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ABSTRACT The Fourth Industrial Revolution (Industry 4.0) is reshaping the construction industry and

bringing it into an intelligent construction era. Emerging technologies, such as the Building Information

Modelling, Internet of Things, big data, cloud computing, and artificial intelligence, have penetrated into

all stages of the building life cycle and play a significant role. However, the major issue of intelligent

construction is integrating multiple technologies to create more potential opportunities rather than their

fragmented application. Considering the various special characteristics of the construction industry and the

high heterogeneity of these technologies, their integration in the construction industry is challenging and

requires in-depth investigations. This paper summarizes the Industry 4.0–related technologies involved in the

construction industry based on an analysis of the characteristics of the industry. Further, this study presents a

framework of a cyber–physical system to integrate these technologies and improve the overall capabilities of

construction organization and management. A case study of the Xiong’an citizen service center is introduced

to verify the technological feasibility and preliminary implementation effect of the proposed framework.

As forward-looking research, the significance of this paper may also to inspire more efforts in this field.

INDEX TERMS Construction industry, industry 4.0, cyber-physical system.

I. INTRODUCTION

Construction is an ancient industry accompanied by hard

manual labor and largescale equipment. From the perspective

of industrialization, the construction industry is a unique

manufacturing industry in which the products (i.e., buildings

or structures) are assembled through a series of discontinuous

processes. However, the construction process is complicated,

which has led to its slow industrial evolution. In particular,

in some developing countries, the construction industry

still follows traditional labor-intensive industry practices,

with high energy consumption, environmental pollution, and

safety risks and low productivity in project delivery [1].

However, this may be changing with the advent of the Fourth

Industrial Revolution (Industry 4.0). The visionary ideas of

Industry 4.0 will encourage the development of the construc-

tion industry [2]. Emerging technologies, such as the Internet

of Things, big data, cloud computing, and artificial intelli-

gence, have been proven to effectively contribute to industrial

intelligence, especially in the manufacturing industry [3].

The associate editor coordinating the review of this manuscript and
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In recent years, these technologies have gradually entered

many fields of the construction industry [4]–[6] to sup-

port efficient design optimization, performance evaluation,

resource management, risk monitoring, energy saving, emis-

sions reduction, and project delivery. Despite these advances,

intelligent processes in the construction industry are still in

a nascent stage and lag behind other industrial sectors [7].

Presently, the innovative technologies are only partially

adopted in specific fields, and there have been few macro-

scopic studies on their integration. A future issue is deter-

mining how to integrate multiple intelligent technologies to

improve the overall capabilities of construction organization

and management rather than their fragmented application.

With the deep integration of industrialization and informa-

tization, a new ecosystem, namely the cyber–physical system

(CPS), has emerged [8], which unprecedentedly entangles the

network and physical worlds. This has initiated a new era

of real-time communication and cooperation between value

network participants, including devices, systems, organiza-

tions, and people [9]. According to the development trends of

manufacturing, intelligent technologies have been important

drivers for CPS deployment [10]. Meanwhile, CPS is also
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becoming a platform for the integrated application of intel-

ligent technologies, which provides valuable inspiration for

the construction industry.

However, to our best knowledge, there have been few

studies on the CPS in the construction industry, especially

considering the integration of multiple intelligent technolo-

gies. Correa [11] adopted the Petri Net as a cyber model

for a construction process in the CPS, and two application

scenarios of automatic assembly and traditional structural

masonry were simulated. As a theoretical study, it did not

illustrate how to apply the proposed CPS framework into a

practical engineering environment, such as the deployment

of cyber models and the realization of bi-directional coordi-

nation between cyber models and the physical construction.

Akanmu et al. [12] discussed a radio frequency identifica-

tion (RFID) technology enabled bi-directional coordination

mechanism between virtual models and physical construc-

tion to improve the construction project delivery process,

but they did not consider the management and utilization of

the largescale data generated by the RFID, which is critical

for project decision making. The purpose of this paper is

to improve the over capabilities of construction organization

and management by integrating Industry 4.0 related tech-

nologies into a unified CPS framework. We analyzed the

research progress and gap through a systematic literature

review, established a theoretical model of the proposed CPS

framework, and verified the feasibility and implementation

effect of the CPS framework through a case study.

The rest of this paper is organized as follows. The special

characteristics of the construction industry that may hinder

its intellectualization are discussed in Section II. The

development status of Industry 4.0–related technologies

in the construction industry and the potential integration

opportunities for CPS implementation are summarized in

Section III. In Section IV, a framework of the CPS integrated

Industry 4.0–related technologies for the construction indus-

try is proposed. In Section V, a case of the Xiong’an citizen

service center is presented to verify the technical feasibility

and implementation effect of the proposed CPS framework,

and the potential benefits and challenges are further dis-

cussed in Section VI. Finally, conclusions are presented in

Section VII.

II. ANALYSIS OF OBSTACLES TO INTELLIGENT

CONSTRUCTION

To pave the way for intelligent processes in the construction

industry, the factors that hinder the application of intelligent

technologies are described based on the analysis of the basic

characteristics of the construction industry.

A. UNIQUENESS OF PRODUCT

Unlike the standardized product processes of the manufac-

turing industry, each product in the construction industry

is unique, and even buildings with the same design draw-

ing also face different climatic and geological conditions.

Therefore, there are no standard construction plans in the

construction industry, and it is difficult to produce a bill

of materials (BOM) like that in manufacturing [13]. The

uniqueness of the product results in a temporary nature of

construction teams (including owners, designers, contractors,

subcontractors, and suppliers), and the construction system

is a one-off production system. To build an integrated intel-

ligent system, it is better that every component is modular

and reusable, although this is a challenge under the current

technical conditions.

