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Integration of geoscience 
frameworks into digital pathology 
analysis permits quantification 
of microarchitectural relationships 
in histological landscapes
Timothy J. Kendall1,2*, Catherine M. Duff1,3, Andrew M. Thomson4 & John P. Iredale1,5

Although gold-standard histological assessment is subjective it remains central to diagnosis and 
clinical trial protocols and is crucial for the evaluation of any preclinical disease model. Objectivity 
and reproducibility are enhanced by quantitative analysis of histological images but current methods 
require application-specific algorithm training and fail to extract understanding from the histological 
context of observable features. We reinterpret histopathological images as disease landscapes to 
describe a generalisable framework defining topographic relationships in tissue using geoscience 
approaches. The framework requires no user-dependent training to operate on all image datasets in a 
classifier-agnostic manner but is adaptable and scalable, able to quantify occult abnormalities, derive 
mechanistic insights, and define a new feature class for machine-learning diagnostic classification. 
We demonstrate application to inflammatory, fibrotic and neoplastic disease in multiple organs, 
including the detection and quantification of occult lobular enlargement in the liver secondary to 
hilar obstruction. We anticipate this approach will provide a robust class of histological data for trial 
stratification or endpoints, provide quantitative endorsement of experimental models of disease, and 
could be incorporated within advanced approaches to clinical diagnostic pathology.

Traditional diagnostic pathology remains the gold-standard means of assessing tissue but is a subjective and 
poorly reproducible craft. Progress has been made to introduce objectivity and reproducibility into the field by 
computational interrogation of digital histological  images1 with direct and creative links to clinically actionable 
 outcomes2,3. However, there remain both practical obstacles in the current approaches and opportunities for 
conceptual developments in a new and rapidly expanding field.

Current image analysis methods often require study-specific algorithm training by end-users. Such train-
ing impedes widespread adoption as it is time-consuming, and critically precludes inter-study comparison of 
measured outputs or outcomes in animal modelling of disease or clinical trials. Only by developing methods that 
can be extensively validated and applied uniformly and intuitively across studies without a need for specialist 
input can quantitative digital pathology disrupt classical subjective assessment in a research setting or within 
routine practice.

Further, current ‘black-box’ methods are unable to extract understanding from the histological context of 
observable features, the most critical component informing skilled subjective assessment, or provide histo-
logically relatable insight that can be further utilised for mechanistic research. Feature recognition is central to 
both traditional and computational methods. Although advances in computational feature annotation using 
deep-learning  methods4–7 have increased the accuracy of image segmentation, ‘real-world’ diagnostic acuity 
is a function of histological literacy—an appreciation of the histological context and relationships between 
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features—rather than accurate feature recognition alone. Understanding from these feature relationships is not 
currently exploited computationally, representing a significant opportunity for a more creative approach to har-
ness concepts with proven, real-world value.

We reasoned that any annotated histological image could be conceptualised as a simple two-dimensional 
landscape in a generalisable manner to permit quantitation of feature relationships by methods developed for 
landscape analysis in geosciences and ecology. We describe a generalisable scale-independent framework that 
leverages essential feature relationships using geoscience approaches. No further user-dependent training to 
operate on existing image datasets in a classifier-, species-, and disease-agnostic manner within computational 
workflows. This provides a pathologically intuitive framework that identifies occult abnormalities, derives mecha-
nistic insights, and defines a new feature class for machine-learning disease classification.

Results
Fully classified histological images can be re-interpreted as categorical maps and analysed 
within a fully computational pipeline using landscape ecology and geosciences methodolo-
gies. The input for our analytic framework is a landscape pattern created by manual or computational anno-
tation of a histological image. Complex computational methods to fully classify histological images are available, 
and their ease-of-use and accuracy continue to increase. The output of classifiers such as U-net4 can be a cat-
egorical landscape equivalent to those generated in large-scale mapping and geoscience studies. Whilst the scales 
differ, the fundamental nature of the data representation is the same (Fig. 1a).

In landscape ecology, categorical landscape patterns are mosaics of discrete areas (‘patches’) belonging to 
defined classes. Such patches are environmentally homogeneous areas with their boundaries reflecting the sig-
nificant change in environmental conditions between them. Conceptually, the histological landscape also consists 
of a mosaic of ‘environmentally’ similar areas represented by tissues or cells and extracellular microarchitectural 
structures. Analysis of such categorical landscape patterns can generate metrics describing individual patches, the 
patch class, or defining the landscape as a whole. When applied to histological landscapes, class- and landscape-
level metrics describe the topography of the tissue in a holistic and novel language whilst individual patch-level 
metrics provide metrics complementary to more traditional single-cell/group histological  phenotyping8 pro-
vided by existing methods. We developed a pipeline using classified images to analyse the landscape patterns 
with methods derived from the FRAGSTATS  suite9, a spatial pattern analysis program for categorical maps 
originally developed in association with the USDA Forest Service, as well as more recently described measures 
of landscape  complexity10 (Fig. 1b).

