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ABSTRACT The global navigation satellite system (GNSS) is widely used in smartphone positioning,

but its performance can be degraded in urban environments because of signal reflections or blockages.

To address these GNSS outages, pedestrian dead reckoning (PDR) is commonly used due to its significant

improvements in both the stability and continuity of positioning, which are dependent on three key factors:

continuous absolute position, heading and step information. Signals of opportunity are commonly used in

positioning, whereas the installation of Bluetooth low energy (BLE) sensors on lampposts can provide an

opportunity for positioning and heading estimation in urban canyons. In this article, a system integrating

the GNSS, PDR, and BLE techniques is implemented in smartphones to provide a real-time positioning

solution for pedestrians, which includes a new position correction method based on BLE heading, a reliable

heading estimation integrating BLE and inertial sensors, an unconstrained step detection method with high

accuracy, and an extended Kalman filter (EKF) to integrate multiple sensors and techniques. In several field

experiments, with improvements in availability and robustness, the heading accuracy of the proposed fusion

approach could reach approximately 3 degrees; the positioning accuracy achieved between 2.7 m and 4.2

m, compared with a 30 m error from the GNSS alone. Simultaneously, this system could achieve a high

positioning accuracy of 2.4mwith unconstrained smartphones in amixed environment. The proposed system

has been demonstrated to perform well in urban canyons.

INDEX TERMS BLE, EKF, GNSS, heading estimation, PDR, positioning.

I. INTRODUCTION

In recent years, location-based service (LBS) has been

an essential part of daily life, whether for mobile map-

ping, pedestrian navigation, intelligent travel, or emergency

caller location [1]–[4]. Smartphones have become the most

commonly used platform for LBSs owing to advances in

processing capability along with self-containing inertial sen-

sors and wireless signal communication systems. The global

navigation satellite system (GNSS) is the most commonly

used technology in smartphones, providing up to meter-level

The associate editor coordinating the review of this manuscript and

approving it for publication was Venkata Ratnam Devanaboyina .

positioning in open-sky areas. However, this positioning

accuracy can be degraded up to tens or hundreds of meters in

deep urban canyons due to signal reflection and blockage [5].

To improve the positioning accuracy in urban areas, several

methods for improving GNSS performance or integrating the

GNSS with other technologies have been proposed, includ-

ing multipath mitigation, map-aided methods, vision-based

methods, signals of opportunity, and pedestrian dead reck-

oning (PDR) [6]–[17]. However, map-aided methods are

impractical in areas lacking 3D maps or raster maps. The

accuracy of the radio access network (RAN) is inadequate for

high-precision positioning. Radio frequency identification

(RFID) technology and ultra-wideband (UWB) technology
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are unavailable in large areas because of the requirement of

additional hardware installation. The positioning algorithms

based on Wi-Fi technology are usually labor- and time-

intensive. Among those methods based on signals of oppor-

tunity, the Bluetooth low energy (BLE) technique has the

potential to provide positioning solutions due to easy installa-

tion and low-cost devices. In addition, owing to the construc-

tion of smart cities, a BLE signal system has been installed

on lampposts (Fig. 1) for broadcasting in the multi-functional

smart lampposts pilot scheme planned by the Hong Kong

SARgovernment. The availability of BLE signals provides an

opportunity to utilize them for positioning in urban canyons.

With the built-in inertial sensors, PDR technology, which is

effective to provide distance and heading propagation, is also

widely applied to address GNSS outages [10].

FIGURE 1. A smart lamppost installed with iBeacon in Kowloon Bay, seen
in the red rectangular.

GNSS is usually sufficient with high positioning accuracy

in open area, which will not be discussed in this article.

In urban environment, technologies, such as PDR and BLE,

are commonly used to assist positioning due to the degraded

GNSS measurements. Although several studies claimed that

high accuracy positioning can be achieved by applying BLE

alone [18], [19], the requirement of high density of device

installation and/or high labor consumption makes it inappli-

cable in urban positioning. Considering the low installation

density of iBeacon and environmental disturbances on sig-

nal strength outdoor, BLE technology is unable to provide

continuous and reliable positioning solutions, and its posi-

tioning accuracy can only remain high in a limited effective

range. Therefore, PDR technology is also essential to inter-

polate positions with high accuracy between GNSS and/or

BLE outages.

PDR consists of three key components: step detection, step

length and heading estimation [22]. For step detection, exist-

ing approaches can be categorized into three classes: machine

learning methods, time domain-related methods, and fre-

quency domain-related methods. Machine learning methods,

such as hidden Markov models, k nearest neighbors (KNN)

methods and K-means method, have been recently applied

to classify pedestrian activities, and steps can then be

counted based on the distinguished gait phases [26]–[28].

However, they are labor intensive due to the requirement

of a large amount of experimental data for training. Time-

and frequency- domain-related methods detect steps based

on the time series and spectrum series of inertial sensors,

respectively. Time domain-related approaches include

threshold-based [29], [30], peak detection [13], [31], [32],

zero-crossing [33], [34] and correlation-based

methods [35], [36]. These methods are usually limited to

constrained sensors or smartphones (referring to the smart-

phone in a fixed position and hold style) [37], whereas

frequency domain-related methods usually obtain the walk-

ing frequency based on fast Fourier transform (FFT)

[37]–[39] and wavelet transform [40], which are not affected

by the smartphone’s position. Researchers have validated

the feasibility of frequency domain analysis in extract-

ing the walking mode or speed of pedestrians [38], [39].

Kang et al. [37] applied FFT to count steps for different

situations based on the multiplication of the detected walking

frequency and duration with an accuracy of 95.74%. How-

ever, the high accuracy requirement for step detection, which

presents great challenges under unconstrained conditions,

is one of the key problems to be resolved in this article.

Step length is related to the step frequency, acceleration

value within each step, walking speed and user height [22].

Since reliable estimation algorithms already exist, such as

constant [10], [41], linear [42], [43], nonlinear [44], and

artificial intelligence (AI) models [45], [46], this will not be

discussed further here.

Smartphone headings are usually obtained from two types

of inertial sensors: accelerometer and magnetometer, and

gyroscopes. The use of accelerometers and magnetometers is

unstable and inaccurate due tomagnetic disturbances in urban

environments [47]. Caruso considered iron effects from car

bodies and reduced these effects [48]. This method requires

external magnetic information, which is impractical in urban

environments [46]. For the use of gyroscopes, it is necessary

to obtain an absolute heading to initialize the heading and cor-

rect the error accumulation over time, however, the absolute

heading obtained from low-cost microelectron mechanical

systems (MEMSs) embodied in smartphones is not suffi-

ciently accurate. Some studies have integrated gyroscopes

with other sensors, techniques, or external information, such

as the GNSS, acceleration, external sensors, and building

headings [9], [49]–[52]. Nevertheless, these methods, which

rely on external building heading or map information, are not

suitable in the absence of a map source. Due to integration

with the GNSS, the positioning accuracy is not sufficient

in deep urban canyons. Some methods have been proposed

to estimate the walking heading by analyzing acceleration

and/or gyroscope data, such as principal component analysis

(PCA), forward and lateral accelerations modeling (FLAM)

and frequency analysis of inertial signals, independent of

the smartphone orientation [53]–[56]. However, only specific

possible of hand movement features were considered in those

VOLUME 9, 2021 15745



H. Luo et al.: Integration of GNSS and BLE Technology With Inertial Sensors for Real-Time Positioning in Urban Environments

methods, which suffered from numerous outliers [57]. In our

previous study [13], a method based on the BLE technique

was proposed to estimate pedestrian headings. However,

the BLE heading was unstable because of signal unavailabil-

ity due to limited coverage, so the fusion of BLE heading and

inertial sensor data was not robust using the sum between

two orientations. Improvement of the heading estimation is

required to ensure the precision and robustness of pedestrian

headings.

