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ARTICLE

Integration of human adipocyte chromosomal
interactions with adipose gene expression
prioritizes obesity-related genes from GWAS
David Z. Pan1,2, Kristina M. Garske1, Marcus Alvarez1, Yash V. Bhagat1, James Boocock1, Elina Nikkola1,

Zong Miao1,2, Chelsea K. Raulerson3, Rita M. Cantor1, Mete Civelek 4, Craig A. Glastonbury5,

Kerrin S. Small 6, Michael Boehnke7, Aldons J. Lusis1, Janet S. Sinsheimer1,8, Karen L. Mohlke3,

Markku Laakso9, Päivi Pajukanta1,2,10 & Arthur Ko 1,10

Increased adiposity is a hallmark of obesity and overweight, which affect 2.2 billion people

world-wide. Understanding the genetic and molecular mechanisms that underlie obesity-

related phenotypes can help to improve treatment options and drug development. Here we

perform promoter Capture Hi–C in human adipocytes to investigate interactions between

gene promoters and distal elements as a transcription-regulating mechanism contributing to

these phenotypes. We find that promoter-interacting elements in human adipocytes are

enriched for adipose-related transcription factor motifs, such as PPARG and CEBPB, and

contribute to heritability of cis-regulated gene expression. We further intersect these data

with published genome-wide association studies for BMI and BMI-related metabolic traits to

identify the genes that are under genetic cis regulation in human adipocytes via chromosomal

interactions. This integrative genomics approach identifies four cis-eQTL-eGene relationships

associated with BMI or obesity-related traits, including rs4776984 and MAP2K5, which we

further confirm by EMSA, and highlights 38 additional candidate genes.
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O
besity is a serious health epidemic world-wide. A recent
study of 195 countries estimated that 2.2 billion people
were overweight or obese in 20151. Clinically, obesity is

diagnosed by a body mass index (BMI) greater than 30. While a
significant proportion of the phenotypic variation in BMI is
attributed to genetic variation (heritability of BMI ~0.4–0.72),
understanding the mechanisms underlying this heritable com-
ponent has been challenging. The 97 loci identified in a genome-
wide association study (GWAS) for BMI in ~340,000 subjects
explain only 2.7% of the variance in BMI, and all HapMap phase
3 genetic variants (~1.5 M single nucleotide polymorphisms
(SNPs)) were estimated to account for ~21% of the variance in
BMI in 16,275 unrelated individuals2. The causal variants and
genes are not immediately apparent from GWAS, hindering our
ability to understand the biological mechanisms by which
genetics contribute to obesity. To address this knowledge gap, we
integrate chromosomal interaction data from primary human
white adipocytes (HWA) with adipose gene expression and
clinical phenotype data (BMI, waist-hip ratio, fasting insulin, and
Matsuda index) to elucidate molecular pathways involved in
genetic regulation in cis.

Combining genotype and RNA-sequencing (RNA-seq) data
enables the detection of expression quantitative trait loci (eQTLs)
that regulate transcription of near-by genes (i.e., in cis). These cis-
eQTLs often reside in regulatory elements, including promoters,
enhancers, and super-enhancers. However, the mechanism by
which cis-eQTLs regulate their respective eGene(s) is seldom
established because identification of the true regulatory variants
among SNPs in tight linkage disequilibrium (LD) has proven
challenging3. Enhancers modulate target gene expression levels
via their interaction with promoters, and disruption or improper
looping of enhancer sites can contribute to disease risk4,5. Pro-
moter Capture Hi–C (pCHi–C) enables detection of promoter
interactions at a higher resolution and at lower sequencing depth
than that required for Hi–C6. Incorporating a chromosomal
interaction map constructed from pCHi-C and cis-eQTL data can
help elucidate the functional mechanisms by which the genetic
variants affect gene expression. By overlapping these looping cis-
eQTLs with trait-associated variants identified in independent,
large-scale GWAS, we can assess which GWAS variants could
affect expression of regional genes via chromosomal interactions.

To search for genes that are functionally important for adipose
tissue biology, we performed a cis-eQTL analysis using genome-
wide SNP data and adipose RNA-seq data from individuals of the
Finnish METabolic Syndrome In Men (METSIM) cohort. We
identified 42 genes, regulated by cis-eQTLs that reside in regions
that physically interact with the promoters of genes. Adipose
expression of these 42 genes was robustly correlated with BMI,
and among them four genes, MAP2K5, LACTB, ORMDL3, and
ACADS, were regulated by SNPs (or their tight LD proxies)
previously identified in GWAS for BMI or a related metabolic
trait, located at the regulatory element-promoter interaction sites.
These data provide converging evidence for effects of looping
cis-eQTL variants on gene expression associated with obesity and
related metabolic traits. Our results show that these integrative
genomics methods involving pCHi-C data in primary HWA can
identify regulatory circuits comprising both regulatory elements
and their target gene(s) that operate in a complex obesity-related
metabolic trait.

Results
Characterization of the adipocyte chromosomal interactions.
Adipose tissue is highly heterogeneous, containing adipocytes,
preadipocytes, stem cells, and various immune cells. We per-
formed pCHi-C in primary HWA with the goal of identifying

physical interactions between adipose cis-eQTLs and target gene
promoters. We employed the pCHi-C protocol as described
previously7. Briefly, we fixed primary HWA to crosslink proteins
to DNA, and after digestion with the HindIII restriction endo-
nuclease, we performed in-nucleus ligation and biotinylated RNA
bait hybridization to pull down only those HindIII fragments with
annotated gene promoters6. To detect the regions that interact
with the promoter-containing HindIII fragments, we mapped the
reads to the genome, and assigned reads to HindIII fragments to
allow for fragment-level resolution of those regions interacting
with the baited fragments containing gene promoters. The key
pCHi-C sequencing metrics are shown in Supplementary Table 1.

We first confirmed that the non-promoter regions in adipocyte
chromosomal interactions are enriched for enhancer (H3K4me1,
H3K4me3, and H3K27ac), repressor (H3K27me3, H3K9me3)
histone marks, and DNase I hypersensitive sites (DHSs)
(Supplementary Table 2). As there are no publicly available
DHS data for adipocytes or adipose tissue, we used the union of
DHSs in all cell types from ENCODE and Roadmap rather than
DHSs in a single, non-adipocyte cell type8. Intersecting the
adipocyte and previously published primary CD34+ cell pCHi-C
data6, we found that 68.0% of adipocyte pCHi-C chromosomal
interactions were observed in adipocytes but not in CD34+cells.
In the following, we used the same public DHS data to focus on
open chromatin regions as they are more likely to bind
transcription factors (TFs) and, thus, be relevant for chromoso-
mal looping interactions within the interacting HindIII
fragments.

