
 Open access Book Chapter DOI:10.1007/978-3-540-79707-4_7

Integration of formal analysis into a model-based software development process
— Source link

Michael W. Whalen, Darren Cofer, Steven P. Miller, Bruce H. Krogh ...+1 more authors

Institutions: Rockwell Collins, Carnegie Mellon University, Lockheed Martin Aeronautics

Published on: 01 Jul 2007 - Formal Methods for Industrial Critical Systems

Topics: Avionics software, Life-critical system, Formal methods, Software development process and
Software verification and validation

Related papers:

 Proving the shalls: Early validation of requirements through formal methods

 Tool for Translating Simulink Models into Input Language of a Model Checker

 NuSMV 2: An OpenSource Tool for Symbolic Model Checking

 Software model checking takes off

 The synchronous data flow programming language LUSTRE

Share this paper:

View more about this paper here: https://typeset.io/papers/integration-of-formal-analysis-into-a-model-based-software-
3mnhetgv9r

https://typeset.io/
https://www.doi.org/10.1007/978-3-540-79707-4_7
https://typeset.io/papers/integration-of-formal-analysis-into-a-model-based-software-3mnhetgv9r
https://typeset.io/authors/michael-w-whalen-2uvanqx63l
https://typeset.io/authors/darren-cofer-1yixscs9hl
https://typeset.io/authors/steven-p-miller-4zbq77sd6b
https://typeset.io/authors/bruce-h-krogh-54d1hti6mz
https://typeset.io/institutions/rockwell-collins-j7xu8d6f
https://typeset.io/institutions/carnegie-mellon-university-2nn2m0cz
https://typeset.io/institutions/lockheed-martin-aeronautics-1tp6aroe
https://typeset.io/conferences/formal-methods-for-industrial-critical-systems-3cb0t42w
https://typeset.io/topics/avionics-software-1o75sm06
https://typeset.io/topics/life-critical-system-215lk7ah
https://typeset.io/topics/formal-methods-7wam6ooj
https://typeset.io/topics/software-development-process-1k7yl64t
https://typeset.io/topics/software-verification-and-validation-2i06f0pp
https://typeset.io/papers/proving-the-shalls-early-validation-of-requirements-through-2v2agvfb7k
https://typeset.io/papers/tool-for-translating-simulink-models-into-input-language-of-2zimp4yjze
https://typeset.io/papers/nusmv-2-an-opensource-tool-for-symbolic-model-checking-x3p8fo9h4k
https://typeset.io/papers/software-model-checking-takes-off-312ptaekwn
https://typeset.io/papers/the-synchronous-data-flow-programming-language-lustre-2j8zn4zee2
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/integration-of-formal-analysis-into-a-model-based-software-3mnhetgv9r
https://twitter.com/intent/tweet?text=Integration%20of%20formal%20analysis%20into%20a%20model-based%20software%20development%20process&url=https://typeset.io/papers/integration-of-formal-analysis-into-a-model-based-software-3mnhetgv9r
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/integration-of-formal-analysis-into-a-model-based-software-3mnhetgv9r
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/integration-of-formal-analysis-into-a-model-based-software-3mnhetgv9r
https://typeset.io/papers/integration-of-formal-analysis-into-a-model-based-software-3mnhetgv9r

Integration of Formal Analysis into a Model-Based

Software Development Process

Michael Whalen1, Darren Cofer1, Steven Miller1, Bruce H. Krogh2,

Walter Storm3

1 Rockwell Collins Inc., Advanced Technology Center

400 Collins Rd, Cedar Rapids, IA 52498
2 Carnegie Mellon University, Dept. of Electical & Computer Engineering

5000 Forbes Ave., Pittsburgh, PA 15123
3 Lockheed Martin Aeronautics Company, Flight Control Advanced Development

P. O. Box 748, Ft. Worth, TX 76101

{mwwhalen, ddcofer, spmiller}@rockwellcollins.com, krogh@ece.cmu.edu,

walter.a.storm@lmco.com

Abstract. The next generation of military aerospace systems will include

advanced control systems whose size and complexity will challenge current

verification and validation approaches. The recent adoption by the aerospace

industry of model-based development tools such as Simulink® and SCADE

Suite™ is removing barriers to the use of formal methods for the verification of

critical avionics software. Formal methods use mathematics to prove that

software design models meet their requirements, and so can greatly increase

confidence in the safety and correctness of software. Recent advances in formal

analysis tools have made it practical to formally verify important properties of

these models to ensure that design defects are identified and corrected early in

the lifecycle. This paper describes how formal analysis tools can be inserted

into a model-based development process to decrease costs and increase quality

of critical avionics software.

Keywords: Model checking, Model-based development, Flight control,

software verification

1 Introduction

Emerging military aerospace system operational goals will require advanced safety-

critical control systems with more demanding requirements and novel system

architectures, software algorithms, and hardware implementations. These emerging

control systems will significantly challenge current verification tools, methods, and

processes. Ultimately, transition of advanced control systems to operational military

systems will be possible only when there are affordable V&V strategies that reduce

costs and compress schedules. The AFRL VVIACS program documented these

challenges in detail [1].

Current software validation and verification for critical systems centers on testing

of English-language requirements. While testing is currently the only way to examine

the behavior of a system in its final operational environment, it is incomplete and

resource intensive. The incompleteness of testing is due to the extremely large state

space of even small control systems.