Several existing methods can be applied to integrate iner-

tial sensors with the GNSS and/or wireless network sig-

nal, including the particle filter (PF), Kalman filter (KF),

extended Kalman filter (EKF), unscented Kalman filter

(UKF), federated filter (FF) and strong track Kalman filter

(STKF) [58]–[64]. The PF has great advantages in nonlin-

ear or non-Gaussian systems [58]. However, its performance

depends on the number of particles, whichmeans that a higher

computational complexity is necessary to achieve a good esti-

mation [65]. The KF, which is an optimal approach to address

linear Gaussian state-space models, has been widely applied

in position estimation [65]. However, the KF is unsuitable

to integrate PDR with the GNSS and/or wireless network

signals since the PDR is a nonlinear system. Relative to

the KF, the EKF and UKF are used in nonlinear systems,

whereas the EKF is based on linearization of the state-space

equation around the updated values of state variables, and

theUKF utilizes the nonlinear unscented transformation (UT)

of sigma points [60]. When dealing with a highly nonlinear

system, the UKF can achieve higher accuracy than the EKF.

For normal nonlinear systems, the EKF also performs well.

Karimi et al. proved that the EKF is better than the UKF

in the integration system of a Doppler velocity log (DVL)

and an inertial navigation system (INS) [60]. The STKF

introduces a fading factor into the prediction error covari-

ance matrix to overcome the problem that the traditional KF

requires the precise prior knowledge of the process noise

and the measurement noise [63], but the determination of

the fading factor heavily relies on personal experience or

computer simulations using a searching scheme. Considering

the increase in the use of multi-sensors, FF is widely used to

obtain accurate navigation solutions based on the distributed

filter structure [64]. However, an FF will increase the compu-

tational complexity, and it is not necessary to use an FF when

the number of sub-systems is small. Among these filters, the

EKF is more computationally efficient [66]. When the infor-

mation of system models and noise types are demonstrated

with high accuracy, positioning performance can be guaran-

teed in integration using the EKF.

The EKF has been applied to provide real-time positioning

solutions in urban canyons in Hong Kong. Our previous

work mainly focused on validating its feasibility through

field experiments [13]. However, further research is required

in terms of the integration algorithm, such as the limitation

with constrained smartphones; the instability of positioning

and heading estimation, etc. Based on our previous algo-

rithm, the step detection is improved to count steps under

unconstrained conditions. The heading estimation based on

the BLE technique is improved to correct the bias caused by

walking dynamics, and the proposed method further ensures

the robustness and availability of the system. Meanwhile,

a new positioning correction method with a BLE heading is

proposed to improve the positioning accuracy. To guarantee

the performance of the integrated system, we first assess

the performance of the step detection, heading estimation

and positioning correction methods, and then several field

experiments are carried out to evaluate the performance of

the whole integration system.

The rest of this article is organized as follows: a brief

introduction and methodology of the proposed system are

presented in Section 2. Section 3 illustrates the detailed exper-

iments for each component of the system and compares the

positioning results derived from different methods. The con-

clusion and future works are summarized in the last section.

II. INTEGRATION METHODOLOGY AND ALGORITHMS

In our integration system, the BLE and GNSS are used to

provide positioning solutions, and PDR is applied as the

propagation part to fill the gap of BLE and/or GNSS out-

ages. A loosely coupled EKF is then used to integrate these

techniques.

A. PEDESTRIAN DEAD RECKONING ALGORITHM

PDR is fundamental to the whole integration system, includ-

ing step detection, step length and heading estimation.

1) STEP DETECTION

Generally, step detection is based on the analysis of spe-

cific force data [67]. The waveform of the accelerometer

represents the walking pattern of a pedestrian. In this article,

the FFT, which is widely used to analyze the frequency

characteristics of time series data, is adopted to detect the

step.

The FFT is applied on single axis of acceleration data since

the sum of the three axes changes the frequency features.

As discussed by Kang et al. [37], the sensitive axis is selected

based on the maximum magnitude since smaller measure-

ments are prone to be affected by noise, expressed as:

sa = argmax
a=x,y,z

TW
∑

i=1

|ωa (i)| (1)

where sa is the sensitive axis within the axis awith a = x, y, z,

ω is acceleration on each axis, TW is size of timewindow, and

i is the epoch within the current time window.

The acceleration on the sensitive axis is transformed to the

frequency domain with FFT [68], expressed as

Xk =
TW−1
∑

i=0

ωsa (i) e−j2πk
i
N (2)

where k = 0, 1, · · · ,TW − 1, ωsa (i) is the acceleration on

the sensitive axis, and j =
√

−1.
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The spectra of acceleration in six different activities during

walking are then analyzed, as shown in Fig. 2.

FIGURE 2. Spectrum analysis of acceleration in six activities, including
holding, phoning, swing hand, trouser front pocket, backpack and
handbag.

The acceleration frequency performances vary for differ-

ent pedestrian activities. In Fig. 2, it can be observed that

the frequency of normal walking ranges between 1.2 Hz

and 2.2 Hz. Specifically, the frequency with the largest accel-

eration magnitude is approximately 0.95 Hz when a smart-

phone is held in the swing hand, which is actually the swing

frequency of the hand since the acceleration amplitude of the

hand swing is larger than that of walking, whereas the vice

frequency is approximately 1.95 Hz, which is the walking

frequency. When a smartphone is put or held in a relatively

stable posture, such as holding and phoning, amain frequency

can be distinctively observed, as its magnitude is much larger

than that of other frequencies; when a smartphone is put

in a free position, including a trouser pocket, backpack and

handbag, there are several frequencies, but a main frequency

with the largest magnitude can also be observed.

In Fig. 2, it can be observed that the walking frequen-

cies ranges for different pedestrian activities during a long

period, so an adaptive interval of cut-off frequency is applied

to filter out the walking frequency. As mentioned above,

the walking frequency approximately varies between 1.2 Hz

to 2.2 Hz in experiments data. The mean, 1.7 Hz, is defined

as the initial reference frequency with ±0.5 Hz cut-off range,

hence, 1.2 Hz and 2.2 Hz. Based on the FFT, the frequency

with maximum amplitude within the cut-off range will be

extracted as the current reference frequency, otherwise, the

initial reference frequency will be retained as current refer-

ence frequency. Then, the adaptive interval of cut-off fre-

quency is set to be current reference frequency ±0.5 Hz.

Applying the adaptive cut-off frequency interval in the FFT,

the remaining frequency can be used to filter the angular

velocity data, as shown in Fig. 3(a), and the peak detection

method is applied on the filtered data, as shown in Fig. 3(b).

FIGURE 3. Step detection after filtering in the frequency domain:
(a) Walking frequency determination after a bandpass filter;
(b) Acceleration data filtered with the walking frequency and step
detection.

In Fig. 3(a), the main walking frequency at approximately

2Hz is determined and other frequencies are cut off compared

with Fig. 2(d). In Fig. 3(b), the filtered data (red line) are

smoother than the raw data (blue line), and the cyclic char-

acteristics also remain in the filtered data. Compared to step

detection on raw angular velocity data, step detection after

filtering has a higher accuracy.

Based on the analysis above, step detection with FFT is

proposed, as presented in Algorithm 1, where fft() is the func-

tion used to transform the acceleration data into the frequency

domain, butter() is the function used to filter the frequency of

acceleration data with a bandpass filter, and peakDetection()

is the function used to detect peaks and valleys of filtered

acceleration data to count steps. The pedometer is then imple-

mented in the smartphone based on Algorithm 1.

