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Abstract
Background—Well characterized genes affecting warfarin metabolism (CYP2C9) and
sensitivity (VKORC1) explain one-third of the variability in therapeutic dose before the
International Normalized Ratio (INR) is measured.

Methods—To determine genotypic relevance after INR becomes available, we derived clinical
and pharmacogenetic refinement algorithms using INR values on day 4 or 5 of therapy, clinical
factors, and genotype.
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Results—After adjusting for INR, CYP2C9 and VKORC1 genotypes remained significant
predictors (P < 0.001) of warfarin dose. The clinical algorithm had an R2 of 48% (median absolute
error [MAE]: 7.0 mg/week); the pharmacogenetic algorithm had an R2 of 63% (MAE: 5.5 mg/
week) in the derivation set (N=969). In independent validation, the R2 was 26%-43% with the
clinical algorithm, and 42%-58% adding genotype (P = 0.002).

Conclusion—After several days of therapy, a pharmacogenetic algorithm estimates the
therapeutic warfarin dose more accurately than one using clinical factors and INR response, alone.
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Introduction
Warfarin (Coumadin™, Marevan™, and others) is an ideal drug for testing the paradigm of
personalized medicine. It is the most commonly prescribed oral anticoagulant in North
America and many European and Asian countries (1) and is a leading cause of adverse drug
reactions.(2-4) Warfarin has a narrow therapeutic index and large inter-individual variability
in dose requirements, with some individuals requiring less than 1 and others more than 20
mg/day to maintain therapeutic International Normalized Ratio (INR) values.(5) Tailoring
therapy based on individual INR response often takes weeks, during which the risk of
adverse reactions is high.(6,7)

To reduce this risk while maintaining effectiveness, pharmacogenetic algorithms have been
developed to estimate the maintenance warfarin dose at the time of warfarin initiation.(8-16)
Besides clinical factors, these initiation algorithms incorporate common single nucleotide
polymorphisms (SNPs) in the cytochrome P450 (CYP) 2C9 system (CYP2C9*2 and
CYP2C9*3) that are associated with impaired metabolism of warfarin(6,17-19) and SNPs in
the gene for vitamin K epoxide reductase complex 1 (VKORC1) that correlate with warfarin
sensitivity.(8,12,16,20-23) Together these SNPs explain one-third of the variability in
therapeutic dose (R2 ~ 33%).(8,12,16,20-23)

Pharmacogenetic initiation algorithms use these genes and clinical factors to estimate the
therapeutic warfarin dose,(8,10-13,16,23) but they have critical shortcomings. First, they
offer no explicit guidance for warfarin dosing once the INR response to therapy is known.
This limitation is compounded by the common delay of several days to get genotype results
back from an outside laboratory. Some experts have argued that once VKORC1 and CYP2C9
genotype are available in practice, they are neither relevant (24) nor cost-effective.(25)
Furthermore, with few exceptions,(8) prior initiation algorithms have been developed in
small or single-centered studies and their predictive accuracy in broader populations is
questionable. Although the US Food and Drug Administration (FDA) has included
consideration of VKORC1 and CYP2C9 genotyping in the product label of Coumadin™/
warfarin, several professional organizations do not endorse routine testing (American
College of Chest Physicians, American College of Medical Genetics).(26-28)

One reason for such reluctance may be the lack of data on the ability to use VKORC1 and
CYP2C9 genotype to further refine warfarin dose after INRs become available. The recent
development of pharmacogenetic refinement algorithms looks promising,(29,30) but, as
these algorithms are tailored to the orthopedic population, they are not applicable to broad
populations. In short, whether genotype can help refine an individual’s maintenance dose,
after several days of warfarin therapy, remains unclear. (24,31) Therefore, the international
Warfarin Dose-Refinement (Warfarin DR) Collaboration, had two goals: (1) to develop and
validate a pharmacogenetic refinement algorithm in an international cohort of patients
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receiving warfarin for varying indications, and (2) to determine if genotype is predictive of
therapeutic dose even when an INR value is available on the 4th or 5th day of therapy.

Results
Derivation

In the derivation cohort (N = 969), therapeutic dose was inversely correlated with INR,
VKORC1-1639 A, CYP2C9*2 and CYP2C9*3 alleles (P<0.001). Other significant,
independent predictors of therapeutic dose were prior warfarin doses, age, BSA, stroke,
diabetes, race, target INR, and use of amiodarone or fluvastatin. Other statins, individually
and in combination, were not significant predictors of therapeutic dose in this dataset.
Significant predictors of the therapeutic dose in the clinical refinement algorithm were
similar (Tables 2 and 3) except that genotype was not offered into the model and race was
not statistically significant.

