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Abstract

This research work discusses the application of three intelligent prediction models, based on artificial neural network 
(ANN) with back-propagation algorithm, adaptive neuro-fuzzy inference system (ANFIS) and hybrid ANFIS and genetic 
algorithm (ANFIS-GA). These techniques are used for prediction and comparison of machining aspects such as material 
removal rate (MRR) and surface roughness during gas-assisted electrical discharge machining of D3 die steel. In the 
present work, helium-assisted EDM with perforated tool has been performed. In this work, parameters considered for 
machining are discharge current, pulse on time, duty cycle, tool rotation and discharge gas pressure. The suggested 
approach is based on up-gradation of ANFIS with GA. The GA algorithm is applied to improve the precision of the ANFIS 
model. The soft computing models were trained, tested and validated with experimental data. Mean square error (MSE), 
mean absolute error (MAE), root-mean-square error and correlation coefficient (R2), were used to measure the efficacy 
of models predicting abilities developed through ANN, ANFIS and hybrid ANFIS-GA approaches. The experiment and 
anticipated measure of MRR and SR of the process, acquired by ANN, ANFIS and hybrid ANFIS-GA, was found to be in 
good agreement. The prediction potential of proposed models was tested using new set of data for the training and 
testing process. The ANFIS-GA technique provides more accurate prediction of the responses in comparison with the 
ANN and the ANFIS. In general, the inference of this work discloses that the hybrid algorithm like ANFIS-GA is an efficient 
and effective approach for precise prediction of EDM process responses.

Keywords Artificial neural network · Adaptive neuro-fuzzy inference system · Genetic algorithm · Material removal rate · 
Surface roughness

1 Introduction

Electrical discharge machining (EDM) is a generally utilized 
non-traditional machining process, which uses heat from 
sparks to expel material from stiff and hard workpiece 
which cannot be machined by customary techniques. 
The procedure is utilized for creation of molds, dies, car 
and aeronautical parts [1]. Moreover, low material removal 
rate (MRR), high tool wear rate (TWR) and unsatisfactory 
surface finish are real weaknesses of the EDM procedure 

that is yet to be settled. While it is a significant methods 
for machining hard materials and ceramic composites, one 
additionally needs to remember that high efficiency with 
accuracy is always a matter of need in any procedure and 
EDM needs in that viewpoint [2].

Due to uncertainty and the complexity involves in the 
manufacturing processes, traditional modeling tech-
niques unable to predict responses accurately. Therefore, 
researchers applied various soft computing techniques, 
which are prominent to predict process output because 
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of their exceptional quality of learning from experimental 
data to outline the interactive effect of input parameters to 
predict the process output with a favorable outcome. Over 
the latest couple of decades, various researchers have pro-
posed a distinctive demonstrating technique to build up a 
relationship between machining parameters and notable 
EDM responses such as MRR and SR.

