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Abstract—This paper presents a methodology for integrated 

power flow modeling of the impact of geomagnetic disturbances 

(GMDs) on the power system voltage stability.  GMDs cause 

quasi-dc, geomagnetically induced currents (GICs) in the 

transformers and transmission lines, which in turn cause 

saturation of the high voltage transformers, greatly increasing 

their reactive power consumption.  GICs can be calculated using 

standard power flow modeling parameters such as line 

resistance, augmented with several GIC specific fields including 

substation geographic coordinates and grounding resistance, 

transformer configuration, and transformer coil winding 

resistances.  When exact values are not available estimated 

quantities can be used.  By then integrating GIC into power flow 

analysis, the changes in reactive power losses and bus voltages 

can be quantified to assess the risk of voltage instability and 

large-scale voltage collapse.  An example calculation is provided 

for a North American Eastern Interconnect model.   

I. INTRODUCTION 

The potential for a geomagnetic disturbance (GMD) to 
severely impact the operation of electric power systems 
worldwide is an area of growing concern.  An example of this 
is the February 2012 release of a special reliability assessment 
on GMDs by NERC [1], which notes that there are two risks 
that occur with the introduction of geomagnetically induced 
currents (GICs).  The first is the potential for damage 
transmission system assets, primarily the high voltage 
transformers.  The second is the loss of reactive power support 
leading to the potential for a voltage collapse.  The focus of 
this paper is on the second risk, considering the power flow 
modeling needed to provide an assessment of GIC related 
voltage stability risks with a particular emphasis on the 
practical aspects of doing such calculations for large-scale 
systems.   

II. OVERVIEW OF GIC POWER FLOW MODELING 

The basic modeling methodologies associated with the 
representation of GICs in the power flow have been well 

described in the literature.  As noted in [2], it has been known 
since at least the early 1940’s that GMDs have the potential to 
impact the power grid.  This is due to GMD-related changes in 
the earth’s magnetic field inducing quasi-dc electric fields in 
the earth (with frequencies usually much below 1 Hz) with the 
electric field’s magnitude and direction GMD event 
dependent. These electric fields in-turn cause GICs in the high 
voltage grid.  These quasi-dc currents can then cause half-
cycle saturation in the power transformers, resulting in 
increased transformer reactive power losses.  The reactive 
power losses are usually assumed to varying linearly with the 
GICs in the transformer [2], [3]. 

The inclusion of the impact of GICs in the power flow was 
first described in [4].  The gist is that the GICs can be 
determined by first solving a dc network of the form  

 I = G V (1) 

in which G a square matrix similar in form to the power 
system bus admittance matrix, except 1) it is a real matrix with 
just conductance values, 2) the conductance values are 
determined by the parallel combination of the three individual 
phases, 3) G is augmented to include the substation neutral 
buses and substation grounding resistance values, and 4) the 
transformers are modeled with their winding resistance to the 
substation neutral and in the case of autotransformers both the 
series and common windings are represented. The voltage 
vector V contains entries for the substation neutral dc voltages 
and the bus dc voltages.      

Two main methods have been proposed for modeling the 
impact of the GMD-induced electric field variation in the 
power grid: either as dc voltage sources in the ground or as dc 
voltage sources in series with the transmission lines [4], [5].  
In both approaches the dc voltages are represented as Norton 
Equivalent currents in the I vector of (1).  In [5] it was shown 
that while the two methods are equivalent for uniform electric 
fields, only the transmission line approach can handle the non-
uniform electric fields that would be expected in a real GMD 
event.  Therefore here the impact of the magnetic field 
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variation is represented by dc voltage sources in series with 
each of the transmission lines. 

Using the approach of [5], to calculate the GMD-induced 

line voltage the electric field is just integrated over the length 

of the transmission line.  In the common approach of 

assuming a constant electric field over the length of the 

transmission line (recommended in [1] for planning studies), 

the dc line voltage can be calculated as  

 
N N E E

V E L E L= +  (2) 

where EN is the Northward electric field (V/km), EE is the 

Eastward electric field (V/km), LN is the Northward distance 

(km), and LE is the Eastward distance (km).  With a uniform 

field (2) is independent of the actual path of the transmission 

line; just knowing the geographic location of the line’s 

terminal buses is sufficient.  In the case of non-uniform fields 

the voltage can be approximated by dividing the line into 

segments, applying this procedure to the individual segments, 

and then summing the results.  While such an approach would 

be path dependent, because GMDs are continental in scope, 

the small variation in the electric field over most line lengths 

would not be significant.  Therefore (2) provides an adequate 

approximation.  A twenty bus test system demonstrating these 

calculations is provided in [6].   