This clinical refinement algorithm explained 48% of the variation in the derivation cohort
and had a median absolute dosing error of 7.0 mg/week (1.0 mg/day). The pharmacogenetic
refinement algorithm explained 63% of the variation in the derivation cohort and had a
median absolute dosing error of 5.5 mg/week (0.78 mg/day).

Internal Validation
First, we assessed the performance of the pharmacogenetic refinement algorithm using the
204 patients in the internal validation cohort who had an INR available on the 4th day of
therapy. Here, R2 was 58%, which was significantly (P=0.002) greater than the R2 of the
clinical refinement algorithm (R2=43%, Table 4). The MAE of the pharmacogenetic
refinement algorithm (4.9 mg/week) was less than that of the clinical refinement algorithm
(6.1 mg/week) (P=0.020).

When evaluating algorithms in the smaller internal validation set of patients who had an
INR measured on the 5th day (N = 105), the results were similar. In this subset, R2 for the
pharmacogenetic algorithm was 60% which was significantly (P=0.009) more accurate than
the clinical refinement algorithm (R2=44%, Table 4). The MAE of the pharmacogenetic
refinement algorithm (6.3 mg/week) was less than that of the clinical refinement algorithm
(7.4 mg/week) but this difference was not significant (P=0.16).

Final Algorithms
After pooling the derivation and internal validation cohorts (N=1213) and re-deriving a final
model using the same methods, we found that the pharmacogenetic refinement algorithm
was: Maintenance dose (mg/week) =EXP [3.10894 - 0.00767 × Age, per year - 0.51611 ×
ln(INR) - 0.23032 × VKORC1-1639 G>A - 0.14745 × CYP2C9*2 - 0.3077 × CYP2C9*3 +
0.24597 × BSA + 0.26729 × Target INR -0.09644 × African Origin - 0.2059 × Stroke -
0.11216 × Diabetes - 0.1035 × Amiodarone Use - 0.19275 × Fluvastatin Use + 0.0169 ×
Dose-2 + 0.02018 × Dose-3 + 0.01065 × Dose-4].

The clinical refinement algorithm was: Maintenance dose (mg/week) = EXP [2.81602 -
0.76679 × ln(INR) - 0.0059 × Age, per year + 0.27815 × Target INR - 0.16759 × Diabetes +
0.17675 × BSA -0.22844 × Stroke - 0.25487 × Fluvastatin Use + 0.07123 × African Origin -
0.11137 × Amiodarone Use + 0.03471 × Dose-2 + 0.03047 × Dose-3 + 0.01929 × Dose-4].

External validation
When evaluating the final algorithms in patients who had an INR measured on the 4th day
(N = 517) the R2 was 40% for the final pharmacogenetic algorithm and 28% for the final
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clinical refinement algorithm. The MAE of both the final pharmacogenetic refinement
algorithm (6.9 mg/week) and final clinical refinement algorithm (6.9 mg/week) was ~1 mg/
day.

When evaluating algorithms in patients who had an INR measured on the 5th day (N = 438)
the R2 was 42% for the final pharmacogenetic algorithm and 26% for the final clinical
refinement algorithm. Again, the MAE of the final pharmacogenetic refinement algorithm
(6.7 mg/week) and final clinical refinement algorithm (6.4 mg/week) was < 1 mg/day.

To account for the transient increase in the INR after valve replacement, the correction
factor using the final pharmacogenetic or clinical algorithm was ~1.21 (i.e., the new
predicted dose was 21% greater than predicted by the algorithm).

Discussion
The public is eager to see a return on its enormous investment in the Human Genome
Project. The first payoffs are anticipated in the area of pharmacogenetics, where warfarin
has been called the poster child.(32) Warfarin is a classic test-case because it has a narrow
therapeutic index, is influenced by well-characterized genetic factors, and frequently causes
adverse events. Now that pharmacogenetic dosing of warfarin is commercially available and
several genotyping platforms are FDA approved, a logistical barrier has become apparent:
most medical centers do not have same-day VKORC1 and CYP2C9 genotyping. Even in
centers that do have access, the question of how to use genotype once an INR is available
remained unanswered. In fact, skeptics have argued that genetic information may be
irrelevant after several days of dosing, because INR response may capture warfarin
sensitivity.(24,31) In part, the skeptics were right. The clinical refinement algorithm (Table
2), which uses a single INR on day 4 or 5 of therapy, explained 26%-48% of variability in
warfarin dose. For comparison, prior pharmacogenetic initiation algorithms,(8,10-16,23)
explain only slightly more variability in dose (~50%). This similarity indirectly supports the
claim that pharmacogenetics may add relatively little to predictive accuracy once INR data
are available.