In this regard, Mandal et al. [3] applied artificial neural 
network (ANN) approach to develop a model for MRR and 
the electrode wear rate. Further, for obtaining the opti-
mum responses, a genetic algorithm was used. Assarzadeh 
and Ghoreshi [4] applied artificial neural network optimi-
zation technique to optimize the output responses like 
surface roughness (SR) and MRR. Pradhan et al. [5] utilized 
two different types of artificial neural network technique 
for obtaining a precise mode for the output responses. 
More accurate findings are obtained during back-propa-
gation ANN technique with relation to the basis function 
ANN technique. Pataowari et al. [6] applied artificial neural 
network technique to obtain a model for the responses 
like layer thickness and MRR during the EDM process. 
Panda [7] optimized the process parameters used during 
the EDM process using neuro-gray modeling considering 
output responses like SR, MRR and hardness of the speci-
mens. Extensive research attempts have been made to 
apply ANN coupled with various modeling approaches, 
and Kumar et al. [8] connected ANN combined with Tagu-
chi strategy for demonstrating and streamlining of surface 
finish. Kumar and Choudhury [9] utilized ANN strategies 
to decide the SR and wheel wear during electrical dis-
charge diamond grinding (EDDG) of steel (HSS). They saw 
that the ANN-based model makes an increasingly exact 
assessment in correlation with the statistical based model. 
Agarwal et al. [10] developed the models for MRR and SR 
during electrical discharge diamond grinding by apply-
ing an ANN method. Prabhu et al. [11] used the ANFIS 
technique for modeling of surface roughness of carbon 
nanotube-based EDM. The high residual value indicates 
that the model prediction fits well with the experimental 
value. The fuzzy logic strategy combined with the Taguchi 
technique was used by Kar et al. [12] to optimize the sur-
face roughness parameters during the electro-discharge 
coating process. In another research attempts, Unune 
et al. [13] applied ANN and response surface methodol-
ogy approach to obtain a model for SR and MRR in the 
EDGC process involving Inconel 718 as workpiece material. 
Prakash et al. [14], during the powder-mixed EDM process, 
optimization technique was used to optimize the input 
parameters by coupling Taguchi method with response 
surface methodology technique. Pradhan and Biswas 
[15] proposed neuro-fuzzy and neural network models 
for prediction of EDM responses. They compared the per-
formance of developed predictive models. Findings reveal 

that developed models can predict with good accuracy of 
responses of the complex EDM process. Srivastava et al. 
[16] applied combined neural network and genetic algo-
rithm approaches to predict and optimize the responses 
of EDDG process. The finding suggested that predicted 
and experimental values are in accord. Suganthi et al. [17] 
proposed ANFIS- and ANN-based models to predict pro-
cess responses of the micro-EDM process. They compared 
the outcomes of the predictive models with experimental 
values. The finding suggested that ANFIS model provide 
more accurate prediction in comparison with ANN-based 
models. Ghamadi et al. [18] executed the comparative 
modeling using ANFIS and polynomial approaches dur-
ing EDM of Ti–6Al–4V alloy. The finding suggested that 
ANFIS model outperformed the polynomial model in the 
context of precision and accuracy of prediction. Majumder 
and Maity [19] developed a general regression neural net-
work (GRNN) and multiple regression analysis (MRA)-based 
model to predict the responses of wire electrical discharge 
machining process. The finding suggested that GRNN-
based model predicts the responses with more accuracy 
in comparison with MRA-based model. Mathai et al. [20] 
developed a model using ANFIS to compensate the end 
wear of the tool during the planetary EDM. The finding 
uncovers that model is proficient to anticipate precisely 
the cavity dimension when input machining parameters 
are given. Further, finding suggested that predicted and 
real outcomes are in accord. Caydas et al. [21] developed 
the ANFIS model to predict important process responses 
such as white layer thickness and surface roughness dur-
ing WEDM process. Findings suggested that developed 
model prediction and experimental values are in accord. 
Maji and Pratihar [22] applied ANFIS techniques to the 
established correlation between input parameters and 
output responses of the EDM for forward as well as reverse 
directions. Findings reveal that ANFIS techniques provide 
a precise prediction for forward and reverse mappings. 
Moreover, for the input variables, nonlinear membership 
functions found to perform better in comparison with lin-
ear membership functions. Singh et al. [23] investigated 
the influence of supply of argon gas during the EDM of die 
steel to access the surface roughness of machined speci-
men. They developed two mathematical model based 
on response surface methodology and Buckingham’s π 
theorem. Apart from these, they also developed two soft 
computing models based on ANN and ANFIS to predict 
the surface roughness. Comparative studies reveal that 
soft computing models provided the more accurate pre-
diction in comparison with mathematical models. Kumar 
et al. [24] in their experimental studies applied ANFIS 
techniques to develop the predictive model during wire 
EDM process. They analyzed the effect of process factor on 
responses through the developed model. Finding reveals 



Vol.:(0123456789)

SN Applied Sciences (2020) 2:137 | https://doi.org/10.1007/s42452-019-1533-x Research Article

that developed model predict the process output with 
minimum mean error. Singh et al. [25] developed statis-
tical and soft computing-based models and performed 
the comparative studies during EDM of die steel. Finding 
suggested that actual and values predicted by developed 
models are in good agreement. Moreover, ANFIS model 
predict the responses more accurately in comparison with 
other two models.