As a first proof-of-principle, we used a set of 54 resection and explant liver H&E-stained slides containing 
primary liver cancer (hepatocellular carcinoma) and surrounding non-lesional liver. After whole-slide imaging 
we selected and tiled regions of lesional and non-lesional tissue and trained a basic machine-learning classifier 
using the WEKA plugin within FIJI, a readily available and commonly-used open-source  tool11,12, to deconvolute 

Figure 1.  Fully classified histological images can be considered categorical maps and analysed as part of a fully 
computational pipeline using landscape ecology and geosciences methodologies. (a) Categorical representations 
of the landscape are routinely evaluated in landscape ecology and geosciences by specific tools. The generation 
of a fully segmented output image from a histological input, by any available method, is an analogous process 
differing only in scale (Contains modified Copernicus Sentinel data 2019 processed by Sentinel Hub under CC 
BY 4.0. Mapped tiles copyright OpenStreetMap contributors under Open Database Licence). (b) A pipeline 
using fully segmented images converts the images to an appropriate file format feeding the landscapemetrics 
package in R, generating the complete suite of metrics described in FRAGSTATS, and other holistic landscape 
measures of complexity and organisation.
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the H&E staining into three simple classes—nuclei, cytoplasm and vascular channels (Fig. 2a). The output cat-
egorical image dataset was successfully employed within the pipeline in place of categorical earth sciences maps 
to generate the equivalent metrics.

Landscape metrics provide a unique language for detailed histological phenotyping and rep-
resent an intuitive input dataset for machine-learning disease-classification methods. The 
most commonly used and simplest information available from a classified image is the number of pixels assigned 
to each class (Fig. 2b). In the classified liver dataset, the pixel-class proportions for lesional and non-lesional 
regions were significantly different on a group-wise basis but these three metrics alone did not provide good 
inter-group discrimination when used for unsupervised hierarchical k-means clustering (Fig. 2c).

The four holistic metrics of landscape  complexity10 from the landscapemetrics package provide single values 
derived from each landscape. These four metrics alone can be used as quantitative descriptors of the complete 
histological landscape to successfully define and quantify differences between paired tumour and normal liver, 
augmenting the subjective diagnosis (Fig. 3a). The four metrics in combination were used for unsupervised 
k-means clustering and provided improved disease discrimination compared with pixel-class proportions alone 
(Fig. 3b).

We reasoned that the larger suite of landscape metrics generated from categorical histological landscapes 
(Supplementary Table 1) could be used more effectively than simple pixel-class proportion alone in downstream 
applications such as machine-learning diagnostic classification. As a proof-of-concept, selected landscape- and 
class-level metrics from the same dataset were used as features for model training after randomly splitting cases 
into a training and test set. A random forest classifier was constructed from the selected features of the training 
set, and the predictive value of the model determined on the test set (Fig. 3c), demonstrating the applicability of 
this type of metric that can be generated entirely from a classified image in a pertinent down-stream use. Cru-
cially, the landscape metrics are histologically meaningful and intuitive so that variable importance measures 
derived from the classifier construction provide additional value compared with alternative ‘black-box’ methods 
in current use with raw images. In our exemplar, the features derived from the ‘nuclear’ class in ‘aggregation’ and 
‘area and edge’ categories are the most highly ranked in the classifier construction (Fig. 3d–f). These metrics 
represent nuclear morphology and distribution, critical features used by pathologists to make a subjective diag-
nosis, demonstrating that a fully computational landscape approach independently identifies and utilises features 
central to gold-standard traditional practice, and provides output in an intuitive and usable form. Simply, the 
landscape metric framework uses a common language with subjective observers that permits ready translation 
of insight from computational output back into human practice that alternative methods do not.

Histological landscape patch analysis is classifier-, disease-, and tissue-agnostic. To demon-
strate the classifier, disease, and tissue-type agnosticism of this landscape patch approach, whole-slide images 
of post-mortem thyroid in an alternative file format were downloaded from the GTEx Tissue Image Library. A 
set (n = 10) of H&E stained sections of thyroid regarded as normal or with the histological features of Hashi-
moto’s thyroiditis, an autoimmune disease characterised by lymphocytic inflammation and follicle destruction, 
by the reviewing pathologist were obtained. The whole-slide images can be used in the native file format by an 
alternative open-source bioimage application, QuPath, with internal down-scaling, or the whole-slide images 
can be down-scaled by extraction of the required resolution series using the Open Microscopy Environment’s 
Bio-Formats  plugin13 within FIJI. This latter method was used to create smaller files, cropped more closely to the 
tissue, to allow quicker computation.

A pixel-classifier of random trees (‘RTrees’) type with ‘gaussian’ and ‘weighted deviation’ features selected was 
trained within QuPath to classify pixels into the histological classes ‘cells’, ‘stroma’, ‘colloid’, and tissue-free space 
rather than tinctorial H&E deconvolution (Fig. 4a). Simple histological class-based pixel quantification of clas-
sified images demonstrated differences between normal and diseased thyroid (Fig. 4b), as would be expected in 
a disease characterised by inflammation. The QuPath-classified images could also be further incorporated into 
the landscape patch pipeline in the same manner as WEKA-classified tiles to generate a full suite of landscape 
metrics that provided good disease discrimination of individual cases (Fig. 4c).

Spatial point pattern analysis of discrete features complements landscape patch analysis of 
classified images and provides quantitative support for subjective evaluation. A classified cat-
egorical image can not only be used within a landscape patch pipeline but can also be used to generate spatial 
point patterns. Such point patterns allow interrogation of histological features using an alternative framework 
from the ecological sciences that evaluate relationships between features that subjective histological assess-
ment often relies upon. Further, point pattern analysis is complementary to landscape patch analysis and can be 
undertaken on the same images. A spatial point pattern of marked features in 2-dimensional space allows simple 
measures of feature density and distance to be calculated, and the clustering and dispersal of annotated features 
can be quantified by well-characterised specialised mathematical  functions14.