2) STEP LENGTH ESTIMATION

As mentioned above, conventional empirical models per-

form well when estimating step length indoors, whereas

their performance outdoors needs to be tested. In this arti-

cle, three common models [43], [44] are selected for com-

parison, including the constant model, non-linear model

proposed by Weinberg [44], and linear function proposed

by Chen et al. [43], expressed in order as














SL = H · 0.4
SL = K · 4

√

(Accmax − Accmin)

SL =
(

0.7 + a (H − 1.75) +
b (SF − 1.79)H

1.75

)

c

(3)

where SL is the step length, H denotes the user height in

meters, Accmax and Accmin are the maximum and minimum

acceleration within each step, K is a personal parameter,

which is also related to devices, SF is the step frequency

from step detection, a and b are constants of 0.371 and

0.227 respectively, and c is a factor related to individuals,

which is close to 1.
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Algorithm 1 Step Detection With FFT Transformation

Input: sampling frequency: Fs
Sampling period: Ts = 1/Fs
Time interval: Ti
Size of time window: TW = Ti · Fs
Walking frequency: FW
Linear Acceleration: ω

Time end of Acceleration: Te
Threshold of minimum walking frequency: Tmin
Threshold of maximum walking frequency: Tmax
Output: step number: SN
Initialization: Fs = 50;Ti = 20;FW = 1.7

for index = Ti, index ≤ Te, index + +
Linear acceleration data within time window: ωTW =

ω(index−Ti: index)
Selection of sensitive axis ωsa of linear acceleration data

using (1) within ωTW

Frequency of ωsa using FFT transform with (2): FTWω =
fft(ωsa,TW )

Cut off frequency: FL = FW − 0.5;FH = FW + 0.5;
Frequency cutoff of Fcutω : Fcutω = FTWω (f > FL&f <

FH )

Frequency with maximum amplitude Fmaxω : Fmaxω =
argmax(Af )

if Fmaxω > Tmin&F
max
ω < Tmax

Walking frequency: FW = Fmaxω

else

Walking frequency: FW = 1.7

end

Filtered linear acceleration data using the bandpass fil-

ter: ωfiltered = butter(ωsa,FL ,FH )

Step counts within time window: SNTW =
peakDetection(ωfiltered )

Step counts in total: SN+ = SNTW

end

return SN

If the pedestrian crosses two iBeacon base stations directly,

where no turn is detected (detailed analysis as follows),

the step length can be corrected using the following equation:

SL =
dpipj

SN
(0.55 < SL < 0.9) (4)

where d indicates the distance between two neighboring

lampposts, pi and pj, and SN is the step number between the

two base stations.

Until the calculated SL is between the threshold, which is

determined with experiments, the value is applied as the scale

factor correction in EKF integration.

3) HEADING ESTIMATION

Generally, pedestrian behaviors can be classified into two

types: walking along a street and turning at a street corner.

When a pedestrian walks along a street, the absolute heading

of the pedestrian approximately equals the street orientation.

If the pedestrian turns a corner, the heading can be deter-

mined based on the relative change in heading within the

turning behavior and the heading along the street. Based on

the street heading determination and turning detection and

calculation, the pedestrian’s heading can be estimated and

propagated. In this article, the heading estimation includes

three parts: street heading determination by BLE techniques,

turning detection by a gyroscope and the fusion of heading

from the BLE and gyroscope.

a: HEADING ESTIMATION FROM BLE

The basis of BLE heading estimation is built on the trend

analysis of BLE signal strength, expressed as received signal

strength indicator (RSSI). Theoretically, when the pedestrian

crosses iBeacon 1 to neighboring iBeacon 2, the RSSI trend

of iBeacon 1 will experience a drop while that of iBeacon 2

will experience a rise, as shown in Fig. 4(b), where eight

iBeacon are installed on lampposts, and lines in different

colors indicate the RSSI variations of different iBeacon. Since

the position of each iBeacon is accurately known, the heading

can be estimated by analyzing the variation in the RSSI of the

neighboring iBeacon.

RSSI values are stable in static environments, but change

significantly under dynamic conditions [69], [70], as shown

in Fig. 4(a). The average filter is widely applied for RSSI

purification since it achieves similar accuracy with other

filters but has less computation burden [71]. Therefore, it is

applied in this study. As shown in Fig. 4(b), the noise of

RSSI values is largely reduced after filtering. The trend of

RSSI values can be obtained to indicate whether the pedes-

trian gets close to or far away from the iBeacon. However,

the trend might be inconsistent with the walking heading

in some cases since the RSSI values fluctuate significantly

in urban areas, as shown by the black ellipse in Fig. 4(b).

Meanwhile, the distance between neighboring iBeacon varies

depending on the location of the lampposts, as indicated

by the red dotted line in Fig. 4; thus, the distance of trend

FIGURE 4. Variation in RSSI values with distance when a pedestrian
crosses iBeacon; (a) Raw RSSI values; (b) Filtered RSSI values. The red
dotted line indicates the locations of the iBeacon, and colored lines
represent RSSI values from different iBeacon.
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occurrence for the iBeacon with one transmission power (TP)

might be out of the effective range, which would fail to detect

the heading. To solve the above problems, three iBeacon with

different TPs, including weak, middle and strong TPs, are

installed on each location as one base station.

The detailed flowchart of BLE heading estimation is shown

in Fig. 5. It consists of three parts: iBeacon detection, indi-

cator calculation and heading determination. In the iBeacon

detection part, the program scans the iBeacon, and a list

of received RSSI values is saved and filtered dynamically.

Slopes of the RSSI value are then calculated. The indicator of

iBeacon, which is used to indicate whether the RSSI values

increase or decrease, is determined with the slope by compar-

ison with the preset slope threshold empirically derived from

tests, expressed as

{

Ind = 1
(

SlopeiB > Slopeincrease
)

Ind = −1
(

SlopeiB < Slopedecrease
) (5)

FIGURE 5. Flowchart of the proposed street heading determination using
multiple classes of iBeacon on a single lamppost.

where Ind is the slope indicator of iBeacon, SlopeiB is the

slope of RSSI list, and Slopeincrease and Slopedecrease are the

threshold of slope for increasing and decreasing RSSI values,

respectively.

In the heading determination part, two validation steps are

conducted to ensure the correctness of heading estimation:

a validation of indicator determination between three TP

iBeacon and a validation of indicator searching between all

estimated headings. After passing validation, the BLE head-

ing is then determined based on the heading map of iBeacon,

expressed as
{

θBLE = θiBij
(

Ind i = −1, Ind j = 1
)

θBLE = θiBij + 180
◦ (

Ind i = 1, Ind j = −1
) (6)

where θBLE is BLE heading, θiBij denotes the heading

searched from the heading map, which is the heading orien-

tating from i to j.

b: TURNING DETECTION

A gyroscope is a sensor used to obtain the relative heading of

a device within a sampling interval and is sensitive to angular

changes. The accuracy of the gyroscope data integral over

a short time window is high, so the integral can be used to

detect the turning of the pedestrian, which helps to indicate

the movement of the pedestrian, e.g. whether he/she walks in

a straight line or turns at a corner.

The relative heading change of a given period is estimated

from the gyroscope, which is expressed as

1�i =
∫ n

1

ridt =
∑n

1
ri1t (7)

where r is the angular velocity, and 1t is the sampling

interval of the gyroscope outputs.

For normal walking, the heading of pedestrians can change

in four ways, as shown in Fig. 6. When the pedestrian

walks straightly on the street, the walking heading might

remain the same or experience a peak caused by pedestrian

avoidance, as shown in Fig. 6(a) and Fig.6(b) respectively.