How the GICs flow in the electric transmission system 
depends upon the induced dc voltage in the transmission lines, 
the resistance of the various system elements, and the 
available paths to ground.  Since the GICs are essentially dc, 
device reactance plays no role in their determination other 
than recognizing that at dc frequencies capacitors look like an 
open circuit.  Hence shunt capacitors are ignored, and 
transmission line series capacitors block GICs on their lines.  
Values that impact the GICs include the resistance of the 
transmission lines, the resistance of the coils of grounded 
transformers, the resistance of the series windings of auto-
transformers (and their common winding if grounded), and the 
substation grounding resistance.   

This is illustrated for a simple two generator, four bus 
network in Figure 1 with Bus 1 and its generator (Bus 3) in 
Substation A, and Bus 2 with its generator (Bus 4) in 
Substation B.  Assume Buses 1 and 2 are joined by a 765 kV 
line that has a per phase resistance of 3�, the per phase 
resistance of the high side (grounded side) coil of each of the 
two transformers is 0.3�, and the grounding resistance for 
each of the substations is 0.2�. Since the concept of per unit 
plays no role in GIC determination, resistance values are 
expressed in Ohms (�), current is in amps (A), and the dc 
voltages are given in volts (V).  Assume the substations are at 
the same latitude, separated by 150 km in the east-west 
direction, with an assumed electric field of 1 V/km in the east-
west direction.  This gives an induced voltage in the 
transmission line of 150V.    
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Figure 1: Two Generator GIC Example  

The GICs can then be determined by solving a simple dc 
circuit.  From a GIC perspective the three phases for the  
transmission line and transformers are in parallel, so the total 
three phase resistance for the 765 kV line is (3/3)� = 1�, and 
(0.3/3)� = 0.1� for each of the transformers.  These 
resistance are then in series with the Substation A and B 
grounding resistance giving 

 

( )
,3

150 volts
93.75 amps

1 0.1 0.1 0.2 0.2
GIC PhaseI = =

+ + + + Ω
 (3) 

with the flow from ground into the high side coil of the 
Substation B transformer, down the 765 kV line, into the high 
voltage coil in Substation A and back into the ground.  In the 
figure the direction and size of the brown arrows are used to 
visualize the direction and magnitude of the GIC flow. 

The substation neutral and bus dc voltages can then be 
calculated by a straightforward application of Ohm’s law.  For 
example, the Substation B neutral voltage is (0.2�)*(-93.75A) 
= -18.75V, while the Bus 2 voltage is (-18.75V) + (0.1�)*(-
93.75A) = -28.1V.  Because of the delta connection on the low 
side of the transformers, no GIC passes through the 
transformers.  Since the generators are assumed to be 
grounded through a low resistance into the substation neutral, 
their dc bus voltage is the same as their substation neutral.   

A potential point of confusion in interpreting the results of 
the GIC calculations is to differentiate between the per GIC 
phase currents in transmission lines and transformers, and the 
total GIC three phase current in these devices.  From a results 
display perspective either could be shown.  Since the three 
phases are in parallel, the conversion between the two is 
straightforward with the total current just three times the per 
phase current. The convention commonly used for GIC 
analysis is to use the per phase current for transformers and 
transmission lines.  Thus the GIC in the example is 93.75/3 = 
31.25 A/per phase.   

Once the GICs have been calculated, the next step in the 
analysis is to determine the GIC-related transformer reactive 
power losses.  As mentioned earlier a linear function can be 
used [2], [3] with [7] making the observation that these 
reactive power losses vary linearly with terminal voltage.  
Therefore for each transformer the losses could be written as  

 
Loss kV GIC

Q V k I=  (4) 

where QLoss is the transformer’s GIC-related reactive power 
loss in Mvar, VkV is the terminal voltage (in kV), IGIC is the 
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per phase GIC in the transformer (in amps) and k is a 
transformer specific constant.   