B. DISCRETENESS OF CONSTRUCTION PROCESS

Unlike the assembly line operation in the manufacturing

industry, construction is a highly discrete process with an

unstructured organization and non-linear workflow. Tasks

are rarely connected in a consecutive chain. Instead, work

between or within tasks is connected to other work through

shared resources or relies on other ongoing work. Differ-

ent tasks are often assigned to subcontractors with different

informatization levels, and it is difficult for the project owners

and general contractors to obtain accurate information from

them. Incompatible information flows lead to inconsistencies

in the understanding of the project between participants, and

their coordination requires considerable time and resources,

which is not conducive to the construction organization and

management [14].

C. LIQUIDITY OF CONSTRUCTION RESOURCE

The construction resources generally include the labor force,

construction equipment, and building materials, which must

be constantly transferred during the construction progress.

The execution of tasks often requires multiple participants

at different locations to work together in a changing envi-

ronment. Thus, the spatial-temporal conflicts, such as those

in the workspace, working sequence, and moving path are

very common, which creates higher requirements for the

coordination between them.

D. COMPLEXITY AND HIGE UNCERTAINTY

In a dynamic construction progress, each factor is an inde-

pendent variable, and interactions between multiple variables

lead to complexity and high uncertainty. Existing construc-

tion management models (e.g., the work breakdown structure

(WBS), critical path method (CPM), and earned value man-

agement (EVM)) and their implementation tools have been

criticized as being deficient for handling the complexities of

projects [15]. Although managers have formulated a detailed

construction plan, the high uncertainty of a project often leads

to frequent modifications of the plan during construction.

However, there is no appropriate evaluation method for the

revised plan, which leads to the frequent occurrence of delays,

overruns, reworking, poor quality, and even engineering

claims. To address the uncertainty, project managers usually

leave enough redundancy when working out the plans, but

this also results in a waste of resources [16].
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E. HARSH CONSTRUCTION ENVIRONMENT WITH HIGH

RISK

Compared to a pristine shop-floor in themanufacturing indus-

try, construction sites are often accompanied by noise, dust,

wastewater, and mud, and some underground projects even

face with the risk of engineering geological disasters, such as

collapse and water inrush. Such a harsh construction environ-

ment introduces great challenges for the data acquisition and

network communication of intelligent systems as well as the

reliability of precision equipment. Furthermore, workers in a

harsh environment cannot always focus on what is happening

around them, and the lack of real-time information often

makes them unable to react in time when facing dangerous

situations. This sense of insecurity further hinders their will-

ingness to cooperate with mechanical equipment [17].

III. OVERVIEW OF INDUSTRY 4.0 RELATED TECHNOLOGY

INTEGRATION IN CONSTRUCTION INDUSTRY

In this section, nine Industry 4.0–related technologies

that have been applied to the construction industry are

summarized, and their potential integration opportunities and

challenges are reviewed.

A. BUILDING INFORMATION MODELING

Building information modeling (BIM) originated from

computer-aided design (CAD) and has now evolved into

an innovative technology that supports the whole life cycle

of a construction project by providing a virtual model and

relevant information about buildings. According to the def-

inition of the National Institute of Building Science (NIBS)

of the United States [18], BIM is the ‘‘sharing of knowledge

resources for information about a facility, forming a reliable

basis for decisions during its life-cycle; BIM exists from

the earliest conception to the demolition of a construction

project.’’ By incorporating geometric, topological, and meta-

data properties, BIM can offer a high accuracy represen-

tation of a project at the component level. An integrated

3-dimensional model was adopted to completely express

the definition information of buildings, which ensures the

uniqueness of the data in the life cycle of the buildings [19].

BIM has already introduced profound changes in the con-

struction industry by providing a unified platform for all

stakeholders to communicate and collaborate in an efficient

way throughout the entire lifecycle of a project. The subject

of BIM is currently a central topic for the improvement of the

construction industry, and it is a core technology for support-

ing the idea of Industry 4.0 in the construction industry [7].

The BIM model not only reflects the designer’s expec-

tations, but also provides a virtual replica of the building

under construction. The manufacturing industry has a sim-

ilar concept called the ‘‘digital twin,’’ a virtual model of

the physical product created in a digital way to simulate its

behaviors in real-world environments [20]. The emergence

of the digital twin has paved the way for cyber-physical

integration. It serves as a bridge between the physical and

cyber worlds [21] that will provide the construction industry

with a new paradigm to carry out intelligent construction.

In the context of Industry 4.0, integrating with other inno-

vative technologies could enable BIM to create a digital twin

to interact with the physical building, which will provide a

new means for monitoring, simulating, and making decisions

in engineering projects.

B. INTERNET OF THINGS

The Internet of Things (IoT) is a disruptive technology that

brings physical objects into a cyber world [22] based on

devices or technology such as sensors, actuators, RFID,

video cameras, and laser scanners. It achieves the ubiquitous

connection between things in accordance with the agreed

communication protocol and then senses, recognizes, and

controls the physical process. Different types of sensors are

deployed on a construction site for the real-time monitor-

ing of the actual construction process. The data collected

by sensors will be transmitted by a gateway (e.g., Wi-Fi,

ZigBee, or Bluetooth) to the internet [23] to support more

efficient performance evaluation, resource optimization, risk

monitoring, energy conservation, emission reductions, and

project delivery. However, most current IoT solutions in the

construction industry are isolated for specific applications but

lack coordination over the entire construction process. Thus,

it is important to integrate the multidisciplinary IoT data to

support the comprehensive monitoring and decision-making

of the project.

Taking advantage of the Internet of Things, the real-time

data collected from a construction site drives BIM mod-

els to monitor the construction process. However, it is

challenging to link heterogeneous data from the IoT into

the BIM for a real-time visualization and operation [24].

