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ABSTRACT

MicroRNAs (miRNAs) modulate the post-

transcriptional regulation of target genes and

are related to biology of complex human traits,

but genetic landscape of miRNAs remains largely

unknown. Given the strikingly tissue-specific miRNA

expression profiles, we here expand a previous

method to quantitatively evaluate enrichment of

genome-wide association study (GWAS) signals on

miRNA–target gene networks (MIGWAS) to further

estimate tissue-specific enrichment. Our approach

integrates tissue-specific expression profiles of miR-

NAs (∼1800 miRNAs in 179 cells) with GWAS to test

whether polygenic signals enrich in miRNA–target

gene networks and whether they fall within specific

tissues. We applied MIGWAS to 49 GWASs (nTotal =

3 520 246), and successfully identified biologically

relevant tissues. Further, MIGWAS could point

miRNAs as candidate biomarkers of the trait. As

an illustrative example, we performed differentially

expressed miRNA analysis between rheumatoid

arthritis (RA) patients and healthy controls (n =

63). We identified novel biomarker miRNAs (e.g.

hsa-miR-762) by integrating differentially expressed

miRNAs with MIGWAS results for RA, as well as

novel associated loci with significant genetic risk

(rs56656810 at MIR762 at 16q11; n = 91 482, P = 3.6

× 10−8). Our result highlighted that miRNA–target

gene network contributes to human disease ge-

netics in a cell type-specific manner, which could

yield an efficient screening of miRNAs as promising

biomarkers.

INTRODUCTION

Complex human traits are products of orchestration of
high dimensional multi-omics layers, including genome,
epigenome, transcriptome, proteome and metabolome.
Genome-wide association study (GWAS) has discovered
thousands of genomic loci associated with these traits (1,2).

Integration of such large-scale genetic data with multi-
layered omics information has successfully identi�ed cell-
type speci�c and context-dependent regulatory mechanism
of diseases (3).While previous trans-omics approachmostly
focused on integration with transcriptome (e.g. RNA-seq)
(4) and epigenome data (e.g. ChiP-seq and Hi-C) (3,5), in-
novative construction of the analytic pipeline to integrate
additional omics layers has been warranted to further elu-
cidate complex biology of the traits.
Non-coding regions in the human genome constitute one

of the unrevealed layers in biology.MicroRNAs (miRNAs),
short non-coding RNAmolecules of 21–25 nucleotide long,
are key players in post-transcriptional gene regulation (6,7).
Numerous studies have shown their critical role in the
pathogenesis of various human diseases (8,9) and applica-
tion of miRNAs as a biomarker or a therapeutic target is
ongoing and promising (10,11). Nevertheless, it has been
dif�cult to detect comprehensive association signals ofmiR-
NAs as compared with those of protein-coding genes and
mRNAs, because genomic region that encodes miRNAs is
relatively small. Biological roles of a miRNA should also be
interpreted in a tissue speci�c context along with its target
gene. On the arrival of recent high throughput sequencing
technologies, comprehensive catalog of miRNA expression
pro�le was created and revealed that the expression levels of
miRNAs varied greatly according to tissues and were highly
skewed (12).
Harnessing this tremendous work, here we extended

our method to quantitatively evaluate enrichment of
GWAS polygenic signals on miRNA–target gene networks
(MIGWAS; miRNA–target gene networks enrichment on
GWAS) that we have previously reported (13) to further de-
cipher tissue-speci�c contribution of miRNA function in
each trait. The MIGWAS enables us to study the tissue-
speci�c landscape of post-transcriptional regulation, and to
identify candidate miRNAs that are essential in pathophys-
iology. Our method can also conduct in silico screening of
the miRNAs that can be used as novel biomarkers or thera-
peutic targets on the traits, which was empirically validated
by the subsequent case-control analysis of differentially ex-
pressed miRNAs obtained from clinical subjects and the
large-scale genetic association analysis of the lead variants.
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MATERIALS AND METHODS

Calculation of gene- and miRNA- P values fromGWAS sum-
mary statistics

We converted GWAS SNP association signals into a gene-
or miRNA- level P value (i.e. PGene and PmiRNA, respec-
tively). Similarly to the method Segrè et al. used in MA-
GENTA software (14), the best P value of a set of SNP P
values mapped onto each gene or miRNAwas corrected for
the confounding effects of physical and genetic properties of
genes or miRNAs on the P value (Figure 1A). We excluded
genes and miRNAs located in the major histocompatibility
complex (MHC) region to avoid the in�uence from its long
linkage disequilibrium and complex architecture (15).

