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Abstract

Profiling amino acids and acylcarnitines in whole blood spots is a powerful tool in the labora-

tory diagnosis of several inborn errors of metabolism. Emerging data suggests that altered

blood levels of amino acids and acylcarnitines are also associated with common metabolic

diseases in adults. Thus, the identification of common genetic determinants for blood

metabolites might shed light on pathways contributing to human physiology and common

diseases. We applied a targeted mass-spectrometry-based method to analyze whole blood

concentrations of 96 amino acids, acylcarnitines and pathway associated metabolite ratios

in a Central European cohort of 2,107 adults and performed genome-wide association

(GWA) to identify genetic modifiers of metabolite concentrations. We discovered and repli-

cated six novel loci associated with blood levels of total acylcarnitine, arginine (both on

chromosome 6; rs12210538, rs17657775), propionylcarnitine (chromosome 10;

rs12779637), 2-hydroxyisovalerylcarnitine (chromosome 21; rs1571700), stearoylcarnitine

(chromosome 1; rs3811444), and aspartic acid traits (chromosome 8; rs750472). Based on

an integrative analysis of expression quantitative trait loci in blood mononuclear cells and

correlations between gene expressions and metabolite levels, we provide evidence for

putative causative genes: SLC22A16 for total acylcarnitines, ARG1 for arginine, HLCS for

2-hydroxyisovalerylcarnitine, JAM3 for stearoylcarnitine via a trans-effect at chromosome

1, and PPP1R16A for aspartic acid traits. Further, we report replication and provide
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additional functional evidence for ten loci that have previously been published for metabo-

lites measured in plasma, serum or urine.

In conclusion, our integrative analysis of SNP, gene-expression and metabolite data

points to novel genetic factors that may be involved in the regulation of human metabolism.

At several loci, we provide evidence for metabolite regulation via gene-expression and

observed overlaps with GWAS loci for common diseases. These results form a strong ratio-

nale for subsequent functional and disease-related studies.

Author Summary

Human metabolite levels differ between individuals due to environmental and genetic fac-

tors. In the present work, we analyzed whole blood levels of amino acids and acylcarni-

tines, reflecting disease relevant metabolic pathways, in a cohort of 2,107 individuals. We

then performed a genome wide association analysis to discover genetic variants influenc-

ing metabolism. Thereby, we discovered six novel regions in the genome and confirmed

ten regions previously found to be associated with metabolites in plasma, serum or urine.

Subsequently, we analyzed whether these variants regulate gene-expression in peripheral

mononuclear cells and at several loci we identified novel causal relations between SNPs,

gene-expression and metabolite levels. These findings help explaining the functional

mechanisms by which associated genetic variants regulate metabolism. Finally, several

SNPs associated with blood metabolites in our study overlap with previously identified

loci for human diseases (e.g. kidney disease), suggesting a shared genetic basis or pathome-

chanisms involving metabolic alterations. The identified loci are strong candidates for

future functional studies directed to understand human metabolism and pathogenesis of

related diseases.

Introduction

High-throughput metabolomics experiments using mass spectrometry platforms are becoming

an integral part of clinical and systems biology research. Profiling of amino acids and acylcarni-

tine species in dried whole blood samples of newborns is used worldwide in neonatal screening

programs to identify rare inborn errors of metabolism [1]. These diseases are generally caused

by rare mutations, leading to loss of function of an enzyme that catalyzes the biochemical reac-

tion of the respective trait. Recently, many of the amino acid and fatty acid metabolites utilized

in newborn screening were also implicated in common complex diseases of adults such as car-

diovascular disease, insulin resistance and obesity. Exemplarily, obesity is accompanied by an

increase in circulating levels of multiple amino acids, including branched chain amino acids

[2,3], and in type 2 diabetics, altered levels of acylcarnitines were described [4,5]. Amino acids

and acylcarnitines show substantial inter-individual variation [6] and a strong genetic contri-

bution to their blood concentrations has been reported [7]. Thus, the integration of genetic and

metabolic profiling holds the promise for providing novel insights into the regulation of meta-

bolic homeostasis in health and disease.

Indeed, recent studies have identified common genetic variants associated with a variety of

circulating metabolites in serum, plasma or urine using different analytical platforms (LC-MS/

MS, NMR) [8–24]. However, the complexity of the metabolome cannot be captured by a single

technology. Since differences in metabolite abundance have been described between plasma
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and whole blood [25], we hypothesized that additional genetic determinants affecting the

blood metabolome are yet to be discovered.

Thus, we performed an integrated study combining genetics, gene expression and metabo-

lom data (see S1 Fig for the study design). We applied a targeted LC-MS/MS method to mea-

sure the abundance of amino acids and acylcarnitines in dried whole blood spots of 2,107

individuals and performed genome-wide association analysis. Top findings were replicated in a

second independent European Caucasian cohort of 923 Sorbs. Further, going beyond plain

genetic associations, we integrated analyses of mRNA levels in leukocytes to establish causal

links between genetic variations, gene-expression levels and metabolites. Finally, we explored

whether SNP-metabolite associations identified in our study overlap with previously identified

genetic loci for other complex traits or diseases.

Results

Discovery GWAS

Quantitative concentrations of 26 amino acids, 36 acylcarnitines and 34 metabolite ratios were

determined in dried whole blood spots of 2,107 participants of the LIFE Leipzig Heart Study using

LC-MS/MS. Metabolites and their ratios reflect metabolic function of various biochemical path-

ways e.g. urea cycle, branched chain amino acid metabolism or cellular fatty acid oxidation (see S1

Table for complete list of phenotypes and their categories). We performed a genome wide associa-

tion study (2,619,023 SNPs) for whole blood metabolites and identified 2,261 SNP-metabolite

associations (119 after pruning) with p-values<10-7. These associations comprise 42 metabolites

(including 19 ratios) and 866 SNPs (54 lead-SNPs after pruning) at 25 unique genomic locations

(Fig 1, S2 Table). QQ-plots and regional association plots for all loci demonstrating valid quality

control are presented in the supplemental material (S2 and S3 Figs).

Replication analysis

Next, replication of top SNPs was sought in an independent cohort of 923 individuals from the

Sorb study, where genome-wide SNP and metabolite datasets were available. Good proxies

(r2>0.8) for replication analysis in the Sorbs were available for 858 (99.1%) of our 866 top-

SNPs, covering 21 of the 25 identified loci and comprising 2,227 associations (well-imputed

proxies were not available for the loci at 1q32.3, 3p24.1, 5p15.2, 20q13.2, see S3 Table for com-

plete results). We observed identical directions of effects for 2,133 (95.8%) combinations of

SNPs and metabolites in the replication cohort, resulting in a replication rate of 88.3%, when

applying a FDR (false discovery rate) of 5% (Fig 2). Replicated lead-SNPs were distributed over

14 of the 21 genomic loci eligible for replication analysis (Table 1; see S3 Table for results of

non-replicated loci). In addition, we considered associations at locus #4 (2q34) with glycine

and locus #14 (12q24.31) with C4 as validated results, since these loci were already reported in

other GWAS for serum metabolites [8,9,13–15]. Moreover, non-lead-SNPs at 12q24.31 were

replicated in the Sorbs at FDR 5% level. None of the other non-replicated loci or loci without

proxies in the Sorb study achieved a p-value<10−8 in our initial GWAS.

In total, our study led to the identification of 16 unique, validated loci for 36 whole blood

metabolites (Table 1). At six of the 16 loci we identified associations for blood metabolites for

the first time i.e. these loci represent novel findings of our study. Also, we successfully validated

ten loci previously reported for serum, plasma, and urine metabolites (Table 1 and S4 Table).