A widely adopted method is to establish a mapping structure

between the IoT data and BIM data in a relational database

and then import and export the model data through the

existing API of the BIM tools (e.g., Revit DB link). This

method can easily link the model and sensor data without

additional programming efforts. However, once the model

changes, the mapping structure in the relational database

must be manually reconstructed, so it is not suitable for

complex BIM models. Some recent studies have focused

on developing domain-specific database schemes to pro-

vide flexible data integration between the BIM and IoT,

although this requires users to have more programming

knowledge [25]. For instance, Solihin et al. [26] defined

a new database scheme named BIMRL that transforms the

BIM data into a relational database and extends the BIM data

query capabilities into standardized SQL. Alves et al. [27]

created a domain specific query language named BIMSL

with a customized API. BIMSL can handle contextual data

queries and component-related time-series data queries. The

above-mentioned studies only considered the data integration

between the IoT and BIM.A further discussionwill be carried

out in the context of big data in Section III.D.
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C. CLOUD COMPUTING

Cloud computing is an emerging technology for transfer-

ring and storing data and perform calculations at third-

party data centers, which can be used by communication

devices, such as PCs and mobile devices. Cloud comput-

ing now has become an Internet computing paradigm with

on-demand access provided to the shared pool of cus-

tomizable resources [28]. Cloud computing provides three

service modes [29]: (1) Infrastructure-as-a-Service (IaaS),

which provides users with virtual computers and servers;

(2) Platform-as-a-Service (PaaS), which provides users with

services such as operating systems, databases, and pro-

graming languages; (3) Software-as-a-Service (SaaS), which

allows users to access their applications through the Internet.

In summary, the cloud provides virtualized services for scal-

able storage and computing, which is more reliable due to a

reduced dependence on the physical infrastructure.

Cloud computing is widely used in the construction indus-

try due to its support for BIM-based applications, which can

overcome the BIM challenges by providing real-time access

to the data pool and computing resources. Das et al. [30] pre-

sented a cloud-based BIM framework for integrating stake-

holder’s interactions. Redmond et al. [31] adopted the cloud

for interoperability between the BIM and other applications.

Combining MapReduce, WebGL 3D, and other technolo-

gies, Chen et al. [18] proposed a cloud-based framework for

online viewing, storing, and analyzing massive BIM, which

enables users to access to the Cloud-BIM via various types

of devices connected to the internet anytime and anywhere.

The combination of cloud computing and BIM will enable

all participants in the construction industry to collaborate

on a unified platform, change their original isolated and

decentralized state, and promote the efficient integration of

the construction industry chain.

The integration of the IoTwith cloud computing is urgently

needed in the construction industry, because the limited data

processing capabilities of IoT devices and the harsh con-

struction environment do not allow on-site data processing.

By integrating with cloud technology, the IoT can benefit

from nearly unlimited virtual computing resources to over-

come its technological constraints and implement real-time,

collaborative, and scalable applications. In this sense, IoT

acts as an intermediate layer between physical things and

virtual resources [32]. The elasticity of computing resources

of cloud services can also meet or extend the needs of specific

applications, enabling the integration of multiple intelligent

technologies in the construction industry, solving the prob-

lem of process information opacity caused by the discrete

construction industry. The storage and computing capabilities

provided by the cloud service have acted as an enabler for

industrial scenarios [33], not only for big data storage and

analysis but also for high-performance intelligent computing.

D. BIG DATA

The emergence of big data is the result of advancements in

information technologies. Its significance is not to manage

massive amount of data, but rather to extract the values

hidden in them. In general, big data can be defined by 4Vs

characteristics: volume, velocity, variety, and value. For the

construction industry, big data refers to the data generated

from the life cycle of the building or structures, such as the

phases of planning, design, tendering and bidding, construc-

tion, checking before acceptance, and operationmanagement.

These data come from multiple sources including the IoT

(e.g., data streams from sensors or RFID readers) [32],

information systems (e.g., BIM, project management system

(PMS), and enterprise resource planning (ERP)), and the his-

torical project documents [13], which are also characterized

by the 4Vs.

The essence of systems integration is data fusion [5], which

contributes to establishing the interoperability between them,

e.g., linking the IoT data to BIM, and realizing data exchange

between BIM and enterprise information systems, such as

enterprise resource planning (ERP) and project management

system (PMS) [13]. However, due to their heterogeneous

nature, this work is challenging. The Industry Foundational

Class (IFC) [34] is a de facto general data standard for the

construction industry, and a commonly used scheme is to

convert other data formats to IFC for integration with the

BIM data. Extracting the values hidden in massive data is the

significance of big data applications. By analysis of the big

data, it is valuable for not only more efficient project delivery

but also for all the stakeholders to obtain operational benefits.

Big data analysis methods include statistical analysis, online

analytical processing (OLAP), and data mining. Statistical

analysis and OLAP [35] are based on the structured query

language (SQL) for relational databases (or data warehouse).

Data mining is a process of extracting valuable information

hidden in big data through a set of algorithms, which is appro-

priate for both relational and NoSQL databases [36]. The data

mining algorithms are highly related to machine learning,

which will be will be discussed in detail in Section III.E.

Visualization can vividly show the analysis results of big data

in the forms of charts, images and animations, which help

users to gain deeply insights and make decisions. Although

there are numerous available open-source and web-based

data visualization tools, for the construction industry, highly

heterogeneity of the data is still a challenge for its visualiza-

tion. Furthermore, it is a valuable research direction that can

be combined with BIM technology to realize location-based

visualization, e.g., to intuitively display the highly risk area

in a BIM model.

E. MACHINE LEARNING

Machine learning is a sub-field of artificial intelligence that

enables computers to simulate human learning and indepen-

dently obtain knowledge by summarizing complex phenom-

ena [37]. In a practical sense, machine learning is a method

of training models for prediction through data. Based on

the different types of data, machine learning can be divided

into unsupervised and supervised learning. For unsupervised

learning, data is not specifically identified, and learning
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models are designed to infer some of the intrinsic structure

or regular pattern of the data. Common unsupervised learning

methods include learning the association rules and clustering.

In supervised learning, the input data is referred to as ‘‘train-

ing data,’’ and each group of training data has a clear label.

Common supervised learning methods include regression

analysis, decision trees, support vector machines (SVMs),

and artificial neural networks (ANNs). Deep learning is a new

research direction in the field of machine learning, which is

the development of artificial neural networks [38]. With the

increasing amount of training data and cheaper computing

resources, ANNs are used to build more complex neural

networks for deep learning. The representative deep learning

models include the deep belief network (DBN), recurrent

neural network (RNN), convolutional neural network (CNN),

long short-term memory (LSTM), and their combinations.