Curation of miRNA expression data and miRNA–target gene
network information

Tissue-speci�c miRNA expression data from the FAN-
TOM5 consortium (12) excluding candidate novel ones
was downloaded from a web site (see URLs). Expression
count per million values of mature miRNAs derived from
1842 pre-miRNAs in 179 human cell types were quantile-
normalized using preprocessCore v1.34.0 package in R
software. These cell types were classi�ed as 18 tissue type
categories; bone (n = 10), brain (n = 14), cardiac (n = 3),
eye (n= 3), fat (n= 15), fetal (n= 14), gastrointestinal (GI;
n = 7), genitourinary (GU; n = 6), immune (n = 22), joint
(n = 1), kidney (n = 7), liver (n = 4), lung (n = 10), muscle
(n = 8), pancreas (n = 1), skin (n = 6), vascular (n = 15)
and others (n = 33; Supplementary Table S1) based on the
organs from which these cells were collected. The result of
the principal component analysis describing the expression
pattern of miRNAs in each cell is shown in Supplementary
Figure S1. Next, we calculated a TSI as Ludwig et al. pre-
viously described (16). In brief, the TSI for jth miRNA was
calculated as

tsi j =
∑N

i=1

(

1 − xj,i
)

N − 1
,

where N corresponds to the total number of cells measured
and xj,i is the expression amount of ith cell normalized by
the maximal expression of any cell for jth miRNA.

In each cell type, we de�ned a set of highly and speci�cally
expressed miRNAs that satisfy two conditions; (i) normal-
ized expression value falls within the top 10 percentile of
those obtained from all miRNAs and (ii) TSI > 0.7 (Figure
1B). TSI > 0.7 threshold made it possible to include miR-
NAs with a wide range of expression levels and a variety of
miRNAs, while retaining the power (Supplementary Figure
S2). This set of highly and speci�cally expressed miRNAs
was used to partition miRNA’s heritability signal into vari-
ous human cell types.
We obtained four kinds of major target gene prediction

algorithms; TargetScan Human, DIANA-TarBase, PITA,
andmiRDB (seeURLs; Supplementary Table S2). For each
of the prediction algorithms, we made a prediction score
matrix with a row corresponding to genes, and a column
corresponding to miRNAs.

Quantifying the enrichment of miRNA–gene network to a
trait in a speci�c cell type

In order to empirically evaluate cell type-speci�c enrich-
ment ofmiRNA–target gene network to a trait, we extended
MIGWAS, which we have previously described (Figure 1C).
Let yA,Si, j

be the set of miRNA and gene pairs that sat-

isfy the following four conditions: (i) target prediction score
of the miRNA and gene is above jth threshold in ith pre-
diction algorithm, (ii) the above mentioned PmiRNA is be-
low a nominal signal (� = 0.01), (iii) the Pgene is also be-
low � and (iv) the miRNA is included in a set of highly
and speci�cally expressed miRNAs in cell A. n(yA,Si, j

) de-

notes the number of pairs included in the set yA,Si, j
. We es-

timated the enrichment signal in cell A by comparing this
metric n(yA,Si, j

) with the empirical null distribution using a

permutation procedure (20 000 times). Under this null dis-
tribution, we assumed that there is no association among
tissue-speci�cmiRNA expression, miRNA–target gene net-
work and GWAS signal. In each iteration step, we ran-
domly shuf�ed P values of both all genes and all miR-
NAs while retaining the miRNA–target gene relationships,
and calculated the metric of the kth permutation step as
n(y′

(k)A,Si, j
) (i.e. the number of miRNA–gene pairs that met

all the four condition (i)–(iv) with the shuf�ed P values).
The signi�cance Penrichment, A,Si, j of the metric was de�ned

as P(n(y′) ≥ n(y)). We then sequentially slid the threshold
j of the i th prediction algorithm from top one percentile
to 0.1 percentile with eight partitions. When integrating the
statistics, we adopted the results obtained only if the mean
of n(y′

(k)A,Si, j
) is more than �ve because the estimation of

the null distribution can be biased when n(y′) s are sparse.
In order to compensate for the uncertainty existing within
a single target prediction algorithm, we also integrated the
results of four prediction algorithms to obtain one robust
enrichment P value in cell A by meta-analyzing the enrich-
ment signi�cance as follows:

Penrichment,A =

�

⎛

⎝

1√
nalgori thm

nalgori thm= 4
∑

i = 1

(

1
∑

j kSi, j

9
∑

j = 1

kSi, j �
−1

(

Penrichment,A,Si, j

)

)

⎞

⎠ ,

where kSi, j =

{

1, when mean y′ ≥ 5

0, when mean y′ < 5

� represents the cumulative distribution function of the
normal distribution. Permutation P value < 0.05 was in-
terpreted as statistically signi�cant in all the following anal-
yses.
In addition to quantifying tissue speci�c enrichment sig-

nal, we recorded the pairs of a miRNA and a gene included
in the set yA,Si, j

to be considered as tissue-speci�c trait as-

sociated pairs of a miRNA and a gene.
We have released a python source code together with for-

matted miRNA expression materials to allow users to per-
form MIGWAS using any GWAS summary statistics on
their own computers (see URLs). A multithreading option
using multiprocessing module in python is implemented to
shorten the computing time (∼6.50 h when applied to sum-
mary statistics of one GWAS with ∼7 million variants for
179 cell types using four CPU cores with 2.3 GHz). Selec-
tion of the algorithms to predict miRNA–target genes, TSI
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A

C

B

Figure 1. Overview of MIGWAS approach. (A) GWAS summary statistics are converted to gene- and miRNA- level P values (PGene and PmiRNA). (B)
MiRNA expression data from various human tissues was quantile-normalized, and a set of highly and tissue-speci�cally expressed miRNAs was de�ned in
each cell type. (C) Cell-type speci�c enrichment of GWAS signal in miRNA–target gene network was assessed by a permutation procedure (see Materials
and Methods).

thresholds, and permutation numbers can be optimized by
the users.