However, since the power flow expresses voltages in per 
unit (pu), the approach used here is to embed the transformer’s 
maximum nominal voltage in the constant rewriting (4) as 

 
Loss pu GIC

Q V K I=  (5) 

where Vpu is the pu voltage and K has units of Mvars/amp.   
This approach works fine when K is available for each 

individual transformer.  In large system studies, in which 
default values for K are often used, an alternative approach is 
to modify (5) slightly to use an assumed nominal voltage in 
the definition of K.  Then the constant value needs to be scaled 
based upon the transformer’s actual maximum nominal kV 
level.  The reactive power loss equation then becomes 

 Nom kV

Nom kV,Assumed

Loss pu GIC

V
Q V K I

V

� �
= � �� �

� �

 (6) 

where VNom kV is the nominal kV of the highest winding for the 
transformer, and VNom kV,Assumed is the assumed nominal 
voltage.  If K is specified for a particular transformer then the 
assumed value is just equal to the nominal and (6) is identical 
to (5).   When used as a default for a number of transformers 
with varying nominal values the value used here is 500 kV.     

The value of IGIC used in (6) is an “effective” value that 
depends on the type of transformer.   In the simplest case of a 
grounded wye-delta, such as is common for generator step-up 
transformers (GSUs), IGIC is straightforward – just the current 
in the grounded coil.  For transformers with multiple grounded 
windings and autotransformers the value of IGIC depends upon 
the current in both coils [4].  Here we use the approach of [8], 
which shows that the equations for IGIC for an autotransformer 
can be generalized as 

 t H L

GIC

t

a I I
I

a

+
=  (7) 

where IH is the per phase dc current going into either the high 
side winding or the series winding of an autotransformer, IL is 
the per phase dc current going into either the low side winding 
or the common winding of the autotransformer, and at is the 
transformer turns ratio defined as 

 S CH

t

L C

N NN
a

N N

+
= =  (8) 

Completing the example, since both of the GSUs are 
grounded only on the high side, IGIC = IH = 31.25A for both.   
The increased transformer reactive power is calculated using 
an assumed K of 1.0 Mvar/A for the left GSU, and 0.5 
Mvar/A for the right GSU.  Because of the linear dependence 
of reactive power on bus voltage magnitude, in the power flow 
it is represented as a constant reactive current.   

III. LARGE-SCALE ISSUES ASSOCIATED WITH THE 

DETERMINATION OF THE GICS 

This section considers the practical aspects of associated 
with GIC determination for a large system, showing that these 
calculations can be effectively integrated into existing power 
flow packages.  An example is provided using a 62,000 bus 
model of the North America Eastern Interconnect (EI) with 
the solution done using PowerWorld Simulator with the GIC 
add-on [9]. With respect of prior work in the large system 
area, very few papers have addressed these practical 
considerations.  Such large-scale studies have certainly been 
done, with [10] providing results both from a simulation of the 
1989 GMD that impacted the North American Eastern 
Interconnect (including blacking out the Hydro Quebec 
system), along with an assessment of the potential for future 
GMDs to affect the U.S. power grids.  While [10] does 
provide a wealth of useful information about such studies, it 
does not provide a detailed solution methodology.   

From a conceptual point of view, determining the GICs in 
a large system is very similar to the methodology introduced 
with the four bus example.  That is, knowledge of a GMD 
storm scenario and an appropriate power system model allows 
one to determine the current vector and conductance matrix in 
(1).  This equation is then solved to determine the voltage 
vector.  From a computational perspective this solution is 
almost trivial, taking less than one second for the 62,000 bus 
model considered (significantly less than the associated power 
flow solution).  The voltage vector is then used to determine 
the IGIC for all of the system transformers, then (6) is used to 
determine the increased transformer reactive power demand.  

All of these steps just involve the solution of linear 
equations so they are fast and reliable.  For some GIC studies 
just calculating these values is sufficient.  However, if desired, 
the power flow equations could also be solved with the 
increased reactive power loading at each transformer modeled 
as a reactive current load.   

Much of the data needed for GIC analysis is contained in 
the standard power flow models (for example the PSSE Raw 
File Format [11]).  This includes the network topology, bus 
voltage levels, resistance of the transmission lines and the 
presence of transmission line series compensation.   