From the above discussion, it can be observed that 
extensive research work has been done by the researchers 
recently on the improvement of EDM process responses 
through different modeling and optimization approaches. 
A sizeable number of studies were carried out for assess-
ment and forecast of EDM responses utilizing the ANN 
modeling technique. However, very few research works 
are accessible using the genetic algorithm (GA) and ANFIS 
techniques. Moreover, no research work is reported on the 
use of both GA and ANFIS together for prediction of EDM 
responses, and the present work is evident to be novel. 
For the best of author’s knowledge, no work is reported 
on a comparative study among ANN, ANFIS and hybrid 
(ANFIS-GA) approaches. Therefore, there is a crucial need 
for developing suitable models to predict the EDM per-
formance responses precisely. This objective result in the 
innovative hybrid approach proposed in this work to carry 
out an effective modeling of EDM responses. The proposed 
approach is based on the integration of GA and ANFIS 
techniques.

In this work, hybrid EDM method, liquid–gaseous die-
lectrics, has been utilized to use the benefit of oil EDM 
just as dry EDM. Compressed helium gas was utilized in 
conventional EDM to counteract the oxidation response, 
odds of flame and risks during the machining activity. 
The central composite rotable design (CCRD) was applied 
to perform the experiment. In light of the acquired out-
comes, models using ANN, ANFIS and hybrid ANFIS-GA 
techniques are to be created to foresee the impact of dif-
ferent machining parameters on significant responses dur-
ing gas-assisted electrical discharge machining (GAEDM). 
The viability of the developed models in forecasts of 
machinability has been analyzed toward the end. Such 
types of approaches are particularly effective in EDM pro-
cess where nonlinear correlation prevails and there is a 
complicated physical mechanism involved. This sort of 
study would help with developing a reasonable model 
for simulation work of the EDM procedure.

2  Experiment details

2.1  Aspects of workpiece and tool materials

Experimentation was conducted on D3 die steel, which is 
broadly utilized for making molds and dies. A rectangu-
lar-shaped specimen with proportion of 20 mm × 15 mm 
x15 mm was employed. The hardness of selected speci-
men is 51HRC. Table 1 shows the chemical composition of 
the chosen specimen.

2.2  Details of tool design

A schematic diagram of perforated tool is shown in Fig. 1a. 
So as to guarantee smooth compressed gas flow, appropri-
ate tool geometry was selected. For removing the maxi-
mum heat from tooltip, 9 mm diameter and 75 mm length 
were selected as the tool dimensions. For the exploratory 
work, five process parameters, i.e., pulse duration, dis-
charge current, duty cycle, electrode speed and discharge 
gas pressure were chosen. Five parameters were consid-
ered for GAEDM process. The range of the machining 
factors utilized during the experiment is given in Table 2. 
The gas-based EDM with the perforated electrode was 
executed on an EDM machine. For each and every experi-
ment, the machining time was suitably chosen and settled 
with 15 min. Figure 1b illustrates the schematic of setup 
used during experimentation for present work. The flow 
diagram of proposed methodology is shown in Fig. 2.  

The experiments were planned in order to predict the 
impacts of different process parameters on the output 
responses through CCRD Method. Sums of 32 experi-
ments were performed utilizing the CCRD strategy with 
autonomous factors at five distinct levels. Workpiece and 
tool were washed with acetone after each investigation 
before taking estimation of its weight reduction. Electronic 
weighing machining having least count 0.1 mg was put 
into administration to quantify the weight reduction in 
electrodes. Mitutoyo makes analyzer was employed to 
estimate the surface finish of the machined specimen.