GWAS summary statistic data sets

We collected 49 GWAS summary statistics (Supplementary
Table S3). Twenty-one of them were provided from public
websites or collaborators. They include diseases consisting
of four major categories (immune/allergy-related [n = 4],
neuropsychiatric [n = 2], cardiovascular [n = 1] and geni-
tourinary [n = 1]) and quantitative traits consisting of �ve
major categories (anthropometric [n = 3], metabolic [n =
3], musculoskeletal [n = 1], cardiovascular [n = 2], kidney-
related [n = 2] and hematological [n = 2]). The remaining
28 summary statistics are obtained from ongoing BioBank
Japan project (17), >170 000 genome and health-related
phenotype biobank of Japanese. These include diseases con-
sisting of nine major categories (immune/allergy-related [n
= 4], metabolic [n = 1], musculoskeletal [n = 2], neuropsy-

chiatric [n = 1], eye-related [n = 2], cardiovascular [n = 5],
lung-related [n= 1], liver-related [n= 2], genitourinary [n=
2], and malignancy [n = 7]), and quantitative traits consist-
ing of 2 anthropometric traits (adult height, and body mass
index [BMI]). De�nition of the diseases and the process of
patient registration are described elsewhere (17,18).
From these summary statistics, SNP positions based on

the UCSC hg19 reference and their association P values
from linear regression (quantitative trait) or logistic regres-
sion (binary trait) are collected and re-formatted.

Study populations for high throughput miRNA expression se-
quencing

In this case-control study, Japanese patients with early
rheumatoid arthritis (RA) were enrolled together with
healthy Japanese volunteers. The diagnosis ofRAwas based
on 2010 ACR/EULAR criteria (19).Written informed con-
sent was obtained prior to the enrollment from all the in-
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dividuals. In total, 30 RA patients and 33 healthy control
(HC) participants were enrolled. Detailed information on
the participants is in Supplementary Table S4. This study
was approved by the ethical committee of Osaka Univer-
sity.

MiRNA expression sequencing and differential expression
analysis in RA patients

Whole blood from the subject was collected into an
ethylenediaminetetraacetic acid (EDTA) tube. PBMCs
were isolated using Ficoll–Paque density gradient medium.
Total RNA from PBMCs was isolated using miRNeasy
Micro Kit (Qiagen). Libraries for miRNA-seq were pre-
pared using SMARTer smRNA-Seq Kit (Takara) following
manufacturer instructions. RNA-seq was performed using
a HiSeq 2500 (Illumina, read length of 100 bp, single-end).
For QC of the sequencing data, adaptor sequences were
trimmed using Cutadapt, and reads with low quality score
(Phred quality score< 20 in> 80% of total bases) and reads
with length >50 bp were removed. All the samples have to-
tal read counts > 1.0 × 106, and thus proceeded to further
analysis. Read count information is summarized in Supple-
mentary Table S4. Reads were aligned against the known
miRNA sequences in miRBase database, using Bowtie with
recommended options described in the literature (20). Dif-
ferential miRNA expression analysis between RA and HC
was carried out with the R package DESeq2.

Overlap enrichment analysis of differentially expressed miR-
NAs with the MIGWAS result

To test whether differentially expressed miRNAs between
RA patients and HC signi�cantly overlap with candidate
RA-associated miRNAs obtained from the MIGWAS, we
performed a permutation procedure. We randomly shuf�ed
sample IDs of themiRNA expression table, and de�ned dif-
ferentially expressed miRNAs (FDR-q < 0.05). The num-
ber of overlapped miRNAs included both in differentially
expressed miRNAs and in the MIGWAS candidates was
recorded in each permutation step. After 5000 permutation
steps, empiricalP valuewas calculated as the number of per-
mutation steps where the number of overlapped miRNAs
was equal to or exceeded that from real dataset divided by
the total number of permutation steps ( = 5000 iterations).

The in silico replication study of the biomarker miRNA loci
with RA risk

For each genetic locus that harbors a biomarker miRNA
identi�ed by the MIGWAS of RA and the differentially ex-
pressed miRNA analysis of the RA patients, we selected
the lead SNP with the most signi�cant association within
the locus from the original trans-ethnic RA meta-analysis
(19 234 RA cases and 61 565 controls) (21). By looking-up
the additional two RA GWAS of Japanese (3308 RA cases
and 8357 controls; Supplementary Table S5) (22), we con-
ducted the in silico replication study of the lead SNPs with
RA risk. Meta-analysis of the GWAS and replication study
was conducted by an inverse-variance method assuming a
�xed-effects model.