For transformers, the power flow model contains the total 
series resistance of the transformer but does not contain the 
resistance of the individual windings.  When available the 
actual winding resistance should be used.  Otherwise the 
individual coil winding resistances can be estimated by 
recognizing that the total resistance is not equally split 
between the two windings.  Rather, since the high voltage 
winding has more turns and lower amps, its resistance will be 
higher.  Referring to (8), a ballpark ratio of the high to low 
winding resistance is (at)

2
 for a regular transformer and (at-1)

2
 

for an autotransformer. Thus for a non-autotransformer the 
winding resistances can be estimated using   

 

,

pu 2

HighSide t LowSide

Base HighSide

R
R a R

R
= +  (9) 
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and assuming the magnitude of both terms on the right-hand 
side of (9) are equal.  For an autotransformer the equation is 

 ( )
,

2pu

Series t Common

Base HighSide

R
R a 1 R

R
= + −  (10) 

Transformer winding configurations (e.g., wye or delta) 
and grounding are not usually included in the power flow 
model, but they can either be determined from short circuit 
data or estimated.  The estimated values are grounded wye-
grounded wye for transmission level transformers and delta-
grounded-wye for transmission to distribution transformers 
(with the delta on the transmission side to keep zero sequence 
distribution current out of the transmission system).  
Resistance values are not needed for the ungrounded 
windings.  Hence when a load is modeled at the transmission 
level it is modeled as having no ground connection because of 
the implicit delta winding on the transmission side.     

For generators the modeling trend is to explicitly represent 
the GSU in the power flow model.  If the GSU is not modeled 
(i.e., the generator is directly connected to its high voltage 
bus), the resistance of the GSU is sometimes included in 
auxiliary power flow fields (e.g., the generator RT field from 
[11]).  Usually for a GSU the vast majority of the resistance is 
on the high voltage side.  Since the common GSU 
configuration is grounded wye on the high side, and delta on 
the low (generator) side, the low side winding and the 
generator can be ignored.   

One key data structure needed for GIC analysis is 
substation records.  While some power flow packages have 
long contained explicit substation records, others do not.  
Substation records are needed to 1) modeling the grounding 
resistance required for the construction of G in (1), 2) 
represent the substation neutral voltages and current injections 
in the V and I vectors of (1), and 3) provide the geographic 
locations needed for the calculation of dc line voltages in (2).  
In the analysis presented here (using [9] which does contain 
substation records) the power flow data was read in from a 
Raw File [11], which did not contain substation data.  Then an 
auxiliary file was used to create the substations with their 
associated latitude and longitude and map the buses into the 
substations.  The 62,000 bus EI example considered here has 
more than 27,000 substations.     

The substation grounding resistance field is used to 
represent the effective grounding resistance of the substation, 
consisting of its grounding mat and the ground paths 
emanating out from the substation such as due to shield wires 
grounding [8].  This resistance depends upon several factors 
including the size of the substation (with larger substations 
generally having a lower value) and the resistivity of the 
ground (with substations in rocky locations having higher 
values).  Ballpark values for low resistivity soil are usually 

substantially below 0.5Ω for a 230kV and above substations, 

and between 1 and 2 Ω for the lower voltage substations. 
Figure 2 plots the sorted assumed substation grounding 
resistances used in this example.  While the figure contains 
some actual data, most of it is estimated, with high voltage 
substations and those with more incident lines (and 
presumably a larger grounding mat) having lower values.    

 
Figure 2: Sorted Substation Grounding Resistance  

The final piece needed to calculate the system GICs is an 
assumed GMD scenario.  As noted in [1, pp. 64], if the intent 
of a study is to reproduce an actual storm then detailed models 
are needed that include the geology of the study area; if the 
purpose of the study is for planning purposes then a constant 
electric field can be assumed with different studies looking at 
different electric field magnitudes and directions.  Since this 
paper focuses on planning applications, just uniform fields are 
used.  Also, because (1) and (2) are linear, the GICs for all 
field magnitudes and directions can be determined with 
superposition by just solving for the east-west and for the 
north-south field directions for a specified field value.   