To illustrate the quantification of features relationships that only this approach can provide in a user-inde-
pendent manner, the fully-classified images of complete thyroid lobe transections were used in an open-source 
pipeline developed to take the annotation input from an image processing package through a specialised R 
package for spatial statistics. For convenience, the largest rectangular window common to all classified images 
was selected. The ‘colloid’ class, effectively identifying functional follicles, was separately masked, and (x,y) 
centroids of the individual follicles represented by this were used to generate spatial point patterns using the 
spatstat package within R (Fig. 5a).
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Figure 2.  Standard pixel counts of classified image are limited value alone. (a) A dataset of 54 whole slide 
images of H&E-stained sections from liver resections for hepatocellular carcinoma were used as an exemplar for 
the added value derived by landscape analysis of classified images. Lesional (HCC) and non-lesional fields were 
selected from each slide and a simple WEKA machine-learning H&E deconvolution classifier trained to allow 
pixel classification of tiles into 3 classes (nuclear, cytoplasm, vascular channels). (b) Pixel-class proportions for 
‘nuclear’ and ‘cytoplasmic’ were significantly different between HCC and non-lesional regions when analysed by 
group (violin plot with kernel density and median (centre line), first and third quartiles (lower and upper box 
limits), 1.5 × interquartile range (whiskers); p-values of unpaired two-sided two-sample t-test for each metric, 
n = 54). (c) K-means clustering using these three pixel-class proportions alone was poor at segregating regions 
by diagnosis.
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The simplest measures of a spatial point pattern are point intensity and mean nearest-neighbour distance. 
The intensity of the point patterns in normal and diseased thyroid were not significantly different (Fig. 5b) but 
the mean nearest neighbour distance of the point pattern in diseased thyroids was significantly greater than in 
normal thyroids (p = 0.002128, Welch unpaired two-sided two-sample t-test, n = 10, Fig. 5c).

Single figure metrics derived from each point pattern can begin to evaluate the distribution of points (Fig. 5d). 
The Clark–Evans Aggregation Index is a simple measure of point clustering represented by the ratio of the mean 
nearest neighbour distance in a pattern to the mean distance in a pattern of complete spatial randomness (CSR) 
with the same intensity; a value < 1 suggests clustering and > 1 suggests ordering/dispersal. The mean value for 
both groups was > 1, suggesting follicle dispersal that was significantly greater in diseased thyroids (p = 0.000123, 
Welch unpaired two-sided two-sample t-test, n = 10). The Hopkins–Skellam Index also evaluates the nearest 
neighbour distances of a point pattern against those of a pattern of complete spatial randomness with the same 
intensity, where a value of 1 represents CSR, < 1 suggests point clustering and > 1 suggests dispersal. In contrast 
to the Clark-Evans Aggregation Index, the Hopkins-Skellam index value for normal thyroid suggested follicle 
clustering but follicle dispersal in diseased thyroids, with a significant difference between groups (p = 1.324e−05, 
Welch unpaired two-sided two-sample t-test, n = 10).

Much information is lost by summarising point patterns by a single figure metric and more insightful func-
tions for understanding and quantifying the relationship of points can be applied. In adjusted plots of the empiri-
cal Ripley’s L-function, CSR of features is represented by a horizontal line through zero on the y-axis; clustered 
features plot above the line of CSR, and feature regularity/dispersal is plotted below the line, indicated in the 
synthetic dataset plots (Fig. 6a). Other available functions utilise the space between points in addition to the 
points themselves. The empty-space function, F, is based on the distance from any point within the empty space 
to the nearest point. The nearest neighbour distance distribution function, G, provides greater information than 
the simple mean nearest neighbour distance, and the J-function is a summary function that incorporates both 
F and G functions. For each function, the plots of synthetic point patterns representing dispersal and clustering 
are shown (Fig. 6a).

The individual empirical F-function plots of follicle point patterns are similar for normal and diseased thy-
roids although with greater variation between cases in the diseased group, and the F-functions are not sig-
nificantly different between groups [studentized permutation test for grouped point patterns, T (999 random 
permutations) = 0.33425, p-value = 0.196, Fig. 6b]. In contrast, the adjusted Ripley’s L-, G- and J-function plots 
show differences between groups, with plots indicating clustering of follicles in cases of Hashimoto’s thyroiditis, 
compared with plots consistent with randomness or dispersal of follicles seen in normal thyroid (Fig. 6c–e). The 
group-wise comparison indicates that each function is statistically different between groups (studentized permu-
tation test for grouped point patterns, 999 random permutations: Ripley’s L-function, T = 7.3732, p-value = 0.005; 
G-function, T = 1.9981, p-value = 0.006; J-function, T = 2.4405, p-value = 0.001). Such differences can be quali-
tatively appreciated in the H&E images, where follicles in normal thyroid are largely evenly dispersed and 
those in Hashimoto’s thyroiditis are disrupted, often smaller, and with inflamed and fibrotic areas of follicular 
destruction that leads to apparent cluster formation. However, only analysis of spatial point pattern can quantify 
these subjective changes to architecture that are secondary to the inflammation that simpler methods evaluate.