Machine learning is one of the most important big

data mining technologies, and most data mining algo-

rithms are related to machine learning methods, which

have many applications for construction. For example,

Fan et al. [39] developed a construction case retrieval

system using clustering to identify past safety accidents.

Trost and Oberlender [40] adopted multivariate regression

analysis for predicting the project cost in the early stages of

construction. Fang et al. [41] combined a back-propagation

algorithm and a heuristics-based tunable steepest descent

method for training an ANN to detect structural damage.

Efficient machine learning methods contribute to the exca-

vation of the value of data. Meanwhile, a successful machine

learning application also requires massive data, and a greater

amount of data contributes to improving the accuracy of

machine learning models. Thus, machine learning and big

data are complementary trends, with the former for exploring

the value of massive data and the latter for enhancing the

performance of the former.

F. INTELLIGENCE COMPUTING

Optimization problemswidely exist in the construction indus-

try, such as the resource constrained project scheduling prob-

lem (RCPSP), construction scheme selection, site layout, and

material logistics management [42]. The optimal algorithm

of a problem may find the optimal solution of each instance

theoretically, but when facing complex engineering prob-

lems, the computation cost is often unacceptable. Moreover,

many engineering problems are often described in very vague

terms, which are difficult to express with accurate models.

Intelligence computing is a branch of artificial intelligence

technology that aims to create a system with an independent

thinking ability by imitating human thinking or the laws of

the natural world, which has a wide application prospects in

the optimization problems of the construction industry.

To balance the computation cost and accuracy of the opti-

mization problems, computer scientists have proposed many

intelligent algorithms with heuristic characteristics [43].

The term ‘‘heuristic algorithm’’ refers to a kind of algo-

rithm inspired by the laws of nature or problem-oriented

experiences and rules, which can provide a feasible solution

with a reasonable cost. The commonly used heuristic algo-

rithms include the tabu search, simulated annealing, genetic,

ant colony optimization, particle swarm optimization, and

artificial fish swarm algorithms. Because of their strong

parallel computing and global search capabilities, as well as

their adaptive abilities and robustness, heuristic algorithms

are widely applied in the optimization of complicated engi-

neering problems [44]–[46]. Despite this, there are still many

drawbacks at present. For instance, they often depend on

user experience but lack mathematical foundations, they lack

effective iteration stopping conditions, and the convergence

rates are difficult to control. To overcome these drawbacks,

on one hand, the basic theory of heuristic algorithms requires

further study, and a unified and complete theoretical system

should be established in the future. On the other hand, for

specific engineering problems, they should be combined with

other intelligent technologies to overcome the drawbacks of

the heuristic algorithms.

G. REASONING TECHNOLOGY

Reasoning technology is an important branch of the decision

support field. Since the 1980s, many scholars have attempted

to establish an expert system to study the mechanism of

rule-based reasoning (RBR) to assist the decision-making of

construction management [47], [48]. The performance of an

expert system depends on the knowledge rules it contains.

The number of rules is finite, but the number of possible

situations is infinite when engineering problems occur. Due

to the lack of sufficient rules, the application of an early

expert system in the construction industry was not very suc-

cessful. As discussed in Section III.E, with advent of the

big data era, the rise of machine learning has enabled auto-

matic knowledge acquisition based on historical data [49].

Nonetheless, the knowledge in the construction industry is

often fuzzy and uncertain and difficult to express by accurate

rules. Fuzzy reasoning, also known as approximate reason-

ing, is a reasoning process of drawing possible uncertain

consequences from imprecise antecedent sets. In recent years,

many fuzzy reasoning expert systems have been developed

for assisting decision-making in the fields of construction

management, such as risk assessment [50], [51], productivity

forecasting [52], [53], and cost analysis [54]. The advantage

of fuzzy reasoning is that it not only has sufficient adaptability

and robustness, but it can also be used for heuristic and

exploratory reasoning. Thus, it is suitable for dealing with

complicated and uncertain engineering problems.

In practice, an expert (engineer or manager) often makes

judgements and decisions based on his/her own experience

when facing engineering problems. Experts have rich experi-

ence because they have encountered and solved many histor-

ical cases. When encountering new problems, they compare

them with cases in their memories, analyze their similari-

ties and differences, and obtain inspiration. This process is

actually a mechanism of case retrieval and reuse. Case-based

reasoning (CBR) is an artificial intelligence technology that
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simulates human analogical thinking using a computer [55].

It provides a reference scheme for solving new problems

by retrieving and reusing similar cases in case databases,

especially in areas where theoretical knowledge is difficult to

express or causality is difficult to grasp but a large amount

of historical data has been accumulated. Compared with

an expert system, CBR does not need explicit knowledge

rules but directly acquires experience from historical data,

which will gradually gain advantages with the continuous

accumulation of big data resources of the construction indus-

try [13]. In recent years, CBR has been gradually applied to

construction scheme design, cost estimation, tendering and

bidding, contract management, risk assessment, and dispute

settlement [56] of construction projects. The case reasoning

process is divided into retrieval, reuse, revision, and retention,

also known as the 4R process. A case consists of various

attributes, and the similarity between cases is defined by

the similarity between attributes. The key to engineering

case retrieval is the representation and analogy mapping of a

project case. Many studies have contributed to the representa-

tion and similarity mapping of engineering projects, such as

the characteristic tree method [57] based on meta-synthesis

and the geometric feature matching technique based on BIM

models [58]. For the case automatic revision mechanism,

the comparatively mature method is to adopt heuristic algo-

rithms [59], [60] by optimizing the retrieved source case

scheme to obtain a more suitable scheme for the target case.