Material removal rate was found as the ratio of the 
weight of eroded specimen to machining time [26]:

(1)

Material removal rate(mg∕min) =
Weight of eroded specimen

Machining time

Table 1  Workpiece chemical 
composition in terms of weight 
(%)

Cr C Si Mn P S Fe

10.05 2.30 0.40 0.30 0.05 0.03 Rest
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2.3  Analysis of variance

The measured values of responses corresponding to each 
trial of GAEDM process are given in Table 3. The MINITAB 
software was utilized to developed second-order response 
surface models for MRR and SR. The created models were 
shown in form of Eqs. (2) and (3). The analysis of variance 
(ANOVA) was applied to approved the created models 
and found with 95% certainty level as given in Tables 4 

Fig. 1  Schematic images of (a) Tool-electrode b Experiment setup employed [26]

Table 2  Process factors with ranges

Machining factors Range

Discharge current (Ip) (A) 3,4,5,6,7

Pulse on time (Ton) (μs) 100,200,300,400,500

Duty cycle (DC) 0.52,0.58,0.64,0.70,0.76

Tool rotation speed (rpm) 200,400,600,800,1000

Gas pressure(GP) (mmHg) 4,8,12,16,20

Fig. 2  Flow diagram of proposed methodology
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Table 3  Measured values of 
responses corresponding to 
each trial of GAEDM process

Exp. no. I Ton DC RPM GP MRR (mg/min) SR (µm)

1 4 400 0.7 400 16 5.85 2.92

2 4 400 0.7 800 8 5.9 3.49

3 4 400 0.58 400 8 5.95 3.62

4 3 300 0.64 600 12 6.35 3.7

5 4 400 0.58 800 16 6.57 3.72

6 5 500 0.64 600 12 6.92 3.75

7 4 200 0.58 800 8 7.28 3.76

8 5 300 0.64 1000 12 8.43 3.76

9 5 300 0.64 600 4 8.71 3.84

10 4 200 0.7 400 8 8.77 3.84

11 6 400 0.58 800 8 9.7 3.91

12 5 300 0.52 600 12 9.88 4.02

13 4 200 0.58 400 16 10.15 4.02

14 5 300 0.64 200 12 10.3 4.02

15 5 300 0.64 600 12 10.45 4.04

16 5 300 0.64 600 12 10.5 4.07

17 5 300 0.64 600 12 10.9 4.14

18 5 300 0.64 600 12 11.3 4.19

19 5 300 0.64 600 12 11.6 4.21

20 4 200 0.7 800 16 11.68 4.25

21 5 300 0.64 600 12 11.8 4.26

22 6 400 0.7 800 16 12.12 4.29

23 6 400 0.7 400 8 12.96 4.32

24 5 300 0.76 600 12 13.45 4.32

25 5 300 0.64 600 20 13.8 4.37

26 6 200 0.58 400 8 14.44 4.41

27 6 400 0.58 400 16 14.46 4.53

28 5 100 0.64 600 12 16.35 4.56

29 6 200 0.7 800 8 17 4.57

30 6 200 0.58 800 16 18.31 4.64

31 6 200 0.7 400 16 19.4 4.84

32 7 300 0.64 600 12 21.95 4.96

Table 4  ANOVA for MRR

Source DF Seq. SS MS F P R2

Regression 9 514.691 25.735 51.53 0 0.982 F
standard
(0.05,9,22);

= 2.79

F
regression

> F
standard
(0.05,9,22)

F
standaed
(0.05,9,22);

= 2.62

F
lack−of−fit

< F
standard
(0.05,17,22) Model is adequate. There is insignificant lack-of-fit.