Spatial point pattern analysis of annotated features can identify and quantify occult devia-
tion from microarchitectural normality. Although computational annotation is convenient, manual 
annotation remains accurate for many applications. Targeted, high-fidelity, manual annotation of specific fea-
tures permits hypothesis-driven interrogation using spatial point pattern landscape analysis, contrasting with 
the whole-landscape hypothesis-generating approach inherent to patch landscape analysis. Spatial point pat-
terns were derived from manual annotations of large vascular structures in images of normal liver (n = 10), 
end-stage cirrhotic liver including cases showing the three dominant patterns of fibrosis (primary biliary disease 
(n = 11), steatohepatitis (n = 10), and chronic Hepatitis C virus infection as a cause of lobular hepatitis (n = 10), 
and peripheral liver from cases with central (hilar) tumours (cholangiocarcinomas, n = 10, Fig. 7a,b). An exam-
ple Voronoi tessellation (where each tile for a given point of the point pattern represents the space in which 
every point within is closer to the given point than any other point of the point pattern) and Stienen diagram 
(where a circle is drawn around each point of diameter equal to the nearest-neighbour distance; circles outwith 
the window not plotted) from a spatial point pattern of normal liver and cirrhotic liver of each of three aetio-
logical patterns allows an appreciation of the regularity and dispersal of portal tracts in normal liver and the 
tendency towards clustering seen in cirrhosis (Fig. 7c). Within the field of liver pathology, the loss of this regular 
hepatic architecture is the subjective histological sine qua non of end-stage liver disease. The empirical Ripley’s 
L function plot for portal tracts in normal liver demonstrates statistically significant regularity at all scales for 
each subject. Differences between aggregated Ripley’s L functions of each cirrhotic group and normal liver were 
statistically significant [Fig.  7d, studentized permutation test for grouped point patterns, Tbar (999 random 
permutations) = 8260.7, p-value = 0.011], formally quantifying this central tenet of liver pathology for the first 
time. This quantification offers support for the proposed mechanism of development of cirrhosis through paren-
chymal extinction that ‘draws together’ adjacent  structures15. No alternative method exists for the quantification 
of subjective pathological feature disorganisation of this nature. Differences in Ripley’s L function plots between 
disease categories was evident, with more clustering apparent in chronic hepatitis C virus and steatohepatitis 
than in biliary disease, although these differences were not significant by aggregated comparison across the func-
tions as a whole in these proof-of-principle cohorts.

The same approach was applied to peripheral liver from cases with central (hilar) tumours (cholangiocar-
cinoma), all clinically reported by specialist Hepatopathologists as having normal peripheral microarchitec-
ture. Example Voronoi tessellation and Stienen diagram plots look qualitatively similar to those of normal liver 
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(Fig. 7c). However, calculation of empirical Ripley’s L-functions demonstrated significant differences in the 
organisation of portal tracts in cases with hilar tumours compared with normal liver, with greater dispersal of 
portal tracts in the peripheral liver of cases with hilar tumours [Fig. 7e, studentized permutation test for grouped 
point patterns, Tbar (999 random permutations) = 1935.2, p-value = 0.006]. Additional annotation of central veins 
allowed calculation of inter-vascular distances by calculating the nearest-neighbour distances between points of 
different classes, permitting the size of liver lobules, a microarchitectural functional unit, to be modelled based 
on the two-dimensional lobule-as-hexagon paradigm. This confirmed statistically significant pathological lobular 
enlargement (Fig. 7f, p = 0.0005835, Welch unpaired two-sample two-sided t-test, n = 10). Thus, targeted com-
plementary spatial point pattern metrics readily defined both previously unquantifiable subjective features and 
occult disease-related structural changes that were not apparent by specialist gold-standard subjective assessment.

Image sets from obstructed and normal renal cortex (Supplementary Fig. 1), and normal pancreas (Supple-
mentary Fig. 2), were also examined to demonstrate additional multi-organ applicability. Glomerular and Islet 
of Langerhans distributions, respectively, could be quantified by the same functions. The renal cortex in centrally 
obstructed kidneys did not demonstrate derangement of normal architecture equivalent to that found in the liver, 
in keeping with the fundamental differences in organ plasticity and responses to injury.

Individual cell annotation allows quantification of fine-grain cellular relationships that gener-
ates new insights into fundamental disease processes. The relational context of cells, as well as 
tertiary structures, can also be defined by a spatial point approach to generate additional mechanistic insight. 
A dataset of images from a rodent model of early scarring in fatty liver disease in which scar-orchestrating 
(α-smooth muscle active-positive) myofibroblasts (MFBs)16 had been immunofluorescently stained (Fig. 8a) was 
used for manual annotation of both the positions of MFB nuclei and the focal point of injury in this model, the 
central veins (Fig. 8b). Separate spatial point patterns of MFBs and the central vein circumference were used to 
define the relative MFB positions with reference to the central vein profile, providing information about indi-
vidual cell distance and orientation (Fig. 8c). The scar axes could be determined by calculation of the radial MFB 
densities, and alignment of the calculated dominant axis in each field allowed all fields to be compared.

The distribution of MFB-to-central vein distances (Fig. 8d) can provide quantitative phenotypic histological 
data beyond crude cell  number17. Relative scar axis based on peak MFB density (Fig. 8e,f) was determined for 
each animal, and examination of this fundamental disease process in relation to a fixed histological landmark 
revealed that scarring is initiated in a bipolar manner (Fig. 8g), rather than along all possible axes, indicating an 
unknown property of scar initiation (Fig. 8h) that can be subjectively appreciated in low-power images.