H. 3-D RECONSTRUCTION

The 3D reconstruction technology describes the real scene as

a mathematical model that conforms to the logic expressions

of computers through the process of depth data acquisition,

preprocessing, point cloud registration and fusion, and sur-

face generation [61]. The point cloud refers to a set of data

points obtained from data sources (e.g., a laser scanner) in

a 3D coordinate system, which are used to represent the

external surfaces of an object [62]. A laser scanner carried

on an unmanned aerial vehicle (UAV) has been reported

to be effective for obtaining panoramic data of a construc-

tion site in real time [63], [64]. However, the 3D surface

model only presents the surface shape of the components

but does not contain their other attributes. Therefore, it must

be transformed into an information rich and object-oriented

BIM model, i.e., a real-time construction model. The man-

ual conversion is a time-consuming and error prone task.

Wang et al. [65] presented amethod for automatically extract-

ing the building geometries from an unorganized point cloud.

Brilakis et al. [66] proposed a framework to realize the

automatic creation of real-time construction models by iden-

tifying the building-related components and automatically

converting them to entity components with object attributes.

The obtained real-time construction model could act as the

digital twin of the building under construction.

I. VIRTUAL REALITY AND AUGMENTED REALITY

In virtual reality (VR), a person is immersed in a special

environment generated by computer technology, giving

him/her unique insights into the real world. Project partic-

ipants use virtual reality to visualize and understand engi-

neering problems to reduce uncertainty. At the design stage,

VR can be used for risk assessment, spatial layout, lighting

design, and landscaping, and during the construction pro-

cess, it can be used for construction scheme evaluation, con-

struction scheduling, site layout, and construction processes

monitoring. The combination of BIM and VR will create

new possibilities for developing an efficient communication

platform [67] that enables project participants to understand

the project from a first-person perspective, especially those

lacking expertise or experience. Du et al. [68] developed a

BIM-VR real-time synchronization system based on cloud

computing technology for the collaborative decision-making

of project participants. Boton [69] proposed a VR-based col-

laborative BIM 4D simulation framework for supporting con-

structability analysis meetings. VR in combination with BIM

can also create a risk-free training environment for visualized

labor training, skill transfer, and safety education [70], [71].

Augmented reality (AR) is an interface that overlays digital

information onto the user’s field of view, spatially aligned

to the current physical world environment. It establishes a

connection between a virtual world and the real world, while

keeping the flexibility of the virtual world. With augmented

reality, virtual content can be seamlessly integrated into real

scenes, thereby enhancing the depth of human perception of

the environment and enhancing the ability for humans to con-

trol the outside world [72]. During the construction process,

virtual information can be superimposed on the real con-

struction environment using augmented reality technology,

which enables workers intuitively obtain the environment

status and better understand the operation procedures and

safety regulations. For deploying AR to a complicated con-

struction environment, several critical technologies must be

considered [73], [74]. First, accuracy localization technology

plays a significant role in superimposing the information onto

construction objects. Second, because they are faced with

heavy construction tasks, workers could be required to use

portable wearable devices (e.g., AR glasses) to interact with

the augmented reality and allow them to send instructions in

a convenient way, such as through voices or gestures. Third,

combining BIM with AR will contribute to feeding cyber

information back to the construction site, especially in the

indoor environment. Finally, deploying the AR applications

in a cloud service and integrating with big data will contribute

to enabling workers to obtain more and consistent virtual

information, similar to viewing information through a web

browser.

IV. PROPOSED CYBER-PHYSICAL SYSTEM FRAMEWORK

This paper presents a framework of the cyber–physical sys-

tem that integrates the above-mentioned technologies for

improving the overall capabilities of construction organiza-

tion andmanagement, as shown in Figure 1. The physical part

is a flexible and reconfigurable architecture, all construction

resources (e.g., workers, materials, and equipment) are plug
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FIGURE 1. Overall framework of the cyber-physical system.

and play, homogeneous resources that can be substituted

for each other. The heterogeneous resources can work in

coordination, and the access or departure of any one resource

will not affect the overall performance of the system. IoT

links the physical construction site with the cyber part to

achieve the cyber–physical vertical integration [75]. The

cyber part is deployed in the cloud, which provides PaaS for

the big data storage and analysis and SaaS for the application

software, such as the BIM, decision support system (DSS),

and enterprise information system (EIS). The cloud-based

solution allows all participants to quickly access the CPS

through different terminal devices (e.g., mobile or wear-

able devices) to obtain information of interest. Furthermore,

it enables them to think about problems from a common

perspective (e.g., by immersing them in the same virtual

reality environment) to eliminate their cognitive differences

and promote collaboration.

To realize the interaction and mapping between the physi-

cal and cyber components, a digital twin of the construction

site should be introduced to the CPS. Figure 2 shows the

model of the digital twin in the proposed CPS framework,

which includes three parts: the physical construction site,

the cyber model, and their connections. The cyber model

is the real-time construction model in the BIM software,

which integrates the digital models of the buildings in

terms of the construction, workers, equipment and materials

based on the data integration standard of IFC. The digital

twin enables the seamless integration between the cyber

computations with physical processes in a feedback loop

where a physical process affects a cyber computation and

vice versa [76]–[78]. Interoperable data tightly connect the

FIGURE 2. Digital twin model of the proposed CPS framework.

construction site with its cyber model for cyber–physical

interactions and collaboration [79]. The cyber model can be

optimized during synchronization with the construction site

by collecting and extracting its data, while the latter can be

dynamically adjusted by receiving the information from the

former. During the practical construction process, the state

of the construction site is sent to the cyber part of the CPS

in real time, after which it performs monitoring, simulations,

and decision-making and feedbacks the control information.

The detailed descriptions will be introduced in the following

subsections.

A. REAL-TIME MONITORING AND RESPONSE

Figure 3 presents the real-time monitoring and response

process in the proposed CPS framework. The IoT provides

ubiquitous sensing capabilities to collect data from a con-

struction site. Different types of sensors collect real-time data

from the construction site, including the stresses and dis-

placements of structures, the temperature and the air quality

on site, energy consumption, and the status of construction

equipment [80]. Wi-Fi or Bluetooth techniques are used to

connect the wireless sensors deployed in the construction

site to form a wireless sensor network [81]. RFID is used

to collect real-time data in the whole process of prefabrica-

tion construction-site assembly by tracing the tag embedded

in the components [82]. RFID, Zigbee, and the ultra wide

band (UWB) techniques can be adopted for indoor person-

nel positioning, while outdoor positioning can be achieved

through the global positioning system (GPS) [83]. The UAV

carries a laser scanner to obtain the point cloud data of the

construction site to monitor the construction progress based

on 3D reconstruction technology. Cameras capture images

of the construction work on site for recording and analyzing

the construction process.Wearable devices integrate the func-

tions of sensors, cameras, and mobile locators to collect the

working status of workers on site [84].