We examined whether the DHSs are enriched for adipose-
related TF motifs, using the Hypergeometric Optimization of
Motif EnRichment (HOMER) software9 that calculates the
number of times a TF motif is seen in target and background
sequences. The proportion of times the TF motif is seen in the
target when compared to the background is then tested for
enrichment in the target sequences. We found that when
compared to DHSs within CD34+ chromatin interactions, the
DHSs within the adipocyte chromatin interactions are enriched
for 26 of 332 TF motifs (FDR < 5%) (Supplementary Table 3),
including CCAAT/enhancer binding protein beta (CEBPB,
p-value= 1.00 × 10−10) and peroxisome proliferator-activated
receptor gamma (PPARG, p-value= 0.01), both of which are
well-known key players in adipose biology10. To address the
potential bias of using a different pCHi-C dataset as background,
we also performed HOMER analysis comparing the DHSs in
adipocyte interactions to DHSs in non-interacting, non-promoter
regions in the remainder of the genome. The results were similar,
and both CEBPB and PPARG were also enriched in the latter
analysis (CEBPB, p-value= 1.00 × 10−24; PPARG, p-value=
1.00 × 10−6; complete enrichment results not shown). These
results suggest that the cell-type based pCHi-C interaction data
enable the detection of interactions important for that cell type
within a heterogeneous human tissue.

Chromosomal interactions explain expression heritability. To
investigate whether the variants residing within open chromatin
of chromosomal looping regions in adipocytes are enriched for
SNPs that contribute to the heritability of cis expression
regulation, we partitioned the heritability of cis regulation of
human adipose gene expression into 52 functional categories
using a modified partitioned LD Score regression method11

(see Methods). The 52 functional categories are derived from 26
main annotations that include coding regions, untranslated
regions (UTRs), promoters, intronic regions, histone marks,
DNase I hypersensitivity sites (DHSs), predicted enhancers,
conserved regions, and other annotations11 (Supplementary
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Figure 1, Supplementary Tables 4–5). The partitioned LD Score
regression method11 utilizes summary association statistics of all
variants on gene expression to estimate the degree to which
variants in different annotation categories explain the heritability
of cis and trans expression regulation while accounting for the LD
among functional annotations. To assess the enrichment of her-
itability mediated by the variants in the chromosomal interactions
detected by pCHi-C on a per-gene basis, we further modified the
LD score method, as described in detail in the Methods.
Importantly, these modifications did not change the 52 baseline
enrichments significantly when compared with the data obtained
using the unmodified version11 (Supplementary Figure 1,
Supplementary Tables 4–5). These analyses revealed that open
chromatin regions (i.e., DHSs) within the adipocyte chromosomal
interactions are enriched for sequences that contribute to herit-
ability of gene expression regulation in cis (Fig. 1, p-value < 0.002,
enrichment= 20.3 (SD±5.2), average proportion of SNPs=
0.23%). The variants residing within the open chromatin regions
within adipocyte chromosomal interactions explain 4.6% of the
heritability of adipose tissue gene expression in cis, despite only
accounting for 0.23% of the SNPs per cis gene region on average,
indicating the functionality of these SNPs at the DHSs of distal
interactions in regulating cis expression.

Identification of genes regulated by looping cis-eQTL SNPs. To
identify adipose-expressed genes regulated by SNPs (eGenes), we
performed a cis-eQTL analysis using 335 individuals from the
METSIM cohort with both genome-wide SNP data and adipose
RNA-seq data available (Fig. 2; Methods). Using the published
adipose cis-eQTL data and criteria for significance from GTEx12

(see Methods), we found 487,679 cis-eQTLs for 4,650 eGenes in
the METSIM dataset and confirmed these same SNPs as
cis-eQTLs by look-up in GTEx. 386,068 of the 487,679 (79.0%)
cis-eQTL SNPs had the same target gene and direction of effect
in both cohorts (Supplementary Figure 2). Only the 386,068

cis-eQTL SNPs that were replicated for effect direction and
target gene (Supplementary Table 1) in the GTEx adipose RNA-
seq data were used in our subsequent downstream analyses
(Supplementary Figure 2). Overall, 4,332 of 4,650 of cis-eQTL-
eGene relationships (93.0%) were replicated using the published
adipose cis-eQTL data and criteria for significance from GTEx12

(see Methods). To restrict these adipose cis-eQTL SNPs to those
that likely function through transcription factor (TF) binding at
distal regulatory elements, we determined which of these eGene
promoters were involved in looping interactions with the
cis-eQTLs, assayed through pCHi-C in primary HWA (Fig. 2;
Methods). Of the 4,332 eGenes identified in our cis-eQTL ana-
lysis, 576 (13.4%), were involved in these looping interactions
(permutation p-value < 0.00001) (Fig. 2, Methods, Supplementary
Figure 2, and Supplementary Table 1).

We next determined the set of 576 looping eGenes with
expression levels that are correlated with BMI in METSIM
(Pearson correlation, adjusted p < 1.15 × 10−5 to correct for the
4,332 replicated eGenes identified in our cis-eQTL analysis). We
found 54 of 576 (9.40%) BMI-correlated eGenes with promoters
involved in looping interactions with their cis-eQTL SNP
(Supplementary Table 6). In our subsequent second replication
analysis, the expression levels of 42 out of 54 genes (replication
rate of 77.8%) were correlated with BMI in adipose RNA-seq data
from the TwinsUK cohort (n= 720) with the same direction of
effect on BMI as in METSIM (Bonferroni adjusted p < 0.001)
(Table 1, Supplementary Table 6). Another four of the 54 genes
were not available in the TwinsUK dataset. The effects sizes and
p-values obtained for BMI associations in TwinsUK and
METSIM, using a linear regression model in both, show
comparable results to those obtained using the Pearson correla-
tions (Table 1, Supplementary Table 6). These 42 BMI-correlated
genes are functionally enriched for four pathways with fatty acid
metabolism as a top ranking pathway (Supplementary Table 7)
based on KEGG pathway enrichment using WebGestalt13

(Benjamini-Hochberg adjusted p < 0.05); however, the small
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Fig. 1 Open chromatin sites (DHSs) within adipocyte promoter CHi-C chromosomal interactions show significant enrichment in cis expression. Enrichments

in cis expression with error bars for different categories using LD score regression analysis (see Methods). For the horizontal axis labels, the value in

parentheses shows the percentage of SNPs contained within the respective annotation category that contributed to the enrichment calculation. For the

significance threshold after Bonferroni correction above each bar, * indicates a p-value < 0.05; **, a p-value < 0.001; and ***, a p-value < 0.0001,

respectively. The p-values were estimated based on Z scores calculated from the normal distribution. Error bars represent jackknife standard errors around

the estimates of enrichment
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number of genes in these pathway analyses warrant verification in
future studies. Only these 42 replicated genes were further
investigated in our downstream analyses.