To illustrate, the number of possible states of a program with ten 32-bit integers is

1096, which exceeds the number of atoms in the universe (around 1080). To

exhaustively test such systems is clearly impractical. Extremely large numbers of

tests must be run to gain confidence in the correctness of programs, and these test

suites are still insufficient to determine whether or not a system meets its

requirements.

Further complicating the issue is that the requirements for the system are usually

specified in English. It is often the case that these requirements are ambiguous,

incomplete, and inconsistent, meaning that developers may legitimately disagree as to

whether the system meets its requirements, or even that it is not possible to implement

a program that meets all of the requirements.

While the benefits of formal methods have been understood for over twenty years,

their use has been hampered by the lack of specification languages acceptable to

practicing engineers and the level of expertise required to effectively use formal

verification tools such as theorem provers. Over the last few years these hurdles have

been greatly reduced by two trends: 1) the growing adoption of model-based

development for safety-critical systems; and 2) the development of powerful

verification tools that are easier for practicing engineers to use. The result will be a

revolution in how safety-critical software is developed.

Lockheed Martin, Rockwell Collins, and Carnegie Mellon University are working

together under AFRL’s Certification Technologies for Advanced Flight Critical

Systems (CerTA FCS) program. Our team is tasked with determining the

applicability of formal methods to avionics verification concerns for next-generation

control systems. Rockwell Collins has built a set of tools that translate Simulink

models into the languages of several formal analysis tools, allowing “push button”

analysis of Simulink models using model checkers and theorem provers. The project

is split into two phases which analyze finite and infinite state models, respectively.

This paper describes the process used and the results obtained in the first phase of

the project, in which we successfully and cost-effectively analyzed large finite-state

subsystems within a prototype UAV controller modeled in Simulink. During the

analysis, over 60 formal properties were verified and 10 model errors and 2

requirements errors were found in relatively mature models. These results are similar

to previous applications of this technology on large avionics models at Rockwell

Collins [2][3][10].

To use formal methods most effectively, some changes must be made to the

traditional development cycle, and formal analysis should be considered when

creating requirements and designing models. This paper focuses on processes and

techniques for using formal methods effectively within the design cycle for critical

avionics applications.

2 Formal Methods in a Model-Based Development Process

Model-Based Development (MBD) refers to the use of domain-specific modeling

notations such as Simulink or SCADE that can be analyzed for desired behavior

before a digital system is built. The use of such modeling languages allows a system

engineer to create a model of the desired system early in the lifecycle that can be

executed on the desktop, analyzed for desired behaviors, and then used to

automatically generate code and test cases. Also known as correct-by-construction

development, the emphasis in model-based development is to focus the engineering

effort on the early lifecycle activities of modeling, simulation, and analysis, and to

automate the late life-cycle activities of coding and testing. This reduces development

costs by finding defects early in the lifecycle, avoiding rework that is necessary when

errors are discovered during integration testing, and by automating coding and the

creation of test cases. In this way, model-based development significantly reduces

costs while also improving quality.

Formal methods may be applied in a MBD process to prevent and eliminate

requirements, design and code errors, and should be viewed as complementary to

testing. While testing shows that functional requirements are satisfied for specific

input sequences and detects some errors, formal methods can be used to increase

confidence that a system will always comply with particular requirements when

specific conditions hold. Informally we can say that testing shows that the software

does work for certain test cases and formal, analytical methods show that it should

work for all cases. It follows that some verification objectives may be better met by

formal, analytical means and others might be better met by testing.

Although formal methods have significant technical advantages over testing for

software verification, their use has been limited in industry. The additional cost and

effort of creating and reasoning about formal models in a traditional development

process has been a significant barrier. Manually creating models solely for the

purpose of formal analysis is labor intensive, requires significant knowledge of formal

methods notations, and requires that models and code be kept tightly synchronized to

justify the results of the analysis.

The value proposition for formal methods changes dramatically with the

introduction of MBD and the use of completely automated analysis tools. Many of

the notations in MBD have straightforward formal semantics. This means that it is

possible to use models written in these languages as the basis for formal analysis,

removing the incremental cost for constructing verification models. Also, model

checkers are now sufficiently powerful to allow “push-button” analysis of interesting

properties over large models, removing the manual analysis cost. If a property is

violated, the model checker generates a counterexample, which is simply a test case

that shows a scenario that violates the property. The counterexamples generated by

model checkers are often better for localizing and correcting failures than discovering

failures from testing and simulation because they tend to be very short (under 10 input

steps) and tailored towards the specific requirement in question.

The Rockwell Collins translation framework is illustrated in Figure 1. Under a five

year project sponsored in part by the NASA Langley Research Center, Rockwell

Collins developed highly optimizing translators from MATLAB Simulink and

SCADE Suite™ models to a variety of implicit state model checkers and theorem

provers. These automated tools allow us to quickly and easily generate models for

verification directly from the design models produced by the MBD process. The

counterexamples generated by model checking tools can be translated back to the

MBD environment for simulation. This tool infrastructure provides the means for

integration of formal methods directly and efficiently into the MBD process.