However, to compare how much genotype adds to predictive accuracy, one must compare
pharmacogenetic accuracy with clinical accuracy on a particular day of therapy. We found
that after 4 or 5 days of therapy, the addition of genetics improves the R2 by 12-17% (P <
0.002). These figures are averages; patients with uncommon genotypes likely benefit even
more. Consider a 70-year-old patient, 5’9” (175 cm) and 200 lbs (91 kg), whose target INR
is 2.5. If he presents with an INR of 1.4 after three 5-mg doses of warfarin, his predicted
therapeutic dose (using the final pharmacogenetic algorithm) could be as low as 14.6 mg/
week, or as high as 43.0 mg/week, depending on VKORC1-1639 and CYP2C9 genotype. For
comparison, the clinical algorithm predicts 34.2 mg/week. Thus, genotype is a critical factor
determining his therapeutic dose, even when INR is monitored after 4 or 5 doses. To assist
the reader in performing similar calculations, we have made the final dose-refinement and
initiation algorithms freely available on www.WarfarinDosing.org.

Several additional observations warrant discussion. First, VKORC1 was a more important
predictor of therapeutic dose, than in our prior study of 92 orthopedic patients. Previously,
we found that VKORC1 contributed modestly to dose variability once the INR after 3 doses
was known.(29) However, all of the orthopedic patients had received pharmacogenetic
therapy prospectively, so the initial warfarin doses already reflected VKORC1 genotype.
Second, the effect of incorporating VKORC1 into the model causes the contribution of INR
to R2 to be blunted from 22.2% in the clinical model to 12.3% in the pharmacogenetic one.
Thus, the pharmacogenetic model should be more robust to errors in initial INR
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measurements. This robustness may be helpful in patients receiving therapeutic doses of
unfractionated or low-molecular-weight heparin, anticoagulants that sometimes inflate initial
INR values.(33)

While much of the variance can be explained by INR, prior doses, age, and (in the
pharmacogenetic model) genotype, other variables also affect dose. The lower warfarin
requirements in patients who have had a stroke is a new finding, and may reflect under-
nutrition that is common post stroke.(34) Our observation that diabetes is a marker for lower
warfarin requirements is consistent with prior literature.(35)

Several limitations also need to be discussed. As with any international collaboration, we are
limited in the number of variables universally available for analysis. For example, some
medications (e.g. fluconazole, rifampin, and barbiturates) interact with warfarin(36) but
were too rare to be incorporated into the model and clinicians will have to account for them
(the outliers in figure 1 demonstrate this necessity). The CYP4F2 V433M genotype was not
collected at each site, and incorporation of this genotype might have improved the R2.(37)
Estimated blood loss was not analyzed here, but can transiently inflate the INR after major
surgery.(29,30) Likewise, the algorithms do not account for decompensated heart failure or
patient-specific environmental factors (e.g. dietary vitamin K intake), which may affect
warfarin requirements.(38) Finally, although the population of participants of African
ancestry is relatively large (N = 123), this analysis is still based on a predominantly
Caucasian population.

As a reminder of the importance of considering the limitations of any particular algorithm,
we look to the external validation of the final algorithm. Many of these participants (N =
139; 20%) were receiving warfarin for valve replacement. Probably because of destruction
and loss of functional clotting factors during cardiopulmonary bypass and because of
decreased dietary intake around valve replacement surgery, this population has a transient
increased sensitivity to warfarin post-operatively.(39-41) This indication, however, was rare
in the internal datasets, so the algorithms had a tendency to under predict the therapeutic
dosing requirements for all Inje University patients, resulting in a lower R2 and a greater
MAE in the external validation cohort.