Discussion
Our framework depends upon a simple conceptual shift to consider a histological section as a tissue landscape, 
releasing the rich topography for interrogation by the methodologies of geosciences and landscape ecology. 
Classifier-agnostic hypothesis-generating whole landscape analysis can be undertaken using patch landscape 
ecology tools. The user-specified suite of metrics describes previously unquantifiable feature relationships over 
all microarchitectural scales. Critically, given the proliferation of computational methods to quantify images, 
this approach to a fully segmented classified image permits a complete suite of new metrics to be generated in 
a species-, tissue-, disease-, or segmentation methodology-agnostic manner without any additional training 
requirement.

In contrast, computationally derived or targeted manual feature annotation allows spatial point pattern analy-
sis and phenotyping, a complementary framework for interrogating the histological landscape. Features only 
previously subjectively assessable can be quantified to phenotype and describe normal and diseased histological 
landscapes and derive mechanistic insight.

Figure 3.  Classification-agnostic landscape metrics allow histopathological phenotyping in human disease 
and represent an intuitive input dataset for machine-learning disease-classification methods. (a) Individual 
complexity metrics from non-lesional liver and hepatocellular carcinoma can be used as discrete phenotyping 
measures (violin plot with kernel density and median (centre line), first and third quartiles (lower and upper 
box limits), 1.5 × interquartile range (whiskers); p-values of unpaired two-sided two-sample t-test for each 
metric, n = 54) or combined for improved segregation based on diagnosis after use in k-means clustering (b). (c) 
The complete suite of landscape metrics can be used for machine-learning diagnostic classification. For example, 
classification as normal or hepatocellular carcinoma using a simple random forest classifier was undertaken; 
Receiver Operating Characteristics curve with area under the curve (AUC) and F1 score for diagnostic accuracy 
on test set with thresholds marked (maximum F1 score at threshold value of 0.49). Examination of the variable 
importance in the constructed classifier reveals additional information about the importance of the features that 
can be translated back into subjective study; for example (d) Accuracy decrease (mean decrease of prediction 
accuracy after variable is permuted) versus Gini decrease (mean decrease in the Gini index of node impurity by 
splits on variable) with p-value of test determining whether the observed number of successes (number of nodes 
in which variable was used for splitting) exceeds the theoretical number of random successes, or (e) number 
of times used as a root (total number of trees in which variable is used for splitting the root node) versus mean 
minimal depth with number of nodes (total number of nodes that use variable for splitting). (f) Intuitive 
information about the pairwise variable importance was also available. Taken as a whole, interactions between 
nuclear features and those of the sinusoidal vasculature were computationally rated as the most important/
frequent in distinguishing HCC from non-lesional tissue (class 0—nuclei, class 1—cytoplasm, class 2—vascular 
channels).

◂
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Exemplar applications using liver and thyroid disease encompassing inflammatory, fibrotic and neoplastic 
pathology are presented but the framework can be applied to any tissue image set once histological fluency has 
informed the specific research question.

Figure 4.  Landscape analysis can be applied to images from multiple organs with different diseases that have 
been classified by multiple methods and software. (a) A separate dataset of H&E stained sections of normal 
thyroid or thyroid showing Hashimoto’s thyroiditis (n = 10) from the GTEx Tissue Image Library were used 
to train a random trees classifier in QuPath after image down-scaling and cropping. Histological classes ‘cells’, 
‘stroma’, ‘colloid’ and ‘space’ were used. (b) Histological pixel-class proportions for ‘cell’ and ‘colloid’ were 
significantly different between normal and diseased thyroid when analysed by group (individual points and 
median (centre line), first and third quartiles (lower and upper box limits), 1.5 × interquartile range (whiskers); 
p-values of Welch unpaired two-sided two-sample t-test for each metric, n = 10). (c) A full suite of landscape 
metrics derived from the classified images allowed segregation of cases effectively by k-means clustering.
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Methods
Human tissue access. Human tissue was obtained by approved application to the Lothian NRS Human 
Annotated Bioresource that is authorised to provide unconsented anonymised tissue under ethical approval 
number 15/ES/0094 from the East of Scotland Research Ethics Service REC 1. All tissue was from cases from 
2006 onwards and received anonymised to all details other than aetiology.

For manual annotation studies, single haematoxylin and eosin-stained sections from the deep hepatic paren-
chyma, sampled as part of the standard diagnostic specimen pathway, were used. No additional sections were 
required. Sections were obtained from cirrhotic explants with the 3 dominant patterns of fibrosis; primary 
biliary disease (n = 11), steatohepatitis (n = 10), and chronic Hepatitis C virus infection as a cause of lobular 
hepatitis (n = 10). 10 non-lesional deep parenchymal blocks (> 5 cm from hilar lesional tissue) from liver with 
hilar cholangiocarcinoma were also obtained. 10 non-lesional liver sections from partial hepatectomies for 
metastatic disease (eight colorectal carcinomas, one melanoma) or a benign biliary cyst (single case) were used 
to represent normal liver.

8 cases of non-lesional pancreas from pancreaticoduodenectomies (Whipple’s procedure) for extrahepatic 
cholangiocarcinoma arising proximal to the confluence with the pancreatic duct were used to represent normal 
pancreas.