Integrative analysis with eQTL summary data and summary-
level Mendelian Randomization (SMR) analysis

We hypothesized that miRNAs identi�ed by the MIGWAS
pipeline exert their effects on the trait by regulating the tran-
scripts of their target genes, and that the target genes’ ex-
pression level should also have a dose dependent associa-
tion with the trait. To test this hypothesis, we undertook
two ways of analysis using publicly available eQTL sum-
mary data. First, we tested whether target genes of the iden-
ti�ed miRNA are enriched in eGenes within whole blood
when compared with those across all tissues using sum-
mary eQTL data from GTEx consortium (23). eGenes in
each tissue were de�ned as genes that harbor cis-eQTL vari-
ants which associate with their expression level with FDR-
q < 0.05. The enrichment was assessed by the binomial
test, with the prior probability being the number of eGenes
within whole blood divided by the number of eGenes across
all tissues that were includedwithin the scope of eQTL anal-
ysis, GWAS, and miRNA’s target prediction. Second, we
performed SMR to show that the expression level of tar-
get genes that were identi�ed through the above-mentioned
analysis associates with the trait by causality or pleiotropy,
and not by linkage. By integrating trans-ethnic GWAS sum-
mary statistics of RA (21) withCAGE eQTLdata of periph-
eral blood (24), we did SMR analysis for 41 target genes of
hsa-miR-762. We considered PHEIDI ≥ 0.05 as a threshold
that we could not reject the null hypothesis that there was
a single causal variant affecting both gene expression and
trait variation (25).

RESULTS

Overview of our MIGWAS statistical methods

The overview of our MIGWAS method is shown in Fig-
ure 1. The principal hypothesis of MIGWAS is that if the
miRNA is associated with a genetic risk of a trait, the tar-
get genes of the miRNA are also associated with the trait as
a miRNA functionally works by interacting with its target
genes. To test this hypothesis, we �rst converted SNP-level
association statistics in the GWAS into gene- and miRNA-
level association P values (i.e. PGene and PmiRNA, respec-
tively; Figure 1A). Then we quantitatively evaluated enrich-
ment of pairwise association signals of miRNAs and their
target genes. We note that we set the signi�cance threshold
of PGene and PmiRNA (� = 0.01) less stringent than the typi-
cal genome-wide signi�cant level (26), to enhance sensitivity
and to comprehensively incorporate the polygenic nature of
complex traits (27,28).
In order to quantify tissue-speci�c contribution of miR-

NAs in each trait, we next partitioned enrichment of
miRNA–target gene signals into each cell type separately.
After normalization of miRNA expression data released by
the FANTOM5 consortium (12), we de�ned a set of highly
and tissue-speci�cally expressed miRNAs in a total of 179
human cells (Figure 1B).We performed cell type-based par-
titioning analysis within the de�ned set of miRNAs of each
of the 179 cell types (Figure 1C), and thus obtained cell-type
speci�c enrichment P value through permutation-based
parallel computing. In addition our MIGWAS pipeline
automatically identi�es a set of trait-associated miRNA–

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/n
a
r/a

rtic
le

-a
b
s
tra

c
t/4

6
/2

2
/1

1
8
9
8
/5

1
6
0
9
7
1
 b

y
 K

y
o
to

 U
n
iv

e
ris

ty
 u

s
e
r o

n
 2

9
 M

a
y
 2

0
1
9

A Self-archived copy inKyoto University Research Information Repositoryhttps://repository.kulib.kyoto-u.ac.jp



Nucleic Acids Research, 2018, Vol. 46, No. 22 11903

target gene pairs for both speci�c tissue categories and in
all tissue categories combined together.

Heterogeneous enrichment of miRNA–target gene network
to human complex traits

We applied the extended MIGWAS pipeline to the 49
GWAS summary statistics to evaluate the overall contribu-
tion of miRNA–target gene networks to various complex
human traits, �rstly without considering tissue-speci�city.
The GWASs covered a wide range of traits including an-
thropometric (n = 4), immune/allergy (n = 8), metabolic
(n = 5), musculoskeletal (n = 2), neuropsychiatric (n = 3),
eye-related (n = 2), cardiovascular (n = 8), lung-related (n
= 1), kidney-related (n= 2), liver-related (n= 2), genitouri-
nary (n = 3), hematological (n = 2) and malignancy traits
(n = 7). The detailed information of the GWASs is shown
in Supplementary Table S3 and the Materials and Meth-
ods section. We observed nominally signi�cant (P < 0.05)
miRNA–target gene enrichment signal in three traits for
�ve GWASs; height, RA and type 2 diabetes (Figure 2A),
which was consistent and robust with our previous results
despite of the update on miRNA–target gene prediction al-
gorithms (13). We note that we observed trans-ethnically
consistent results for height and type 2 diabetes (P < 0.05
in both populations), two traits for which independent sum-
mary statistics were obtained from European and Japanese
populations separately (29,30), which empirically validates
the robustness of the MIGWAS results.