In contrast to traditional warfarin nomograms that rely on fixed initial doses and INR
response alone,(42-45) the refinement algorithms developed here also accommodate
demographics, warfarin indication, concurrent medications, flexible prior warfarin doses,
comorbidities, and genotype. The pharmacogenetic refinement algorithm had a greater R2

and lower dosing error than previous pharmacogenetic algorithms,(8,10-16,23) with the
exception of those tailored to specific, homogenous populations.(29,30) Whether the high
accuracy of the new genetic-based dosing algorithms will improve INR control or clinical
outcomes is unknown, but is being addressed in three multi-centered, randomized trials in
the US (Clarification of Optimal Anticoagulation through Genetics (COAG)), Genetics
InFormatices Trial (GIFT) of Warfarin to Prevent DVT, and the Clinical and Economic
Implications of Genetic Testing for Warfarin Management, and one in Europe
(Pharmacogenetics of Anti-Coagulant Therapy (PACT)).

Personalized medicine will accomplish an important achievement if the pharmacogenetic
algorithm developed here improves laboratory or clinical outcomes in ongoing trials. The
hypothesized success would not belong to genetic testing, per se, but rather to a
comprehensive approach whereby many patient-specific factors are accounted for explicitly.
If this approach to warfarin management is any indication of what to expect from the
investment in the Human Genome Project, genetics will add to, rather than replace, the list
of factors that clinicians will need to consider when personalizing therapy.
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Methods
Population

After Institutional Review Board approval at the participating sites, we obtained clinical and
genetic data on 1213 patients in 3 continents: University of Alabama (N=62), Hospital for
Special Surgery (N=11), Kaiser Permanente Colorado (N=30), University of Liverpool
(N=149), Marshfield Clinic (N=147), Washington University in St. Louis School of
Medicine (N=264), Ramathibodi Hospital, Mahidol University, Bangkok, Thailand (N=29),
University of Pennsylvania (N=86), Uppsala University, Uppsala, Sweden (N=2),
Intermountain Medical Center (N=155), Karolinska Institutet, Stockholm, Sweden (N=278).
Patients were excluded if they did not achieve a therapeutic dose (defined below), if an INR
on day 4 or 5 was not available, if their baseline (pre-warfarin) INR was above 1.4, if they
were not genotyped for CYP2C9*2, CYP2C9*3 or VKORC1, or if they were prescribed fresh
frozen plasma or vitamin K prior to their INR measurement. We randomly sampled 80% of
the data for derivation, setting aside 20% for internal validation (Table 1). Dosing protocols
varied among sites, with some participants (31%) being initiated on warfarin therapy using
pharmacogenetic dosing algorithms.(29,30,46) However, stratifying by whether or not sites
used a pharmacogenetic dosing protocol did not improve predictive accuracy. After
development and internal validation, we studied 584 patients from 4 additional sites to
validate the final algorithm (which was derived from combining the derivation and internal
validation cohorts): Vanderbilt University (N=132), Inje University College of Medicine,
South Korea (N=139), and University of Utah Hospital (N=117). The University of
Liverpool also genotyped additional patients for external validation (N=196). Data from
these 584 additional patients comprised the external validation cohort. Some of the data in
the present analysis, were used for other pharmacogenetic analyses
(8,9,16,29,30,31,51,52,53).

Study Outcomes
The outcome variable was the therapeutic (maintenance) warfarin dose, defined as the dose
that led to stable therapeutic anticoagulation levels: all sites required therapeutic INR values
on at least two consecutive visits. Thus, data from studies that originally required only a
single INR to define therapeutic dose (8,29,30), were re-analyzed using the more stringent
definition in this analysis.

Statistical Analysis of the Derivation Cohort
Using stepwise selection, we quantified the relationship between therapeutic doses and
genetic and clinical information available on the fourth or fifth day of warfarin therapy
(Tables 2 and 3). Variables were allowed to remain in the multivariable linear regression
model if they achieved statistical significance (P ≤ 0.05), or were marginally significant
(0.05 < P ≤ 0.20) with strong biological plausibility. Because some patients had INRs
available on both the fourth and the fifth day of therapy (N=355), we repeated random
selection of half of them for whom we would use their 4th-day INR and half of them for
whom we would use their 5th-day INR when deriving the model using a bootstrap procedure
with 1000 resamples. Height and weight were combined into body surface area (BSA) using
the classic fomula.(47)