Design

Verifier

SCADE

Lustre

NuSMV

PVS

Safe State

Machines

SAL

ICS

Symbolic

Model Checker

Bounded

Model Checker

Infinite

Model Checker

Simulink

StateFlow

React is

ACL2

Prover

Rockw ell Collins

translat ion framew ork

Translat ion paths

provided by others

Fig. 1. Rockwell Collins model translation framework.

There are at least two different ways that model checking can be integrated into a

MBD process. First, it can be performed as part of the traditional verification process

in a traditional waterfall model in addition to testing. This was the approach used in

the first phase of the CerTA FCS project. In this approach, the model checker simply

provides a significantly more rigorous verification step to ensure that the model works

as intended. However, if this step is performed late in the development cycle, much

of the benefit of early detection and quick removal of defects is lost.

A better approach for integrating model checking technology is to include formal

analysis as an extension of a spiral development process. In an MBD process, it is

common during the model design phase to use simulation as a “sanity check” to make

sure that the model is performing as intended with respect to some system

requirements of interest. When performed at the subsystem level, model checking

allows a much more rigorous analysis based directly on the requirements of the

system. If the subsystem requirements have been captured as “shall” statements, it is

usually the case that these statements can be easily re-written as formal properties.

Although model checking is a rigorous application of formal methods, for many kinds

of models it does not require a significant amount of manual effort.

The spiral approach was used in a previous effort during the model development

process for a complex cockpit displays application [2]. After each modification of the

design, Simulink models were re-analyzed against a large set of requirements in a

matter of minutes. By the end of the project, the model had been proven correct

against all of their requirements (573 formal properties) and 98 errors had been

corrected.

The guidance in this paper focuses on the use of implicit state model checkers,

because this is the most mature of the “push-button” analysis tools, and these tools

were the focus of Phase I of the CerTA FCS project. In order to reap the maximum

benefit of formal analysis, models must be designed for analysis, much as they are

designed for autocode or test case generation in current processes. The rest of this

section provides guidelines for determining whether implicit state model checking is

an appropriate technique for the model being constructed, and for using model

checking successfully within the development process.

Implicit state model checkers are designed to analyze models with discrete

variables that have relatively small domains: Boolean and enumerated types, or

relatively small subranges of integers. The performance of the tools is primarily

determined by four things: 1) the number of inputs to the model, 2) the number of

latches (delays) in the model, 3) the size of each variable (number of bits), and 4) the

complexity of the assignment equations for the variables. Implicit state model

checkers do not have the ability to analyze models with real or floating point

variables.

There are four primary questions in determining the applicability of implicit state

model checkers in an MBD process.

• Does tool support exist (or can it be created) to automatically translate the MBD

notation to the notation of the analysis tool? A handful of tools have model

checking support built into the tool (e.g., Esterel Technologies SCADE, i-Logix

StateMate), and several more academic and commercial projects support

translation into analysis tools from Simulink and Stateflow.

• If the model contains large-domain integers or floating point numbers, can these be

abstracted or restructured away from the “core” of the model? Implicit state model

checkers cannot reason about floating point numbers, and do not scale well with

large-domain integers. However, it is often the case that there is a complex mode

logic “core” that can be analyzed separately via model checking, while the

surrounding code that manages the floating point or large-domain integers can be

analyzed using other means.

• Can the model be partitioned into subsystems that have intrinsically interesting

properties and that are of reasonable size? Model checking has been shown to be

very effective at verification and validation of large software models in a model-

development process. However, there are scalability limits for implicit state tools

that limit the size of models that can be analyzed effectively. In Section 5, we

describe strategies for structuring requirements such that requirements over the

entire model are entailed by simpler obligations over subsystems within the model.

• Can the requirements be formalized? Traditional English requirements documents

are often well-suited to formalization [3], so this may not be a significant a barrier

to use. Also, designers tend to have an intuitive notion of the expected behavior of

a subsystem, and when formalized, these properties can form excellent

documentation about the behavior of a model.

If the answers to each of these questions is ‘yes’, then implicit state model checking is

an efficient and low-cost approach for analyzing the behavior of models.

3 Changes to the Verification Process

In our experience, the introduction of model checking changes the nature of the

verification process. Instead of focusing on the creation of test vectors, the focus is

on the creation of properties and environmental assumptions. The properties are

translations of natural language requirements into a formal notation, and the

environmental assumptions are constraints on the inputs of the model that describe the

intended operating environment for the model.

Figure 2 illustrates the difference between a test-based process and analysis-based

verfication. In a test-based verification process, test cases must be developed for each

requirement. Each test case defines a combination of input values (a test vector) or a

sequence of inputs (a test sequence) that specifies the operating condition(s) under

which the requirement must hold. The test case must also define the output to be

produced by the system under test in response to the input test sequence.

Requirement
Requirement

Test

Sequence

Test

Sequence
Required

Output

Required

Output

Requirement
Requirement

Environmental

Assumptions

Or Constraints

Environmental

Assumptions

Or Constraints

Properties

over all

Reachable

States

Properties

over all

Reachable

States

Requirement
Requirement

Requirement
Requirement

Requirements
Requirements

Fig. 2. Test-based verification (left) vs. Analysis-based verification (right).

An analysis-based verification process may be thought of in the same way. We

normally consider a group of requirements, with related functionality for a particular

subsystem. The environmental assumptions or constraints specify the operating

conditions under which the requirements must hold. The properties define subsystem

behaviors (values of outputs or state variables) that must hold for all system states

reachable under the specified environmental assumptions.