Routinely sampled blocks of non-lesional renal cortex from nephrectomies from ten cases of conventional 
clear cell renal cell carcinoma, representing normal renal cortex and analogous to non-lesional blocks from partial 
hepatectomies for intrahepatic mass lesions, and from ten cases ureteric or renal pyloric urothelial carcinoma, 
analogous to the hilar cholangiocarcinomas, were used.

For automated segmentation, single haematoxylin and eosin-stained sections including lesional (hepato-
cellular carcinoma) and adjacent non-lesional liver were obtained from 54 explants or resections containing 
hepatocellular carcinoma, without selection for aetiology or tumour grade.

Tissue image library access. Whole-slide images of PAXgene fixed, paraffin-embedded H&E sections of 
thyroid from autopsies in .svs format were downloaded from the GTEx Tissue Image Library. 10 cases docu-
mented as ‘Normal and 10 as ‘Hashimoto’s thyroiditis’ in the ‘Pathology Review Comments’ field. Autolysis for 
each was graded as ‘0’ or ‘1’.

Murine model of liver fibrosis. Liver fibrosis was induced in cohorts of wild type C57Bl6 male mice by 
8 weeks carbon tetrachloride  (CCl4) injection twice weekly, 0.25 µl/g body weight in a 1:3 ratio with sterile olive 
 oil18 or vehicle alone. Animals were not randomised to injury or control groups. Blinding to control or injury 

Figure 5.  The relationships and organisation of histological features in a classified image can be interrogated 
through generated spatial point patterns. (a) Uniform windows from the classified thyroid image dataset were 
used to generate spatial point patterns of the centroids of the ‘colloid’ class after masking and particle detection 
in FIJI, defining thyroid follicle centres. (b) There was no difference in point intensity between normal and 
diseased (Hashimoto’s thyroiditis) thyroids but crude mean nearest neighbour distances were greater in point 
patterns from diseased thyroid. (c) Single value descriptors relating to point distribution, Clark and Evans 
Aggregation Index and Hopkins-Skellam index, were significantly different between groups (individual points 
and median (centre line), first and third quartiles (lower and upper box limits), 1.5 × interquartile range 
(whiskers); p-values of Welch unpaired two-sided two-sample t-test for each metric, n = 10).
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Figure 6.  Specialised functions of spatial point patterns quantify disease-related histological features. (a) Ripley’s L-function 
and the F-, G- and J-functions are second moment properties of a spatial point pattern. Plots of these functions distinguish 
between point patterns showing clustering or dispersal compared with complete spatial randomness (CSR), and groupwise 
statistical comparisons of empirical functions can be made. Example plots of corrected Ripley’s L-function, F-, G- and 
J-functions using synthetic examples of clustering, dispersal and CSR are shown. (b) Individual empirical corrected Ripley’s 
L-function plots show greater clustering tendencies of follicles in Hashimoto’s thyroiditis (above the horizontal yellow line), 
compared with normal thyroid. (c) Individual empirical corrected F-function plots appear similar in normal and diseased 
thyroid although greater variation between cases is evident in diseased thyroid. (d) Individual empirical G-function plots also 
show greater clustering tendencies of follicles in Hashimoto’s thyroiditis. (e) The individual empirical summary J-function 
plots similarly show greater clustering tendencies of follicles in Hashimoto’s thyroiditis and suggest regular dispersal rather 
than CSR in normal thyroid.
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groups was not possible as injury is macroscopically and microscopically apparent. Animals were housed in a 
specific pathogen-free environment and kept under standard conditions with a 12 h day/night cycle and access 
to food and water ad libitum. All animal experiments were carried out under procedural guidelines, severity 
protocols and with ethical approval from the University of Edinburgh Animal Welfare and Ethical Review Body 
and the Home Office (UK).

Scanning and image generation methods. Whole slide images of haematoxylin and eosin-stained 
human sections in .ndpi format were acquired using a Hamamatsu NanoZoomer to × 20 depth. Tiled-TIFF 
thumbnails were generated from the .ndpi files using ndpisplit from the NDPITools  suite19, and tiled-TIFF files 
converted to standard TIFF (for automated segmentation) or JPEG (for manual annotation) format compatible 
with  ImageJ20 by command-line ImageMagick.

Immunofluorescence methods. Antigen retrieval of murine sections was achieved by microwaving in 
Tris–EDTA pH 9.0 for 15 min.

For immunofluorescent staining of aSMA, sections of murine liver were labelled with a monoclonal mouse 
antibody (Sigma A2547, clone 1A4, 1:1500 dilution, 1-h incubation at room temperature). Staining was visual-
ized with donkey anti-mouse IgG (H and L) Alexa Fluor 555 conjugated secondary antibody (ThermoFisher 
Scientific), and sections mounted in VECTASHIELD HardSet Antifade Mounting Medium with DAPI (Vector 
Laboratories). Negative controls were performed using identical concentrations of species and isotype-matched 
non-immune immunoglobulin in place of primary antibody or omission of primary antibody.

10 × 20 objective fields centred on a central vein (in keeping with the pattern of damage of  CCl4) were acquired 
using a Zeiss Axioplan II microscope and Photometrics CoolSNAP HQ2 camera, and separate TIFF images of 
each channel exported.