At three of these loci, associated metabolites were different from those previously reported. In

detail, at locus #3 (2p13.1) we detected associations with Arg and related metabolite ratios,

whereas earlier associations were reported for plasma N-acetylornithine and related com-

pounds [8,13,14,16]. Further, at loci #11 (9q34.11) and #15 (15q22.2), we identified
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associations with methylmalonyl-carnitine, whereas earlier studies reported associations

involving the isobaric compound succinyl-carnitine [13,14].

eQTL analysis

To investigate if associated variants have gene regulatory effects, we analyzed our validated

lead-SNPs for correlations with gene expression in peripheral blood mononuclear cells

(PBMC). Transcriptome data (28,295 eligible transcripts) was available for 2,112 subjects of

the LIFE Leipzig Heart study. At an FDR of 5%, 132 eQTLs were identified for 38 of the 45 vali-

dated lead-SNPs, affecting the expression of 69 transcripts. Explained variances of eQTLs ran-

ged between 0.4% (corresponding p-value = 3.9x10-3) and 28.0% (corresponding p-

value = 8.0x10-153, S5 Table).

We observed eQTLs at 14 of the 16 validated loci, including the six novel loci identified in

our study (Fig 3 and S7 Fig, Table 2). All 14 loci included lead-SNPs with cis-regulatory effects

on gene expression. In addition, novel loci #2 (1q44) and #12 (19q11), as well as reported locus

#14 (12q24) also included trans-regulated eQTLs. The trans-eQTLs at locus #2 (1q44) regulat-

ing JAM3 expression were inter-chromosomal and particularly strong, explaining about 13.0%

of variance (Fig 3 and S7 Fig, Table 2).

Integrative analysis of mQTLs, eQTLs and expression-metabolite
associations

We next aimed to assess whether changes in expression of identified eQTL genes can explain

observed SNP-metabolite associations in our study. Therefore, we analyzed the relationship

between expression levels of these genes and metabolites. We found 40 study-wide significant

Fig 1. GWAS results for amino acids (a) and acylcarnitines (b) in whole blood.Manhattan plots of the genome-wide association analysis for metabolic
phenotypes in 2,107 individuals of the LIFE-Heart cohort. Results are presented separately for 36 acylcarnitines (including free and total carnitine) and 26
amino acids. Results for metabolite ratios are omitted. The horizontal line represents a p-value = 1.0x10-7, which was the cutoff used for inclusion of identified
associations in the replication state.

doi:10.1371/journal.pgen.1005510.g001
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associations between gene expressions and metabolites, corresponding to 9 loci and 18 eQTL

transcripts (16 unique genes, see Table 3 and S6 Table).

We then integrated information from SNP-metabolite (mQTL), SNP-gene expression

(eQTL) and expression-metabolite associations to form association triangles. A triangle is

defined by a triple of SNP, transcript and metabolite showing pair-wise associations (see meth-

ods for details). We constructed a network of all pairs of associations and their strengths (see

Fig 4) to illustrate the multiple relationships between associated genetic loci, genes and metabo-

lites. An interactive html-document to explore the network is provided as supplement material

(S4 Fig). Certain overlaps with previously reported molecular interactions exist. These known

relationships are summarized in S11 Table. We identified 177 relations containing 21 unique

primary associations between features analysed in our study. Additionally, we identified 16

unique molecules potentially connecting features analysed in our study. As expected, these

molecules include Proinsulin and Ubiquitin.

Association triangles were further used to test whether variances in gene expression are

causally related to variances of metabolite levels. We discovered 38 association triangles map-

ping to six unique loci including the two novel loci #2 and #10 at 1q44 and 8q24.3, respectively

(S7 Table). To estimate the number of such triangles identified by chance, we performed a

comprehensive permutation analysis including mQTL, eQTL and expression-metabolite asso-

ciation analysis (S8 Fig). From this, the empirical likelihood of the reported six triangles

obtained by chance was estimated to be<1x10-15. Particularly, in only two of 100 permutations

we obtained a single triangle while in 98 of our 100 permutations, no triangles were observed.

Fig 2. Results of replication analysis.GWAS top-hits of the LIFE Leipzig Heart study were compared with corresponding results in the Sorbs study. Top-
hits were selected applying a p-value cut-off of p<1.0x10-7, which leads to the gap of z-scores at the x-axis. Associations below and above the dotted lines
are considered as replicated controlling the false discovery rate at 5%. Colors and symbols correspond to physiologically related metabolites.

doi:10.1371/journal.pgen.1005510.g002
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Table 1. Results of SNP-metabolite association analyses.

Lo-
cus

Lead-SNPs1 Cytogen.
pos.

Phys.
pos.

Nearby
genes2

Associated
Metabolites3

Beta (SE)
LIFE-HEART

p-value
LIFE-HEART

Beta
(SE)
Sorbs

p-
value
Sorbs

Published metabolite
associations

#1 rs17587071,
rs1303870

1p31.1 76 Mb ACADM (0),
RABGGTB

(27),
SNORD45C

(28)

C8, C10, C6 -0.021
(0.0028)

1.487e-13 -0.011
(0.0031)

3.431e-
04

Acetylcarnitine /
hexanoylcarnitine, C12 / C10,

C12 / C8 [13,14,20,21]

#2 rs3811444 1q44 246
Mb

TRIM58 (0),
OR2W3 (0),
OR11L1 (34)

C18, C18:1,
C16, Q3:(C16

+C18:1)/C2, Q4:
C0/(C16+C18)

0.051
(0.0063)

9.138e-16 0.063
(0.013)

2.22e-
06

#3 rs6546838,
rs12620074

2p13.1 74 Mb ALMS1 (0),
EGR4 (160),
FBXO41

(180)

Q15:Arg/Gly,
Q14:Arg/Orn,

Q13:Arg/Cit, Arg

-0.0074
(0.00092)

2.079e-15 -0.0083
(0.00083)

2.385e-
22

Myoinositol / N-
acetylornithine, N-

acetylornithine, N-acetylated
compound(s) [8,13,14,16]

#4 rs715,
rs4673545,
rs13386028,
rs10932350,

rs7684

2q34 211
Mb

CPS1 (0),
LOC29034

(59),
LANCL1

(200)

Gly, Q27:Sarc/
Gly, Q15:Arg/Gly

-0.069
(0.0062)

1.232e-27 0.014
(0.011)

1.75e-
01

Glycine, glycine / histidine,
glycine / PC ae C38:2

[8,9,13–15,20]

#5 rs4074110 3q27.1 184
Mb

MCCC1

(4.3),
DCUN1D1

(30), ATP11B
(89)

C5OH+HMG -0.024
(0.0042)

1.255e-08 -0.024
(0.0079)

2.003e-
03

Hydroxyisovaleroylcarnitine
[14]

#6 rs11737481 4q32.1 160
Mb

ETFDH (0),
PPID (9),

C4orf46 (28)

C10 0.023
(0.0039)

8.068e-09 0.018
(0.0045)

9.602e-
05

C14:1-OH / C10,
decanoylcarnitine / palmitate
(16:0), octanoylcarnitine / X-

13435 [13,14,20]

#7 rs162890 5q31.1 132
Mb

SLC22A4

(6.5),
PDLIM4 (15),
P4HA2 (60)

AC-total 0.047
(0.0084)

2.312e-08 0.063
(0.014)

1.1e-05 Propionylcarnitine [14]

#8 rs12210538,
rs6939019,
rs7763591,
rs2428192,
rs12205108

6q21 111
Mb

SLC22A16

(0), DDO
(23),

C6orf186

(81)

AC-total, C18:1,
C16, C2, Q19:
(Leu|Ile)/C3, C3,
C0, Q11:Ala/C2,
C182, C18, Q21:
(C5OH+HMG)/
(Leu|Ile), C5OH
+HMG, C16:1,
C20:3, C14,
Q20:C5/(Leu|

Ile), C4

-0.1 (0.0081) 7.397e-37 -0.12
(0.018)

2.003e-
11

#9 rs17657775 6q23.2 132
Mb

ARG1 (0),
MED23 (0),
ENPP3 (50)

Arg, Q14:Arg/
Orn, Q15:Arg/

Gly, Q13:Arg/Cit

0.0561
(0.007)

2.606e-154 0.0085
(0.0036)

1.934e-
024

#10 rs750472 8q24.3 146
Mb

FOXH1 (0),
KIFC2 (2),
CYHR1 (10)

Q12:Ala/Asp,
Asp, Q34:Asp/
C2, Q16:Asp/Cit

0.069
(0.0098)

2.39e-12 0.14
(0.02)

1.412e-
11

#11 rs746872,
rs7874044,
rs17452603,
rs10760593,
rs12686182,
rs3124505,
rs11789753,
rs11999428

9q34.11 131
Mb

CRAT (0),
PPP2R4

(8.2),
DOLPP1 (12)

MMA, Q38:
MMA/C3, C5OH
+HMG, Q21:
(C5OH+HMG)/

(Leu|Ile)

-0.098
(0.0049)

4.214e-83 -0.089
(0.0078)

1.45e-
28

C-glycosyltryptophan /
succinylcarnitine [14]

(Continued)
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Next, we used Mendelian randomization to establish a causal link between gene expression

and the metabolite. We identified 15 metabolite-gene pairs included in 36 triangles (S7 Table).