When the pedestrian turns a corner, the walking heading

might increase or decrease (Fig. 6(c) and Fig. 6(d)). In our

previous research [13], the turning angle is determined by

the calculation of the maximum gyroscope integral within

a time window. However, the calculation of turns caused

FIGURE 6. Illustration of the heading variation when pedestrians walk in
a normal situation.
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by pedestrian avoidance is incorrect (Fig. 6(b)), where the

headings are the same before and after turning.

In this article, the turning detection algorithm is improved

and expressed as follows:
{

1Hi = max |1�m − 1�m−TW |
1HTW

i = |1�i − 1�i−2TW |
(8)

where i is the current epoch, TW is the time window indicat-

ing turning completion, which is set as 3 seconds,m indicates

the epoch between i − 2TW and i, 1Hi is the maximum

gyroscope integral within the time window, and 1HTW
i is the

gyroscope integral within two time windows.

Referring to (8), the turning type, corresponding to the four

situations in Fig. 6, can be determined by comparing1Hi and

1HTW
i with the turning threshold, as shown in Table 1, and

then the turning angle can be calculated.

TABLE 1. Turning type determination.

c: HEADING INTEGRATION

In our previous research [13], if no turn is detected within

the duration of heading estimation based on BLE as shown

in Fig. 6(a), the heading from BLE will be used as the

current heading. If a turning is detected, the heading will

be updated by the absolute heading in the last epoch and

the turning heading detected by the gyroscope. However, for

the gyroscope integral shown in Fig. 7 when the pedestrian

walks on a street, the main heading is shown as the red line,

and the real orientation of phone are shown as the blue line,

as estimated from the gyroscope. The heading from BLE will

be estimated at any epoch, which represents themain heading,

FIGURE 7. Heading variation of pedestrians walking on the street.

and there will exist a bias between the BLE heading and

the current heading due to walking dynamics. Therefore, the

replacement of heading using BLE heading will cause errors.

In this article, the heading fusion is improved by correcting

this bias.

Different from the fluctuation of headings, the pedestrian

walking track remains straight if the heading propagates as

shown in Fig. 6(a) and Fig. 6(b), and the main heading can

be estimated from the line regression of previous positions.

As illustrated in Fig. 8, the orientation from magnetometer

and gyroscope sensors is used as the heading for PDR in

the initial phase, which is influenced by magnetic distur-

bances, and the walking track is not precise enough to derive

the main heading. When the BLE heading is estimated in

the second phase, the pedestrian heading can be corrected

using the BLE heading. However, a bias may exist between

the BLE headings and the actual heading since the pedes-

trian heading fluctuates due to walking dynamics. There-

fore, in the third phase, the main heading estimated from

previous walking tracks during the second phase is used to

correct the bias between the BLE heading and the current

heading.

FIGURE 8. Flow chart of heading fusion using inertial sensor and BLE
technique, where θcompass is the compass orientation, θ

BLE is the BLE
heading, 1�i denotes the gyroscope integral from epoch i − 1 to i , and
θ

pos is the main heading calculated from line regression of previous
positions.

The high accuracy of the gyroscope integral over a short

time window ensures accurate turning detection, while the

update of street heading determination from the BLE tech-

nique reduces the heading error of the gyroscope integral

during walking. Meanwhile, the bias correction using the

main heading calculation reduces the error caused by walk-

ing dynamics. Meanwhile, once the program is started, the

Bluetooth scan service will be called regularly at a certain

frequency, and the iBeacon will also send Bluetooth sig-

nals continuously as long as the power is supplied. The

nonstop transmission and scanning of the Bluetooth signal

provide continuous heading estimation during the positioning

progress. Therefore, the integration of the gyroscope andBLE

can estimate the heading of pedestrians with high accuracy

over a long time window.
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B. POSITIONING SOLUTION OF BLE TECHNIQUE

With the use of three classes of iBeacon with different TPs,

when signals from different classes of iBeacon are received,

different methods are proposed to obtain positioning solu-

tions, including calibration, weighted positioning solution

and peak detection.

1) CALIBRATION SOLUTION

The weak iBeacon class is set with the lowest TP, which has

the smallest coverage radius of approximately 2 m. Although

its coverage is small, this class can reach an accuracy of 2 m

if the signal is received. Therefore, the user position can be

calibrated when a weak iBeacon class signal is received.

2) IMPROVED WEIGHTED CELL-ID SOLUTION

Since the coverage radius of the strong iBeacon class can

reach 100m, the overlap of signals from different iBeacon

classes can provide positioning solutions. The relationship

between the RSSI value and the propagation distance repre-

sented by the path loss model [73] is expressed as

RSSI = RSSI0 − 10nlog10d (9)

where RSSI is the received signal strength at distance d ,

RSSI0 is the received signal strength at the reference dis-

tance which is 1 m, and n is the mean of the path loss

exponent.

n is an empirical parameter that is dependent on the local

propagation environment. The collected RSSI value at 1 m,

which is the reference distance, is designated as RSSI0. With

the known distances d and collected corresponding Bluetooth

values RSSI , n is then fitted based on (9).

Referring to (9), the distance between the iBeacon and

receiver can be computed with the RSSI measurement after

the estimation of n, which is expressed as

d = 10

(

RSSI−RSSI0
−10n

)

(10)

The reciprocal of distance d is used as the weight for

positioning. In addition, the coverage of the strong TP class is

larger than that of the medium class, so the confidence in the

same RSSI value from the medium class will be greater than

that from the strong class. The equation of the positioning

solution can be expressed as (11), shown at the bottom of the

page, whereWs andWM denote the weights of the strong and

medium iBeacon classes, respectively.

To determine the weight, we conduct a field experiment.

The estimated distance according to (10) is compared with

the true recorded distance. For this experiment, the distance

accuracies of strong and medium TP iBeacon are 8.49 m and

6.04 m, respectively. Referring to (11), the reciprocal of dis-

tance is used as the weight to position; therefore, the weight

ratio of the strong and medium iBeacon classes is finally

determined as

WM

WS
=

1
6.04
1

8.49

≈
2

3
(12)

Therefore, the normalized weights of the strong and

medium iBeacon classes in (11) are empirically set as 0.4 and

0.6 respectively.

3) PEAK DETECTION

Rather than the use of distance derived from the RSSI,

the peak value of the RSSI is detected in this approach, and

the time stamp is recorded as the time when the receiver

crosses the transmitter, under the assumption that the vari-

ation of the RSSI is opposite to the variation of the distance

between the receiver and transmitter in consequent motion.

To reduce the disturbances from the surroundings,

the RSSI values are filtered as shown in Fig. 4. In this process,

the peak point is postponed, so back searching is applied to

find the maximum raw value within the time window. After-

wards, a threshold is set to compare with the maximum value

and applied to judge whether the maximum is reasonable.

Then, gross error detection is conducted on the consistency of

the results from the medium and strong classes. Once passing

the validation, the time stamp of the point when receiving the

maximum value is used to correct the position.

4) POSITON CORRECTION USING BLE HEADING

If the heading contains an error 1θ , the pedestrian position

will drift with the walking distance, as shown in Fig. 9, and

the distance deviating from the true position is approximately

expressed as

1DH = d · sin1θ (13)

where 1DH is the deviated distance error, d is the walking

distance, and 1θ is the heading error.