Linear 5 472.897

Square 1 23.483

Interaction 3 28.563

Residual error 22 15.494 1.159

Lack-of-Fit 17 27.978 2.02 0.228

Pure error 5 1.602

Total 31 520.185
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and 5, respectively. The developed second-order models 
are offered as to discover the adequacy of created model, 
ANOVA, and in this way, F-ratio test and p value test have 
been performed for MRR and SR. Tables 4 and 5 of ANO-
VA’s outcomes demonstrate that p-estimations of the 
regression model and linear effects are less than 0.01 for 
MRR and SR, respectively. Developed model just as linear 
effects of parameters for the two responses is noteworthy. 
Determined F-estimations of the lack-of-fit for MRR and 
SR are 2.79 and 2.66, separately, and these qualities are 
lower than the basic estimation of the F-test according to 
standard value at 95% confidence level. So created model 
of the second order for MRR and SR is adequate.

3  Results and discussions

The results and discussion section is represented in the 
pictorial form which is shown in Fig. 3. Full subsections 
presented the detailed description.

3.1  Prediction of MRR and SR in GAEDM by ANN

ANN is most generally utilized soft computing strategy 
to take care of complicated problems. This procedure has 
an adaptability of picking up mapping between the input 
parameters and procedure output to solve the complex 
issues [16]. The neural system technique comprises of 
all constituent neural components connected to each 

(2)
MRR = −21.3 −

(

1.82 × Ip

)

+
(

0.0130 × Ton

)

+ (31.6 × DC) + (0.0139 × RPM) + (1.89 × GP) +
(

0.682 × I
2
p

)

−
(

0.000112 × RPM2
)

−
(

0.00289 × Ip × Ton

)

−
(

0.00211 × Ton × GP
)

− (2.03 × DC × GP)

(3)
SR = 3.26 − (0.015 × Ip) − (0.0105 × Ton) + (0.43 × DC) + (0.00180 × RPM) + (0.0161 × GP)

+ (0.000615 × Ip × Ton) + (0.0085 × Ton × DC) − (0.000002 × Ton × RPM)

other. The neural components have an ability to acquire 
knowledge, separate data and prepared for use [20]. They 
have been referenced to have an ability to practice like a 
human, by social event data along over and over learning 
interest. In view of these computational capacities of ANN, 
it has been selected in the modeling of the GAEDM proce-
dure. In this work, the MATLAB programming was utilized 
to structure the perfect ANN design. The input layer com-
pares to parameters mentioned in Table 2. The output layer 
relates to GAEDM responses. In this work, the input layer 
is linked with concealed layer neuron, and shrouded layer 
is linked with output layers. After broad preliminaries and 
based on execution of the system models for MRR and SR 

are created.
In the proposed models, one concealed layer comprises 

of 15 neurons, five input and one output neurons as shown 
in Fig. 4. For quick and directed learning, Levenberg–Mar-
quardt back-propagation neural algorithm was utilized 
for the training of the ANN system [14–16]. Details about 
FFBP-NN are given in Ref. [27].

In the proposed model for MRR and SR for its simula-
tion, the correlation coefficients (R) are 0.9989 and 0.9986 
as shown in Fig. 5. From the measurable perspective, net-
works will all the more definitely connect the procedure 
input to the output if the estimation of relationship coef-
ficients is more like 1. In this manner, for the wide scope of 
machining states, choosing BP neural system adequately 

Table 5  ANOVA for SR

Source DF Seq. SS MS F P R2

Regression 10 12.3405 1.2670 39.27 0 0.986 F
standard
(0.05,10,21);

= 2.66

F
regression

> F
standard
(0.05,10,21)

F
standaed
(0.05,10,21);

= 2.66

F
lack−of−fit

< F
standard
(0.05,16,21) Model is adequate. There is insignificant lack-of-fit.