Next, we investigated whether identified eQTLs explained a significant part of the SNP-

metabolite association which we could demonstrate for a total of five loci (Table 4). Strongest

causal effects were found for novel locus #10 at 8q24.3 associated with several Aspartic acid

traits (strongest causal effect for ratio Aspartic acid / Acetylcarnitine via cis-regulation of

PPP1R16A) and locus #11 at 9q34.11 associated with MMA via PPP2R4.

Associations with clinical traits and diseases

Finally, we explored whether SNP-metabolite associations identified in our study overlap with

genetic loci for clinically relevant traits published in the National Human Genome Research

Institute (NHGRI) GWAS Catalog. At nine of the 16 validated loci, metabolite associated SNPs

matched SNPs previously associated with clinical traits or diseases (S9 Table). We observed

associations with platelet and red blood cell properties at three loci associated with acylcarni-

tines in our study (1q44 (C18), 10q11 (C3) and 15q22 (MMA)) [26–28]. Further, we found

that several of our variants were associated with clinical chemistry traits, e.g. fibrinogen (2q34)

[29], homocysteine (2q34) [30] and traits reflecting lipid metabolism (HDL-cholesterol at 2q34

and 15q22) [31], purine catabolism (uric acid at 10q21) [32], and kidney function (creatinine

Table 1. (Continued)

Lo-
cus

Lead-SNPs1 Cytogen.
pos.

Phys.
pos.

Nearby
genes2

Associated
Metabolites3

Beta (SE)
LIFE-HEART

p-value
LIFE-HEART

Beta
(SE)
Sorbs

p-
value
Sorbs

Published metabolite
associations

#12 rs12779637 10q11.21 45 Mb MARCH8 (0),
ANUBL1

(30), ALOX5
(140)

C3, C2 -0.13 (0.021) 1.04e-09 -0.12
(0.033)

4.46e-
04

#13 rs1171614 10q21.2 61 Mb SLC16A9 (0),
CCDC6 (79),
ANK3 (320)

C0, Q33:C0/
(AC-total)

-0.12 (0.014) 4.268e-16 -0.1
(0.027)

1.428e-
04

Carnitine, carnitine / X-12798
[13–15,20]

#14 rs2066938,
rs12822898

12q24.31 120
Mb

UNC119B

(0), ACADS
(3), MLEC

(21)

C4, Q35:C5/C4 0.046
(0.0044)

2.323e-24 0.0096
(0.0081)

2.333e-
01

Butyrylcarnitine,
butyrylcarnitine /
propionylcarnitine
[13,14,20,21]

#15 rs12440281,
rs7162825,
rs12442826,
rs7183733

15q22.2 61 Mb TPM1 (18),
LACTB (32),
RPS27L (63)

MMA 0.081 (0.011) 6.986e-14 0.04
(0.018)

2.69e-
02

succinylcarnitine [13,14]

#16 rs1571700 21q22.13 37 Mb HLCS (0),
DSCR6 (42),
PIGP (100)

C5OH+HMG -0.02
(0.0037)

5.38e-08 -0.023
(0.0072)

1.173e-
03

Table includes all validated loci of our analysis. Validation is based on either successful replications in the Sorbs or by additional published evidence. The

latter applies for two loci (#4 and #14) where association of lead-SNPs did not replicate in the Sorbs cohort. For each locus, nearby genes, independently

associated SNPs, associated metabolites and statistics for the strongest association between them are shown (Beta estimators, corresponding standard

errors and p-values). We also present the results of replication analysis and published evidence. Six loci with no corresponding published genetic variants

were considered as “novel”.
1SNP with strongest association in the discovery cohort is presented in bold;
2Distance of SNPs to genes in kB in parentheses;
3Metabolite with strongest association in the discovery cohort is presented in bold. p-value Sorbs: best p-value of SNPs in Sorbs corresponding to the

lead-SNP and metabolite of discovery cohort,
4Replication was successful for ratio Q14:Arg/Orn, only, hence, we report here on association with Q14:Arg/Orn

doi:10.1371/journal.pgen.1005510.t001
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at 2p13 and 2q34) [33]. At the 2p13 and 2q34 loci, reported associations for creatinine were

also linked to chronic kidney disease [34]. In addition, variants at the 2q34 locus for glycine

also convey risk for non-small cell lung cancer [35]. Interestingly, recent studies described a

key role for glycine in cancer cell proliferation and tumorigenesis [36,37]. Further, metabolite

associations at 3q27 (C5OH+HMG), 5q31 (AC-total), 9q34 (MMA) and 15q22 (MMA) over-

lapped with associations for Parkinson’s Disease [38], Asthma [39], Hypersomnia [40] and

orofacial cleft [41], respectively. These co-localizations may implicate a shared genetic basis

(pleiotropy) between complex traits and aid in forming new hypothesis regarding molecular

pathomechanisms.

Discussion

Several GWAS for urine, serum and plasma metabolites have been published using different

measurement approaches [8,9,12–21,23]. Here, we report the first genome-wide association

study for amino acid and acylcarnitine levels in whole blood. We discovered 25 loci of which

14 were replicated in an independent cohort. Additional two loci were strongly supported by

mQTL-studies in serum or plasma [8,9,13–15]. Of these 16 loci, six describe novel SNP

Fig 3. eQTLmap of mQTL loci.We analysed the top-SNPs of our mQTL analysis regarding association with
gene-expression levels. A total of 54 top-SNPs were correlated with 28,295 probe expressions. Expression
probes of auto- and gonosomes were analysed, while SNPs were restricted to autosomes. X-axis represents
physical position of SNPs. Y-axis represents the physical position of the start of the regulated transcript.
Points located on the diagonal line relate to cis-effects, while other points relate to trans-effects. Associations
with FDR = 5% are highlighted. Trans-eQTLs with p-values� 0.001 are also shown. Size of points represents
the strength of association. Colors of points and gray shadings indicate distinct chromosomes. An interactive
html version of this map allowing exploration of the results is provided as supplemental S7 Fig.

doi:10.1371/journal.pgen.1005510.g003
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metabolite associations, comprising four loci associated with various acylcarnitines and two

loci associated with amino acids. Our results demonstrate that studying whole blood can pro-

vide additional genetic loci not detected in previous mQTL studies for plasma or other body

fluids. This might be attributable to differences in metabolite abundance and components of

cellular metabolism not present in plasma (or other cell free body fluids) [25].

Further, we used whole genome expression in peripheral mononuclear cells to establish

functional links between SNP-metabolite associations and gene-expression. EQTLs were dis-

covered at 14 loci, including all of our six novel loci. Since eQTL analysis per se does not allow

inferring causal genes, we performed gene expression association analysis between eQTL genes

and metabolites associated with the corresponding SNP. This is a major advantage of our study

since we can directly infer causal relationships, whereas most other studies can only report

indirect evidence from public eQTL data bases. Besides limitations of gene-expression analysis,

such as tissue specificity and numerous other ways for genetic variations to influence the

Table 2. Results of eQTL analysis of validated loci.

Locus Cytogen.
pos.