The essential difference is one of precision: model checking requires the

specification of exactly what is meant by specific requirements and determines all

possible violations of those requirements at the subsystem level. This precision can

be challenging, because an engineer is no longer allowed to rely on an intuitive

understanding to create test vectors. Also, in some cases, the notation used for

properties (such as CTL and LTL [4]) can be confusing, though there are a variety of

notations (including the MBD languages themselves!) that can be used to mitigate this

difficulty. Also, precise is not the same as correct. If a property is incorrectly

written, then obviously a formal analysis tool may be unable to uncover incorrect

behavior within a model. Therefore, it is very important that properties are carefully

written and reviewed to ensure that they match the intuitive understanding of the

requirement.

The fact that a model checker generates a counterexample from the set of all

possible violations of a property often leads to ‘nonsensical’ counterexamples in

which the model inputs change in ways that would be impossible in the real

environment. In order to remove these counterexamples that will not occur in the real

system, it is sometimes necessary to describe environmental constraints that describe

how the inputs to the model are allowed to evolve. On the bright side, these

constraints serve as a precise description of the environmental assumptions required

by the component to meet its requirements.

We next describe specific changes to the verification process to facilitate the use of

model checking tools.

Creating Formalizable Requirements

There are many different notations and tools used for capturing requirements in the

avionics domain. These notations include traditional structured English “shall”

statements, use cases, SCR specifications [5], CoRE documents [6], and others. Most

avionics systems still use “shall” statements as the basis of their requirements. In our

experience, shall statements are actually a good starting place for creating formalized

requirements. Their prevalence indicates they are a natural and intuitive way for

designers to put their first thoughts on paper.

The problem with shall statements has been that inconsistencies, incompleteness,

and ambiguities are not found until the later phases of the project. The process of

formalizing the requirements into properties helps remove the problem of ambiguity.

When formalizing a property, by necessity, one must write an unambiguous

statement. The issue then becomes whether the formalization matches the intention of

the original English requirement.

Inconsistencies can be detected in several ways. First, if all requirements are

formalized, then it is not possible to simultaneously prove all properties over a model

if the set of properties are inconsistent. With additional translation support, it is also

possible to query a model checker to determine whether any model can satisfy all of

the properties simultaneously. There are also current research projects to define

metrics for requirements completeness over a given formal model using model

checking tools [7], but this research is not yet usable on an industrial scale.

Testable requirements are also analyzable, so this is a good starting point for

determining whether requirements are suitable for analysis. On the other hand, there

are classes of requirements that are not testable but are, in fact, analyzable. For

example, requirements such as:

• the system shall never allow behavior x,

• given y, the system shall always eventually do z

can be analyzed formally, but are not suitable for testing as they require an unbounded

number of test cases.

Other system requirement techniques such as use cases are also possible sources of

properties. While more structured than shall statements, as practiced today use cases

normally lack a precise formal semantics and suffer from the same problems of

inconsistency, incompleteness, and ambiguity as shall statements. While not part of

this experiment, it seems reasonable that it should be possible to express use cases as

a sequence of properties describing how the system responds to its stimuli, and to

verify these sequences through simulation and formal analysis. In this way, the

consistency and completeness of use cases could be improved in the same manner as

was done for shall statements.

Creating Environmental Assumptions

One significant change when moving from a testing-based verification process to a

formal process is that much more attention must be focused on environmental

assumptions for the system being analyzed. Often, there are a significant number of

environmental assumptions that are built into the design of the control software that

cause it to fail when those assumptions are violated, and these assumptions are often

not well documented. In testing, it is usually the case that the tester has an intuitive

understanding of the system under test and is unlikely to create test scenarios where

the plane is “flying upside-down and backwards”. The model checker, on the other

hand, will often find requirements violations that occur under such scenarios if

environmental constraints that rule out impossible conditions are not stated explicitly.

It is often not possible to verify interesting safety properties on a large model in a

completely unconstrained environment. As part of the analysis process, we examine

the environmental assumptions in the requirements document to create constraints on

the possible values of inputs into the system. Each of the model checking tools that

we have examined supports invariants that allow engineers to specify constraints on

the behavior of the environment. Here, “environment” means any inputs or

parameters that can affect the behavior of the model being verified, and invariants are

restrictions on these environmental variables. These invariants should be as simple as

possible so as to not impact unduly the efficiency of the verification algorithm, but

they must be sufficiently complex to assure that the specification is being evaluated

for the relevant conditions. For example, for specifications for a controller model that

are related to the closed-loop behavior of the system, the appropriate invariant may

require the creation of a “plant model” representing a reactive environment that

responds dynamically to the controller outputs.

Although invariants are necessary to prove “interesting” properties over

subsystems, they are also dangerous to the soundness and applicability of the analysis.

If conflicting invariants are specified, then there are no states that satisfy the

invariants, so all properties are trivially true. Similarly, if invariants restrict the set of

allowed inputs so that it is a subset of the possible inputs to the real system, then our

analysis will be incomplete. Finally, just because constraints are specified in the

requirements document does not mean that the environment, which can include other

subsystems, will actually obey these constraints.