IoT links the monitoring data from a construction site to

the cloud platform, as shown by the blue line in Figure 1.

The real-time construction model acts as the cyber model

(i.e., digital twin) of the construction site, with the 3D
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FIGURE 3. Process of real-time monitoring and response in the CPS.

model generated from point cloud data. It automatically asso-

ciates BIM-related components to achieve real-time updating.

Heterogeneous data collected from different data sources

should be cleaned first to remove noise and invalid data [85],

converted to a unified IFC format, and then fused with

the geometric data of a real-time construction model. The

real-time construction model presents the spatial topological

structure of the monitoring data to project participants for

visualization, enabling them to cooperate from a common

perspective and thinking mode. The cloud platform provides

monitoring data query, traceability, computation, and virtual

reality display services for different project participants to

support their monitoring requirements on project progress,

quality management, safety and environment supervision,

and performance evaluation.

Benefiting from real-time monitoring, the project man-

agement team can supervise the complicated construction

process and perform rapid adjustments or optimization.

In addition, the real-time monitoring also contributes to

making real-time predictions [86]. For instance, as described

in Subsection II.E, lacking real-time information often makes

it impossible for workers to react in a timely manner when

confronting dangerous situations. Under the proposed CPS

framework, comprehensive monitoring of the physical pro-

cess in real time enables the cyber part to identify or predict

risks ahead of time [87] and feeds back the alarm information

to the workers in time. The cyber part feedbacks control

instructions to the physical part through the IoT, as shown

by the orange line in Figure 1. Actuators embedded in

construction equipment are responsible for receiving and

executing these instructions [88]. The on-site workers can

receive information through wearable devices [84], e.g., dis-

playing the operation instruction, warnings, or remote assis-

tance information in AR glasses. From the above analysis,

CPS is a closed-loop ecosystem of ‘‘perception calculation

feedback,’’ which is similar to the nervous system of an

organism.

B. REAL-TIME CONSTRUCTION SIMULATION

Traditional 4D simulations in BIM are performed after

the design and before the construction starts based on the

as-planned data, which remains at the level of visual com-

munication rather than acting as the promoter for planning,

analysis, and decision-making [89]. The uncertainty in the

unstructured construction process is not considered, often

causing the output results to differ significantly from the

actual situation. Moreover, dynamical simulations during the

construction progress are not possible due to the inability

to incorporate real-time data into the existing BIM mod-

els [66]. To overcome these limitations, we present a simula-

tion approach based on the proposed CPS framework, which

adopts the real-time monitoring data as input data for the

simulation.

Figure 4 presents the real-time simulation approach dur-

ing the construction progress, which simulates the execu-

tion of the remaining tasks based on the current working

status. The input data of the simulation includes the

following three components: 1) a real-time construction

model, where the automatic updating mechanism based on

real-time monitoring data was discussed in Section IV.A;

2) construction constraints, including space constraints

(e.g., inventory and the yard and construction workspace),

resource constraints (e.g., the usage status of the non-

consumable resource, or available quantity of consumable

resources), and logical constraints (logical relationship and

time intervals between tasks). Constraints change dynam-

ically with the construction process, the monitoring data

collected from a construction site contribute to updating the

constraints in a real time. Furthermore, the project manage-

ment team can also adjust the constraints based on their

experience; 3) just-in-time (JIT) plans [90], which includes

WBS, the project schedule, and resource planning. The WBS

is used to hierarchically decompose the construction work

into smaller and easier-to-manage construction tasks and to

establish a framework for the formulation of project plans.
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FIGURE 4. Real-time simulation during construction progress.

The project schedule defines the planned start and end times

for each task, while the resource plan assigns the construc-

tion resources required for each task. Unlike the traditional

project plan, a JIT project plan can be adjusted and executed

dynamically as the project progresses.

Discrete event simulation (DES) method is used to verify

the project plans [91]. The simulation results include the

plan feasibility, potential conflicts, productivity dynamics,

and resource utilization. Real-time simulations reinforce the

collaboration between project management team, while the

simulation results are a significant data resource to support

their decision-making, which will be further discussed in

the following subsections. The project management team

makes assessments and improvements based on the simu-

lation results in a timely manner, works out optimized JIT

project plans, and sends them to the construction site for

execution. Therefore, the process transitions from data mon-

itoring to real-time simulations, then to the optimization of

the project plans, until the plans are fed back to the site for

execution, forming an iterative optimization cycle to deal

with the uncertainty in the construction process.

C. DATA-DRIVEN DECISION SUPPORT SYSTEM

Most decision making in construction management is made

by decision makers based on the manual collection of infor-

mation. This work is labor intensive, error prone, and heavily

dependent on the rules of thumb and experiences of the

decision makers [13]. The rules of thumb and previous expe-

riences are defined as tacit knowledge because they are hard

to capture, formalize, and make explicit [92]. The essence of

the data-driven decision support system is to automatically

discover tacit knowledge from mining the collected data

and then support the decision-making of the current projects

combined with intelligent technologies. Figure 5 presents

the architecture of the data-driven decision support

system in the proposed CPS framework, which consists of

FIGURE 5. Logical architecture of data-driven decision support system.

three layers: the data source layer, data processing layer, and

data application layer.

The data source layer consists of the design and simulation

data from the BIM, construction monitoring data from the

IoT, business information system data, and historical project

data. In the data processing layer, these data are extracted

and cleaned, redundancies are removed, and the data are

converted to an analyzable format, i.e., data fusion. The

fused data are used for analysis to support decision making.