Tissue speci�c MIGWAS results successfully identi�ed the
disease-relevant tissue and associated miRNAs

Motivated by the robustness of ourMIGWAS pipeline sup-
ported by trans-ethnic consistency, next we performed the
partitioned enrichment analysis using the tissue speci�c
miRNA expression data. Each trait was analyzed consider-
ing 179 different human cell types in parallel, and we anno-
tated each cell into 18 tissue categories from which it was
collected from (Supplementary Table S1). We here high-
lighted enrichment signal to immune-related cells in each
trait as an example (Figure 2B). Tissue speci�city of the
traits in immune-related cells showed the different spec-
trum of enrichment with the most signi�cant enrichment
in Graves’ disease (P = 2.6 × 10−6). Relatively high enrich-
ment signals were also found in type 2 diabetes as well (P<

5.9 × 10−5 in both populations), where obesity-associated
chronic tissue in�ammation is reported to play a key con-
tributing role (31).
Figure 2C shows the strongest associated cell in each

trait. These results successfully illustrated the diverse tissue-
speci�c nature of miRNA–target gene contribution to a
trait, which was not obvious through the tissue-naı̈ve ap-
proach. In many cases the analysis identi�ed biologically
relevant cell types in each trait (e.g. immune cells in Graves’
disease, chronic hepatitis C, systemic lupus erythematosus,
Crohn’s disease and asthma, adipocytes in LDL cholesterol
and coronary artery disease, brain tissue in age at menarche
(32)). Detailed cell names of top association in all the traits
are described in Supplementary Table S6.
Considering the abundance of accumulated literature on

miRNA’s associations in immune- and allergy- related traits

(33), we highlighted detailed enrichment signals in immune-
and allergy- related traits (Figure 3). Here again, we ob-
served disease relevant cell types in each trait. In RA,
miRNA–target gene contribution was enriched in lung,
bone, and immune cells (P = 3.6 × 10−3

, 9.6 × 10−3 and

1.5 × 10−2, respectively), which is consistent with biologi-
cal understanding of the disease that pathogenic autoimmu-
nity is �rst triggered in the lungs faced with environmental
stimuli such as cigarette smoking and then causes bone ero-
sion (34). We note that these disease-relevant tissues have
not been identi�ed by any previous methods to integrate
with mRNA transcriptome and epigenome data despite
their pivotal roles in RA pathophysiology (3,4,5), thereby
demonstrating validity of our method to incorporate tissue-
speci�c miRNA pro�les. All the cell names with signi�cant
enrichment in immune-related traits are described in Sup-
plementary Table S6.

Differential expression of miRNAs among rheumatoid arthri-
tis patients enriches in MIGWAS result and pinpoints novel
causal mechanisms

Through the MIGWAS pipeline, we also obtained a list of
candidate trait-associatedmiRNAs and target genes as can-
didate biomarkers, which was de�ned systematically to sat-
isfy the criteria used in the enrichment analysis (i.e. both
miRNA and its predicted target gene are associated with
the trait with a nominal signi�cance [P value < 0.01]) with
all tissue categories combined together. Given the previous
studies showing the association of miRNAs in the biology
of RA (13,35,36), we decided to focus on RA as a target of
in vivo validation. To validate candidate novel miRNAs of
which association with RA was identi�ed by MIGWAS, we
pro�led miRNA expression in peripheral blood mononu-
clear cells (PBMCs) from 30 patients with early RA and 33
control subjects using high throughputmiRNA sequencing.
PBMCs were selected for the miRNA expression pro�ling
because they have been shown to harbor much of heritabil-
ity in the pathology of RA (3,32), and also because they
can be collected in the clinical setting.We found 94 differen-
tially expressed miRNAs with a false discovery rate (FDR)
of 0.05 (Figure 4A). Of these, four miRNAs (hsa-miR-93-
5p, hsa-miR-106b-5p, hsa-miR-301b-3p and hsa-miR-762)
overlapped those identi�ed by the MIGWAS pipeline ap-
plied for the RA GWAS. Permutation procedures in which
sample IDs of the miRNA expression data were randomly
shuf�ed 5000 times revealed that the observed overlap of
as many as four miRNAs was much larger than would be
expected by chance (98.0-fold enrichment [four miRNAs
divided by the mean simulated overlap, 0.0408], permu-
tation P value = 0.0010 [�ve simulation steps with equal
or more overlap than the observed overlap divided by to-
tal simulation steps], Materials and Methods for permuta-
tion procedure; Table 1 and Supplementary Figure S4). One
of the overlapped miRNAs, hsa-miR-762, was signi�cantly
highly expressed in RA patients (log2 fold change = 1.15
and FDR-q = 0.043) and has a prominent expression spe-
ci�c to immune-related cells (tissue speci�city index [TSI]=
0.982, Figure 4B and C). This would implicate the utility of
hsa-miR-762 as a future target of clinical validation for a
biomarker of RA. On the other hand, the other three miR-
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Figure 2. MIGWAS results of the GWASs on 49 complex human traits. An enrichment signal is shown by -log10(PMIGWAS). (A) Overall polygenic contri-
bution of miRNA–target gene network to the traits through the tissue-naı̈ve approach. Traits that have bars colored with pink showed nominally signi�cant
enrichment (PMIGWAS < 0.05). (B) An example of tissue-speci�c enrichment signals focusing on immune-related cells. A bar in each trait represents an en-
richment signal of the most signi�cant immune-related cell. (C) An enrichment signal in the strongest associated cell of each trait. The tissue category of the
cell is shown by the color of the bars. Detailed descriptions on cell types and their categories are available at Supplementary Table S1. GI; gastrointestinal,
GU; genitourinary.