Lead-SNPs1 Cis-regulated genes2 Trans-
regulated
genes2

Beta
(SE)

p-
value

q-
value3

#1 1p31.1 rs17587071*, rs1303870 ACADM, RABGGTB 0.065
(0.004)

1.3e-
45

2.2e-
43

#2 1q44 rs3811444* SMYD3, OR2W3 JAM3,
C15ORF54

-0.23
(0.013)

4.9e-
66

7.6e-
60

#3 2p13.1 rs6546838*, rs12620074 ALMS1, NAT8B, STAMBP, TPRKB,
LOC200420

0.028
(0.004)

1.3e-
13

5.7e-
12

#5 3q27.1 rs4074110* MCCC1 0.023
(0.004)

1.4e-
09

4.8e-
08

#6 4q32.1 rs11737481* ETFDH, HS.415576, TMEM144 -0.067
(0.005)

4.1e-
41

6.2e-
39

#7 5q31.1 rs162890* SLC22A5, SLC22A4, CDC42SE2,
RAD50, P4HA2

0.11
(0.006)

1.9e-
74

4.8e-
72

#8 6q21 rs7763591*, rs2428192, rs12205108,
rs6939019, rs12210538

SLC22A16, RPF2, DDO, CDC2L6,
AMD1

0.21
(0.009)

4.9e-
98

2.5e-
95

#9 6q23.2 rs17657775* MED23, ARG1 0.048
(0.01)

2.7e-
06

6.2e-
05

#10 8q24.3 rs750472* PPP1R16A, LRRC14, KIFC2, RPL8,
ZNF34, MFSD3, CYHR1, VPS28,

LOC642859, COMMD5

0.11
(0.005)

3.4e-
102

2.6e-
99

#11 9q34.11 rs746872*, rs7874044, rs12686182,
rs3124505, rs10760593, rs17452603,

rs11789753, rs11999428

PPP2R4, SH3GLB2, CRAT,
HS.148844, ENDOG, CCBL1,

TBC1D13

-0.061
(0.004)

2.1e-
60

4.5e-
58

#12 10q11.21 rs12779637* ANUBL1, FAM21C FAM21D
4 0.051

(0.006)
6.6e-
19

4e-17

#14 12q24.31 rs12822898*, rs2066938 RNF10, MLEC, UNC119B, CAMKK2 COQ5
4 0.049

(0.006)
3.8e-
16

1.9e-
10

#15 15q22.2 rs7162825*, rs12442826, rs7183733,
rs12440281

LACTB, TPM1, APH1B 0.12
(0.004)

8e-
153

1.2e-
149

#16 21q22.13 rs1571700* HLCS 0.033
(0.003)

2.8e-
23

2.3e-
21

1SNP with strongest metabolite association is presented in bold while SNP with strongest eQTL was marked with an asterisk*
2Gene with strongest association is presented in bold
3A q-value<5% was considered as significant, i.e. FDR is controlled at 5%.
4These genes are located on the same chromosome as the lead-SNPs at distances larger than 1Mb

doi:10.1371/journal.pgen.1005510.t002
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function or abundance of proteins, we identified five loci for which a significant part of SNP-

metabolite association was explained by blood eQTLs. These represent novel findings to the

best of our knowledge and extend the very few examples of known causal chains between

SNPs, gene-expression and metabolites [14,42,43].

Characteristics and functional hypotheses of novel loci

At two of the six newly identified loci (6q23, ARG1 and 21q22, HLCS), rare variants are known

to cause autosomal recessive inborn errors of metabolism, providing a strong biological plausi-

bility for the SNP-metabolite associations. Mutations in ARG1 (6q23), encoding arginase, the

enzyme which catalyzes the hydrolysis of arginine, are the cause of Argininemia (OMIM

#207800). Here, we report common variants of ARG1 to be associated with arginine levels.

Likewise, defects in HLCS (21q22) are responsible for holocarboxylase synthetase deficiency

(OMIM #253270) with affected individuals displaying elevated levels of C5OH+HMG. In line

with this observation, the lead SNP at the HLCS locus exhibited a strong cis-eQTL and the

allele responsible for higher HLCS expression was associated with lower C5OH+HMG levels.

A third novel locus (#8; 6q21) associated with multiple acylcarnitines (lead phenotype: AC-

total) also contained a gene with direct biochemical relationship to the associated metabolites,

namely SLC22A16, encoding an organic cation/ carnitine transporter. Gene expression of

SLC22A16 was regulated in cis at this locus, but SLC22A16 gene expression was not correlated

with acyl-carnitine concentrations in whole blood. In fact, the strongest SNP metabolite associ-

ation at this locus was observed for a non-synonymous coding SNP (rs12210538) in

SLC22A16, which is predicted to be damaging by Polyphen and SIFT [44,45]. These findings

Table 3. Results of associations between gene-expressions andmetabolites.

Locus Cytogen.
pos.

Regulated Genes1 Metabolites2 Beta (SE) p-
value

q-
value3

#1 1p31.1 ACADM C10, C8 -0.084
(0.019)

1e-05 1.9e-03

#2 1q44 SMYD3, JAM3 Leu|Ile, C18, C16 0.2
(0.045)

6.6e-
06

1.5e-03

#3 2p13.1 STAMBP, NAT8B Leu|Ile, Q14:Arg/Orn, Q27:Sarc/Gly -0.24
(0.056)

1.4e-
05

2.3e-03

#6 4q32.1 ETFDH, TMEM144 Q11:Ala/C2, C2, C10, C16:1, C4, AC-total, C18:1, Leu|Ile, Q1:(Val+Leu|
Ile)/(Phe+Tyr), Q20:C5/(Leu|Ile), C8, Q33:C0/(AC-total), C16, Q3:(C16

+C18:1)/C2, Q26:Glu/Orn

-0.43
(0.057)

8.2e-
14

2.6e-10

#7 5q31.1 SLC22A4 Q19:(Leu|Ile)/C3 -0.27
(0.078)

5e-04 4.1e-02

#8 6q21 AMD1, SLC22A16 MMA, C14 0.1
(0.028)

2.8e-
04

3.0e-02

#9 6q23.2 MED23 C8 0.06
(0.017)

3.6e-
04

3.3e-02

#10 8q24.3 PPP1R16A,
LRRC14, CYHR1

Q34:Asp/C2, Asp, Q16:Asp/Cit, Q12:Ala/Asp, Q1:(Val+Leu|Ile)/(Phe+Tyr),
C2

-0.62
(0.11)

4.3e-
08

4.5e-05

#11 9q34.11 PPP2R4, CRAT MMA, Q38:MMA/C3 0.16
(0.031)

1.3e-
07

1.0e-04

Table displays significant associations of eQTL genes and metabolites for validated loci. Genes and metabolites are ordered according to strength of

association. Statistics of strongest associations are also presented.
1Gene with strongest association is presented in bold
2Metabolite with strongest association is presented in bold
3A q-value<5% was considered as significant, i.e. FDR is controlled at 5%.

doi:10.1371/journal.pgen.1005510.t003
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suggest that associations at 6q21 are more likely driven by this non-synonymous coding muta-

tion than by gene expression of SLC22A16.

The remaining three novel loci relate to candidate genes with no prior connection to metab-

olism to the best of our knowledge. For the locus at 10q11.21, associated with C2 and C3, we

observed cis-effects on ANUBL1 and FAM21C expression, but gene expressions of both tran-

scripts were not correlated with either C2 or C3. Thus, additional work will be required to

explore the causal link between genetic variation at the 10q11.21 locus and C2 and C3 blood

concentrations.

At novel locus 8q24.3, integration of SNP, eQTL and gene-expression data let to the identifi-

cation of PPP1R16 as putative causal gene for the association with aspartic acid and corre-

sponding ratios (lead phenotype: alanine / aspartic acid). While we detected strong cis-effects

on expression of two local genes, PPP1R16A and LRRC14, only the eQTL of PPP1R16A partly

explained the observed SNP-phenotype associations. Future studies need to address how

PPP1R16A, a gene involved in signal transduction [46], may be affecting blood levels of aspartic

acid.