On one hand, tacit knowledge is acquired through machine

learning, which can generate decision suggestions based on

fuzzy reasoning mechanism. More specifically, benefitting

from the real-time monitoring data collection in the CPS, it is

possible to analyze data over time to capture their time depen-

dence and obtain temporal knowledge. In contrast to static

knowledge, temporal knowledge plays a significant role for

characterizing the dynamics in the construction progress [93],

e.g., the activity duration is calculated by comparing the

timestamps corresponding to the events. On the other hand,

based on the case-based reasoning technology, similar cases

to the current project can be retrieved from the historical

project data. The solutions of similar cases can be used as the

reference scheme of the current project after adjustment and

optimization. The results of reasoning and direct statistical

analysis of the fused data are displayed to users in the form

of visualization to support the decision-making requirements
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of different users, which include design optimization, intel-

ligent scheduling, risk prediction, performance evaluation,

fault diagnosis, and proactive maintenance strategies.

The significance of data-driven decision support for engi-

neering projects is that it makes the best use of historical

project data. Benefitting from the cloud solution, data shar-

ing and knowledge transfer across projects are available.

After systematic processing, historical project data are trans-

formed to information for explaining the uncertainty and

further extracting knowledge for guiding future work [5].

In this sense, the continuously accumulated historical data

will become strategic resources for decision making.

V. APPLICATION CASE STUDY

As forward-looking research, it is difficult to choose a

real case that covers all the innovative ideas of this study.

Nonetheless, we present a project of the Xiong’an citizen

service center to verify the technological feasibility and

preliminary implementation effect of the proposed CPS

framework. The Xiong’an New Area was established by the

Chinese government in 2017, with the purpose of undertaking

Beijing’s non-capital functions to relieve its growing pres-

sure. As the future administrative center of the Xiong’an New

Area, the Xiong’an citizen service center covers an area of

242,400 m2, with a total construction area of 100,200 m2.

It consists of seven 2-5-storey steel structures and one

3-storey integrated modular house. As a pilot project to

promote intelligent construction, multiple intelligent tech-

nologies have been integrated into the engineering construc-

tion, forming a prototype of the CPS for construction. The

technical measures, implementation effect, and improvement

directions of the case study are discussed below.

A. TECHNICAL MEASURES

Table 1 shows the main development environment for estab-

lishing the cyber part of the CPS. Visual Studio was adopted

as the development tool of the application software because

it has rich graphic components and supports the efficient

development of applications in the C# language. Due to

its better compatibility with Visual Studio, SQL Azure was

selected as the database service deployed on the cloud plat-

form. Autodesk Revit was adopted as the BIM tool to develop

a design model and related real-time construction model,

which could integrate with SQL Azure through its plug-in

DB Link and support secondary development with the C#

language. Revit Live is software that generates a VR scene

TABLE 1. Development environment of the cyber part.

through a 3D model. A model developed by Revit can be

transformed into an immersive VR environment through a

simple configuration. The cyber part of the CPS is deployed

on the cloud platform based on the Widows Azure operating

system, which supported for remote access for the project

participants.

Figure 6 shows the UAV with a radar scanner (integrated

functions of laser scanning, camera and orientation) to cap-

ture the point cloud data of the construction site and generate

a 3D reconstruction model, after which it was matched with

the BIM design model to obtain a real-time construction

model. As shown in Figure 7, as the digital twin of the

physical construction site, the real-time construction model

was used to visually monitor and simulate the construction

process, and provide a unified perspective for the cooperation

and decision-making of all project participants.

FIGURE 6. UAV with a radar scanner.

FIGURE 7. Digital twin of the construction in progress.

GPS technology was used to locate workers, as shown

in Figure 8. The GPS receivers were installed on workers’

helmets to capture their locations in real time. The collected

location data was transmitted to the cyber part and then inte-

grated with the real-time construction model. Figure 9 shows

a heat map of the location of 1018 workers during construc-

tion, which helped the project managers to understand the

current busy work area and labor dynamics. The distribution

of workers could also be viewed by type of work or subcon-

tractor to coordinate their work.

A construction environmental monitoring system was

deployed on the site, as shown in Figure 10. It was integrated

with wind-force, wind-direction, temperature, humidity,
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FIGURE 8. Helmet mounted GPS receiver.

FIGURE 9. Heat map of workers’ location distribution.

FIGURE 10. Environmental monitoring system of the construction site.

dust sensor, and noise sensors. The collected sensor data was

transmitted to the cloud platform through Internet for remote

environmental monitoring. Figure 11 shows the environmen-

tal monitoring interface of the cyber part. All project partici-

pants could obtain the real-time status of the site environment

by accessing the cloud services. This function was also used

by the environmental protection department to monitor the

environmental conditions of the construction site, and evalu-

ate the environmental performance of the contractor through

historical monitoring data.

RFID technology was applied to prefabricated component

tracking and management. As shown in Figure 12, an RFID

tag was embedded in each component when it was produced,

which recorded its unique id as well as the design and

FIGURE 11. Interface of visual decision-making support.

FIGURE 12. RFID tag embedded in a concrete component.

production data. The tag will be used to trace the component

throughout its whole lifecycle and record relevant data by

interacting with RFID readers. The RFID reader generated an

electromagnetic field by transmitting RF energy to the iden-

tification area, activated the RFID tags and exchanges infor-

mation with it, and finally sent the identification information

to the cloud platform through a network connection [94].

Figure 13 shows the interface of the component tracing and

management in the cyber part, which benefited from the

real-time collection of the component status data. Project

managers could monitor the quantity of different types of

components during production and transit as well as those

had arrived and had been installed. Furthermore, the monthly

and total statistics of component usage could also be obtained

based on the historical monitoring data.

FIGURE 13. Interface of component tracing and management.