Adipocyte chromosomal interactions prioritize GWAS genes.
To investigate which of the 42 BMI-correlated eGenes are regu-
lated by GWAS variants previously identified for BMI and related
metabolic traits, we determined which interacting cis-eQTL var-
iants are GWAS variants (or their LD proxies, r2 > 0.80), using p
< 5.00 × 10−8 as a criterion to select variants. As the goal of the
current study was to dissect the molecular contribution of adipose
and adipocyte biology to traits that can influence the pathophy-
siology of obesity, we examined GWAS for BMI and the meta-
bolic traits that have previously been shown to exhibit co-
morbidities with obesity (e.g., serum lipids and type 2 diabetes) or
that are influenced by obesity or correlated with BMI (e.g.,
metabolites and WHR). We used all GWAS variants (p-value <
5.00 × 10−8) identified in a previous metabolite GWAS of ~7000
individuals14, lipid GWAS of ~180,000 individuals15, an extensive
BMI GWAS study of ~340,000 individuals2, a sequencing-based
GWAS for type 2 diabetes16, and a waist-hip-ratio (WHR)
adjusted for BMI GWAS of ~220,000 individuals17. We found a
GWAS variant for BMI, regulating mitogen-activated protein
kinase kinase 5 (MAP2K5); a GWAS variant for high-density
lipoprotein cholesterol (HDL-C), regulating orosomucoid like
sphingolipid biosynthesis regulator 3 (ORMDL3); and two GWAS
variants for serum metabolites (succinylcarnitine and butyr-
ylcarnitine), regulating lactamase beta (LACTB) and acyl-CoA
dehydrogenase, C-2 To C-3 short chain (ACADS), among the 42
genes (Fig. 3a, b; Supplementary Figure 3a-f), with the looping
interactions spanning 287 kb, 16 kb, 151 kb, and 183 kb, respec-
tively. We found that the interacting cis-eQTL-containing HindIII
fragments for LACTB and MAP2K5 are located within the pro-
moter and intron of other genes. Furthermore, using the inte-
grated pCHi-C and cis-eQTL data, we found that the SNPs in
these regulatory HindIII fragments regulate genes that are not
their nearest gene for 3 of the 4 BMI-correlated eGenes (Fig. 3a, b,
Supplementary Figure 3a–f).

The looping BMI GWAS SNPs regulate MAP2K5. For
MAP2K5, the reported BMI GWAS SNP itself is not located
within the regulatory, cis-eQTL-containing HindIII fragment
involved in the looping interaction; however, SNPs in tight LD
with the GWAS SNP (using a criterion of r2 > 0.80) are in the
regulatory HindIII fragment that is interacting with the target
gene promoter (Fig. 3b). The regulatory HindIII fragment con-
tains 16 cis-eQTL SNPs that are LD proxies for the BMI GWAS
SNP2 (rs16951275), which has a total of 62 LD proxies in the

METSIM cohort. To prioritize a candidate functional variant
within these 16 SNPs within the HindIII fragment, we first
examined the predicted TF motifs that may be affected by each
SNP using the data curated from ChIP-seq by Kheradpour and
Kellis18. We found that only rs4776984, which is in almost perfect
LD with the original BMI GWAS variant rs16951275 (r2= 0.98),
showed a predicted increase in binding of CTCF, which is a TF
known to mediate chromosomal interactions (Fig. 4a).

We also used the deep learning–based sequence analyzer
(DeepSEA)19 to examine the allelic effect on protein binding of
rs4776984 and the 15 other looping cis-eQTLs of MAP2K5. Of
these 16 looping cis-eQTLs, six were potentially functional and
of these, two variants passed the functional significance score of
<0.05 using DeepSEA. Of the two, our candidate functional
eQTL SNP, rs4776984, resulted in the most significant
functional score (2.36 × 10−3) (Supplementary Table 8) and
was the only variant passing a functional significance score of
<0.01 among the 16 variants. Thus, the DeepSEA result further
supports the differential TF binding at the variant site
rs4776984 among all possible looping cis-eQTLs at the
MAP2K5 locus (Supplementary Table 8). The looping cis-
eQTL site also shows a ChIP-seq peak for the histone mark
H3K4me1 in ENCODE adipose nuclei ChIP-seq data; however,
notably it also shows the presence of the histone marks
H3K27me3 and H3K9me3 (Fig. 3b), two marks known to be
associated with transcriptional repression. Furthermore, the
gene expression of MAP2K5 is negatively correlated with BMI
(p-value= 7.83×10−6). These data implicate MAP2K5 as a
gene regulated by the BMI GWAS signal via a repressive
chromosomal interaction.

To functionally assess whether there is differential allele-
specific binding of proteins at the candidate functional
MAP2K5 eQTL, rs4776984, we performed electrophoretic
mobility shift assays (EMSAs) using nuclear protein from
primary HWA. The results show reduced protein binding of the
reference allele when compared to the alternate allele of
rs4776984, consistently in three independent experiments
(Fig. 4b, Supplementary Figure 4), in line with the predicted
disruption in protein binding for CTCF18 (Fig. 4a). We
performed the supershift experiment using the CTCF antibody
and adipocyte nuclear extract, but did not observe a supershift
in any of the three replicated experiments (Supplementary
Figure 5). We repeated the supershift experiment using a
different CTCF antibody (EMD Millipore 07–729), which
resulted in the same negative finding (Supplementary Figure 6).
To further verify the negative supershift result, we also directly
tested the CTCF protein for allele-specific binding at rs4776984
using EMSA in 3 replicate experiments, and did not find
evidence of sole CTCF protein binding (Supplementary

eGene expression correlated

with BMI level

BMI GWAS and

adipose cis-eQTL SNP

Histone mark

Chip-seq

peaks Promoter capture HI-C

eGene

Fig. 2 Overview of the study design targeted to identify new genes for obesity and related metabolic traits. A schematic illustrating the integration of

multi-omics data utilized in this study to elucidate genetics of obesity-related traits.
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Figure 7). However, a supershift experiment may remain
negative even in the presence of true TF binding if a
complex instead of a single TF alone is required for the TF
binding20.

Interacting GWAS SNPs implicate three other genes. For
ORMDL3, there is a single lipid GWAS SNP, rs8076131, in the
HindIII fragment, which is also the only looping cis-eQTL SNP
interacting with the ORMDL3 promoter. Variant rs8076131 lies
in a region with enhancer histone marks H3K4me1 and H3K27ac
in adipose nuclei (Supplementary Figure 3a,b). The expression of
ORMDL3 is negatively correlated with BMI (p= 8.57 × 10−18), in
line with its known role as a negative regulator of sphingolipids
that are positively correlated with obesity21,22.