We assessed the predictive ability of demographics (gender, race, and ethnicity), warfarin
indication (atrial fibrillation, orthopedic surgery, venous thromboembolism, cardiac valve,
and stroke), current medications (amiodarone, CYP inducers and statins), comorbidities
(diabetes or liver disease), genotype, and INR values. Categorical variables were coded ‘1’
if present and ‘0’ if absent. To preserve linearity we log transformed therapeutic doses and
INR. CYP2C9 inducers included rifampin/rifamycin, or carbamazepine. Fluvastatin,
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simvastatin, lovastatin, rosuvastatin, and atorvastatin were tested individually and in
combination. Information on other interacting medications was not consistently available
from sites. If diabetes status, smoking status, statin use, amiodarone use, or inducer use was
not recorded at a particular site (n=232, n=148, n=232, n=135, and n=485 respectively),
their probabilities were estimated using a likelihood method. Probabilities were then used in
the regression equation instead of missing dummy variables. Missing BSA (n=38) was
imputed from height or weight (if available), sex, and presence or absence of diabetes.

We coded CYP2C9*2 and CYP2C9*3 SNPs as 0 if absent, 1 if heterozygous, and 2 if
homozygous. Likewise, VKORC1–1639 G>A (rs9923231) was coded 0 (homozygous GG),
1 (heterozygous), or 2 (homozygous AA). If VKORC1–1639 G>A genotype (also called
VKORC1 3673) was missing (N = 241, derivation; N=57, internal validation) we inferred it
from VKORC1 1173/6484 C>T (rs9934438) or VKORC1 1542/6853 G>C (rs8050894),
which are in high linkage disequilibrium.(20,48,49)

To accommodate INRs taken on either the fourth or the fifth day of therapy, we defined
doses in terms of the number of days they were given before the INR was drawn. For
example, for patients with an INR on the 5th day of therapy, dose-2 was the dose given 2
days prior (on the 3rd day of therapy); dose-3 was the dose given on the 2nd day of therapy,
etc. In this manner, only one INR (taken on either day 4 or day 5) was required for any
individual’s dose prediction.

We used 1000 bootstraps(50) to compare accuracy (R2 and median absolute error, MAE)
between the pharmacogenetic and clinical refinement models as well as between the
refinement algorithms and previously validated pharmacogenetic and clinical initiation
algorithms.(8) Because warfarin use after valve replacement was rare in the derivation and
internal validation cohorts (N = 37), we calculated a correction factor for these individuals in
a post-hoc analysis to quantify the transient warfarin sensitivity after valve replacement
(observed previously:(39-41)) after external validation, we regressed the residual from the
final model onto a dummy variable indicating whether or not the patient (in any cohort) had
this indication, using all data available.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Pharmacogenetic predicted versus actual therapeutic doses in the internal and external
validation cohorts (using an INR on day 4 of therapy)
Open circles represent individuals for whom no variants in CYP2C9 and VKORC1 were
detected. Grey circles represent individuals who are carrying one variant allele (either
VKORC1-1639 A or a *2 or *3 allele. Black circles represent individuals with at least two
variants. The ‘P’ was an individual taking phenytoin. The ‘R’ was an individual taking
rifampin.
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Table 1

Demographic and clinical information in the derivation and internal validation cohorts

Derivation Internal Validation

Demographic Variables (N=969) (N=244)

 Male, N (%) 545 (56.2) 144 (59)

 African Origin, N (%) 95 (9.8) 28 (11.5)

 Caucasian Race, N (%) 818 (84.4) 207 (84.8)

 Asian Race, N (%) 28 (2.9) 6 (2.5)

 Other/Unknown Race, N (%) 28 (2.9) 3 (1.2)

Allele Frequencies

 VKORC1-1639 G> A 35.2% 39.2%

 CYP2C9*2 10.4% 11.5%

 CYP2C9*3 5.9% 5.5%

Indication

 Atrial Fibrillation/Flutter, N (%) 306 (31.6) 81 (33.2)

 Orthopedic Surgery, N (%) 264 (27.2) 61 (25.0)

 DVT or PE, N (%)* 251 (25.9) 69 (28.3)

 Valve Replacement, N (%) 32 (3.3) 5 (2.0)

 Stroke, N (%) 17 (1.8) 6 (2.5)

 Other or Missing Indication, N (%) 99 (10.2) 22 (9.0)

Clinical Variables

 Age, mean (SD), years† 62 (14.2) 61 (14.5)

 Height, mean (SD), cm‡ 170 (10.4) 173 (10.9)

 Weight, mean (SD), kg§ 87.5 (22.4) 86.7 (23.3)