Therefore, although we formalize the invariants in this step we do not use them in

our initial model checking analysis. If the initial subsystem analyses return

counterexamples, we analyze the counterexamples to see whether they are due to

violations of our invariants or due to incorrect behavior within the model. Even if

counterexamples are due to invariant violations, we prefer to strengthen the model

behavior, when possible, to deal with abnormal environments rather than use system

invariants. If it is determined that there is no good way to handle abnormal

environments within the model, then we finally begin to use the invariants derived

from the environmental assumptions.

It is worth noting that such environmental assumptions were precisely the cause of

the Arianne V disaster [8], when an assumption about the lateral velocity of the rocket

shortly after liftoff was violated when the control software was reused from the

Arianne IV, causing it to fail catastrophically. By requiring developers to make their

assumptions about the operating environment explicit and precise, a formal analysis

process can help to eliminate this type of error.

Interpreting Counterexamples

One of the benefits of using a model checker in the verification process is the

generation of counterexamples that illustrate how a property has been violated.

However, for large systems it can be difficult and time consuming to determine the

root cause of the violation by examining only the model checker output. Instead, the

simulation capabilities of the MBD tools should be utilized to allow playback of a

counterexample.

Both Simulink and SCADE have sophisticated simulation capabilities that allow

single-step playback of tests and easy “drill down/drill up” through the structure of

the model. These capabilities can be used to quickly localize the cause of failure for a

counterexample. Third-party tools such as Reactis [11] for Simulink also allow a

“step back” function so that it is possible to rewind and step through a sequence of

steps within a counterexample, adding to the explanatory power of the tool.

When a counterexample is discovered, it is classified by its underlying cause and

appropriate corrective action taken. The cause may be one or more of the following:

• Modeling error

• Property formalization error

• Incorrect/missing invariants for the subsystem

• High-Level requirements error

4 Changes to the Modeling Process

Flight control models, such as the Lockheed Martin operational flight program (OFP)

model analyzed in our CerTA FCS project, are too large to be efficiently analyzed by

current model checkers. There are several development practices that should be

adopted within a MBD process to create models that are suitable for analysis. These

practices will yield models that will be simpler to analyze.

Partitioning the System

The first step in analyzing the model is to divide the requirements and model into

subsystems that can be automatically analyzed. Analysis partitions are created by

splitting the original model into different subsystems and assigning a set of system

requirements that will be analyzed on the subsystem (Figure 3). After the subsystems

have been created, each subsystem is separately analyzed. The result of the analysis

process may require changes to the subsystem under analysis, to another subsystem,

or to the system-level requirements or environmental assumptions.

Subsystem LevelSystem Level

System

Requirements

System
Requirements

System
Simulink

Model

System
Simulink

Model

Group

Related
Requirements

System

Environmental
Assumptions

System
Environmental

Assumptions

Create

Analysis
Models

Related
System

Reqs

Related
System

Reqs

Subsystem
Simulink

Models

Subsystem

Simulink
Models

Formalize
Reqs

Subsystem

Properties

Subsystem
Properties

Determine
Subsystem

Environmental
Assumptions

Subsystem
Assumptions
(Invariants)

Subsystem
Assumptions
(Invariants)

Fig. 3. Process for creating analysis partitions.

There are several steps necessary to create the analysis partitions.

Group Related Requirements. To create analysis partitions, we first try to group

system requirements into sets that can be checked against a portion of the system

Simulink model. In our experience with the WM and the FCS 5000 [3], it is usually

the case that the properties naturally partition into sets that are functionally related to

one another, and that the truth or falsehood of these property sets can be determined

by examining a relatively small portion of the entire Simulink model.

Create Analysis Models. After grouping the properties, we split the system model

into reasonably-sized analysis models that are sufficient to check one or more of the

requirements groups. We would like to make each subsystem small enough that it is

quick to analyze using our BDD-based model checking tools.

Formalizing Requirements. The next step in analyzing the model involves

formalizing the functional and safety requirements as properties. For a synchronous

system where the requirements are specified as “shall” statements over system inputs

and outputs, this process is often straightforward. In [2], [3], and [10], we described

the process of translating these informal statements into safety properties in more

detail.

The system requirements document is not the only source of properties to be

analyzed. Properties also emerge from discussions with developers about the

functionality of different subsystems, or even from a careful review of a particular

implementation detail of the Simulink model. In some cases, these properties can be

thought of as validity checks for particular implementation choices, but on occasion

they lead to additions to the system requirements document.

Using Libraries

The construction of analysis partitions can be simplified by splitting the original

model into libraries. Both Simulink and SCADE support packaging of subsystems

into libraries, which are really just additional “source” files for the model. Just as it

makes sense to construct a large C program using several source files (for various

reasons, including version control), it makes sense to construct models using library

files.

If a Simulink or SCADE model is created from a set of libraries, it is possible to

generate the analysis models with very little effort. A benefit of this approach is that

the subsystems within the libraries can evolve without requiring changes to the

analysis models, as long as the subsystem interfaces remain stable. Therefore, once

the analysis models are created, they can be used for regression testing without any

additional effort.

Using Supported Blocks

Most MBD environments were originally constructed for the purpose of modeling and

simulation, or for autogeneration of source code, and not for design analysis. It is

usually necessary to restrict the use of certain constructs within a MBD language that

complicate the semantics of the language, or that have potentially undefined behavior

outside of the simulation environment. Some languages, such as SCADE, were built

for formal analysis, and so almost all features of the SCADE environment (i.e., all

aspects that do not involve use of a ‘host’ language, such as C, to implement

functionality) can be formally analyzed. Simulink contains an extremely wide range

of block sets with varying levels of formality. None of the current model checking

tools for Simulink/StateFlow support all of the block sets that can be used within the

language.