Finally, we identified JAM3 encoding the junctional adhesion molecule C (JAM-C) as a

novel candidate gene of acylcarnitine metabolism. Top associated SNP rs3811444 (1q44)

exhibited an exceptionally strong trans-eQTL for JAM3, located at 11q25. This trans effect was

also described by other eQTL studies [47]. Gene expression of JAM3 correlated with several

long chain acyl-carnitines (i.e. C16) and explained a significant part of the SNP-metabolite

association. JAM-C participates in cell-cell adhesion, leukocyte transmigration and platelet

activation. The soluble form of JAM-C has been shown to mediate angiogenesis [48].

Fig 4. Network of discovered loci, eQTLs andmetabolites. Significant relationships between genetic loci
(top SNPs), gene-expression in PBMCs and metabolite levels in whole blood are displayed. Line thickness
corresponds to amount of explained variance (Lightblue = genetic loci without triangles, darkblue = genetic
loci with triangles, lightgreen = cis-regulated genes, darkgreen = trans-regulated genes, light orange = raw
metabolites, darkorange = metabolite ratios). An interactive html-document document of the network can be
found in the supplement material.

doi:10.1371/journal.pgen.1005510.g004
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Homozygous mutations in JAM3 cause hemorrhagic destruction of the brain, subependymal

calcification, and congenital cataracts (HDBSCC, OMIM #613730). At present, the potential

functional role of JAM3 in acyl-carnitine metabolism remains elusive.

Novel evidence at known metabolite loci

In addition to the identification of novel loci, we replicated and extended functional evidence

for SNP-metabolite associations at ten loci previously described in GWAS for serum or plasma

metabolites (Table 1). The majority of these loci contain highly plausible candidate genes based

on their biologic function in metabolism (MCCC1, ETFDH, SLC22A4/5, ACADM, ACADS,

CPS1, CRAT). Rare loss of function mutations in these genes cause Mendelian inborn errors of

metabolism and measuring the respective marker metabolites in whole blood spots is part of

neonatal screening programs throughout the world [1]. Here, we validated common variants

located in non-coding DNA with modest effect sizes on blood metabolites. Additionally, we

found blood eQTLs forMCCC1, ETFDH, SLC22A4/5, ACADM, and CRAT. This is in line with

evidence from other complex genetic traits, demonstrating that most associations for common

Table 4. Integrative analysis and association triangles.

Locus Cytogen.
pos.

Lead-SNPs Regulated
gene

Associated
Metabolites

Beta
of

mQTL

Beta
of

eQTL

Beta of
expression-
metabolite
association

p-value
causality
gene

expression
and

metabolite1

Explained
variance
mQTL

Explained
variance
eQTL

Explained
variance
expr.-
metab.

association

p-
value

#1 1p31.1 rs1303870,
rs17587071

ACADM C8, C10 -0.016 0.027 -0.054 8.3x10-5 1.8% 2% 0.7% 4e-03

#2 1q44 rs3811444 JAM3 C16 0.044 -0.229 -0.049 2.8x10-3 1.4% 13% 0.6% 3.7e-
02

#3 2p13.1 rs6546838 STAMBP Q14:Arg/
Orn

-0.022 -0.015 0.070 8.7x10-4 2.6% 0.9% 0.7% 6.9e-
03

#10 8q24.3 rs750472 PPP1R16A Q34:Asp/C2,
Q16:Asp/Cit,
Asp, Q12:
Ala/Asp

-0.170 0.111 -0.619 1.0x10-7 1.8% 19.6% 1.5% 3.7e-
04

#11 9q34.11 rs11789753,
rs11999428,
rs3124505,
rs12686182,
rs10760593,
rs17452603,
rs7874044

CRAT MMA -0.127 -0.043 0.107 5.2x10-3 2.2% 0.4% 0.6% 2.4e-
02

rs11789753,
rs10760593,
rs3124505,
rs7874044,
rs12686182,
rs17452603,
rs11999428

PPP2R4 MMA, Q38:
MMA/C3

-0.127 -0.094 0.165 9.4x10-7 2.2% 2.4% 1.4% 2.2e-
04

Combinations of SNPs, genes and metabolites for which gene-expression explains at least a nominally significant part of the observed SNP-metabolite

association. Best combination of SNP, gene and metabolite is presented in bold with corresponding statistics. Causality of expression and metabolites is

determined via Mendelian Randomization. Last column shows p-values of testing whether gene-expression explains a part of the observed SNP-

metabolite association (see methods section). Triangles with strongest causality per locus are show in bold.
1analysed adopting Mendelian Randomisation method

doi:10.1371/journal.pgen.1005510.t004

Genetic Regulation of Whole Blood Metabolites

PLOS Genetics | DOI:10.1371/journal.pgen.1005510 September 24, 2015 12 / 25



variants arise in non-coding DNA and emphasizes the importance of regulatory variants in

modulating gene expression [49,50]. A striking example is the ACADM locus, where SNPs

have been associated with C8 and C10 levels [13,14,20,21]. In our study, gene-expression of

ACADM was associated with C8 and C10 blood levels and we showed for the first time that

this relationship was causal explaining a part of the observed SNP association.

In conclusion, our study expanded the current knowledge on the genetic regulation of

human blood metabolites by adding six novel genetic loci. Furthermore, by integrative analysis

of SNP, gene expression and metabolite data, we derived mechanistic insights into the molecu-

lar regulation of blood metabolites. At several loci, we provide evidence for metabolite regula-

tion via gene-expression and observed overlaps with GWAS loci for other complex traits and

diseases, pointing towards potential pathomechanisms via metabolic alterations. Additional

functional studies are required to elucidate the cellular mechanisms how the discovered candi-

date genes affect metabolic pathways and relate to disease pathology.

Materials and Methods

Cohorts

LIFE Leipzig Heart is an observational study in a Central European population designed to

analyze genetic and non-genetic risk factors of atherosclerosis and related vascular and meta-

bolic phenotypes [51]. Patients undergoing first-time diagnostic coronary angiography due to

suspected stable CAD with previously untreated coronary arteries, patients with stable left

main coronary artery disease and patients with acute myocardial infarction were recruited. The

latter were excluded for the present analysis.

The study meets the ethical standards of the Declaration of Helsinki. It has been approved

by the Ethics Committee of the Medical Faculty of the University of Leipzig, Germany (Reg.

No 276–2005) and is registered at ClinicalTrials.gov (NCT00497887). Written informed con-

sent including agreement with genetic analyses was obtained from all participants. In this anal-

ysis, we considered a total of 2,464 individuals. From these, 2,107 had complete genotype,

metabolite and covariate data qualifying them for GWAS analysis (descriptive statistics can be

found in S9 Table). A subset of 1,856 individuals had complete data of genotypes, gene expres-

sion, metabolites and covariates. These individuals were used for integrative analyses (see study

design, S1 Fig).

The Sorbs were recruited from the self-contained Sorbs population in Germany [52–54]. All

individuals were at fasting state. Phenotyping included standardized questionnaires for past

medical history and family history, collection of anthropometric data (weight, height, waist-to-

hip ratio) and results from an oral glucose tolerance test. A complete set of high-quality geno-

type data, metabolites and covariates was available for 923 subjects (S9 Table). The study was

approved by the ethics committee of the University of Leipzig and all subjects gave written

informed consent before taking part in the study.

Study design

An overview of the study design is presented in S1 Fig. In brief, we first performed a genome-

wide metabolite quantitative trait (mQTL) analysis in the LIFE Leipzig Heart cohort, with rep-

lication of the top-SNPs in the Sorbs cohort. Following this two-stage design, we applied a lib-

eral cut-off of 1.0x10-7 for the initial GWAS to identify candidate loci. A stringent cut-off is

applied at the replication stage where we control the (study-wide) FDR at 5% based on permu-

tation analysis [55]. This accounts for the correlation structure of individuals, SNPs and metab-

olites and the multiple testing issue (for details see below section “Genome-wide association

analysis and SNP replication”).
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Functional relevance of identified loci was studied in the LIFE Leipzig Heart cohort by ana-

lyzing expression quantitative traits (eQTL) and gene expression-metabolite associations fol-

lowed by causal inference regarding discovered associations.