Although the heading estimation is improved using the

integration of BLE and inertial sensors, it might contain

errors of several degrees due to walking dynamics. When

the distance between two iBeacon is 100 meters, the position

can deviate by as much as 10 meters if the heading error is

6 degrees. Therefore, a small heading error might cause a

position error of up to 10 meters over a long distance. In this

article, a method using BLE heading to correct the position is

proposed to improve the pedestrian position precision.

p (E,N ) =

{

∑

i

[

1
dS,i

· pi (E,N )

]

}

·Ws +
{

∑

j

[

1
dM ,j

· pj (E,N )

]

}

·WM

[

∑

i

1
dS,i

]

·Ws +
[

∑

j

1
dM ,j

]

·WM

(11)
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As shown in Fig. 9, if the estimated heading contains an

error1θ , the propagated position at epoch iwill deviate from

the true position. If a BLE heading is estimated at epoch i,

the position will be propagated to P′
j at epoch j in our previous

work [13], and the position between P′
i and P

′
j will contain

errors. In this article, the position at epoch i is corrected to Pi
when the BLE heading is estimated to improve the position

accuracy between epochs i and j as follows:

d =
∥

∥

∥
P

′

iS

∥

∥

∥

{

Epi = d · sinθ̃
Npi = d · cosθ̃

(14)

FIGURE 9. Pedestrian position drift caused by heading error.

where P
′

iS is the vector from S to P′
i, θ̃ is the corrected

heading based on the proposed heading method, and Epi and

Npi are the easting and northing coordinates.

C. INTEGRATION OF PDR, BLE AND GNSS

The position can be propagated with the previous loca-

tion based on PDR, using the moved distance and heading,

as follows:


















Ni = Ni−1 + (1 + Si) · Di · cosθi + σN

Ei = Ei−1 + (1 + Si) · Di · sinθi + σE

Si = Si−1 + σS

θi = θi−1 + 1θ
gyro
i + σθ

(15)

whereN and S denote the northing and easting coordinates of

the pedestrian, subscript i is the time, S is the scale factor used

to correct the distance calculated from BLE, D = SL · SN ,

which is the distance calculated from step length SL and

step numbers SN , θ is heading of the pedestrian, 1θgyro is

the angular change obtained from gyroscope at time between

i − 1 and i, and σN , σE , σS, and σθ are the noise from

the northing coordinate, easting coordinate, scale factor and

heading, respectively.

Since the model is nonlinear, the EKF algorithm is applied,

and we set the state vector as

X = [dN dE dS dθ ]T (16)

where the prefix d represents the error of the four

parameters.

Based on (15), the state transition model is linearized by

the partial derivative, and the matrix form of this system state

equation can be expressed as

X i = FX i−1 + Gωi−1 (17)

where X i−1 represents the state vector at epoch i−1, F is the

transition matrix, G is the system noise matrix, and ωi−1 is

the system noise vector with the covariance matrixQ:ωi−1 ∼
N

(

0,Qi−1

)

.

Since the error of the four parameters in X is a small

quantity, the high-order terms within linearization can be

ignored, and the dynamic matrix is expressed as

F =









1 0 D · cosθ −(1 + S) · D · sinθ
0 1 D · sinθ (1 + S) · D · cosθ
0 0 1 0

0 0 0 1









(18)

The measurement equation is given by

Zi = H iX i + vi (19)

where Zi is the measurement vector, H i is the measurement

matrix, and vi is the measurement noise with covariance

matrix R: vi ∼ N (0,Ri).

The positioning results from BLE and GNSS, step length

correction from BLE, and heading observation from BLE are

observations in this system, and the observation vector is set

as

Z = [1N1E1S1θ ]T (20)

The measurement matrix is given by

H =









H1 0 0 0

0 H2 0 0

0 0 H3 0

0 0 0 H4









(21)

The covariance matrix is set as

R =









R1 0 0 0

0 R2 0 0

0 0 R3 0

0 0 0 R4









(22)

Due to the uncertainty of the reception of GNSS and BLE

signals, the parameters in Z, H , and R are set based on the

observations.

(1) If the positioning solution from BLE is updated,

the parameters in Z are set as
{

1N = N iBeacon − NPDR

1E = EiBeacon − EPDR
(23)

The parameters in H are set as

H1 = H2 = 1 (24)

15752 VOLUME 9, 2021



H. Luo et al.: Integration of GNSS and BLE Technology With Inertial Sensors for Real-Time Positioning in Urban Environments

The parameters in R are set as
{

R1 = σ 2
iBeacon_N

R2 = σ 2
iBeacon_E

(25)

where σiBeacon_N and σiBeacon_E are determined based on the

distance between the user and the iBeacon, which is calcu-

lated by the RSSI referring to (10) and expressed as

diBeacon = f (RSSI )

{

σiBeacon_N = diBeacon · cosθ
σiBeacon_E = diBeacon · sinθ

(26)

(2) If the positioning solution from GNSS is updated,

the parameters in Z are set as
{

1N = NGNSS − NPDR

1E = EGNSS − EPDR
(27)

The parameters in H are set as

H1 = H2 = 1 (28)

The parameters in R are set as

R1 = R2 = σ 2
GNSS (29)

The σGNSS is calculated as follows steps:

(a) The GNSS output quality is evaluated using two thresh-

olds, including the horizontal dilution of precision (HDOP)

and precision from the raw output. The thresholds are preset

to evaluate the quality of the GNSS measurements.

(b) For those epochs where the GNSS results meet the

demands of quality evaluation, the difference between the

GNSS and PDR movements in those epochs is calculated.






1disGNSSi = norm
(

PosGNSSi − PosGNSSi−1

)

1disPDRi = norm
(

PosPDRi − PosPDRi−1

) (30)

where PosGNSSi and PosPDRi are the GNSS and PDR position-

ing results in epoch i respectively.

(c) When the length of effective epochs is larger than the

preset threshold, the difference within these epochs is applied

to determine the GNSS noise matrix, which is expressed as

σGNSS =

√

1T1

m
(31)

1 =
I

∑

i=1

1disGNSSi −
I

∑

i=1

1disPDRi (32)

where i indicates those epochs in which the GNSS results

meet the demands of quality evaluation, and 1 indicates

the difference between the GNSS and PDR in those epochs.

m expresses the number of the epochs.

(3) If the step length correction from BLE is updated, the

corresponding parameter is set as: 1S = 1SBLE , H3 = 1,

and R3 = 0.012.

(4) If the heading from BLE is updated, the corresponding

parameter is set as 1θ = θBLE − θPDR, H4 = 1, and

R4 = 0.012.

The construction of the measurement matrix is then based

on the combination of the four cases corresponding to the

received measurements. If position, scale factor or heading

is not observed, the corresponding parameters are set as 0

in H .

Then, the coordinates of the pedestrian can be updated by

the following equation:


















Ni = Ni−1 + dN i−1 + (1 + Si−1 + dS i) · Di−1

·cos (θi−1 + dθ i)

Ei = Ei−1 + dE i−1 + (1 + Si−1 + dS i) · Di−1

·sin (θi−1 + dθ i)

(33)

As mentioned above, the traditional KF is unsuitable in

nonlinear systems, while the EKF and UKF have been pro-

posed for nonlinear dynamic systems. For general state-space

problems, the computational complexity of the EKF and

UKF equals O
(

L3
)

, where L is the dimension of the state

parameter [74]. However, the estimation process of the EKF

is easier than UKF that the EKF is more computationally effi-

cient [66]. Compared with the KF-based approach, the STKF

increases the calculation of the fading factor, whose compu-

tational expense is not augmented [63], and its computational

complexity also equals O
(

L3
)

in the same case. For the FF,

the computational complexity is O
(

N 3 +
∑

M × N 2
)

,

where N is the number of filter states and M is the total

number of measurements of all sensors. With the increase in

the number of sensors, the computational complexity grows

significantly [75]. The computational complexity of a PF

isO
(

PL2
)

, where P is the number of particles. Its calculation

demand is P/L times the EKF, which means that the number

of particles must be increased to achieve a more accurate

estimation. Therefore, P is much larger than L, and the com-

putational complexity of a PF is much larger than that of

an EKF.