NAs showed repressed expressions in the RA patients with
ubiquitous expression pro�les among the cell types (TSI <

0.40).
While genetic variants located nearby the identi�ed

biomarker miRNAs confer suggestive associations in the
original RA case-control GWAS (19 234 RA cases and
61 565 controls, PGWAS ≥ 3.2 × 10−7) (21), overlap with
the RA case-control miRNA-seq analysis strongly priori-
tizes true-positive associations of the lead variants in such
loci. Thus, we conducted an in silico replication study using
additional 3308 RA cases and 8357 controls (Supplemen-
tary Table S5) (22). Of these, two loci that harbor the three
miRNAs satis�ed the genome-wide signi�cance threshold

when GWAS and the replication study was meta-analyzed
(22 119 cases and 69 363 controls;PMETA GWAS = 3.3× 10−8

for rs34130487 atMIR95-MIR106B at 7q22 and P = 3.6 ×
10−8 for rs56656810 atMIR762 at 16q11; Figure 4D, E, Ta-
ble 2, and Supplementary Table S5), of which RA associa-
tions were novel �ndings.
We further listed target genes of these miRNAs (Table

1). As for hsa-miR-762, 41 genes were identi�ed as poten-
tial target genes that work synergistically to cause RA (Fig-
ure 4D). To investigate whether those target genes have an
eQTL effect in immune-related cells where hsa-miR-762 is
supposed to be functioning, we referred to the summary
eQTL statistics in human tissues released by GTEx consor-
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Figure 3. Tissue-speci�c enrichment signal of miRNA–target gene network in selected immune/allergy- related traits. Each circle represents the cell-speci�c
enrichment signal in –log10(PMIGWAS), colored with tissue categories. Large circles pass the nominal threshold of enrichment P value < 0.05, which was
indicated as dotted lines. The names of top 2 enriched cells that passed the threshold are also shown. Detailed descriptions on cell types and their categories
are available at Supplementary Table S1. GI; gastrointestinal, GU; genitourinary.

Table 1. Candidate biomarker miRNAs identi�ed both in the differentially expressed miRNA study and in theMIGWAS analysis (all cell types combined)

RA cases versus controls

Candidate
biomarker miRNA

log2 fold
change in
expression FDR-q TSI Target genes

hsa-miR-93–5p -0.522 0.00022 0.254 ANKH, ANKRD52,ARCN1,BCL2L15,C7orf43,CASP8, CDKN1A,
DENND1B, FAM126B, FAM133B, FYCO1, IKZF4,
KIAA1109,KLF2,LDLR, MAGI3, PEX13,PHTF1,PRDX5, RAB5B, RAG1,
RSBN1,SAR1B, SEC24A, SLC12A5, SNN, STK38, TAGAP, TRAK2,
ZBTB10

hsa-miR-106b-5p -0.811 0.00022 0.269 ANKH, ANKRD52,BCL2L15,C7orf43,CASP8, CDK6, CDKN1A,CEP76,
FAM126B,FAM167A, FAM65B, FYCO1, ICOS,KLF2,LDLR, MAGI3,
PA2G4, PAPOLG,PDGFB, RAB5B, RSBN1,RTKN2,SAR1B, STK38,
TMEM151B, TNFAIP3, VPS37C,ZFP36L1

hsa-miR-301b-3p -0.954 0.0090 0.397 C5orf30, CDK6, DDX6,ITSN1,LDLR, PAN3,SAR1B, SERBP1, SNRPE,
SRSF3,TMEM50B, ZBTB10

hsa-miR-762 1.154 0.043 0.982 ARHGAP20, C11orf20, C11orf9, C1orf93, C7orf59,
CPNE5,DAP,FADS2,GATS,GNAI2,
HDAC5,INPP5B,IQGAP1,IRF5,ITSN1,PADI2,PFKL,PGAP3, PHF15,
PHKG2, PHLDB1, PKNOX2,PPIL2, RAF1, RAVER1,
SLC25A23,SLC44A2, STAC2,SYNGR1, TAB1, TMEM151B,TMPRSS3,
TNFRSF14, TRAF1,TSPAN33,UBASH3A, UPK2,UTP11L,
VPS37C,YDJC,ZNF594