Linear 5 5.34059

Square 1 0.5793

Interaction 4 1.4926

Residual error 21 0.0747 0.054

Lack-of-Fit 16 0.0454 1.29 0.398

Pure error 5 0.0293

Total 31 18.6205
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maps the procedure variables to the procedure output. 
[11]. Figure 6 demonstrates the correlation of real and 
anticipated estimation of GAEDM responses by ANN. It 
tends to be seen from figure that there is great under-
standing among estimated and qualities anticipated by 
the proposed models.

3.2  Prediction of MRR and SR in GAEDM by ANFIS

ANFIS is a hybrid model which coordinates ANN’s ver-
satile potential and fuzzy logic’s rationale’s subjective 
strategies. ANFIS exploit the competency of the ANN and 
fuzzy rationale and at the same time beat their particular 
constraints [20, 22]. Since the goal of this examination is 
to foresee the GAEDM responses, in the present exami-
nation, the ANFIS system was connected to build up the 
relationship between input factors and output response; Fig. 3  Pictorial representation of the results and discussion section

Fig. 4  ANN structure 5-15-1 
[22]

Fig. 5  Linear regression analysis between the experimental values and predicted values by FFBP-ANN for training, validation, testing and 
overall (a) of MRR (b) of SR
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for example, the MRR and the SR during the GAEDM proce-
dure. Modeling of procedure output of the GAEDM proce-
dure by ANFIS method comprises of two significant stages, 
training and testing.

For the ANFIS modeling, it is compulsory that all the 
procedure input parameters ought to be quantitative. 
According to the accessible plan matrix, 32 experiment 
data, a total of 24 data were discretionarily chosen for the 
training of ANFIS network. The rest of eight data, which 
were not considered for training, were utilized for test-
ing the ANFIS model. In an ANFIS structure, like ANN, the 
inputs of each and every layer are acquired by the nodes 
from the preceding layer. The development of accurate 
ANFIS model depends upon the type of fuzzy rule, number 
and type of membership functions. ANFIS architecture and 
training parameters are shown in Table 6. In this work, TSK-
type fuzzy rule, triangular membership function is applied 
for formation of the predictive model. Details about ANFIS 
are given in Ref. [28].
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Fig. 6  Comparison of actual and predicted value by FFBP-ANN for a MRR b SR

Table 6  ANFIS architecture and training parameters

Number of nodes 524

Number of linear parameters 1458

Total number of parameters 1503

Number of training data pairs 24

Number of checking data pairs 8

Number of fuzzy rules 243

Membership function Triangular
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Fig. 7  Comparison of actual and predicted value by ANFIS for a MRR b SR
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Figure 7 shows that there is a good accord between 
the measured values of the MRR and the SR as well as the 
predicted values through the ANFIS model. The precision 
of the prediction model was evaluated by using the root-
mean-square error (RMSE) [17, 20].

3.3  ANFIS trained by GA

In this study, in order to predict the GAEDM responses with 
improved accuracy, GA is applied to tune the ANFIS and 
to find out the optimum values of ANFIS parameters. In 
the ANFIS technique, the variables (antecedent and con-
sequent) are generally tuned by least square error or steep 
descend error methods. However, the outcomes of these 
methods may be trapped in local optima. Therefore, GA 
algorithm with random search is regarded as a most viable 
approach to remove this shortcoming. The membership 
function is related to antecedent variables. The triangular-
shaped membership function is selected in present work. 
The evolutionary algorithm (ANFIS-GA) is used to optimize 
the antecedent variables. The root-mean-squared error 
(RMSE) act as an objective function of ANFIS-GA algorithm. 
Hybrid ANFIS-GA) model is developed to extract the ben-
efits of each of two individual tools so that the developed 
model can even perform more efficiently.