Among the above filters, the low computational com-

plexity of the EKF guarantees real-time implementation on

smartphones.

III. EXPERIMENTAL SET UP AND RESULTS

As mentioned above, step detection, step length and heading

estimation are key elements in PDR, and absolute positioning

solutions for correction are also an important part of inte-

gration. The performance of the three elements in PDR and

positioning solutions from the BLE technique were assessed

with several experiments. Then, several field experiments

were conducted to evaluate the performance of the integration

system in different environments. In all experiments, the

sampling frequencies (SFs) of the accelerometer and magne-

tometer were set as 50 Hz, and the SF of the gyroscope was

set as 100Hz, the SF of the GNSSwas 1Hz, and the broadcast

interval of the iBeacon was 100ms.

A. STEP DETECTION EVALUATION

After the implementation of the pedometer on Android-based

smartphones, several experiments were conducted to evaluate
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the proposed approach considering different devices, walking

speeds and users. In the first experiment, an experimenter

walked at three speeds- normal, slow, and fast- holding

two devices simultaneously. The statistical results are shown

in Table 2.

TABLE 2. Accuracy of the pedometer with different speeds and devices.

The test results showed that the pedometer can estimate

steps with high accuracy, despite the user’s walking speed.

The averaged error was below 1.0%, and the maximum

error was 2.0% at the fast speed. Moreover, the experimental

results from different types of smartphones showed that this

algorithm performs well in different Android-based phones.

Therefore, the pedometer was able to detect steps with high

accuracy regardless of different devices and different user

walking speeds.

The pedometer was also tested for different users at normal

speeds. Eight experimenters, including males and females,

were involved in evaluating the step detection algorithm for

individuals, and the results are listed in Appendix I.

From the results, it can be seen that the pedometer had

a high accuracy in detecting steps among different users,

where the maximum error was 1% and the averaged error was

below 0.5%. The results indicated that the pedometer had a

high accuracy and was applicable for different users.

To evaluate the performance of step detection under uncon-

strained conditions, several experiments were conducted,

and four experimenters were involved, including males and

females, putting smartphones in eight positions, and the total

step count for each experiment was 200. The statistical results

of all experiments are listed in Table 3, and detailed step

counts and errors for each test using the proposed approach

and previous method [13] are shown in Appendix II.

The experimental results showed that step detection in the

time domain failed to count steps accurately when the smart-

phones were held in swing hands or placed in trouser pockets,

backpacks and chest pockets with an average error of the

eight activities at approximately 15.5% and a maximum error

of 50.5% in swing hand activity. Specifically, if smartphones

are prone to shaking or over movements, the accuracy of the

previous method [13] was poor. Meanwhile, the previous step

detection failed to count approximately half of the total steps

when the smartphones were held in the swing hand, since the

method detected swing motion as walking, and the frequency

of swinging was approximately about half of the walking

frequency. By contrast, step detection using the proposed

method could count steps more accurately under different

conditions, and the average error was approximately 1.0%,

TABLE 3. Accuracy of pedometer with different postures.

whereas themaximum error was 5.5%, compared to themaxi-

mum error of 50.5% from the previous method. In most cases,

the proposed method could detect steps with an error lower

than 2%. In swing hand activity, the acceleration magnitude

of swing motion was larger than the acceleration caused by

walking, and the frequency filter have been affected, resulting

in a larger error of approximately 5%.

In conclusion, the proposed method is more robust for dif-

ferent types of activities than time domain-related methods,

and the proposed method exhibits a better performance, with

an average error of approximately 1.0%. The error of step

detectionwhen smartphones are held in the swing hand can be

reduced from ∼ 50% to 5%. Therefore, the proposed method

can be employed to detect steps when smartphones are held

under unconstrained conditions with high accuracy.

B. STEP LENGTH ESTIMATION EVALUATION

As mentioned above, several step length estimation models

have been proposed. The empirical linear model is more

applicable since no training phase is required. In this article,

several experiments were conducted to compare the linear

model with other popular models to evaluate their accuracy

on step length estimation. In the step length evaluation exper-

iments, two experimenters were involved, and two devices

were used. For each experimenter, 25 tests were conducted

for each smartphone, so a total of 100 tests were conducted.

In each experiment, the true total length was 50 meters,

and the total length estimated from the three models was

calculated with the following equation, expressed as

TL =
∑

SL · SF (34)

where TL is the total length, which equals 50 m in all exper-

iments, SL is the step length of each step, and SF is the step

frequency estimated from step detection.

The difference between the true and obtained total lengths

were considered the error of step length estimation. The

statistical results are shown in Table 4.

By comparing the error of the total length of the esti-

mated step length using three models, the results shown
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TABLE 4. Accuracy of pedometer for different experimenters.

in Table 4 show that the linear model has a higher accu-

racy than the other applied models, with a maximum error

of 1.9 meters and the standard deviation (STD) is under

one meter in a total length of 50 meters. Here, the linear

model was applied in this system. In the initial phase, the

parameter c in the linear model was set as one. In the online

phase, the parameter c was corrected with the help of BLE

technology to estimate a better step length.

C. COMPARISON OF HEADING ESTIMATION FROM

DIFFERENT APPROACHES

The conventional sensors used to obtain headings in PDR are

gyroscopes and digital compasses, whereas a heading estima-

tion method based on BLE and inertial sensors is proposed

here. To evaluate their performances, two experiments were

conducted in different environments to compare the headings

obtained from the proposed BLE-based approach, digital

compass and gyroscope (given the known heading for the

gyroscope in the first epoch). The lane or street heading was

regarded as the reference ‘‘true’’ heading. Specifically, con-

sidering the walking dynamics of the pedestrian, the actual

heading of the pedestrian would swing up and down around

the reference street direction. Fig. 10 and Fig. 11 show the

comparisons of headings from the compass, the gyroscope

and the hybrid approach of BLE and an inertial sensor.

In addition, Table 5 shows the comparisons of the heading

estimation accuracy among the three methods.

TABLE 5. Comparison of accuracy of heading estimation in two
experiments.

In Fig. 10, the experimental results show that headings

from compass reading fluctuated more among the three types

of techniques and methods, and the compass was influ-

enced by undesired magnetic effects, resulting in large head-

ing errors between 120 s and 140 s, whereas the error of

heading estimated from the compass reached approximately

FIGURE 10. Heading comparison of different methods in the first
experiment results between true heading, compass reading, gyroscope
integral and fused heading.

FIGURE 11. Heading comparison of different methods in the second
experiment results between true heading, compass reading, gyroscope
integral and fused heading.

70 degrees. As seen from the result at approximately 70 s

shown in Fig. 10, the turning detection from the gyroscope

and the fused method was more sensitive to turning than that

from the compass. In a short timewindow, the gyroscope inte-

gral showed good performance in heading estimation when

the true initial heading was given. The heading estimation

using the fused method showed consistency with the gyro-

scope integral without the known initial heading.

The duration of the second experiment was approximately

5 times the duration of the first experiment, as shown

in Fig. 11, and the results showed that the error of the

gyroscope integral increased with time. During a long time

window, the error of heading estimation from the gyroscope

integral reached 90 degrees. Similar to the first experiment,

the headings estimated from the compass contained more

noise. The heading estimation using the fused method per-

formed well with a high accuracy throughout the second

experiment.