Each miRNA’s target genes were de�ned to have top one percentile of target prediction score in at least two prediction algorithms. Genes in bold face are
those overlapped with eGenes of GTEx eQTL data of whole blood. TSI; tissue speci�city index, RA; rheumatoid arthritis.

tium (23). We observed that target genes of hsa-miR-762
harbor cis-eQTL variants within whole blood as a proxy of
immune-related cells more frequently than expected when
compared to those in all available human tissues (1.46-fold
enrichment with binomial P value = 0.014). This consis-
tently suggests that miRNAs should modulate the associ-
ation with the trait through interfering the transcriptome,
and that the targeted gene’s association with the trait should

be driven by regulation on expression within a speci�c trait-
associated tissue.
In order to clarify the connection between eQTL signals

of the variants which hsa-miR-762’s target genes harbor
and their neighboring association signals in RA GWAS,
we performed the summary data-basedMendelian random-
ization (SMR) (25). This analysis can test whether the ex-
pression level of the target genes associates with RA by
causality or pleiotropy, and not by linkage. In many of the
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Figure 4. Results of differentially expressedmiRNA analysis betweenRA patients and healthy controls. (A) Volcano plot displaying differentially expressed
miRNAs between RA and healthy controls. The x-axis corresponds to the log2 fold change value and the y-axis corresponds to –log10(FDR-q). The blue
dots represent the differentially expressed miRNAs (FDR-q < 0.05). The pink dots represent differentially expressed miRNAs that overlapped with those
identi�ed inMIGWAS analysis. (B) The distribution of tissue speci�city index (TSI) among all themiRNAs in expression data by FANTOM5. Bars colored
with pink show the bins which the overlapped candidate miRNAs belong to. (C) Quantile-normalized expression values of the overlapped miRNAs in
179 cell types (x-axis), scaled as fold changes of the expression levels from the mean levels among all the cell types (y-axis). Bar colors represent the tissue
into which each cell is categorized. GI; gastrointestinal, GU; genitourinary. (D) CIRCOS plot that shows a Manhattan plot of the RA GWAS marked
by MIR762 and its target genes in red. (E) Regional plots of the RA GWAS illustrating variants neighboring MIR762 (left) and SYNGR1 (right top).
Diamonds represent the leading variants, and also shown are their identi�ers, linkage disequilibrium structure and association statistics. Two diamonds
in the left panel represent the P value of rs2069235 from the original RA GWAS summary statistics (PGWAS) (21) and one from the new meta-analysis
described in this paper (PMETA GWAS). Right bottom, eQTL P values from CAGE dataset for a probe tagging SYNGR1.

Table 2. RA case-control associations of the SNPs located at the biomarker miRNA loci

No. subjects Allele 1 frequency

rsID Chr Position Allele 1/2 Gene RA cases Controls RA cases Controls OR (95%CI) P

rs34130487 7 99 759 205 C/T MIR95-
MIR106B

16 633 54 807 0.638 0.623 1.08
(1.05–1.11)

3.3×10–8

rs56656810 16 30 788 759 A/C MIR762 22 119 69 363 0.210 0.196 1.09
(1.05–1.12)

3.6×10–8

rs11089637 22 21 979 096 C/T MIR301B 22 119 69 363 0.280 0.273 1.07
(1.05–1.10)

3.7×10–7

RA, rheumatoid arthritis; OR, odds ratio; 95%CI, 95% con�dence interval.
Detailed results are available at Supplementary Table S5.

target genes of hsa-miR-762, we could �nemap the poten-
tially causal or pleiotropic eQTL variants that not only ex-
isted nearby GWAS genes but also both mediated gene-
expression levels and were associated with RA risk (Supple-
mentary Table S7 for the summary statistics). As an illus-
trative example, genetic variants at SYNGR1 locus, which
was one of the target genes of hsa-miR-762 and showed
the strongest association statistics in the SMR analysis, are

associated with RA risk (upper right panel at Figure 4E).
In expression data from Consortium for the Architecture
of Gene Expression (CAGE) in PBMCs (24), SYNGR1 lo-
cus harbors cis-eQTL variants (lower right panel at Fig-
ure 4E). The SMR analysis reveals that GWAS signal of
the SNP (rs2069235, PGWAS = 7.6 × 10−13, PeQTL = 1.3

× 10−38) in SYNGR1 is strongly and signi�cantly medi-
ated by eQTL effect (PSMR = 3.5 × 10−10), which was not
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driven by linkage (PHEIDI = 0.27). The MIGWAS pipeline
and miRNA expression pro�les from clinical subjects suc-
cessfully pinpointed the causal mechanism ofMIR762’s as-
sociation with RA, where increased expression of hsa-miR-
762 in immune-related cells interferes with transcripts such
as SYNGR1, whose expression levels are associated with
causing RA.

