrow A_u$         | $(\text{verified})E_{K_{u,i}}(\text{MAC}_{K_{group}^u}(R_1 \mid \cdots \mid R_{2n}))$ |
| 4-2. | $N_i \rightarrow A_u, N_j$ 's | (unverified)restart from 1.                                                           |
| 5.   | N <sub>i</sub>                | for $1 \le k \le T$ , compute                                                         |
|      |                               | $I_k = \overline{\left(\sum_{j=k}^{n-1+k} R_j + K_{group}^u\right)} \mod(n) + 1$      |
|      |                               | to determine $T$ monitoring node ID's of $A_u$                                        |



### Outline

### Data Aggregation and Authentication Protocol (DAA)

Step 1: Monitoring Node Selection for an Aggregator

Step 2: Sensor Node Pairing

Step 3: Integration of Secure Data Aggregation and False

# Three Types of Node Pairs

DAA

- 2T + 1 node pairs are formed.
   AA-type pair One pair between A<sub>u</sub> and A<sub>f</sub> MF-type pair T pairs between M<sub>k</sub> of A<sub>u</sub> and F<sub>j</sub> towards A<sub>f</sub> MN-type pair T pairs between M<sub>k</sub> of A<sub>u</sub> and N<sub>i</sub> of A<sub>f</sub>
- T M<sub>k</sub>'s selected in Step 1 distinctly choose their own pairmates to form MF-type and MN-type pairs.



## Pairmate Selection

| 1. | $A_f \rightarrow F_j \rightarrow A_u$ | pairmate discovery message                                             |
|----|---------------------------------------|------------------------------------------------------------------------|
|    | -                                     | $N_i$ 's of $A_f$                                                      |
|    |                                       | $MAC_{K_{f,u}}(N_i$ 's)                                                |
|    |                                       | $F_j$ 's IDs for $1 \le j \le h$                                       |
| 2. | $A_u \Rightarrow T M_k$ 's            | $MAC_{K_{\mathit{aroup}}^u}(F_1 \mid \cdots \mid F_h)$ for new, random |
|    |                                       | forwarding node labeling                                               |
|    |                                       | $MAC_{\mathcal{K}^u_{group}}(\mathcal{N}_i$ 's)s                       |
| 3. | $M_k \rightarrow A_u$                 | one forwarding node                                                    |
|    |                                       | one neighbouring node                                                  |
| 4. | $A_u \Rightarrow T M_k$ 's            | two pairmate lists of size T                                           |
| 5. | $M_k$                                 | pairmate verification                                                  |

## Outline

DAA

•000000000

### Data Aggregation and Authentication Protocol (DAA)

Step 1: Monitoring Node Selection for an Aggregator

Step 2: Sensor Node Pairing

Step 3: Integration of Secure Data Aggregation and False **Data Detection** 

# Data Confidentiality

DAA

000000000

- One pairmate computes a subMAC, and the other pairmate verifies the subMAC.
- subMACs for plain data are used for FDD during DA.
- subMACs for encrypted data are used for FDD during DF.
- Each data aggregator forms two FMACs as the following figure.



- A<sub>u</sub> determines the order of subMACs and informs each forwarding node about its subMAC location individually.
  - probability of FDI at a forwarding node =  $(1/2)^{32}$





















### Outline

Step 1: Monitoring Node Selection for an Aggregator

Step 2: Sensor Node Pairing

Step 3: Integration of Secure Data Aggregation and False

### Performance Analysis

# Security Analysis of Algorithm SDFC

### Lemma 1

Assuming that  $A_{\mu}$  is compromised and there are additional at most T-1 collaborating compromised nodes among the neighbouring nodes of  $A_{ij}$  and  $A_{f}$ , any false data injected by  $A_{ij}$ are detected by the  $A_f$ 's neighbouring nodes only in SDFC.

 Data verification by the monitoring nodes of A<sub>II</sub> and the neighbouring nodes of A<sub>f</sub>

### Lemma 2

Assuming that  $A_u$  and  $A_f$  are not compromised, any false data injected by any subset of  $A_{ii}$ 's forwarding nodes are detected by A<sub>f</sub> in SDFC.

Data verification by A<sub>f</sub>

# Security Analysis of FMAC and subMAC

- Changing the size of MAC
  - Security Level vs. Communication Overhead
- Probability of FDI at a node =  $(1/2)^{32}$  for 4-byte FMACs
  - Probability of FDI into a subMAC =  $(1/2)^{32/(T+1)}$
  - The size of FMAC = T + 1

# Security Analysis of FMAC and subMAC

- Changing the size of MAC
  - Security Level vs. Communication Overhead
- Probability of FDI at a node =  $(1/2)^{32}$  for 4-byte FMACs
  - Probability of FDI into a subMAC =  $(1/2)^{32/(T+1)}$
  - The size of FMAC = T + 1

# Computational Cost of Algorithm SDFC

| Computation | Traditional Work | SDFC                        |
|-------------|------------------|-----------------------------|
| MAC         | 1                | 4( <i>T</i> + 1)            |
|             |                  | = (T + 1) subMACs           |
|             |                  | imes 2 FMACs $	imes$ a pair |
| Aggregation | 1                | T + 1                       |
|             |                  | = 1 by aggregator           |
|             |                  | + T by monitors             |
| Encryption/ | 1                | T + 2                       |
| Decryption  |                  | = 1 encryption by $A_u$     |
|             |                  | + T decryptions by monitors |
|             |                  | $+$ 1 decryption by $A_f$   |