As an example, Figure 3 and Figure 4 visualization the 
GICs calculated in the North American EI case for 
(respectively) an east-west field and a north-south field of the 
same field strength, just using data contained in the power 
flow model, along with estimated defaults for substation 
grounding resistance and reasonably accurate bus geographic 
locations.  The yellow arrows show the direction and 
magnitude of the GICs.  The purpose for these figures is not to 
advocate that a uniform field across an entire interconnect 
would actually occur.  Rather it is to demonstrate that these 
values can be quickly determined and visualized, with the 
calculations need to taking on the order of one second.      

 
Figure 3: GICs in Eastern Interconnect for  

Uniform East-West Field  
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Figure 4: GICs in Eastern Interconnect for  

Uniform North-South Field  

An important issue then in performing a GIC study for a 
particular geographic footprint (e.g., a utility or balancing 
authority area) is determining what electric field values to use   
in areas outside of the footprint. The analytic dependence of 
the GIC flow on a particular line or transformer going between 
buses j and k or transformer to another line’s GIC-induced 
voltage (going between buses m and n) can be easily 
determined by solving  

 [ ]
1−

∆ = ∆V G I  (11) 

in which the only non-zeros in ∆∆∆∆I would be equal and opposite 
values at the positions for buses m and n, and the only desired 

values in ∆∆∆∆V are at the positions for buses j and k.  Sparse 
vector methods could be used for fast computation of such 
sensitivities [12].   

Pragmatically the result is that the GMD induced voltages 
only tend to affect electrically nearby buses. As an example 
Figure 5 shows a zoomed view of Figure 4 except that GMD 
voltages are only assumed on transmission lines in the TVA 
service territory (footprint)

 1
.  Now the resultant GICs are 

almost exclusively contained on the TVA lines.  As a specific 
example, a 500 kV line in the middle of TVA has a Figure 5 
(TVA only) current equal to 99.7% of its Figure 4 (full 
system) value while a 345 kV transmission line in Central 
Illinois has a TVA only value of essentially zero (less than 
0.1% of its full system value).  Conversely, if the voltages are 
assumed to be zero only in TVA the first line’s GIC is now 
2.8% of its full system value, and the Illinois line is at 99.99%.  
Thus when performing a GIC study electric field values are 
only important for the footprint of interest and nearby buses.  
So little error is introduced in the GICs themselves if one 
considers outside lines to have no electric field or the same 
electric field as the footprint of interest.   

                                                           

1
 An online map of the Tennessee Valley Authority (TVA) 

area is available at http://www.tva.gov/sites/sites_ie.htm 

 
Figure 5: GICs in Eastern Interconnect for  

Uniform North-South Field  

Another issue to address is whether the lower voltage 
transmission grid needs to be included in the GIC calculations.  
The NERC General Simulation Guidelines say that 
transmission lines below 230 kV are typically not modeled 
due to the higher resistance values of the lower voltage lines 
[1, pp. 64].  In testing this guideline using the EI case the GIC 
associated Mvar losses with the transmission lines below 230 
kV ignored in (1) were 87% of their value full case values for 
an east-west field and 85% for a north-south field.  However, 
these values differed substantially for the individual areas in 
the case.  In the Ontario the guideline appears to be justified 
since the total Mvar value with the lines below 230 kV 
ignored was 99% of when they were included.  But in other 
areas, such as New England and Michigan, the reactive loss 
value with the lines ignored was less than 60% of when they 
were included.  Therefore is general guideline may need to be 
reconsidered, but it may be justified for certain locations.  
Also, given the low computational costs there are few reasons 
to exclude the lower voltage lines.        

IV. LARGE-SCALE ISSUES ASSOCIATED WITH GICS 

INTEGRATED INTO THE POWER  FLOW 

Once the GICs have been determined (6) is used to 
determine the increased reactive power losses for each 
transformer.  These losses are then modeled in the power flow 
as a constant reactive current.  While conceptually these 
additional reactive power losses could be calculated by an 
external program and then imported into the power flow, the 
more convenient approach presented here is to include the 
GIC calculations integrated into the power flow solution. 

 Regardless of approach, the impact the GICs have on the 
power flow, and whether they would ultimately cause a 
voltage collapse is dependent upon the assumed K parameter 
from (6).   In general K is transformer dependent with its exact 
value either determined from detailed study of the 
transformer’s structure or through measurement.  
Measurement opportunities only occur during GMD events, 
but with increased transformer dc neutral current monitoring 
hopefully better known of these values will be forthcoming.   