Manual identification and annotation of histological features. For human liver tissue, a central 
5.32 mm × 7.11 mm (37.8 mm2) rectangular field from each .jpeg thumbnail whole slide image, the largest that 
could be taken from every scan, was cropped in  FIJI12 and used to mark, as separate region of interest (ROI) sets, 
the centre of each central vein (from normal or centrally obstructed) and centre of each hepatic artery (identify-
ing portal tracts when paired with a portal vein branch and/or bile duct). Marking was informed by viewing the 
WSIs in NDPIviewer (Hamamatsu) alongside to allow accurate identification.

For human pancreatic tissue, a central 5.32 mm × 7.11 mm (37.8 mm2) rectangular field from each .jpeg 
thumbnail whole slide image was used to mark the centre of each islet of Langerhans.

For human kidney, a 4.54 mm × 2.72 mm (12.35 mm2) rectangular field of renal cortex from each .jpeg 
thumbnail whole slide image was used to mark the centre of each glomerulus.

For murine myofibroblast (MFB) images, multichannel images were created in FIJI using the Image5D plugin, 
and the nucleus of each aSMA-positive MFB marked manually as an ROI set, excluding nuclei of concentrically 
arranged smooth muscle cells in vessel walls. The circumference of the central vein lumen also marked as a 
separate line segment ROI.

Computational image segmentation. Liver classification in FIJI. 1 mm2 ROIs from lesional (HCC) 
and non-lesional liver from each resection or explant case were selected manually and used to create 4 contigu-
ous tiles from each.

A WEKA machine-learning classifier was trained in FIJI by a specialist liver transplant pathologist at the 
national liver transplant centre to simply deconvolve the staining into haematoxylin (nuclei), eosin (cytoplasm) 
and unstained areas (sinusoids/vessels). The classifier was applied to all tiles using a script that generated a clas-
sified TIFF output image.

Thyroid classification in QuPath. Downloaded .svs files were opened in FIJI using the Bio-Formats plugin, and 
‘Series 4’ of the container format extracted and converted to an RGB composite image. The image was cropped 
to a single full transection of thyroid and saved in .tiff format.

A pixel classifier was trained in QuPath 0.2.2 using RTrees with ‘gaussian’ and ‘weighted deviation’ features 
selected at ‘Very high’ (0.49 μm/pixel)  resolution21. Pixels were classified as one of ‘cells’, ‘stroma’, ‘colloid’, and 
‘space’ and a categorical classified .tiff saved as an output. The number of pixels of each class within a separate 
‘all_tissue’ mask was also generated.

Thyroid follicle point pattern generation. Each classified .tiff thyroid image was cropped to a size of 
1773 × 1850 pixels, including tissue only. A script to select the ‘colloid’ class, convert to mask, fill holes, and out-
line rounded structures and generate to structure centroids using the ‘Analyze particle’ tools was run. Outlined 
images and centroids in .csv format were generated.

Spatial point pattern analysis. Spatial point pattern and statistical analysis were undertaken in the 
 RStudio22 environment for R. For each liver image, FIJI generated ROIs were imported using the RImageJROI 
package23 read.ijroi() function, and converted into spatstat  package24 spatial point patterns using the ij2spatstat() 
function. For thyroid follicle centroids, spatial point patterns were created directly from imported .csv files.

Spatial point pattern analysis was performed using the spatstat package. For distribution analysis of tertiary 
and quaternary structures in human tissue (portal tracts, central veins, islets of Langerhans, glomeruli, thyroid 
follicles), Ripley’s L-function14 was implemented with the Lest() function with the default edge corrections 
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(Ripley’s isotropic, translation and border) applied; global envelopes using Monte-Carlo simulations of the 
theoretical L-function of complete spatial randomness (CSR) were derived by the envelope() function. All other 
spatial point plots, metrics and functions were generated using appropriate spatstat functions with defaults. 
Empirical functions L, F, G, and J of groups were compared with the studpermu.test() function.

To estimate individual lobule size based on the classical lobule depiction as a regular hexagon in normal and 
obstructed human liver, the distances from each central vein to the 6 nearest portal tracts were calculated with 
the nndist() function. For each central vein, the mean to the 6 distances (r) was used to calculate the area of the 

lobule 
(

3
√

(3)

2
× r

2

)

.

For analysis of central vein-MFB radial distances, the nncross() function was used to determine the shortest 
distance to the central vein circumference for each aSMA-positive cell nucleus. For MFB directional analysis, 
the centroid of the central vein for each image was calculated using the centroid.owin() function, and used as 
(0,0). The position of each MFB was converted to polar coordinates to calculate the angle (ϕi) from an arbitrary 
reference. Kernel density estimation of all MFB ϕi for each image was calculated with the density() function of the 
core stats package, and the angle of peak density (ϕpeak) determined. To allow comparison with distributions of 
MFBs from other images, all MFBs were effectively rotated about the central vein centroid such that ϕpeak was 90°.

Patch-based landscape analytics. Classified TIFF output images from WEKA/FIJI or QuPath were used 
in a pipeline in RStudio that first converted each to a GeoTIFF image using the Universal Transverse Mercator 
projection and World Geodetic System (WGS) 84 datum using rgdal package accessing the Geospatial Data 
Abstraction  Library25 and PROJ.426. GeoTIFF images were used as input for the landscapemetrics  package27 
to analyse the categorical landscape patterns using metrics based on the FRAGSTATS  suite9 as well as more 
recently developed measures of landscape  complexity10. Heatmaps were generated with the ComplexHeatmap R 
package, with k = 2 k-means clustering of  cases28.