The regulatory HindIII fragment that loops with the LACTB
promoter contains two reported metabolite GWAS SNPs in tight
LD with each other (rs1017546 and rs3784671, r2= 0.97), both
sharing 35 LD proxies (r2 > 0.80) in the METSIM cohort. One of
the two index GWAS SNPs within the HindIII fragment,
rs3784671, resides in a region enriched for the enhancer histone
marks H3K4me1 and H3K27ac in adipose nuclei (Supplementary
Figure 3c, d). This metabolite GWAS SNP, rs3784671, is
associated with succinylcarnitine levels, which have previously
been shown to be positively correlated with BMI in KORA (p=
1.0 × 10−12) and TwinsUK (p= 5.3 × 10−5)23. Accordingly, the
expression of LACTB is positively correlated with BMI (p=
1.19 × 10−8). Notably, LACTB has been implicated as a causal
gene for obesity in mice24, further supporting our integrated
human data that implicates LACTB involvement in an obesity-
related metabolic trait.

The most significant metabolite GWAS SNP for ACADS,
rs10774569, is not located within the regulatory, cis-eQTL-
containing HindIII fragment. Instead, a single cis-eQTL SNP
rs12310161, in perfect LD (r2= 1.0) with the GWAS SNP
rs10774569, is the only cis-eQTL SNP located within the
regulatory HindIII fragment, looping with the fragment

containing the promoter of ACADS. This looping cis-eQTL
SNP also resides in a region enriched for enhancer histone marks
H3K4me1 and H3K27ac in adipose nuclei (Supplementary
Figure 3e, f). The expression of ACADS has a negative correlation
with BMI (p= 2.91 × 10−12), and the alternate allele is associated
with an increase in expression of ACADS, suggesting that this
allele has a protective effect against obesity.

Finally, we repeated the pCHi-C experiments in the same
HWA cell line in a separate experiment with two replicates and
found the same GWAS SNP interactions as in the first
experiment (Supplementary Table 9). This validation data thus
provides further support for our conclusions and the robustness
of interactions we report.

Discussion
BMI is a highly complex trait caused by the poorly characterized
interplay between genetic and environmental factors with upper
heritability estimates reaching 70%2. Understanding how
genome-wide signals with small effect sizes contribute to BMI on
a molecular level has proven to be difficult. Delineating the
underlying biological mechanisms of these signals is crucial to
better understand the development of obesity and its
concomitant cardiometabolic disorders. In this study, we
performed promoter Capture Hi–C (pCHi–C) in primary human
white adipocytes (HWA) to identify BMI-correlated adipose-
expressed genes that are under genetic regulation in cis by
variants that physically interact with gene promoters. Through
our method of integrating GWAS, cis-eQTL analyses, chromo-
somal interactions, and robust replication of the data from GTEx
and TwinsUK, we were able to identify 42 candidate genes for
future obesity research.

In the absence of adipocyte DHS information, we used DHS
data from all tissues in the ENCODE and Roadmap Epigenomics
project to label open chromatin regions within the adipocyte
chromosomal interactions8. Despite this methodological com-
promise, our results demonstrate that variants in these regions

Table 1 Thirteen representative eGenes (9 most significant genes and 4 GWAS loci) that correlate with BMI in METSIM and

TwinsUK (for the full data on all 54 genes, see Supplementary Table 6)

Pearson Linear regression

Ranka Gene Chrf METSIMc METSIMd TwinsUKe

Effect size (r) p-value Effect size (β) SE p-value Effect size (β) SE p-value

1 ADH1B 4 −0.45 7.40 × 10−18 −0.21 0.02 1.68 × 10−20 −0.58 0.03 4.47 × 10−71

2 ORMDL3b 17 −0.45 8.57 × 10−18 −0.16 0.02 2.06 × 10−20 −0.58 0.03 2.65 × 10−70

3 AKR1C3 10 0.33 4.78 × 10−10 0.13 0.02 2.95 × 10−11 0.49 0.03 5.19 × 10−54

4 CMTM3 16 0.41 4.32 × 10−15 0.087 0.01 3.84 × 10−17 0.50 0.03 6.64 × 10−52

5 LPIN1 2 −0.38 1.49 × 10−13 −0.14 0.02 2.27 × 10−15 −0.47 0.03 2.38 × 10−44

6 RNF157 17 −0.29 5.19 × 10−8 −0.096 0.02 5.87 × 10−9 −0.47 0.03 8.86 × 10−42

7 MYOF 10 0.32 1.07 × 10−9 0.086 0.01 7.37 × 10−11 0.46 0.03 2.59 × 10−40

8 NAA40 11 0.28 1.81 × 10−7 0.052 0.009 2.67 × 10−8 0.46 0.03 4.00 × 10−40

9 TMEM165 4 0.33 2.45 × 10−9 0.045 0.007 1.84 × 10−10 0.45 0.03 3.52 × 10−37

10 RFFL 11 0.27 1.02 × 10−6 0.035 0.006 1.84 × 10−7 0.43 0.03 5.67 × 10−37

28 ACADSb 12 −0.37 2.91 × 10−12 −0.085 0.01 7.12 × 10−14 −0.24 0.03 6.65 × 10−19

31 LACTBb 15 0.30 1.67 × 10−8 0.069 0.01 1.40 × 10−9 0.32 0.04 4.94 × 10−18

34 MAP2K5b 15 −0.25 7.83 × 10−6 −0.039 0.01 1.90 × 10−6 −0.21 0.03 3.81 × 10−10

a Thirteen representative eGenes, including 4 GWAS loci, ranked by their p-value in the TwinsUK cohort dataset
b GWAS gene
c Effect size (r, Pearson rho) and p-value calculated from Pearson correlation between gene expression and BMI (see Methods)
d Effect size, standard error (SE), and p-value calculated using a linear regression model with BMI and age, age² and the 14 technical factors as covariates when compared to a null model without BMI.
These models were compared using an F-test (see Methods)
e Effect size, standard error (SE), and p-value calculated from linear mixed effects model. A full model including BMI was compared to a null model in which the same model was fitted, but with BMI
omitted. These models were compared using an F-test (see Methods)
f Chr is an abbreviation for chromosome
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explain a significant portion (4.6%) of the heritability of
cis–regulated expression in human subcutaneous adipose tissue.
Even though the total percentage of variants within the inter-
section of open chromatin regions and adipocyte chromosomal
looping sites is small (0.23%), the enrichment implies that these
SNPs are functionally relevant for adipocyte biology and gene
regulation in cis.