The Rockwell Collins translation tools support a wide range of Simulink/StateFlow

constructs. This toolset is tailored for critical avionics software, and is able to analyze

all of the blocks used in the OFP model.

Structuring for Analysis

Design choices that lead to code-bloat or poorly cohesive systems also affect the

performance of the model checker. A rule of thumb is that the larger the number of

blocks within a model, the longer it will require to analyze. Therefore, model re-

factoring is not only a useful design activity, but often necessary to successfully

analyze large subsystem models.

In our experience, we have re-factored models in which some piece of

functionality (e.g., display application placement) is replicated (e.g., left-side and

right-side display application placement) by “copy and paste reuse”. By properly

packaging the functionality into subsystems, we can split the analysis task into

independent parts, leading to much faster analysis.

Similarly, when creating the analysis models, it is possible to indirectly analyze

subsystem coupling by examining the complexity of invariants between the outputs of

one subsystem and the inputs of another subsystem. If complex invariants are

required to prove properties about a subsystem, then it is likely that the subsystem is

tightly coupled to the subsystem that generates the outputs. These cases should be

examined to determine if it is possible to re-factor the design to simplify the analysis

invariants.

Structuring for Predicate Abstraction

If models contain several large-domain integers and/or real numbers, they will not be

analyzable by current tools. However, it is often the case that these variables can be

factored out of modules that contain the complex behavior that would benefit most

from formal analysis. The idea is to either abstract the conditions that involve

numeric constraints or the ranges of the constants and variables involved in the

conditions.

Subsystems that compute system modes often contain a handful of large-domain

integers that are used for comparisons in conditions within the mode computation,

e.g., Altitude > PreSelectAlt + AltCapBias. If the ranges of these integers are large,

e.g., zero to 50000 feet, analysis may become intractable, even though they only

influence a few conditions within the logic. In this case, it is much simpler for formal

analysis if the original comparisons in the mode logic are replaced with Boolean

inputs representing the result of the comparison (e.g.,

Altitude_Gt_PreSelect_Plus_AltCapBias). This input is then computed by an external

subsystem which can be separately (and usually trivially) checked for correctness.

This kind of model factoring is called predicate abstraction [9], and can reduce the

analysis time required from hours to seconds in the original subsystem.

If the model contains a significant number of variables and the constraints

involving those variables are related, or if it uses the variables to compute numeric

outputs, predicate abstraction is less useful. In these cases, it is often possible to

perform domain reductions in order to scale the ranges so as to be able to analyze the

models successfully.

Reducing State Through Type Replacement

A primary limiting factor when using the model checker is the size of the state space.

In this section, we describe strategies to reduce the size of the model state space in

order to apply implicit state model checking technology.

Using Generic Types. The implicit state model-checking tools that we use are

unable to reason about real numbers. Fortunately, it is often the case that the

interesting safety-related behavior is preserved by replacing real-valued variables by

integers for the purpose of analysis [9]. We have used a simplified version of

predicate abstraction, which attempts to reduce the domain of a variable while

preserving the interesting traces of the system behavior, i.e., the ones that can lead to

a counterexample. The idea is to preserve enough values such that all conditions

involving real numbers will be completely exercised.

From a design-for-analysis perspective, both Simulink and SCADE support a

notion of generic types that allow models to be constructed that can use either integers

or reals. The only place where the types must be specified is at the “top-level” inputs.

If models are constructed using library blocks, then very little effort is required to

derive analysis models from the original models.

Limiting Integer Ranges. To efficiently model-check a specification, we would like

to determine the minimal range necessary to represent the behavior of each variable in

the model. This is because the performance of BDD-based model checkers is directly

correlated to the ranges of the variables in the model. The Rockwell Collins

translation tools currently allow a high degree of control over the integer range of

each variable within the model. It is possible for the user to specify both the default

range of all integer variables within the model, and also to set the ranges for

individual variables within the model. This allows us to trim unreachable values of

variables and reduce the system state space. If we inadvertently eliminate a reachable

value, the model checker will detect this and the variable range can be corrected.

5 Analysis Results

In this section, we discuss the application of the process described here to the analysis

of finite-state models from the Lockheed Martin OFP Simulink model. In this

analysis we focused on the Redundancy Manager (RM) component of the OFP.