Metabolomic analysis and data processing

Venous blood samples were obtained from all study participants and 40μl of native EDTA

whole blood were spotted on filter paper WS 903 (Schleicher and Schüll, Germany) in the LIFE

Leipzig Heart study. In the Sorb cohort, 40μl cell suspension obtained after plasma centrifuga-

tion (10 min at 3500 x g) were spotted on filter paper. All blood spots were stored at -80°C after

3 hours of drying until mass spectrometric analysis. Sample pretreatment and measurement is

described elsewhere [56–58]. In brief, 3.0 mm diameter dried blood spot punches (containing

3 μL whole blood) were extracted with methanol containing isotope labelled standards. After

sample extraction and derivatization, analysis was performed on an API 2000 tandem mass

spectrometer (Applied Biosystems, Germany). Quantification of 26 amino acids, free carnitine

and 34 acylcarnitines including related metabolites was performed using ChemoView 1.4.2

software (Applied Biosystems, Germany). Samples were analysed within 23 analytical batches

with two quality controls samples in each batch. Mean inter-assay coefficients of variation were

below 11% for amino acids and below 19% for acylcarnitines. Further, using these 61 directly

measured analytes, we derived a number of biologically relevant sums (n = 1, total acylcarni-

tine) and ratios (n = 34) to assess reaction equilibria within physiological pathways and pro-

cesses (e.g. Fischer’s ratio [59]). Consequently, a total of 96 quantities were analyzed as GWAS

traits. A list of metabolites and quantities is presented in S1 Table.

Metabolites with more than 20 percent of values below detection limit were dichotomized

for analysis (below detection limit versus above detection limit). This applies for the metabo-

lites C5:1, C6DC, C14OH, C16OH, MeGlut, C18:1OH, C18:2OH, C18OH and C20:3. Quanti-

ties were arsinh-transformed (area sinus hyperbolicus) which is close to a log-transformation

for large values but does not emphasize differences between small values and can operate on

values of zero. Transformed quantities were approximately normal distributed. Values outside

of the Interval Mean ± 5�SD were considered as outliers and were removed to stabilize subse-

quent regression analysis.

We previously analysed a variety of factors influencing blood metabolites. Age, sex, diabetes

and fasting status show pronounced effects on several metabolites while log-BMI, smoking and

some blood traits showed effects on selected metabolites. Therefore, we decided to adjust our

analyses for these potential confounders.

SNP genotyping and quality control

LIFE leipzig heart samples. DNA was extracted from peripheral blood using the Invisorb

Spin Blood Maxi Kit (Stratec) as described elsewhere [60]. Samples where genotyped using an

Affymetrix Axiom SNP array with custom option comprising a total of 624,908 SNPs. The

Axiom CEU array served as a backbone of our custom array. In addition 62,471 autosomal

SNPs were placed on the array corresponding to 44 genomic regions previously associated with

cardiovascular disease and metabolic risk factors, in particular plasma lipids. Genotyping was

performed at Affymetrix (Santa Clara, Ca; USA). 2,925 out of 3,036 DNA samples were suc-

cessfully genotyped and were called in combination by Affymetrix Power Tools version 1.12.

As further sample-wise quality control, we filtered individuals with sex mismatch, call

rate<97%, low or high mean squared difference of individual’s genotype and expected geno-

type according to box plot outlier criteria, duplicates, implausible relatedness according to

Wang et al. [61] and outliers of principal components analysis (6SD criterion of EIGENSTRAT
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[62]). Thereafter, a total of N = 2,838 individuals remained for analysis. After the final step of

sample quality control, the population genetic structure was homogenous (see S5 Fig). Based

on this sample, we determined our SNP quality filter as follows: non-autosomal SNPs, minimal

plate-wise call rate<90%, i.e. the minimum of the SNP call rate over all plates (our criteria

implies that the conventional overall SNP call rate is greater than 94.3% and its 10th percentile

is greater than 99.2%), p-value of asymptotic Hardy-Weinberg equilibrium test<1.0x10-6, p-

value of the association of SNP allele frequency with plate number<1.0x10-7. A total of

566,359 SNPs passed all criteria.

Genotype imputation was performed using IMPUTE v2.1.2 (http://mathgen.stats.ox.ac.uk/

impute/impute_v2.html). HapMap2 CEU, Release 24, dbSNP-build 126, NCBI built 36 served

as reference panel comprising a total of 3,974,237 autosomal SNPs. 555,911 of our measured

SNPs were successfully mapped to the reference. As post-imputation quality control we dis-

carded all SNPs with minor allele frequency�1% or with IMPUTE-info score� 0.3. According

to these criteria, a total of 2,619,023 SNPs were analysed.

Sorbs samples. Subjects were either genotyped using the 500K Affymetrix GeneChip or

Affymetrix Genome-Wide Human SNP Array 6.0. For genotype calling, BRLMM algorithm

(Affymetrix, Inc) was applied for 500K and Birdseed algorithm for Genome-Wide Human

SNP Array 6.0. Details of genotyping have been described elsewhere [53]. Quality control of

samples was performed as described in Gross et al [52] resulting in N = 977 individuals with

genotypes of good quality (N = 483 genotyped with 500K, N = 494 genotyped with 6.0). Three

ethnic outliers were identified by a ‘drop one in’ procedure to avoid bias by the relatedness

structure within the Sorbs (see [63] for details). These samples were excluded from subsequent

analyses. After removing these samples, principal components revealed a homogenous popula-

tion structure (see S6 Fig). To account for relatedness, a drop-one-in procedure was used for

principal components analysis (see [63] for details).

Genotype imputation was performed without prior SNP filtering and separately for individ-

uals genotyped with 500K and 6.0 respectively as described [63]. The same software and refer-

ence panel was used as for the LIFE Leipzig Heart samples.

Genome-wide association analysis and SNP replication

Genome-wide association analyses for blood 96 metabolites was performed in the LIFE Leipzig

Heart samples (N = 2,107 with complete phenotypes, covariates and high-quality genotypes).

Associations were tested by linear regression models using gene-doses of imputed SNPs. We

adjusted for age, sex, log-BMI, diabetes status, smoking status, fasting status, haematocrit,

platelet count, white blood cell count and the first three genetic principal components. Results

revealed no signs of genomic inflation (maximum lambda equal 1.018, see S10 Table). To

avoid reporting of redundant SNP information, the top-SNP list was ordered according to min-

imal p-values and pruned applying a linkage disequilibrium cut-off of r2<0.3.

Replication analysis was performed in the independent cohort of Sorbs (N = 923 with com-

plete genotype and metabolite data) and for all combinations of SNPs and metabolites achiev-

ing a p-value of<10−7 in our first stage GWAS. Based on our unpruned GWAS top-list, we

retrieved all SNPs within a ±50kB environment which were successfully imputed in the Sorbs

(IMPUTE-info score>0.3 in both, 500K and 6.0 subsample). Then, on the basis of the LIFE

Leipzig Heart data, we assessed which of these SNPs are the best proxies of the corresponding

top-SNPs to pair GWAS top-SNPs with optimal proxies of good quality within the Sorbs

study.

Associations between pairs of proxies and metabolites were again analyzed using linear

regression analyses of gene-doses. Here, we adjusted for age, sex, log-BMI, diabetes status,
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smoking status, haematocrit, platelet count, white blood cell count and the relatedness struc-

ture ([52,64,65], function “polygenic” of the “GenABEL” package of R was used to deal with

the relatedness structure [63]).

Since test statistics are correlated due to LD between SNPs and correlations between metab-

olites, we decided to control the false-discovery rate (FDR) at 5% rather than family-wise error

rates. Null-distribution for q-value calculation was determined by permutation analysis. For

this purpose, 1000 random permutations of the links between SNPs and metabolites were

analyzed.