The enrichment of TF binding motifs for CEBPB and PPARG
in chromosomal interactions found in adipocyte but not in CD34
+ cells confirms that the regulatory circuits identified here are
relevant to adipose biology. These two TFs have previously been
shown to occupy shared regulatory sites. Apart from being an
enhancer binding protein, which is in concordance with its pre-
sence at chromosomal interaction sites, CEBPB has been
demonstrated to precede the binding of PPARG at many reg-
ulatory sites25, suggesting that CEBPB primes the regulatory
regions for the binding of the adipose master regulator PPARG.

One of our looping cis-eQTL variants is a tight LD proxy (r2=
0.98) for a regional BMI lead GWAS SNP (rs16951275)2. Typical
fine mapping techniques such as overlaying histone marks,
transcription factor motif scans, or eQTL searches do not
necessarily reveal the mechanism through which a SNP might
function. We refined the GWAS signal from 64 to 16 LD SNPs
within a HindIII fragment that interacts with the MAP2K5 pro-
moter by overlaying cis-eQTLs, the promoter-enhancer interac-
tion map, and the expression-BMI correlation. The top candidate,
rs4776984, increased HWA nuclear protein binding in an allele-
specific way in our EMSA experiment and lies within the
repressor histone marks H3K27me3 and H3K9me3 in ENCODE
adipose nuclei data. Recent studies have suggested that repressor
elements function through looping interactions in a similar
manner to enhancer elements6,26, which would align well with the

negative correlation between expression of MAP2K5 and BMI
level.

The region at the MAP2K5 locus, exhibiting increased binding
for the alternate allele for rs4776984, contains predicted motifs
for the looping interaction protein, CTCF, and other TFs (Sup-
plementary Table 8). We did not find evidence of CTCF binding
at rs4776984 in our supershift and protein binding EMSA
experiments. However, a supershift experiment may remain
negative even in the presence of true TF binding if a complex
instead of a single TF alone is required for the TF binding20.
Furthermore, using DeepSEA analysis, we confirmed the poten-
tial for differential TF binding at the variant site rs4776984
among all possible looping cis-eQTLs at the MAP2K5 locus.
Noteworthy, since DeepSEA identified multiple TFs as potential
binders of rs4776984 site in an allele-specific way, future studies
testing a larger set of TFs are warranted to identify the actual TF
that binds this site. We postulate that TF binding at this inter-
action site would lead to a repressive looping mechanism, in this
case altering MAP2K5 expression in adipocytes.

MAP2K5 is a member of the ERK5 MAP kinase signaling
cascade, and the importance of ERK5 signaling in adipose was
previously demonstrated in Erk5 knock-out mice, which exhibit
increased adiposity27. This suggests that changes in
ERK5 signaling in adipocytes could be relevant for human
obesity. MAP2K5 is a strong and specific activator of ERK5 in the
ERK5 MAP kinase signaling cascade28, supporting further study
of MAP2K5 in connection with increased adiposity.

The intronic ORMDL3 GWAS variant rs8076131 is associated
with high-density lipoprotein cholesterol (HDL-C)15 and is the
only cis-eQTL SNP in the HindIII fragment that interacts with the
ORMDL3 promoter in our adipocyte pCHi-C data. ORMDL3 is a
negative regulator of the synthesis of sphingolipids that are
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produced in response to obesity and related metabolic traits, such
as inflammation and insulin resistance21,22, and that interfere
with important signaling pathways associated with these traits22.
Corroborating this, we show that ORMDL3 expression is nega-
tively correlated with BMI, and the cis-eQTL and risk variant
rs8076131 decreases ORMDL3 expression, potentially through a
change in the chromosomal interaction between the enhancer
and promoter of ORMDL3, as has been shown for this enhancer
site previously29.

We found that the metabolite GWAS SNP, rs3784671, is a
looping cis-eQTL variant associated with the expression levels of
the LACTB gene. Although this variant is a cis-eQTL for LACTB
both in our study and the GTEx adipose cohort, it lies within the
promoter for the APH1B gene, for which it is not a cis-eQTL in
our study. Through overlap of adipose cis-eQTL data and adi-
pocyte pCHi-C data, we established that rs3784671 does not act
through the adjacent APH1B gene and filtered the 35 cis-eQTL
variants for LACTB down to a single variant, rs3784671. This

variant is negatively associated with the levels of succinylcarni-
tine, a metabolite positively correlated with BMI in two inde-
pendent cohorts, KORA and TwinsUK, previously23.
Succinylcarnitine is a molecule in the butanoate metabolism
pathway; butanoate has been implicated in anti-inflammation,
protection against obesity, and an increase in leptin levels30.
Furthermore, as the succinylcarnitine GWAS variant rs3784671 is
an eQTL for LACTB, associated with an increase in LACTB
expression, we postulate that LACTB expression increases succi-
nylcarnitine. This is in agreement with a mouse study that shows
that butanoate metabolism is reduced in Lactb transgenic mice24.
Notably, support for LACTB as a causal gene for obesity derives
from functional studies using transgenic overexpression of Lactb
in mice, resulting in an increase in the fat-mass-to-lean-mass
ratio24,31. Although the function of LACTB in adipose has not
been fully elucidated, these studies suggest that a reduction in
LACTB function and, in turn, an increase in butanoate metabo-
lism and decrease of succinylcarnitine levels are beneficial for
obesity treatment. Further molecular studies at the protein level
are, however, required to determine the function of ORMDL3 and
LACTB in connection with obesity.

We identified a perfect LD proxy for a metabolite GWAS
SNP that lies within a HindIII fragment that regulates the
ACADS gene and interacts with its promoter. ACADS is a
mitochondrial protein that catalyzes the first step of the fatty
acid beta-oxidation pathway. Proper mitochondrial function is
imperative for adipose function and energy homeostasis. In
addition to the METSIM and TwinsUK adipose RNA-seq data
sets used in our study, a previous study identified ACADS when
systematically searching for genes over and under-expressed in
obese versus lean adipose tissue32. Furthermore, all 3 datasets
show a consistent negative correlation between ACADS
expression and BMI, in support of its well-established
mitochondrial function. The interacting cis-eQTL and GWAS
SNP, rs12310161, is located within enhancer histone marks in
adipose nuclei and in the HepG2 liver cell line, with the
alternate allele exhibiting a positive effect on gene expression,
in line with it being a protective allele. Interestingly, this variant
falls within a TEA Domain Transcription Factor 4 (TEAD4)
ChIP-seq peak in the HepG2 cells. TEAD4 expression is
regulated by Peroxisome Proliferator Activated Receptor alpha
(PPARα)33, the major regulator of beta-oxidation of fatty acid
pathways in liver and brown adipose tissue. Taken together,
these results suggest that the interacting cis-eQTL and
metabolite GWAS SNP, rs12310161, functions within an
enhancer to increase ACADS expression and mitochondrial
fatty acid beta-oxidation in adipose.