 Therapeutic Warfarin Dose, geometric mean (SD), mg/week 32.1 (1.6) 31.7 (1.5)

 INR on day 4, geometric mean (SD) ‡ 1.8 (1.4) 1.9 (1.4)

 INR on day 5, geometric mean (SD) 1.9 (1.4) 1.9 (1.3)

 Target INR, mean (SD) 2.5 (0.2) 2.5 (0.2)

 1st Warfarin Dose, mean (SD), mg 7.7 (3) 7.6 (3)

 2nd Warfarin Dose, mean (SD), mg 6.6 (2.8) 6.7 (2.9)

 3rd Warfarin Dose, mean (SD), mg 5.1 (2.6) 5.0 (2.4)

 Fluvastatin Use, N (%) 7 (0.7) 1 (0.4)

 Amiodarone Use, N (%) 31 (3.2) 8 (3.3)

 Inducer Use, N (%)║ 7 (0.7) 1 (0.4)

 Current Smoker, N (%) 101 (10.4) 27 (11.1)

 Liver Disease, N (%)¶ 15 (1.5) 4 (1.6)

 Diabetes, N (%) 79 (8.2) 21 (8.6)

*
DVT is Deep Venous Thrombosis; PE is Pulmonary Embolism.

†
SD is Standard Deviation.

‡
INR is the International Normalized Ratio.
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║
Rifampin or carbamazepine.

¶
Liver Disease is hepatic cirrhosis, a two-fold elevation of any liver transaminase, or an albumin < 3.6.
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Table 2

Clinical Refinement Model in Derivation Cohort (N=969).

Entry into model variable Effect on dose* (95% CI) Cumulative Model R2 P

1 ln(INR) † -18% (-20% to -16%) 22.2% <0.001

2 Dose-3, per mg‡ +3% (2% to 4%) 35.3% <0.001

3 Age, per year -5% (-7% to -4%) 39.4% <0.001

4 Dose-2, per mg +4% (2% to 5%) 42.4% <0.001

5 Dose-4, per mg +2% (1% to 3%) 44.5% <0.001

6 Stroke indication -27% (-38% to -13%) 45.4% <0.001

7 Target INR +8% (4% to 11%) 46.2% <0.001

8 Diabetes -15% (-22% to -8%) 46.9% <0.001

9 BSA║, per 0.25 m2 +5% (2% to 7%) 47.7% <0.001

10 Fluvastatin Use -24% (-41% to -1%) 48.0% 0.040

11 Amiodarone Use -12% (-23% to 1%) 48.2% 0.060

*
Effect on the maintenance dose is calculated per 0.25 unit increase in ln(INR) or target INR.

†
ln is natural logarithm. INR is International normalized ratio.

‡
Dose −i is dose given i days before INR is measured.

║
BSA is Body Surface Area.
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Table 3

Pharmacogenetic Refinement Model in Derivation Cohort (N=969).

Entry into model variable Effect on dose* (95% CI) Cumulative Model R2 P

1 VKORC1-1639 G>A -20% (-23% to -17%) 23.2% <0.001

2 ln(INR) † -12% (-14% to -11%) 35.5% <0.001

3 Dose-3, per mg‡ +2% (1% to 3%) 44.1% <0.001

4 Age, per year -7% (-9% to -6%) 49.9% <0.001

5 CYP2C9*3 -28% (-32% to -23%) 55.1% <0.001

6 CYP2C9*2 -15% (-19% to -11%) 57.0% <0.001

7 BSA║, per 0.25 m2 +7% (4% to 9%) 58.9% <0.001

8 Target INR +7% (4% to 10%) 59.7% <0.001

9 African Origin -11% (-17% to -5%) 60.4% 0.001

10 Stroke -23% (-33% to -10%) 61.0% <0.001

11 Dose-4, per mg +1% (1% to 2%) 61.5% <0.001

12 Dose-2, per mg +2% (1% to 3%) 62.0% <0.001

13 Diabetes -9% (-16% to -3%) 62.3% 0.007

14 Amiodarone Use -12% (-21% to -1%) 62.5% 0.028

15 Fluvastatin Use -17% (-33% to 4%) 62.6% 0.106

*
Effect on the estimate of the maintenance dose is calculated per variant allele, and per 0.25 unit increase in ln(INR) or target INR.

†
ln is natural logarithm. INR is International normalized ratio.

‡
Dose −i is dose given i days before INR is measured.

║
BSA is Body Surface Area.
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