Novelty assessment of SNP-metabolite associations and search for
pleiotropic effects

We compared our results with published GWAS hits on the basis of the GWAS catalogue

(http://www.genome.gov/gwastudies/, date of download March, 4th, 2014). Required LD infor-

mation was derived from HapMap3 (release 28) and 1000genomes project (release 20110521

version 3 f, restricted to SNPs with a MAF� 1%). In addition, further evidence from published

mQTL studies was manually included in this analysis to assess novelty of our results. A total of

13 studies were analyzed [8,9,12–21,23] (see also S4 Table). A locus was considered as novel if

none of its SNPs were in linkage disequilibrium (r2>0.3) with any published mQTL hit reach-

ing study-wide significance as defined by the authors of the corresponding publication. To

increase relevance, we did not match the associated metabolic phenotypes between our study

and the published ones, i.e. our approach of considering loci as novel is conservative.

In complete analogy to this analysis, we determined whether our top hits are associated with

other traits for which results are published in the GWAS catalogue as well as those reported in

two GWAS on plasma lipids [10,31]. These traits could point toward other causal or pleiotropic

effects. If applicable, information on genetic disorders related to our loci were retrieved from

OMIM (http://omin.org).

Gene-expression measurement and pre-processing

Peripheral blood mononuclear cells were isolated in the LIFE Leipzig Heart cohort using Cell

Preparation Tubes (CPT, Becton Dickinson) as previously described [66]. Total RNA was

extracted using TRIzol reagent (Invitrogen) and quantified with an UV-Vis spectrophotometer

(NanoDrop, Thermo Fisher). 500 ng RNA per sample were ethanol precipitated with Glyco-

Blue (Invitrogen) as carrier and dissolved at a concentration of 50–300 ng/μl prior to probe

synthesis. N = 2,501 samples were hybridised to Illumina HT-12 v4 Expression BeadChips

(Illumina, San Diego, CA, USA) in batches of 48 and scanned on the Illumina HiScan instru-

ment according to the manufacturer’s specifications [60]. Documentation of sample processing

included batch information at any processing step allowing adjustment in subsequent data

analysis.

Raw data of all 47,323 probes was extracted by Illumina GenomeStudio, 47,308 probes

could be successfully imputed in all samples. Data was further processed within R/ Bioconduc-

tor R [67]. Individuals having an extreme number of expressed genes (defined as median ± 3

interquartile ranges (IQR) of the cohort’s values) were excluded. Transcripts that were not

expressed according to Illumina’s internal cut-off as implemented in the “lumi” Bioconductor

package (p� 0.05 in at least 5% of all samples) were excluded from further analysis. Expression

values were quantile-normalised and log2-transformed [68]. For further outlier detection, we

calculated the Euclidian distance between all individuals and an artificial individual which was

defined as the average of samples after removing 10% samples farthest away from the average

of all samples. Individuals with a distance larger than median + 3 IQR were excluded.
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Furthermore, we defined for each individual a combined quantitative measure combining qual-

ity control features available for HT-12 v4 (i.e. ratio of levels of perfect-match vs. mismatch

control probes, mean signal of perfect-match control probes, mean of negative control probes

and labelling-control probes, ratios of high-concentrated, medium-concentrated and low-

concentrated control-probes, mean of house-keeping genes, Euclidian distances of expression

values, number of expressed genes, mean signal strength of biotin-control-probes). We calcu-

lated Mahalanobis-distance between all individuals and an artificial individual having average

values for these quality control features. Individuals with a distance larger than median + 3

IQR were excluded. Transcript levels were adjusted for known batch effects using an empirical

Bayes method as described [69] and residualised for age, sex, monocyte counts and lymphocyte

counts. Additionally, we calculated principal components of the expression data and residua-

lised for the first five principal components of expression data to account for unmeasured

batch effects [70]. Pre-processing resulted in 28,295 expression probes corresponding to 19,519

genes. Chromosomal mapping of expression probes and assignment of gene names was done

using information as reported by the manufacturer (HumanHT-12_V4_0_R2_15002873_B).

eQTL and gene-expression association analysis

After quality control, combined SNP and gene-expression data were available for a total of

2,112 individuals, from which 1,856 had been included in the GWAS. eQTL analysis of the

pruned GWAS top-list was performed by linear regression analysis of gene-doses using the R

add-on package Matrix eQTL [71]. EQTLs were considered as cis-regulated if the distance

between SNP and the centre of the associated expression probe was not larger than 1 Mb, oth-

erwise they were considered as trans-regulated. Cis- and trans- specific significance thresholds

were derived by a Benjamini-Hochberg (B-H) procedure implemented in Matrix eQTL. For

our data, cis associations with a p-value up to 0.0039 and trans-associations with a p-value up

to 3.6x10-14 were considered study-wide significant at FDR<5%. B-H q-values were empiri-

cally confirmed by 100 permutation tests (permutation of SNP and gene-expression profiles).

Further details can be found elsewhere [72].

Association analysis of gene-expression and metabolites was performed in 1,957 individuals

for which both information as well as covariates were available (1,856 of these individuals had

been included in the GWAS). Again, we adjusted for age, sex, log-BMI, diabetes status, smok-

ing status, fasting status, haematocrit, platelet count, white blood cell count. FDR was con-

trolled at 5%.

As we observed multiple relationships between genetic loci, gene-expressions, and metabo-

lites, we visualized all associations found at FDR 5% in a network. Previously published rela-

tions were identified by mapping genetic loci, genes, and metabolites from mQTL, eQTL, and

gene-expression-metabolite association analysis to QIAGEN’s Ingenuity Pathway Analysis

(IPA, QIAGEN Redwood City, www.qiagen.com/ingenuity), as of May, 2015). This database

includes, among many other information, data on genome-wide protein-protein interactions,

activation / co-localization and enzymatic reactions. Significantly associated SNPs were repre-

sented by the three most proximal genes and metabolite ratios by the individual nominator

and denominator.

Identification of association triangles

For a more detailed characterization of the observed SNP-metabolite associations, we inte-

grated genotype, gene expression and metabolite data to construct association triangles. A tri-

angle is defined as a SNP that is significantly associated with both, a certain expression probe

and a certain metabolite. Thereby, the expression probe must be also associated with the
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metabolite. For this purpose, we first determined the top associated SNP per locus, its corre-

sponding best associated metabolite and eQTLs of that SNP (FDR = 5%, see above). Resulting

triples of SNP, transcript level of eQTL and metabolite level were restricted to those showing a

significant association between mRNA expression and metabolite level (FDR = 5%, see above).

These gene-expressions were considered as possible explanatory quantities of the SNP-

metabolite association.

We simulated the expected number of these association triangles under the null distribution

by performing a comprehensive permutation analysis: We performed 100 permutations where

we randomly assigned expression datasets and metabolic datasets to genetic datasets. We ana-

lysed these datasets for mQTLs, eQTLs, and gene-expression associations in accordance to our

original analysis. For each of these 100 permutation-based datasets, we counted the number of

pairwise associations and association triangles and compared it with the results of our original

dataset. We calculated the empirical likelihood of triangles by comparing the observed number

of six triangles with the number of triangles under the null assuming a Poisson distribution.

In order to exclude spurious correlation between gene-expression and metabolites as a

cause of the observed association, we performed a Mendelian randomization analysis using our

eQTL SNPs as instrumental variables [73]. In general, it is not easy to prove that the conditions

of Mendelian randomization are fulfilled. In particular, a direct SNP effect on metabolites can-

not be excluded, violating one of the assumptions [74]. Therefore, we adapted the Mendelian

randomization analysis by using the residuals of metabolites regarding the remaining direct

SNP effects (see also S1 Text for an extended discussion). Standard errors of Mendelian ran-

domization effects were derived by Jackknife [75].