As the pCHi-C experiments were performed in primary HWA,
we are able to focus on physical chromosomal interactions
directly in human adipocytes among all cell types present in
adipose tissue. Adipocytes perform central adipose functions,
including lipogenesis and lipolysis. Further investigation of the
adipose genes, which are under cis genetic regulation via chro-
mosomal looping to the promoters and are correlated with BMI,
is likely to provide much needed insight into cellular processes
contributing to obesity. Our data provide 38 new candidate genes,
including some known functionally relevant genes for adiposity
such as LPIN134 and AKR1C335, that have so far not been
highlighted by GWAS for BMI or obesity-related metabolic traits.
We postulate that identification of some of these 38 candidates as
obesity GWAS genes may require much larger GWA studies,
while others may represent genes responding to obesity in human
adipose tissue. Our analysis of the looping cis-eQTLs for other
GWAS traits correlated with BMI, such as serum metabolites and
lipids, led to the identification three additional obesity-related
metabolic GWAS genes. We recognize that brain and other
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tissues likely account for some of the BMI GWAS signals and that
GWAS variants may act via other mechanisms, such as trans
regulation and alternative splicing, that warrant future investi-
gation. Although the four looping cis-eQTL variants identified at
GWAS loci in our study represent either the GWAS tag SNPs (as
is the case at the ORMDL3 and LACTB loci) or they are in perfect
or almost perfect LD with the GWAS SNP (r2= 1.0 at the
ACADS locus and r2= 0.98 at the MAP2K5 locus), we recognize
that the looping variants may not always be the strongest cis-
eQTL SNPs at these loci and, thus, additional fine mapping is
needed to fully elucidate all functional regulatory cis-eQTL
variants.

The current study uses the integration of multi-level genomic
and functional data to enhance the understanding of genome-
wide molecular signals underlying obesity. GWAS signals often
fall within non-coding regulatory regions of the genome, and
the affected gene(s) often remain unclear. Similarly, the local
LD structure frequently hinders the identification and func-
tional characterization of the actual eQTL SNP even though the
eQTL target gene is known. Through the integration of multi-
layer genomics data in a functionally relevant human cell type
and tissue and replication in the GTEx and TwinsUK cohorts,
we show that the DHSs within the interacting chromosomal
regions are enriched for tissue-specific TF motifs and explain a
significant proportion of the heritability of gene expression in
cis. Furthermore, we identified LACTB, ACADS, ORMDL3, and
MAP2K5 as obesity-related genes in humans and provide a set
of 38 non-GWAS candidate genes for future studies in obesity.

Methods
Cell lines and culture reagents. We obtained and cultured the primary human
white preadipocyte (HWP) cells as recommended by PromoCell (PromoCell C-
12731, lot 395Z024) for preadipocyte growth and differentiation into adipocytes.
Cell media (PromoCell) was supplemented with 1% penicillin-streptomycin. We
maintained the cells at 37 °C in a humidified atmosphere at 5% CO2. We serum-
starved the primary human white adipocytes (HWA) for 16 h using 0.5% fetal calf
serum (FCS) in supplemented adipocyte basal medium (PromoCell), prior to
treatment with 0.23% fatty acid free bovine serum albumin (BSA, Sigma Aldrich
A8806) in media containing 0.5% FCS for 24 h prior to fixation.

Adipocyte fixation and nuclei collection. We rinsed 10M adherent HWA with
serum-free media prior to fixation. We fixed the HWA directly in culture plates
with 2% formaldehyde (EMD Millipore 344198) in serum-free adipocyte nutrition
media (PromoCell). We incubated cells in fixation medium with rocking at room
temperature for 1 min, and then quenched with 1 M ice-cold glycine for a final
concentration of 125 mM. After 5 min of rocking incubation at room temperature,
we rinsed fixed cells twice with ice-cold PBS. Then we incubated the cells with
rocking on ice with ice-cold permeabilization buffer (10 mM Tris–HCl pH 8, 10
mM NaCl, 0.2% Igepal CA-630, Complete EDTA-free protease inhibitor cocktail
[Roche])36 for 30 min. We scraped cells from the culture plate and centrifuged at
2500 × g for 5 min at 4 °C to pellet nuclei. The supernatant was discarded and
nuclei were flash frozen in liquid nitrogen and put at −80 °C.

Hi–C library preparation. We prepared the Hi–C library as described in Rao et al.7

with modifications. We processed 10M HWA nuclei in 5 M cell aliquots, closely
following Rao et al.7 protocol I.a.1 except we digested chromatin with 400U of
HindIII (New England Biolabs R3104) at 37 °C overnight with shaking (950 rpm).
After digestion, we pelleted nuclei with centrifugation at 2500 × g for 5 min at 4 °C.
We then resuspended nuclei in 265 μl 1× NEBuffer 2 and removed 10% of the cells
and kept on ice for a 3 C control37. We followed Rao et al.7 protocol I.a.1 to end-fill
and mark with biotin, perform in-nucleus ligation, degrade protein, and perform
ethanol precipitation and purification, except we used biotin-14-dCTP (Invitrogen
19518-018) to incorporate biotin during the end-filling step. After quality control
to examine Hi-C marking and ligation efficiency, we sheared 5 μg of DNA to
250–550 bp using the Covaris M220 instrument. We performed double size-
selection using Agencourt AMPure XP beads (Beckman Coulter A63881) as
described in Rao et al.7 protocol I.a.1.

We immobilized the fragments containing biotin using DYNAL™ MyOne™
Dynabeads™ Streptavidin T1 (Invitrogen 65601) beads following Rao et al.7

protocol I.a.1. After end-repair and attachment of dATP, we ligated Illumina
paired-end adaptors to the bead-bound library following the SureSelectXT user
manual for Illumina Paired-End Multiplexed Sequencing (Agilent Technologies).
After washing, we resuspended the Hi-C library in 20 μl of 1× Tris buffer and

subsequently removed the Streptavidin beads from the DNA by heating at 98 °C for
10 min. We then amplified the adaptor-ligated library using 8 PCR cycles and
purified using Agencourt AMPure XP beads, following the SureSelectXT user
manual.