Genetic algorithms (GAs) are universally useful optimi-
zation algorithms dependent on the mechanics of natural 
selection and hereditary qualities (genetics). They work on 
string structures (chromosomes), commonly a linked list 
of binary digits representing a coding of control param-
eters of a given issue. Genetic algorithms are an appeal-
ing option in contrast to other optimization strategies as 
a result of their robustness. The flowchart of hybrid ANFIS-
GA technique is shown in Fig. 8. The parameters used in 
the GA algorithm are shown in Table 7. The parameters 
were selected on the basis of the literature review, trial and 
error method and the most appropriate values for the pre-
sent case. Here, as per the available 32 experiment data, 
a total of 24 data were arbitrarily selected for the training 
of ANFIS-GA algorithm. The remaining eight data, which 
were not considered for training, were used for testing of 
the hybrid model. A code was generated in MATLAB soft-
ware to generate the ANFIS-GA model. The GA-assisted 
hybrid model established a close correlation between the 
parameters and responses. The errors of training and test-
ing data of experimental and predicted values for MRR of 
ANN, ANFIS and ANFIS-GA models is shown in Fig. 9a, b 
by histograms. Similarly, the errors of training and testing 
data of experimental and predicted values for SR of ANN, 
ANFIS and ANFIS-GA models are shown in Fig. 10a, b by 
histograms.

The network performance is measured using mean 
square error (MSE), mechanical average error (MAE), root-
mean-square error (RMSE) and determination coefficient 
(R2). The following equations are used to obtain the MSE, 
MAE, RMSE and R2.

where X is the number of output nodes, Y is the total num-
ber of training data, pj is output of the jth neuron, and qj is 
the predicted value of jth neuron [20].

(2)MSE =
1

X × Y

X
∑

i=1

Y
∑

j=1

(

pj − qj
)

Fig. 8  ANFIS-GA flowchart

Table 7  GA algorithm parameters

GA parameters

Population size 20

Maximum number of iteration 2000

Crossover percentage 0.8

Mutation percentage 0.8

Mutation rate 0.01

Selection pressure 8

Gamma 0.7
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where N is the total training data, Xi is the value of the 
measured data, and Yi is the value predicted by the ANN, 
ANFIS and ANFIS-GA models.

(5)

R
2
= 1 −

N
∑

i=1

�

X
i
− Y

i

�

N
∑

i=1

�

Y
i
− Ym

�

where, Ym =

N
∑

i=1

Y
i

N

3.4  Comparison of predicted MRR and SR by ANN, 
ANFIS and Hybrid ANFIS‑GA

The statistical analysis was done to know the efficacy of 
developed, ANN, ANFIS and ANFIS-GA models. The preci-
sion of the prediction model was assessed by using the 
MSE, MAE, RMSE and R2 and is given in Tables 8 and 9 for 
MRR and SR, respectively. A predictive model can have 
a high degree of precision if the value of MSE, MAE and 
RMSE is close to 0 and R2 is near to 1 [29]. From Tables 8 
and 9, it can be seen that GAEDM responses, predicted 
by ANFIS-GA model, are closer to the experimental value 
as compared to ANN and ANFIS outcomes. From these 
measures, it tends to be inferred that the ANFIS-GA model 

Table 8  Comparison of 
performance of different 
developed models for MRR

Model ANN ANFIS ANFIS-GA

Analysis Training Testing Training Testing Training Testing

MAE 0.2938 0.68 0.0921 0.8 0.1038 0.0637

MSE 0.1827 0.8625 0.0497 0.0512 0.0493 0.0063

RMSE 0.4274 0.9287 0.2229 0.2263 0.222 0.0796

R2 0.8939 0.8453 0.966 0.9807 0.963 0.9848

Table 9  Comparison of 
performance of different 
developed models for SR

Model ANN ANFIS ANFIS-GA

Analysis Training Testing Training Testing Training Testing

MAE 0.0738 0.07 0.0233 0.0325 0.0158 0.0225

MSE 0.0264 0.0221 0.0012 0.0015 5.1667E−04 6.50E−04

RMSE 0.1626 0.1485 0.0348 0.0387 0.0227 0.0255

R2 0.777 0.4717 0.9354 0.8284 0.956 0.8808

Fig. 11  Scatter plots of experi-
mental and predicted values 
for MRR
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empowers increasingly valid and exact forecast in exami-
nation of ANN and ANFIS models.