As shown in Table 5, with the help of integrating BLE

technology and gyroscope, the heading estimation achieved

VOLUME 9, 2021 15755



H. Luo et al.: Integration of GNSS and BLE Technology With Inertial Sensors for Real-Time Positioning in Urban Environments

a mean error of approximately 3 degrees in the two experi-

ments, and the STD of the errors was approximately 9 degrees

in the two experiments due to the walking dynamics of

pedestrians as mentioned above. By contrast, the errors of

heading estimated from the compass were larger than those

from the fused method in the two experiments, at 5.8 degrees

and 6.3 degrees, respectively, with higher STDs of error at

17.4 degrees and 12.9 degrees, respectively. During a short

time window, the mean error from the gyroscope integral

reached −5.0 degrees, but it degraded to −25.1 degrees over

a long duration with a higher STD of heading error.

In the two experiments, the readings from the digital com-

pass contained large errors when the compass was influenced

by the magnetic effects of the surroundings. Compared with

gyroscope values, the readings from the compass fluctuated

more. On the other hand, the gyroscope sensors could detect

pedestrian turning rapidly with high accuracy, and the error

from the gyroscope was small in a short term. However, the

gyroscope error after a long-term accumulation could reach

90 degrees if there was no external correction. In the two

experiments, the fused approach could obtain headings with

better performance compared with the compass or gyroscope

alone. The results using the proposed method were more

accurate, robust, and sensitive to turning.

D. EVALUATION OF BLUETOOTH LOW ENERGY

POSITIONING

An experiment was conducted to evaluate the positioning

accuracy using the calibration method, improved weighted

cell-ID solution, and peak detection, and the detailed accu-

racy is shown in Table 6.

The results showed that the calibration approach could

achieve high accuracy (0.3 m) positioning in an urban envi-

ronment if a signal was received, whereas its availabil-

ity was lower than 4%. In the improved weighted cell-ID,

the combination of medium and strong iBeacon classes

improved the availability and accuracy compared with the

single class. Moreover, the peak detection on the medium

and strong classes could achieve high accuracy at 8.3 m

and 9.4 m, respectively, and the gross exclusion based on

the combination of two classes could improve the accuracy

to 5.6 m, with the lowest availability below 1%, as shown

in Fig. 12.

In conclusion, the calibration and peak detection

approaches can provide high precision, but their availability

is low, whereas the weighted cell-ID approach can provide

more positioning solutions with relatively lower accuracy.

The weighted cell-ID method can be used in the initial stage

to provide rough position and accurate street information to

assist the GNSS-based approaches.

E. POSITIONING RESULTS IN FIELD EXPERIMENTS

To evaluate the performance of this integration system,

an experiment was conducted in typically highly urbanized

areas (Mong Kok in Hong Kong). Then, repeated exper-

iments were conducted in the same area to validate the

TABLE 6. Positioning accuracy and availability using the BLE technology.

FIGURE 12. Positioning error of peak detection approach.

improvement of this system. Finally, an experiment was

carried out in a more complex environment that contained

indoor and outdoor areas to validate its performance with

unconstrained smartphones.

The first two experiments were conducted in a typical

deeply urbanized area, as shown in Fig. 13(a), where the

cyan line indicates the walking route. Fig. 13(b) shows the

surroundings of the experiments, in which the streets are

narrow and surrounded by tall buildings. Groups of iBeacon

devices were installed on lampposts since the coordinates of

FIGURE 13. Experimental setup illustrations. (a) Illustration of the
experimental site; (b) Illustration of the real environment of experimental
site and one group of iBeacon installed on a lamppost.

15756 VOLUME 9, 2021



H. Luo et al.: Integration of GNSS and BLE Technology With Inertial Sensors for Real-Time Positioning in Urban Environments

all lampposts in Hong Kong are available from the website

of the Land Department of Hong Kong. On each lamppost,

three iBeacon classes- weak, medium, and strong class- were

installed at the same height, at approximately 1.8 m, as shown

in Fig. 13(b).

The size of the experimental region was approximately

185 × 60m2, in which 12 groups of iBeacon were installed

on lampposts, and the intervals between two neighboring

groups of iBeacon varied from 30 m to 80 m depending

on the lamppost locations. As shown in Fig. 14, the purple

dots indicate the location of the lamppost where groups of

iBeacon were installed; the red line shows the route track of

the experiment, with the starting point indicated with a blue

triangle, and the black arrows indicate the moving heading of

the user. In these experiments, the ground truth was generated

using interpolation between two known coordinates of the

lamppost with estimated steps from our method mentioned

above, which showed an error ratio below 1%.

FIGURE 14. Demonstration of the ground truth and lamppost position
installed with iBeacon on the developed system.

1) EVALUATION OF INTEGRATION SYSTEM

The integration system includes real-time and postprocess

modes with an update frequency of 50 Hz. The synchro-

nization of data from different sources is based on the time

stamp of each variable. In real-time mode, the positioning

results are shown on the smartphones as shown in Fig. 15(d),

with the ground truth supplemented after the experiment

for comparison. Simultaneously, all data, including inertial

sensor data, rawGNSS data and rawBLE data, were recorded

for postprocessing. To evaluate the performance of different

technologies in the system, threemodes were analyzed during

postprocessing, including GNSS-only, GNSS and PDR inte-

gration, and the integration of GNSS, PDR, and BLE position

FIGURE 15. Positioning results of the technology integration. (a) GNSS
only; (b) Integration of GNSS and PDR technology; (c) Integration of GNSS,
PDR, and BLE technology, where BLE technology provides positioning
results only; (d) Integration of GNSS, PDR, and BLE technology, where BLE
technology provides positioning results and heading corrections.

correction, and the results are shown in Fig. 15(a), (b), and (c),

respectively. In Fig. 15, each black dot shows the positioning

results in each epoch, connected by the colored line in the

time sequence, and the red line represents the ground truth.

The positioning accuracy statistics are shown in Table 7.

As shown in Fig. 15(a), GNSS-only positioning results

contained large errors with the horizontal accuracy in excess

of 30 meters, which was mainly caused by severe multipath
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TABLE 7. Positioning accuracy of four methods.

and NLOS effects. After integration with PDR, the outliers

in the GNSS positioning results were filtered out with the

results shown in Fig. 15(b), and the accuracy improved

to 24.8 m. Then, the conventional integration method using

the GNSS, PDR, and BLE techniques was tested, as shown

in Fig. 15(c). The positioning results were obviously more

accurate, and the horizontal accuracy improved to 8.1 m.

These results further provide good evidence of the great

potential of BLE in outdoor positioning. However, the large

errors in heading estimation cannot be ignored as shown on

the left side of the experimental region in Fig. 15(c). To over-

come this problem, the new heading estimation method based

on the BLE technique was applied in our system. As shown

in Fig. 15(d), the estimated headings were more accurate than

those in Fig. 15(c), which further improved the accuracy of

positioning solutions from 8.1 m to 4.2 m.

From the above experimental results, the integration of the

GNSS, PDR, and BLE (providing positioning solution and

heading estimation) achieved the best positioning accuracy

of 4.1 m, which validates the performance of our integration

system in a highly urbanized environment. Ji et al. showed

that when more beacons are engaged, the positioning results

are more accurate. To achieve a positioning accuracy of 5

m, the beacon intervals must be less than 5 m [76]. With

our algorithm, the same level of accuracy was achieved with

iBeacon interval ranges of up to 150m, as demonstrated in the

experiment; hence, the installation cost can be significantly

reduced.

2) EVALUATION OF THE IMPROVEMENT OF THE

INTEGRATED SYSTEM

To further validate the performance of the new integration

system in an urban environment, and assess the improve-

ment over the previous system [13], two experiments were

carried out in the same areas as the previous experiments.

Figs. 16 and 17 show the results of the two experiments,

where the left and right figures represent the positioning

results using the previous system and our improved system,

respectively, and the statistics of the positioning accuracy are

listed in Tables 8 and 9, respectively.