4

input_sel

3

totalizer_cnt

2

persistence_cnt

1

fai lure_report

pc

trigger

input_a

input_b

input_c

DST_index

input_sel

triplex_input_selector

input_a

input_b

input_c

trip_lev el

persist_lim

MS

f ailreport

pc

tc

triplex_input_monitor

trip_level

trip_level1

persist_lim

persistence limit

[DSTi]

[C]

[B]

[status_c]

[status_b]

[status_a]

[A]

[trigger]

[DSTi]
[MS]

[MS]

[DSTi]
[A]

[prev_sel]

[prev_sel]

[DSTi]

[trigger]

[trigger]

[status_c]

[status_b]

[status_a]

[A]

[A]

Index

Vector

[C]

[B]

[C]

[B]

[C]

[B]

f ailure_report

dst_index

Failure_Processing

mon_f ailure_report

status_a

status_b

status_c

prev _sel

input_a

input_b

input_c

f ailure_report

Failure_Isolation

Extract Bits

[0 3]

Extract Bits

DOC

Text

double

DST

Data Store

Read

8

dst_index

7

status_c

6

status_b

5

status_a

4

input_c

3

input_b

2

input_a

1

sync

persist_lim

totalizer_cnt<tc>

trip_lev el

persistence_cnt<pc>

sy nc<>

f ailreport

triplex
monitor

failure isolation

sensor fusion failure
processing
(logging)

Fig. 4. Simulink model for triplex voter subsystem of the Redundancy Manager.

Redundancy Manager Verification Results

The redundancy manager model originally consisted of two main subsystems:

triplex_voter, which implements sensor fusion and failure detection for a triply

redundant sensor, and reset_manager, which implements the pilot and global failure

reset functionality for the sensors and control surfaces for the aircraft. The

triplex_voter (see Figure 4) contains a fault monitor that detects failed sensors, failure

isolation logic to prevent failed sensors from influencing the output, and a sensor

fusion function to synthesize the correct sensor output. It also contains a fault logging

function called the fault history table (FHT) that introduces a significant amount of

state but is functionally isolated from the rest of the voter. Therefore, we factored this

FHT functionality into a third subsystem, failure processing.

These models contained a mix of Simulink and StateFlow subsystems, and initially

the triplex voter model contained floating-point inputs and outputs. Some of the more

complex model features used were data stores with multiple reads/writes within a

step, triggered and enabled subsystems with merge blocks, boundary-crossing and

directed acyclic transitions through junctions, variables that were used both as

integers and as bit flags, bit-level operations (shifts, masks, and bit-level ANDs and

ORs), and StateFlow truth tables and functions. As shown in Table 1, during the

course of our analysis we derived three analysis models from the RM model, checked

62 properties and found 12 errors. The complete analysis of all the properties using

the NuSMV model checker takes approximately 7 minutes.

Table 1. Model size and analysis results for Redundancy Manager.

Subsystem
Number of Simulink
subsystems / blocks

Reachable
State Space

Properties
Confirmed

Errors

Triplex voter without FHT 10 / 96 6.0 * 1013 48 5

Failure processing 7 / 42 2.1 * 104 6 3

Reset manager 6 / 31 1.32 * 1011 8 4

Totals 23 / 169 N/A 62 12

As an illustration of the properties analyzed for the Redundancy Manager, one

requirement states that:

A single frame miscompare shall not cause a sensor to be declared failed.

A miscompare occurs when one of the three sensors disagrees with the other two

sensors by more than a predefined tolerance level. This requirement states that a

transient error on one of the sensors will not cause the sensor to be declared failed.

In the RM model, failures are recorded in the device status table (DST), and the

sensor values are input to the model as input_a, input_b, input_c. From

the requirements, we create variables representing when a sensor value miscompares

with the other sensor values:

DEFINE

a_miscompare :=

 (abs(input_a – input_b) > trip_level) &

 (abs(input_a – input_c) > trip_level) &

 (abs(input_b – input_c) <= trip_level);

 b_miscompare := ...

 c_miscompare := ...

These variables state that a sensor miscompares if it is outside of tolerance

(trip_level) with the other two sensors and the other two sensors are within

tolerance of each other. In a single frame miscompare, the sensor does not

miscompare in the current frame but does miscompare in the next frame. In this case,

the sensor must not be marked failed in the next frame.

Given these definitions, we can encode the property in CTL as follows:

AG((!a_miscompare) ->

 AX(failure_report != a_failed));

AG((!b_miscompare) ->

 AX(failure_report != b_failed));

AG((!c_miscompare) ->

 AX(failure_report != c_failed));

This property was violated in the original triplex voter model. The root cause of

this error is that the model used a single counter to record the number of consecutive

miscompares to determine whether to fail a sensor. If one sensor miscompares for

several frames and then another sensor miscompares for a single frame at the failure

threshold, then the second sensor will be declared failed.

This error was corrected by creating separate persistence counters for each input so

that miscompares for one sensor will not cause another sensor to be declared failed.

Effort Required

The total effort required to perform the formal analysis was 399.8 hours. As shown in

Figure 4, we broke down the analysis time along two axes: the phases of the analysis

process and the type of effort. The three main phases of the analysis process are:

• Preparation: This task described the effort necessary to extend the analysis tools

and condition the models for analysis

• Initial Verification: This task described the effort necessary to perform the initial

formal analysis of the models

• Rework: This task described the effort necessary to fix the models and complete

the analysis

Preparation
Initial

Verif ication Rew ork

0

50

100

150

200

250

H
o
u
rs

Recurring cost

Tool extension

Fig. 4. Categorization of verification effort.

We identified two types of effort: tool modification (one-time tasks extending the

capabilities of the tools for this project) and verification activites (tasks that would be

carried out for each application). The largest effort for this project was tool

modification, extending the Rockwell Collins translators to handle the subset of

Simulink / StateFlow used by Lockheed Martin in the CerTA FCS models. This is a

non-recurring cost that can be amortized in future analysis projects. This tool

modification effort occurred both during the preparation phase (the initial tool up) and

in the initial verification phase (where additional tool optimizations were discovered

to speed the analysis).