DISCUSSION

By integrating the large scale GWAS data and miRNA–
target gene prediction algorithms together with comprehen-
sive tissue-speci�c miRNA expression pro�les, here we suc-
cessfully extended a method MIGWAS to evaluate enrich-
ment of GWAS signals on miRNA–target gene networks
and to partition them into a tissue speci�c context. The ap-
plication of the MIGWAS pipeline to a wide range of ge-
netics of complex human traits depicted cell type-speci�city
of the trait biology, as well as identi�cation of biomarker
miRNAs and novel genetic risk loci such as hsa-miR-762
encoded in theMIR762 locus at 16q11 for RA. The imple-
mentation of genetic information onmiRNAs will certainly
serve to help investigators elucidate pathophysiology and
forward clinical application, as well as further development
of novel therapeutic targets.
Our MIGWAS pipeline highlights four innovative fea-

tures: (i) quantitatively assessing the miRNA–target gene
contribution to genetics of a trait, (ii) deciphering tissue
speci�city to identify causal tissues on a trait, (iii) ef�ciently
prioritizing genetic loci for a follow-up study that harbor
true-positive associations with disease risk and (iv) pro-
viding candidate biomarker miRNA–target gene lists that
might contribute to the understanding of disease biology.
Our work �rmly supports the idea that the miRNA’s con-
tribution to genetics of complex human traits occurs in a
cell type-speci�c manner in the same way as gene expres-
sion (4) and epigenetic regulation (3,32). A list of candidate
miRNA–target gene pairs provides an ideal resource for ex-
perimental validation aiming at the discovery of biomarkers
or potential therapeutics. The MIGWAS enables us to pin-
point a causalmiRNA–target gene network to a trait, which
was not achieved by GWAS alone or previous approaches
to integrate GWAS and epigenome or transcriptome data.
We acknowledge that our study has several limitations.

First, tissue speci�c MIGWAS analysis was performed
based on an expression data from healthy individuals, while
miRNA expression pro�le might be different depending on
the disease status of individuals. We consider that a com-
promising approach to use summary expression data from
healthy individuals as ours has been shown to successfully
capture enrichment of the trait heritability to biologically-
relevant tissue (37). However, to have further insights into
the disease biology, future application of expression pro�les
from pathologically altered tissues or inclusion of speci�-
cally depleted miRNAs should be warranted. Second, the
in silico prediction of a miRNA and a target gene confers
ambiguity dependent on the algorithms. In order to ob-
tain unbiased prediction scores and to assure the robustness
of the analysis, we integrated multiple different algorithms.
When compared with a recently updated database miRTar-
Base (38), which provides the largest amount of miRNA–

target gene interactions with experimental validations to
date, our approach ofmultiple thresholding andmultiple al-
gorithms indeed contributed to the better functional predic-
tion in vitro (Supplementary Figure S3). Further integration
of such experiment-based target gene information into the
MIGWAS pipeline would be warranted. Third, since our
method is based on the GWAS results, enrichment signal
could be in�ated due to the in�ated GWAS summary statis-
tics. To address this point, we took a permutation approach
to estimate the null distribution, which made theMIGWAS
results robust against the in�ation of the GWAS itself (13).
Forth, we did not incorporate tissue-speci�c expression pro-
�le of genes in our method. The interaction of both miR-
NAs’ and their target genes’ expression levels is beyond this
study because it suffers from exponential combinations and
computational intensiveness. Nevertheless, future integra-
tion would contribute to deciphering �ne nature of tissue
speci�city.
In conclusion, MIGWAS demonstrated that miRNA–

target gene networks contribute to human disease genetics
in the context of cell type-speci�c expressions, and success-
fully identi�ed miRNAs as promising biomarkers.

URLs

The URLs for data presented herein are as follows:

• MIGWAS source code, https://github.com/saorisakaue/
MIGWAS

• FANTOM5 consortium, http://fantom.gsc.riken.jp/5/
• The BioBank Japan Project (BBJ), https://biobankjp.org/
english/index.html

• miRBase, http://www.mirbase.org/
• miRDB, http://www.mirdb.org/
• TargetScan Human, http://www.targetscan.org/vert 72/
• DIANA-TarBase, http://diana.imis.athena-innovation.
gr/DianaTools/index.php

• PITA, https://genie.weizmann.ac.il/pubs/mir07/
mir07 data.html

• GTEx consortium, https://www.gtexportal.org/home/
• CAGE eQTL data, http://cnsgenomics.com/shiny/
CAGE/

• R DESeq2 package, https://bioconductor.org/packages/
release/bioc/html/DESeq2.html

• R preprocessCore package, https://bioconductor.org/
packages/release/bioc/html/preprocessCore.html

• SMR software, cnsgenomics.com/software/smr/
• CIRCOS, http://circos.ca/
• Cutadapt, cutadapt.readthedocs.io/en/stable/
• Bowtie, http://bowtie-bio.sourceforge.net/index.shtml

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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