In the first test shown in Fig.16, the availability rate of

heading estimation was improved based on the current head-

ing turning detection (seen in green rectangles A andB), since

the RSSI list received in previous epochs would remain for

BLE heading estimation in the current system, whereas it was

cleared in the previous systemwhen a turn occurred, as shown

in Fig. 6(b). Then, the heading accuracy was also improved

FIGURE 16. Comparison of positioning results using two systems in the
first experiment. (a) Integrated positioning results using the previous
system; (b) Integrated positioning results using the improved system.

FIGURE 17. Comparison of positioning results in the second experiment
using two systems. (a) Integrated positioning results using the previous
system; (b) Integrated positioning results using the improved system.

TABLE 8. Positioning accuracy of previous and improved system.

based on the improvement of heading fusion, shown in green

rectangle C. In addition, the proposed position correction
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TABLE 9. Positioning accuracy of previous and improved system.

TABLE 10. Positioning availability and accuracy.

using BLE heading could also largely improve the accuracy

of pedestrian position, especially in the long distance between

two base stations or large heading correction, seen in green

rectangles A and B. The statistics show that the positioning

accuracy was improved from 6.7 m to 3.1 m in northing and

easting, respectively.

In the second test shown in Fig. 17, the new heading

estimation method also performed well as marked with green

rectangles A and B, which largely improved the heading

accuracy in the propagation progress, and the accuracy of the

positioning results showed a large improvement from 27.2 m

to 2.7 m.

From the experimental results, it can be seen that the head-

ing estimation using our methods was more robust than the

previous estimation. The positioning results of the improved

system were more consistent with the true route while its

positioning accuracy achieved ∼3 m. It is mainly based

on the improvement of heading estimation and the position

correction.

3) EVALUATION OF THE IMPROVED INTEGRATION SYSTEM

WITH AN UNCONSTRIANED SMARTPHONE

Finally, to evaluate the feasibility of the integration system

in a more complex but common scenario, an experiment was

conducted in an environment containing indoor and outdoor

areas. In addition, the performance of the system with uncon-

strained smartphones was also validated to provide a basis

for further application in highly urban environments. The

experimental setup is shown in Fig. 18, including indoor and

outdoor areas.

In indoor areas, PDR and BLE play vital roles in pro-

viding positions, whereas the GNSS is unavailable in this

situation. In the outdoor environment, the system estimates

the pedestrian positions based on the integration of the GNSS,

PDR, and BLE techniques. The positioning results using

the GNSS only and the integration system are shown in

Fig. 18(a) and Fig. 18(b), respectively, and the statistics of

availability and positioning accuracy are shown in Table 9.

In Fig. 19, it can be seen that the integration sys-

tem could provide a stable positioning solution with high

FIGURE 18. Environment and pedestrian route of the experiment in
indoor and outdoor environments.

FIGURE 19. The positioning results with unconstrained smartphones in
indoor and outdoor areas: (a) Positioning results of raw GNSS;
(b) Positioning results using integration system of GNSS, PDR,
and BLE techniques.

accuracy in indoor areas. In outdoor areas, the integra-

tion system largely improved the positioning accuracy

of 2.4 m, compared to the accuracy of GNSS position-

ing at approximately 25 m. In addition, the availability of

positioning was highly improved. Corresponding to the

accuracy improvement compared to the outdoor experiment

on streets, this ismainly because of the higher density of iBea-

con installations. In addition, the positioning accuracy with

unconstrained smartphones can reach a few meters owing to

the high accuracy and stability of our step detection method.
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TABLE 11. Accuracy of the pedometer for different experimenters.

The experimental results validate the feasibility of the

integration system in this more complex scenario, which is

common in urban cities. This further provides an opportu-

nity to solve the seamless positioning problem for urban

environments.

IV. CONCLUSION AND FUTURE WORKS

In deep urban canyons, the performance of conventional

GNSS positioning can be easily affected by the blockage and

reflection of GNSS signals. The integration of the GNSS and

PDR techniques shows obvious improvements in positioning

availability and accuracy, depending on continuous updates

of absolute positioning with high accuracy. BLE technology,

which is usually applied in indoor positioning, shows great

potential in outdoor positioning. The EKF guarantees the

real-time performance of the algorithm implementation on

smartphones with its low computational complexity. In our

previous work, an integration system of the GNSS, PDR, and

BLE techniques in smartphones was proposed and primarily

verified in deep urban canyons, however its accuracy was not

fully evaluated, and the performance also required further

investigation. In this work, we proposed several methods

to improve the accuracy of each component of the PDR

algorithm, including step detection, heading estimation, and

absolute position, to further improve the performance of the

whole integration system.

Several experiments were carried out to evaluate the accu-

racy of each method, and then the performance of the inte-

gration system was assessed through field experiments in

different environments. First, the step detection method per-

formed well, with errors below 1% among different walking

speeds and users. Especially for different pedestrian activi-

ties, the mean error ratio in the eight tested situations was

reduced from 15.5% to 1.0%, which further validates that

our method is more robust than time-domain-based methods

under unconstrained conditions. Second, the heading esti-

mation combining the BLE technique and inertial sensors

was integrated into this system, and turning detection and

TABLE 12. Accuracy of the pedometer for different experimenters in
different activities.
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TABLE 12. (Continued.) Accuracy of the pedometer for different
experimenters in different activities.

heading fusion were improved in this article. The accuracy

of the heading estimation method achieved a mean error of

approximately 3 degrees in the two experiments, which is

superior to the digital compass and gyroscope-only method.

The proposed method provides a more reliable heading esti-

mation method than other common methods since it is free

from the magnetic interference of surroundings and can

obtain absolute headings with high accuracy. Third, based

on the novation of BLE application on heading estimation,

the same level of positioning accuracy can be achieved with

fewer iBeacon installations, thus reducing expense. The new

positioning method based on the BLE technique can achieve

accuracies of 0.3 m and 5.6 m by employing the calibra-

tion and peak detection approaches, respectively, whereas the

weighted cell-ID approach can provide a positioning solution

to assist the GNSS at the initial phase.

Finally, large positioning errors were filtered out by inte-

grating of the GNSS and PDR, and the positioning accuracy

was improved to 24.8 m, compared to 30.2 m from the GNSS

alone. After the integration of BLE positioning, the accuracy

was improved to 8.1 m. Using the previous method of BLE

heading, the positioning accuracy could reach 6.7 m, how-

ever, the heading estimation algorithm was unstable. This

degraded the positioning accuracy to 27.2 m in repeated

experiments. Based on the improvement of heading estima-

tion and position correction with BLE heading, the position-

ing accuracy of the improved integration system achieved

2.7 m and 4.2 m in repeated experiments. Compared to

other common methods, including compass-based methods,

gyroscope integration, and our previous approach based on

the BLE and gyroscope, the current method is more robust

in estimating headings for pedestrians. Moreover, the experi-

mental results validate the feasibility of the integration system

in seamless environments, and the positioning accuracy with

unconstrained smartphones can reach a few meters owing to

the high accuracy and stability of our step detection method.

Our integration system was implemented under the instal-

lation of BLE sensors in typical regions of Hong Kong,

and it mainly provided pedestrian positioning in those urban

regions. With the construction of smart cities, more informa-

tion will be available, such as BLE and other types of trans-

mitter networks, road database sources and 3D building maps

in Hong Kong. This will provide opportunities for systems to

assist in GNSS positioning. In the future, we will focus on the

integration of the current system with a map-based method

to obtain more robust positioning solutions in pedestrian

navigation, thus increasing the availability in more areas.

APPENDIX

See Tables 11 and 12.
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