The scatter plots between experimental and the pre-
dicted value of MRR and SR is plotted for training and 
testing phase of developed models for more exemplifica-
tion as shown in Figs. 10 and 11. Without any prejudice, 
it can be observed that there is a perfect fit between the 
experimental and predicted value for all three developed 
models. From plot, it can be seen that except ANN model, 
all the predicted values are near to the line. Further, from 
the figure (refer Figs. 10 and 11), it can be seen that the 
scatter between experimental and the predicted value for 
ANFIS-GA model is found to be less than ANN and ANFIS 
model for training and testing phase. The accuracy of the 
ANFIS model is better in comparison with the ANN model. 
However, the ANFIS-GA model is more precise in predic-
tion in comparison with the ANFIS model (Fig. 12).  

The developed models were tried utilizing another 
arrangement of information, not recently utilized during 
the training procedure. The arrangements of data utilized 
for affirmation of investigations are recorded in Table 10. 
The exploratory and anticipated outcomes by ANN, ANFIS 
and ANFIS-GA models were observed to have less error. 

Therefore, end might be drawn that the developed models 
are appropriate for anticipation of the MRR and the SR. 

4  Conclusions

This work gives insights about the better prediction exact-
ness in EDM process; an improved viewpoint is recom-
mended to model MRR and SR with ANN, ANFIS and com-
bined ANFIS-GA systems, utilizing RSM plan of exploratory 
framework. The ANN-, ANFIS- and hybrid ANFIS-GA-based 
techniques were utilized to create models for foreseeing 
the MRR and the SR during the GAEDM process on D3 die 
steel.

Coming up next are the key discoveries from the inves-
tigation that can be summed up:

• Three soft computing-based models, i.e., FFBP-ANN, 
ANFIS and hybrid ANFIS-GA, were developed for pre-
diction of the GAEDM process performance.

• In this work, hybrid computing technique that combine 
the characteristics of ANFIS framework and GA algo-
rithms are used to predict the EDM responses such as 
MRR and SR.

Fig. 12  Scatter plots of experi-
mental and predicted values 
for SR
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Table 10  Confirmation 
experiments

Exp. no. Machining parameters MRR (mg/min) SR (µm)

I Ton DC RPM GP Exp. ANN ANFIS ANFIS-GA Exp. ANN ANFIS ANFIS-GA

1 7 300 0.58 600 20 24.02 23.93 24 24.02 4.52 4.48 4.48 4.52

2 4 100 0.64 400 12 11.75 11.70 11.74 11.75 4.26 4.17 4.21 4.26

3 5 200 0.76 200 8 12.62 12.55 12.60 12.62 4.10 4.06 4.2 4.10

4 6 300 0.70 600 16 15.77 16.85 16.74 16.76 4.68 4.54 4.61 4.69

5 5 300 0.64 400 12 11.22 11.09 11.20 11.21 4.12 3.92 4.09 4.10
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• The MAE, RMSE and R2 of hybrid ANFIS-GA model 
were found to be lower than the other two developed 
model. The performance investigation shows that 
ANFIS-GA models exhibit a satisfactory enhancement 
in precision as compared to proposed ANN and ANFIS 
models.

• A correlation was done among the created models to 
distinguish the most exact one among the three. The 
ANFIS-based model excels the ANN model when all is 
said in done. Moreover, hybrid ANFIS-GA model was 
found to anticipate responses most definitely when 
contrasted with ANN and ANFIS models.

• The suggested models may also be used to predict 
other EDM responses as well as responses of other 
machining processes. In general, the inference of this 
work discloses that the hybrid model like ANFIS-GA is 
an efficient and effective approach for precise predic-
tion of EDM process responses.
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