The majority of the one-time tool modification costs occurred during preparation,

when we were extending the translation tools to handle the additional blocks used in

the CerTA FCS models. The remaining tool modifications costs were due to a

handful of bugs in the tool extensions that were found during the verification effort.

The verification activities, which represent recurring costs, were fairly evenly

distributed between the preparation, initial analysis, and rework. A significant

fraction of the verification time went towards model preparation because the models

were not initially constructed for analysis, so several of the “design for analysis” steps

detailed in Section 4 had to be performed. Had the formal analysis been integrated

into the design cycle, much of this work would have been unnecessary.

After the initial verification and rework effort on the original model, Lockheed

Martin provided a modified version of the triplex voter with 10 additional

requirements. Since the model had already been structured for automatic translation

and analysis, only minor changes were needed. There included addition of input and

output ports, definition of appropriate type replacements, and specification of the new

properties. In this case, six of the new properties failed due to a single logic error in

the new design. The modifications, verification, and results analysis were

accomplished in approximately eight hours. This further illustrates the potential for

cost savings.

6 Conclusion

This paper describes how formal methods (model checking) can be successfully

injected into an avionics software development cycle and how this can lead to early

detection and removal of errors in software designs. As a demonstration, we applied

this technology to one of the major subsystems of an existing Lockheed Martin

Aeronautics Company operational flight plan model, analyzing 62 properties and

discovering 12 errors. These results are similar to previous applications of this

technology on large avionics models at Rockwell Collins.

In this effort, we performed model checking as an augmentation of the traditional

verification process after the models had been developed. In this approach, the model

checker provides a verification step that is significantly more rigorous than simulation

to ensure that the model works as intended. The total (recurring) time required for

analysis was approximately 130 hours, of which about 70 hours were required to

prepare the models and perform the initial verification.

Although we were successful, we believe that formal verification can have an even

greater impact if its use is anticipated from the outset in the design process. In this

paper, we described how model checking can be integrated into the design cycle for

models to yield additional benefits. The changes to the development process focused

on designing models for analysis and regular use of the model checker during design.

The former change significantly reduces the time required to prepare models for

analysis, and the latter allows bugs to be found very early in the development cycle,

when they are cheapest to fix.

In the next phase of the CerTA FCS project, we will attempt to analyze models that

contain large-domain integers and reals. This will be a significant challenge, and will

involve investigating new model checking algorithms and theorem provers. On the

model checking side, we will be investigating tools that use two recent checking

algorithms: k-induction and interpolation, which can be used to analyze the behavior

of models containing large-domain integers and reals. Unfortunately, these model

checking algorithms have a significant restriction in that they only analyze models

containing linear arithmetic. Therefore, we will also be investigating the use of

theorem provers that can analyze arbitrarily complex non-linear models, but require

greater expertise on the part of users.

Acknowledgments. This work was supported in part by AFRL and Lockheed Martin

Aeronautics Company under prime contract FA8650-05-C-3564.

References

1. J. M. Buffington, V. Crum, B. H. Krogh, C. Plaisted, R. Prasanth, P. Bose, T. Johnson,

Validation & verification of intelligent and adaptive control systems (VVIACS), AIAA

Guidance, Navigation and Control Conference, Aug. 2004.

2. M. W. Whalen, J. D. Innis, S. P. Miller, and L. G. Wagner, ADGS-2100 Adaptive Display

& Guidance System Window Manager Analysis, NASA Contractor Report CR-2006-

213952, February 2006.

3. S. Miller, M. P.E. Heimdahl, and A.C. Tribble, Proving the Shalls, Proceedings of FM 2003:

the 12th International FME Symposium, Pisa, Italy, Sept. 8-14, 2003.

4. E. Clarke, O. Grumberg, and P. Peled, Model Checking, The MIT Press, Cambridge,

Massachusetts, 2001.

5. C. Heitmeyer, R. Jeffords., and B. Labaw, Automated Consistency Checking of

Requirements Specification, ACM Transactions on Software Engineering and Methodology

(TOSEM), 5(3):231-261, July 1996.

6. S. Faulk, J. Brackett, P. Ward, and J. Kirby, Jr, The CoRE Method for Real-Time

Requirements, IEEE Software, 9(5):22-33, September 1992.

7. H. Chockler, O. Kupferman, and M. Y. Vardi. Coverage metrics for formal verification. In

12th Advanced Research Working Conference on Correct Hardware Design and

Verification Methods, volume 2860 of Lecture Notes in Computer Science, pages 111--125.

Springer-Verlag, October 2003.

8. J. L. Lions, Arianne 5 Flight 501 Failure Report by the Inquiry Board, ESA Technical

Report No. 33-1996, July 1996.

9. Y. Choi, M. P.E. Heimdahl, and S. Rayadurgam, Domain reduction abstraction. Technical

Report 02-013. University of Minnesota, April 2002

10. A. C. Tribble, David D. Lempia, and Steven P. Miller, Software Safety Analysis of a Flight

Guidance System, Proceedings of the 21st Digital Avionics Systems Conference

(DASC'02), Irvine, California, Oct. 27-31, 2002.

11. Reactive Systems, Inc, Reactis Home Page, http://www.reactive-systems.com.