Capture Hi-C. The RNA baits were designed in Mifsud et al.6 for capturing HindIII
fragments containing gene promoters (Dr. Cameron Osborne kindly shared the
exact design). As described in Mifsud et al.6, 120-mer RNA baits were designed to
target both ends of HindIII fragments that contain annotated gene promoters
(Ensembl promoters of protein-coding, noncoding, antisense, snRNA, miRNA and
snoRNA transcripts). The bait sequence was deemed valid if GC content ranged
from 25 to 65%, contained <3 consecutive Ns, and was within 330 bp of HindIII
fragment ends. A total of 550 ng of the Hi–C library was hybridized to the bioti-
nylated RNA baits, captured with DYNAL™ MyOne™ Dynabeads™ Streptavidin T1
beads, and amplified in a post-capture PCR to add indexes, using 12 PCR cycles.
The library was sequenced on the Illumina HiSeq 4000 platform.

Capture Hi-C data processing and interaction calling. To ensure all downstream
analysis was comparable, we first reduced the number of sequencing reads to match
the number used in Mifsud et al.6 analysis of their CHi-C data. We next processed
the sequencing reads with the Hi–C User Pipeline (HiCUP) software38, aligning
reads to the human reference genome (GRCh37/hg19) and using all HiCUP default
parameters. We called significant chromosomal interactions with the Capture Hi-C
Analysis of Genome Organization (CHiCAGO) software39, using default para-
meters, including the threshold of 5 for calling significant interactions. Briefly, the
background is estimated by borrowing information across interactions on two
separate components of the data: the interactions with baited fragments in the
surrounding genomic region are used to model Brownian collisions, which are
distance-dependent interactions, and interchromosomal interactions are used to
model technical noise. CHiCAGO then employs a weighted p-value based on the
expected number of interactions at a range of distances39.

Adipocyte nuclear protein extraction. Nuclear protein was extracted from adi-
pocytes after centrifugation of cells at 200 × g for 5 min using a nuclear protein
extraction kit as recommended (Active Motif 40010). The quantity of protein
extracted was measured with BCA protein assay kit (Pierce 23227).

Electrophoretic mobility shift assay. Oligonucleotide probes (15 bp flanking SNP
site for reference or alternate allele) (Supplementary Table 10) with a biotin tag at
the 5′ end of the sequence (Integrated DNA Technologies) were incubated with
HWA nuclear protein and the working reagent from the Gelshift Chemilumines-
cent EMSA kit (Active Motif 37341). For competitor assays, an unlabeled probe of
the same sequence was added to the reaction mixture at 100 × excess. The reaction
was incubated for 30 min at room temperature, and then loaded on a 6% retar-
dation gel (ThermoFisher Scientific EC6365BOX) that was run in 0.5 × TBE buffer.
The contents of the gel were transferred to a nylon membrane, and visualized with
the chemi-luminescent reagent as recommended. Similarly, we performed the
EMSAs with 1 μg purified CTCF protein (Origene TP720882). Supershift assays
were performed with 1 μg anti-CTCF antibodies (Santa Cruz sc-15914 and EMD
Millipore 07–729) that were incubated on ice with nuclear protein from HWA for
30 min prior to addition of oligonucleotide probes and run on gel.

Study cohort. The study sample consisted of a subset of the participants of the
Finnish Metabolic Syndrome in Men (METSIM; n= 10,197) cohort, described in
detail previously40,41. The study was approved by the local ethics committee
(Research Ethics Committee, Hospital Restrict of Northern Savo) and all par-
ticipants gave a written informed consent. The METSIM participants are Finnish
males recruited at the University of Eastern Finland and Kuopio University
Hospital, Kuopio, Finland. The median age of the METSIM participants is 57
years (range: 45–74 years). The biochemical lipid, glucose, and other clinical and
metabolic phenotypes were measured, as described previously40,41. A random
subset of the METSIM men underwent a subcutaneous abdominal adipose
needle biopsy, with 335 unrelated individuals (IBD sharing estimated as <0.2
using a genetic relationship matrix calculated in PLINK42) analyzed here using
RNA-seq.

Identification of cis-eQTL SNPs. We processed the METSIM RNA-seq dataset
similarly as described in Rodriguez et al.43. Briefly, for the METSIM RNA-seq
dataset, we isolated total RNA from abdominal subcutaneous adipose needle biopsy
using the Qiagen miRNeasy kit. Polyadenylated mRNA was prepared using the
Illumina TruSeq RNA Sample Preparation Kit v2 and sequenced using Illumina
HiSeq 2000 platform generating paired-end, 50-bp reads. We used STAR44 to align
the reads to the hg19 reference genome, and assembled transcripts using Cufflinks
v2.2.145. We filtered genes for those with expression of FPKM > 0 in more than
90% of the samples. Additional details of this dataset have been previously
described in Rodriguez et al.43. We inverse-normal transformed the FPKMs and
adjusted for hidden confounding factors using PEER46 by removing 22 PEER
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factors based on a cis-eQTL analysis on chromosome 20 and choosing an optimal
number of PEER factors without a loss of statistical power.

To decrease computation time, we prephased the METSIM genotype data,
produced using the Illumina HumanOmniExpress BeadChip, by employing
SHAPEIT247 with the phase 1 version 3 reference panel of the 1000 Genomes
Project. We performed imputations with the same reference panel and IMPUTE248

with a cosmopolitan imputation approach, which included all populations from the
1000 Genomes Project, to ensure a high accuracy and maximize the number of
imputed SNPs. Imputed data were filtered using the quality control inclusion
criteria of info ≥0.8, MAF ≥5%, and Hardy–Weinberg equilibrium (HWE) p >
0.00001. The cis-eQTL analysis was performed using Matrix-eQTL49. We classified
the variants as in cis if they were within 1 Mb of either end of a gene. The first three
genetic principal components were included as covariates in the cis-eQTL analysis
to account for population stratification.

Replication of cis-eQTL analysis in GTEx. To ensure robustness of the results, we
filtered the cis-eQTL SNPs and their target genes detected in the METSIM cohort
so that both the cis-eQTL SNP and its predicted target gene were replicated in the
cis-eQTL data by the GTEx Consortium (n= 277) for subcutaneous adipose tissue,
filtered using their permutation test for significance, which used the adaptive
permutation scheme in FastQTL50 and a permutation test p-value threshold equal
to the empirical p-value of the gene closest to the FDR 5% threshold, as reported by
GTEx12. Only replicated adipose cis-eQTLs and their target genes were used in our
downstream analyses.