Furthermore, we tested whether gene-expressions explain at least parts of the observed

mQTL associations. A subset of 1,856 individuals for which SNP, gene-expression, metabolite

and covariate data were available, was eligible for this purpose. We analysed regression models

of metabolites in dependence on SNPs, covariables and with or without gene-expression. We

asked whether the absolute value of the beta-estimator of the SNP is reduced if gene-expression

is added to the model. In this case, gene-expression explains a part of the observed SNP-

metabolite association. The difference of these SNP beta-estimators is tested against zero by

calculating Jackknife standard errors. This analysis also provides evidence for causal relations

between genetic variants, gene-expression levels and metabolite concentrations. Since we

observed that it is more stringent and conservative than Mendelian randomization analysis,

our conclusions regarding causality are based on this type of analysis.

To gain additional insights into possible functional mechanisms of our loci, we performed

the same analysis for all independently associated top-SNPs.

Supporting Information

S1 Fig. Study design. Analysis steps, required data and number of loci with significant results

at each stage are shown. For causal inference, association triangles were analysed. A triangle is

defined as a SNP that is significantly associated with both, a certain expression probe and a cer-

tain metabolite. Thereby, the expression probe must be also associated with the metabolite.

(PDF)

S2 Fig. QQ-plots of GWAS.Quantile-quantile plots of (–log10)-p-values for our genome-

wide association study of amino acids and acylcarnitines in the LIFE Leipzig Heart study. Post-

analysis quality control was applied prior to plotting the results.

(PDF)
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S3 Fig. Regional association plots of GWAS hits. Regional association plots of all loci achiev-

ing p-values<1.0x10-7 for any of the metabolites and metabolite ratios. Association results are

only shown for corresponding lead metabolites.

(PDF)

S4 Fig. Interactive visualization of association structure between genetic loci, genes and

metabolites (HTML). Significant relationships between genetic loci (top SNPs), gene-

expression in PBMCs and metabolite levels in whole blood are displayed in an interactive way

allowing the user to explore the network. Line thickness corresponds to amount of explained

variance (Lightblue = genetic loci without triangles, darkblue = genetic loci with triangles,

lightgreen = cis-regulated genes, darkgreen = trans-regulated genes, light orange = raw metabo-

lites, darkorange = metabolite ratios).

(HTML)

S5 Fig. Genetic Principal Components Analysis of LIFE-Heart samples (initial GWAS sam-

ples).We present the first ten Principal Components for 2,107 LIFE-Heart samples included in

our initial GWAS.

(PDF)

S6 Fig. Genetic Principal Components Analysis of Sorbs samples (replication samples).We

present the first ten Principal Components of our replication sample of Sorbs individuals (red)

in comparison to HapMap CEU (black).

(PDF)

S7 Fig. Interactive eQTL map of mQTL loci.We present an interactive html-version of Fig 3.

Each point represents an eQTL. Test statistics of each eQTL are available as tooltip. For clarity,

on chromosome 15 only the strongest cis-eQTL is shown.

(HTML)

S8 Fig. Empirical distribution of association triangles.We performed 100 permutations

including mQTL (sub-figure A), eQTL (sub-figure B), and gene-expression association analysis

(sub-figure C) using the same cut-offs as in our original analysis. The aim was to simulate a

null-distribution of association triangles (sub-figure D). For all analyses, we observed signifi-

cantly more associations than expected by chance. Particularly, no association triangles were

found in 98 permutations while only one triangle was found in two permutations. In our origi-

nal analysis, we observed six triangles.

(PDF)

S1 Table. Metabolites and definition of metabolite ratios. Overview of analyzed metabolites

and ratios, as well as the associated metabolic pathways are displayed.

(XLSX)

S2 Table. Results of mQTL GWAS in LIFE Leipzig Heart (discovery cohort).Detailed results

of the discovery cohort.

(XLSX)

S3 Table. Replication of mQTL GWAS hits in the independent cohort of Sorbs. Detailed

results of the replication cohort. All pairs of variants and metabolites showing association with

p-value� 1x10-7 in the initial GWAS were included in the replication.

(XLSX)

S4 Table. Comparison of mQTL GWAS hits with published genetic association studies of

metabolites. For all lead-SNPs of validated loci, we analyzed whether the same or SNPs in
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linkage disequilibrium (R2
�0.3) were associated in previously published genome-wide associ-

ation studies on metabolites. R2: linkage disequilibrium between lead-SNPs of our study and

the previously published SNPs.

(XLSX)

S5 Table. Results of eQTL analysis of mQTL hits in LIFE Leipzig Heart. For all lead-SNPs of

validated loci, we show eQTLs in PBMCs. Results are reported for a cis- and trans-specific

FDR of 5%, respectively.

(XLSX)

S6 Table. Results of association analysis of gene-expressions and metabolites in LIFE Leip-

zig Heart. For all associated gene expression probes identified in eQTL analysis, we analyzed

association with metabolites and metabolite ratios.

(XLSX)

S7 Table. Integrative analysis of mQTLs, eQTLs and expression-metabolite associations in

LIFE Leipzig Heart. Shown are all identified association triangles. A triangle is defined as a

SNP that is significantly associated with both, a certain expression probe and a certain metabo-

lite. Thereby, the expression probe must be also associated with the metabolite. R2: explained

variance.

(XLSX)

S8 Table. Comparison of mQTL GWAS hits with GWAS catalogue. For all lead-SNPs of val-

idated loci, we analyzed whether the same or linked SNPs (R2
�0.3) were associated in previ-

ously published genome-wide association studies as reported in the GWAS catalogue

(downloaded at March 4th, 2014) or two large GWAS on plasma lipids [10,31]. R2: linkage dis-

equilibrium between lead-SNP of our study and the previously published SNP.

(XLSX)

S9 Table. Cohort descriptions.We present major characteristics of our study populations

used for GWAS (LIFE Leipzig Heart) and replication (Sorbs). For quantitative parameters we

present median and interquartile range.

(XLSX)

S10 Table. Genomic inflation. Overview of observed genomic inflation factors (lambda) for

the mQTL GWAS in LIFE Leipzig Heart (discovery cohort). We observed no evidence for pop-

ulation stratification as lambda ranged from 0.977 to 1.018.

(XLSX)

S11 Table. Reported relationships between significant hits from the mQTL, eQTL, and

gene expression-metabolite association of this study.We used Ingenuity Pathway Analysis

in order to identify previously published relationships between significant hits from our study

shown in Fig 4 and S4 Fig. Locus: Locus of Molecule 1 and Molecule 2. Molecule 1 / 2: Mole-

cules for which relation is described, SNPs are represented by their three nearest genes. mQTL:

Molecule was observed as significant finding in the mQTL GWAS or replication of this study.

eQTL: Molecule was observed as significant finding in the eQTL analysis of this study. gene—

metab: Molecule was observed as significant finding in the gene-expression—metabolite associ-

ation analysis of this study. Citation: Source of relation description.Prim./ Second. Relation:

Prim. = primary relation, i.e. relation directly linking two molecules both observed as signifi-

cant findings in this study, Sec. = secondary relation, i.e. Molecule 1 originates from this study

and is related with a certain Molecule 2 from Ingenuity pathway-database. The pathway mole-

cule is also related with a further Molecule 1 from this study written in the following on the
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next row. Hence, a secondary relation between Molecule 1 from the first and Molecule 1 from

the second row via the same Molecule 2 from the database exists. Direct/Indirect Interaction:

D = Direct Interaction: There is a physical interaction between Molecule 1 and Molecule 2,

I = Indirect Interaction: Both molecules are related via a certain mechanism, but no physical

interaction is reported yet. Interaction type: Interaction as defined in Ingenuity pathway analy-

sis: A = Activation, CP = Chemical-Protein interaction, E = Expression (includes metabolism/

synthesis for chemicals), EC = Enzyme Catalysis, I = Inhibition, L = Molecular Cleavage

(includes degradation for Chemicals), LO = Localization, M = Biochemical Modification

MB = Group/complex Membership, P = Phosophorylation / Dephosphorylation, PP = Proten-

Protein binding, RB = Regulation of Binding, RE = Reaction, T = Transcription,

UB = Ubiquination; Relationship: Short description of reported relationship between Molecule

1 and Molecule 2.

(XLSX)

S1 Text. Extended methods and discussion of Mendelian randomization analysis.

(PDF)
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