Nevertheless, the literature does provide some guidance on 
its selection.  In [3] the following transformer values are 
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presented based upon the transformer’s core design: K=1.18 
for a single phase core, 0.33 for a shell form, 0.29 for a 3-
legged and 0.66 for a 5-legged core; but [3] does not mention 
the assumed voltage level.  In [10, pp. 1-21] a K value of 
about 1.7 (normalized to 500 kV) is presented for single phase 
transformers, while in [13] a value of 1.1 (again normalized to 
500 kV) is presented for these transformers, and about 0.8 for 
a shell form and slightly less for a 5-legged core.  Since single 
phase transformers are usually only used for transformers at or 
above 500 kV, a worst case analysis might be to use a K of 
say 1.7 for 500 kV, and a value of about 0.8 (normalized to 
500 kV) for all others.  These assumptions were used in the 
results presented here.  Obviously if the exact K value is 
known for a transformer then it should be used.     

The last issue to consider in doing GIC power flow study 
is the size of the study area.  Since the GICs increase 
transformer reactive power consumption, the concern is 
whether the system will have sufficient reactive reserves to 
avoid voltage collapse.  Due to the relatively high reactances 
of the transmission lines, it is widely recognized that reactive 
power does not travel far in the transmission grid, so voltage 
stability concerns are local or at most regional [14]. 

Hence the GIC power flow study approach presented here 
is to assume a uniform electric field over the entire case, but to 
only calculate the GICs in the areas of interest (AOI), and 
nearby buffer areas.  The GIC induced transformer reactive 
losses are then also modeled only at the transformers in these 
areas.  The electric field is then increased until the power flow 
no longer converges (i.e., close to the voltage collapse point).   

In the specific example presented here the AOI consisted 
of 1781 buses, with buffer areas of 3264 buses (out of a case 
total of 62605 buses).  The case represented 2012 anticipated 
summer peak conditions.   An east-west field was assumed, 
which caused the total transformer GIC related losses to 
increase at a rate of about 716 Mvars per 1 V/km increase in 
the assumed field (a value that dropped slightly as the bus 
voltages decreased).  The initial reactive power generation in 
the AOI and buffer areas was 10,400 Mvar (out of a case total 
128,646 Mvar), with the lowest initial transmission level 
voltage (above 100 kV nominal) in these areas at 0.934 pu.   

The electric field was then increased in 0.5 V/km 
increments, with the last valid power flow solution occurring 
with an assumed field of 11.5 V/km (18.5 V/mile).  For 
reference the GMD that blacked-out Quebec in 1989 had peak 
electric fields of 2 V/km [15], while according to [16] a 100 
year storm could cause peak fields of 20 V/km in Quebec (a 
“resistive” region) and 5 V/km in British Columbia (a 
“conductive” region).  With an assumed field of 11.5 V/km 
the total reactive generation in the AOL and buffer areas had 
increased by about 67% to 17,419 Mvars.  The lowest 
transmission level voltage was 0.866 pu, with sixty 
transmission buses having voltages below 0.9 pu.  The highest 
transformer effective IGIC was 334 A/phase, with 33 
transformers having IGIC values above 100 A/phase.  The 
impact of these currents on transformer heating and loss of life 
was not considered in this study.   

V. SUMMARY AND FUTURE DIRECTIONS 

The paper has presented a methodology for including 
GMD assessment as an integrated part of the power flow 
solution, with results presented for a large-scale system.  The 
paper shows that with standard power flow data, reasonable 
assumptions for other GIC parameters and an assumed 
uniform electric field, the solution is relatively straightfor-
ward.  The necessary study tools now exist for integrating 
GMD assessment into the power system planning process.   

There are many directions for future work.  Certainly a key 
issue is validation, which will be greatly facilitated by the 
growing number of direct GIC measurements in the power 
system.  Another area of research is the development of 
algorithms for determining optimal GIC mitigation strategies, 
which could include both operational strategies when a GMD 
is imminent and longer-term solutions such as the installation 
of GIC reduction devices.  Improved geographical modeling is 
needed to determine the validity of the constant electric field 
and the appropriate field values to use in particular geographic 
areas.  Finally, more specific system studies are needed to 
determine whether significant damage to system assets such as 
transformers would occur before a voltage collapse due to lack 
of reactive support.     
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