Heritability of cis expression in chromosomal interactions. To investigate the
functional importance of open chromatin regions (i.e., DHSs) within chromosomal
interactions in adipocytes to heritability of cis expression, we used LD-score
regression11. More specifically, we generated an annotation for each region within
1Mb of the TSS of every gene with at least 1 significant promoter interaction. Per
gene, this annotation consists of marking the variants within a distal fragment
within 1 MB of the TSS that interact with the fragment containing the promoter of
the gene. We further refined these annotations to the open chromatin regions
available for TF binding. Accordingly, we only marked those variants located in
regions identified in the union of DNase I hypersensitivity sites (DHSs) from all
tissues in the ENCODE and Roadmap Epigenomics project51. Since these chro-
mosomal interaction annotations change on a per-gene basis, we could not use the
genome-wide overlapping matrix in the original software, which treats the anno-
tations as fixed genome-wide. In our analyses, we generated an average overlapping
matrix aggregated across all the regions. Importantly, we tested that this weighted
overlap matrix does not qualitatively change the overall enrichment of heritability
of gene expression for fixed annotations, such as coding regions (Supplementary
Figure 1). These changes amount to altering equations 7 and 8 from Liu et al.11 as
follows (Equation 1 and 2).

Equation 1: Modified equation 8 from Liu et al.11 using a weighted overlap
matrix instead of the genome-wide average.

proph2g Cð Þ ¼
h2g Cð Þ

h2g totalð Þ
¼

P
C τCMC′\CP
C τCMC

WhereM ¼
XN

gene i

Mi

NSNPi

In the equation above, C is a given annotation category; prop h2gðCÞ is the
proportion of heritability for a given category; τc is the regression coefficient for the
category; M is the average overlap matrix for each local region;Mi is the overlap
matrix for each gene in the local region; and NSNPi is the number of SNPs in each
local region.

Equation 2: Modified equation 9 from Liu et al.11 using the average proportion
of SNPs instead of the genome-wide average.

enrichment Cð Þ ¼
prop2hg Cð Þ

propSNPS Mð Þ

WhereM ¼
XN

gene i

Mi

NSNPi

In the equation above, the variables are as in Equation 1, and prop SNPsðMÞ is
the proportion of SNPs in the overlap matrix for a given category.

Transcription factor motif enrichment in adipocytes. We used Hypergeometric
Optimization of Motif EnRichment (HOMER, v4.9) to investigate the enrichment
of known TFs in the open chromatin regions (i.e., DHSs) within chromosomal
interactions in adipocytes9. As input data, we used chromosomal interactions in

adipocytes that interacted with a promoter fragment intersected with the union of
all DHSs from ENCODE and Epigenomics Roadmap. We chose to use the DHSs in
all cell types since there are no publicly available DHS data in adipocytes or
adipose. Furthermore, since we were interested in the TF enrichments in adipo-
cytes, we used CD34+ chromosomal interactions intersected with the union of all
DHSs as the background input file6. Any regions that were shared between the
CD34+ and adipocyte datasets were not considered in this analysis. We considered
significant any TFs that were enriched in the DHSs within chromosomal interac-
tions in adipocytes at an FDR of 5%. To ensure our background input file was not
biasing the results, we also performed the same analysis with all DHSs not found in
adipocyte chromosomal interactions as the background input.

We also assessed predicted differential TF binding using the tool deep
learning–based sequence analyzer (DeepSEA)19, which assesses differential histone
modification, TF binding, and DHS profiles using a deep learning-based
algorithmic approach and gives a functional significance score at the single
nucleotide resolution.

Overlap of cis-eQTL SNPs and chromosomal interactions. To investigate
functional cis-eQTL SNPs, we overlapped the imputed cis-eQTL SNPs and their
target genes with Capture Hi-C chromosomal interactions by first overlapping the
position other end of the looping interaction with the location of the cis-eQTL
SNP. These were subsequently designated as regulatory element cis-eQTL SNPs.
Simultaneously, we examined the identity of the predicted target gene for the cis-
eQTL SNP and the gene involved in the looping interaction for a match. Only
when both these criteria were fulfilled, was the cis-eQTL SNP defined as a looping
cis-eQTL SNP and considered for further analyses.

Identification of LD proxies of GWAS SNPs. GWAS variants associated with
BMI were obtained from Locke et al.2, and with lipids and metabolites from Willer
et al.15 and Shin et al.14. We identified the cis-eQTL SNPs in tight LD (r2 > 0.80)
with GWAS variants in the METSIM adipose RNA-seq dataset using PLINK42 and
used them as the LD proxies for BMI, lipid, and metabolite GWAS SNPs. These
sets of cis-eQTL SNPs were considered as BMI GWAS SNPs, lipid GWAS SNPs,
and metabolite GWAS SNPs, respectively. These set of BMI, lipid, and metabolite
GWAS SNPs were then overlapped with the looping cis-eQTL SNPs to identify all
BMI, lipid, and metabolite GWAS SNPs involved in chromosomal interactions
acting through distant regulatory elements.

Correlation of BMI with adipose gene expression. The BMI measurements in
the METSIM cohort were first adjusted for age, age² and then the resulting resi-
duals were inverse normal transformed to reduce the possible outlier effects. Next,
we log transformed the FPKM values and then corrected them for 14 technical
factors, including the RIN values, batch, percentage of coding reads, 5′ to 3′ bias,
and percentage of uniquely mapped reads using Picard tools. The expression levels
were correlated with the BMI measurements using Pearson correlation. The p-
values were corrected for multiple testing for the number of eGenes using the
Bonferroni correction (adjusted p-value < 0.05). To directly compare the effects
sizes and p-values obtained for BMI associations in TwinsUK with those in
METSIM, we also tested the 42 replicated genes using a linear regression model
with BMI and age, age² and the 14 technical factors as covariates when compared
to a null model without BMI in METSIM (Table 1 and Supplementary Table 6).
These models were compared using an F-test.

Replication of BMI-adipose gene expression correlation. Association analysis
between BMI and adipose expression in the TwinsUK cohort was performed on
720 female twins. RNA-seq was generated as previously described52 and gene level
quantifications were generated to Gencode v19. Association between gene
expression level and inversed normalized BMI was tested with a linear mixed
effects model (LMEx) implemented using the lme4 package53. A full model
including BMI was compared to a null model in which the same model was fitted,
but with BMI omitted. These models were compared using an F-test. All known
technical variables (batch, GC content, insert size mode, and primer index), age,
age², and family structure were included as covariates in the models. All variables
were centered and scaled to unit variance. Four genes were not present in the
TwinsUK cohort dataset and we were thus unable to test them for replication,
resulting in 54 genes tested for replication. Each replicated gene was examined to
determine if effect size direction in TwinsUK and METSIM has the same direction.
A Bonferroni corrected p-value (adjusted p < 0.001) with the same direction of
effect as in METSIM was considered as statistical evidence for replication in the
TwinsUK.

Data availability. The human primary adipocyte Capture Hi–C data are available
at GEO (Accession ID: GSE110619)
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