Machine learning disease classification. The paired HCC and non-lesional classified image set was 
used. Eighty per cent of cases were randomly chosen as a training set and the remainder used only as a valida-
tion set.

Landscape and class level metrics of the ‘aggregation’, ‘area and edge’, ‘diversity’, and ‘complexity’ groups were 
used as features for model training after near-zero variance features were removed using caret::nearZeroVar29. 
Features of the training set were optimally normalised using bestNormalize30, and features selected for model 
training by removal of those that were highly correlated (> 0.75). A random forest model with 10,000 trees was 
constructed to predict disease classification (HCC or non-lesional) using randomForest31. Variable importance 
measures of the constructed  forest32,33 were calculated using randomForestExplainer34.

Third-party geographical images. A satellite image from the European Space Agency Copernicus Senti-
nel-2B satellite L1C 2019-02-26 dataset was retrieved using the Sentinel Hub EO Browser under CC BY 4.0. The 
corresponding mapped region was retrieved from OpenStreetMap under Open Database License (Copyright 
OpenStreetMap contributors) to generate the composite image.

Statistical methods. Distributions of MFB subpopulations were evaluated with a bootstrap version of the 
Kolmogorov–Smirnov test, ks.boot(), in the Matching  package35.

For inter-group comparison of lobular area and central vein-MFB distances, normality of data was determined 
using Shapiro–Wilk testing and by examination of qq plots. After assumptions of normality were satisfied, the 
Welch (unequal variance) t-test was used to compare two  groups36.

Figure 7.  Spatial point pattern analysis of discrete features can confirm and quantify subjective ‘gold-standard’ 
evaluations and identify occult architectural abnormalities. (a) Specific features can also be manually annotated 
to generate spatial point patterns. Portal tracts in human liver were manually annotated in regions from whole-
slide images by identification of hepatic artery branches. Scale bar 1 mm. (b) Example annotations of portal 
tracts in H&E-stained sections from explant cirrhotic livers and histologically normal liver. (c) Individual 
spatial point patterns of portal tracts in normal and cirrhotic liver of varying aetiology can be visualised as 
Voronoi tessellations or Stienen diagrams, indicating dispersal of portal tracts in normal liver and suggesting 
clustering in cirrhotic liver. (d) Generation of second moment property functions such as Ripley’s L-function 
allows quantification of these traditional and previously subjective central tenets of liver disease—loss of normal 
portal-central vascular relationships—by proving that significant portal tract regularity/dispersal in normal 
liver is lost in end-stage chronic liver disease where clustering tendencies are present (Ripley’s L-function with 
95% confidence intervals, n = 10). Scale bars 1 mm. (e) Analysis of generated point patterns from peripheral 
liver in cases with hilar tumours demonstrated that portal tracts were significantly more dispersed in the 
livers from patients with hilar tumours (corrected Ripley’s L-function with 95% confidence intervals, n = 10). 
(f) Companion annotation of central vein profiles allowed portal-central distances to be calculated and 
demonstrated increased modelled lobular size (data represented as individual points with median (centre line), 
first and third quartiles (lower and upper box limits), 1.5 × interquartile range (whiskers), n = 10, p-value of 
Welch unpaired two-sample two-sided t-test).

◂
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Figure 8.  Individual cell annotation allows quantification of fine-grain cellular relationships that derives new 
insights into fundamental processes in translational models of disease. (a) Early pericentral hepatic fibrosis 
(picro-sirius red-stained, scale bar 1 mm), was induced in a cohort of wild type mice (n = 6), and sections 
stained for αSMA to identify MFBs (b, lilac, scale bar 100 μm). (c) 10 pericentral fields from each were used 
to annotate the nuclear position of each MFB, and the circumference of the central vein, to generate spatial 
point patterns from which the distances (d, red) of individual cell from vessels (lilac) and relative polar angle 
of individual cells with respect to vessel lumen centroids (ϕ, blue) could be calculated. (d) Scar phenotyping 
by density distribution of calculated MFB-central vein distances (d) for each animal demonstrates an MFB 
gradient within scars, highest at the central veins. (e) The nuclear position of each MFB was converted to polar 
coordinates with reference to the calculated centroid of the annotated vessel. The polar angle of the peak of 
the kernel density estimate of all polar MFB angles was set to 90° by ‘rotating’ all MFBs about the central vein 
centroid to allow alignment of all images. (f) Aggregates of aligned MFBs plotted for each animal as a polar 
histogram or kernel density estimate demonstrated a dominant pericentral spur with a smaller secondary 
antipodal spur. (g) The data can be fitted by a sine wave with 180° equivalent periodicity. (h) Diagrammatic 
representation of normal liver lobules with the classic hexagonal arrangement, and diffuse pericentral fibrosis or 
with dominant and single antipodal spurs; visual comparison of identical murine liver stained with picro-sirius 
red shows that liver scarring is organised with a dominant scarring axis, accompanied by a single secondary 
directly-opposed axis rather than developing uniformly along all available central-central axes (scale bar 
500 μm).
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Data availability
Raw images are available on reasonable request. Scripts for patch landscape generation and spatial point pattern 
analysis in R, classification and pixel quantification in QuPath, and centroid determination in FIJI are available 
from https ://githu b.com/TKPat h/lands cape_histo logy.
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