- Only the first MAC computation consumes much resource.
- Data transmission requires much more energy than data computing in wireless sensor networks.

| $D_{ADD}$             | the amount (in bytes) of data transmission using ADD of two FMACs                |
|-----------------------|----------------------------------------------------------------------------------|
| D <sub>tradAuth</sub> | the amount (in bytes) of data transmission using the traditional scheme of a MAC |
| L <sub>tos</sub>      | the length (in bytes) of an authenticated and encrypted data packet              |
| α                     | the number of data packets generated by legitimate nodes                         |
| β                     | the number of false data packets injected by up to $T$ compromised nodes         |
| $H_d$                 | the average number of hops between two consecutive data aggregators              |
| Н                     | the average number of hops that a data packet travels in the network             |

$$D_{ADD} = (L_{tos} + 4)(\alpha H + \beta H_d) + T(L_{tos} + 4)(\alpha + \beta) + \frac{4T}{T+1}(\alpha + \beta)$$

$$D_{tradAuth} = L_{tos}H(\alpha + \beta)$$

- data transmission by a data aggregator
- data transmission by T monitors
- subMACs transmission by T monitors

| $D_{ADD}$             | the amount (in bytes) of data transmission using ADD of two FMACs                |
|-----------------------|----------------------------------------------------------------------------------|
| D <sub>tradAuth</sub> | the amount (in bytes) of data transmission using the traditional scheme of a MAC |
| L <sub>tos</sub>      | the length (in bytes) of an authenticated and encrypted data packet              |
| $\alpha$              | the number of data packets generated by legitimate nodes                         |
| β                     | the number of false data packets injected by up to T compromised nodes           |
| $H_d$                 | the average number of hops between two consecutive data aggregators              |
| Н                     | the average number of hops that a data packet travels in the network             |

$$D_{ADD} = (L_{tos} + 4)(\alpha H + \beta H_d) + T(L_{tos} + 4)(\alpha + \beta) + \frac{4T}{T+1}(\alpha + \beta)$$

$$D_{tradAuth} = L_{tos}H(\alpha + \beta)$$

- · data transmission by a data aggregator
- data transmission by T monitors
- subMACs transmission by T monitors

| $D_{ADD}$             | the amount (in bytes) of data transmission using ADD of two FMACs                |
|-----------------------|----------------------------------------------------------------------------------|
| D <sub>tradAuth</sub> | the amount (in bytes) of data transmission using the traditional scheme of a MAC |
| L <sub>tos</sub>      | the length (in bytes) of an authenticated and encrypted data packet              |
| α                     | the number of data packets generated by legitimate nodes                         |
| β                     | the number of false data packets injected by up to $T$ compromised nodes         |
| $H_d$                 | the average number of hops between two consecutive data aggregators              |
| Н                     | the average number of hops that a data packet travels in the network             |

$$D_{ADD} = (L_{tos} + 4)(\alpha H + \beta H_d) + T(L_{tos} + 4)(\alpha + \beta) + \frac{4T}{T+1}(\alpha + \beta)$$

$$D_{tradAuth} = L_{tos}H(\alpha + \beta)$$

- data transmission by a data aggregator
- data transmission by T monitors
- subMACs transmission by T monitors

| $D_{ADD}$             | the amount (in bytes) of data transmission using ADD of two FMACs                |
|-----------------------|----------------------------------------------------------------------------------|
| D <sub>tradAuth</sub> | the amount (in bytes) of data transmission using the traditional scheme of a MAC |
| L <sub>tos</sub>      | the length (in bytes) of an authenticated and encrypted data packet              |
| α                     | the number of data packets generated by legitimate nodes                         |
| β                     | the number of false data packets injected by up to $T$ compromised nodes         |
| $H_d$                 | the average number of hops between two consecutive data aggregators              |
| Н                     | the average number of hops that a data packet travels in the network             |

$$D_{ADD} = (L_{tos} + 4)(\alpha H + \beta H_d) + T(L_{tos} + 4)(\alpha + \beta) + \frac{4T}{T+1}(\alpha + \beta)$$

$$D_{tradAuth} = L_{tos}H(\alpha + \beta)$$

- data transmission by a data aggregator
- data transmission by T monitors
- subMACs transmission by T monitors

# **Cost Comparison**

•  $L_{tos} = 41, H = 50, H_d \le 12 \text{ and } \beta/\alpha \ge 0.2$ 



- Comparing (a) and (b), D<sub>ADD</sub> more mildly increases than D<sub>tradAuth</sub>.
- (c) shows that the value of *T* trades off between security and computation overhead in the network.
- (c) also illustrates the impact of data aggregation.

## Outline

Step 1: Monitoring Node Selection for an Aggregator

Step 2: Sensor Node Pairing

Step 3: Integration of Secure Data Aggregation and False

### Conclusion



### Contributions and Future Work

- Contributions
  - False data detection during data aggregation
  - Integration of data confidentiality and false data detection
  - Less communication overhead (by fixing the size of each FMAC)
- Future work
  - Security and efficiency improvement in networks where every sensor enables data forwarding and aggregation at the same time