RFID technology was also applied for construction quality

monitoring. After installation of a component, the quality

inspector read the component information stored in the RFID

tag through a hand-held reader and uploaded the quality
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inspection record to the cyber model. The inspection record

data was linked to the real-time construction model through

the component identity. As shown in Figure 14, project man-

agers could view the quality inspection record by clicking a

component. In addition, the real-time statistical results based

on the quality inspection data were displayed in a visual form,

and theweekly generated qualitymanagement report was also

displayed to assist project managers in decision making.

FIGURE 14. Construction quality monitoring.

VR-based construction simulations were available in the

CPS. The project management team formed by a contractor

and subcontractors could access the real-time construction

model of the cloud platform to conduct a real-time construc-

tion simulation, which enabled them to cooperate with each

other based on a common perspective. As shown in Figure 12,

virtual reality technology combined with BIM immersed

them in a virtual construction environment for construction

scheduling, site layout, safety assessment, and coordina-

tion of subcontractors. The VR-based real-time construction

model was also used for the safety training of workers, espe-

cially those who were exposed to dangerous conditions, such

as those working at large heights.

FIGURE 15. Construction simulation based on virtual reality.

B. IMPLEMENTATION EFFECT

Figure 16 shows a picture of the Xiong’an citizen service cen-

ter, which benefited from real-time progress monitoring and

construction scheduling based on the CPS. The project was

completed as scheduled with a construction period of only

FIGURE 16. Xiong’an citizen service center after completion.

112 days. The CPS realized the whole process monitoring

of the supply chain of prefabricated components, which con-

tributed to the close cooperation of the production, logistics,

and assembly process. Construction quality problems could

be traced to specific components in real-time, which elimi-

nated the lag of quality inspection information. In addition,

CPS enabled all project participants to understand the prob-

lems in the construction from a common perspective, and the

construction simulation based on the real-time construction

model contributed to strengthen the cooperation between con-

tractors and subcontractors. Moreover, the implementation

of CPS was of great significance for promoting sustainable

construction. For example, because contractors knew the fact

that the site environmental conditions were being monitored

by the environmental protection department, they had to con-

sciously strengthen the environmental protection measures

during construction.

C. IMPROVEMENT DIRECTIONS

Although the technical measures and basic functions of the

proposed CPS framework were preliminarily realized in the

project of the Xiong’an citizen service center, there were still

some limitations that requires further improvements. On one

hand, the monitoring objects of the CPS cover the buildings

under construction, workers, components, and construction

environment, but the construction equipment was not mon-

itored in this project. In fact, the operation status data of

the main construction equipment could be monitored by the

sensors and integrated with the real-time construction model

for performance evaluation and construction safety warnings.

On the other hand, the data-driven decision-making is limited

to statistical analysis and data visualization, and the capaci-

ties of knowledge acquisition and reasoning are still weak.

Further study should focus on developing algorithms and

models to discover new knowledge or predict future trends

based on the historical monitoring data [95]. Moreover,

optimization of construction organization modes based on

the application of the CPS should be further explored. For

example, how to dynamically adjust the production and

transportation plan based on the assembly of components

on construction site should be examined to improve the

production efficiency and reduce inventory costs.
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VI. DISCUSSION AND PROSPECTS

In the context of Industry 4.0, the implementation of the CPS

in the construction industry will contribute to the transfor-

mation of the project management paradigm. As discussed

in Section II.D, the traditional project management mode

requires the construction scheme to be made in as much

detail as possible in the planning stage. However, due to

the complexity and high uncertainty, the more detailed the

scheme is, the more deviation is possible from the plan in

the actual implementation process. Benefitting from real-time

monitoring, simulations, and the decision support mechanism

of the proposed CPS, future construction plans will no longer

be fixed and predefined, but it will be possible to make and

adjust the plans according to the actual situation in the con-

struction process. On this basis, dynamic scheduling and con-

trol can be implemented to improve the construction resource

utilization and reduce waste, which will be consistent with

the just-in-time production mode of the manufacturing

industry [96], [97].

The CPS will also reshape the value network of the con-

struction industry, i.e., the original intention of Industry 4.0.

Through horizontal integration, all entities involved in the

process of value creation can be connected to the CPS, and

all relevant information can be obtained in real time, thus

forming a dynamic, self-organized, and real-time optimized

value network that supports cross-organization collaboration

for maximizing the project value. In this sense, the production

organization mode of the construction industry will tend to be

homogeneous with that of the manufacturing industry [98].

From a technical perspective, Industry 4.0-related tech-

nologies are built with highly heterogeneous hardware and

software, which is an enormous challenge for their inte-

gration. To implement the proposed CPS, an interdisci-

plinary team should be established, because no one can grasp

each technical detail. Architects, civil engineers, and project

managers might need to work with computer scientists and

artificial intelligence experts. With the diversification of

application scopes, the range of disciplines required will

constantly expand. It is predicted that professional CPS inte-

gration service providers independent of project contractors

will appear in the future to provide consulting services,

scheme design, system construction, and technical support.

VII. CONCLUSION

This paper aimed to present a discussion on the integration

of Industry 4.0–related technologies to establish a cyber–

physical system for improving the overall capabilities of

construction organization and management. The main con-

tributions of this study are as follows:

(1) Based on the analysis of the characteristics of the con-

struction industry and obstacles to its intelligent devel-

opment, this paper provides a systematic overview of

the research and application status of Industry 4.0–

related technologies in the construction industry and

their potential integration opportunities.

(2) A framework of the cyber–physical system is proposed

in this paper, in which the real-time construction model

acts as the digital twin of the building under construc-

tion. Furthermore, real-time monitoring and simulation

and the architecture of a data-driven decision support

system were discussed under the proposed framework.

(3) A case study of the Xiong’an citizen service center was

introduced to verify the technological feasibility and

preliminary implementation effect of the proposed CPS

framework.

(4) We made horizontal comparisons between the con-

struction and manufacturing industries throughout the

article in the hopes of gaining valuable insights for

future intelligent construction research, drawing on

advanced trends and ideas in intelligent manufacturing.

Meanwhile, we argued that with the deep integration of

Industry 4.0–related technologies and the implementa-

tion of the CPS, the production andmanagement modes

of the construction and manufacturing industries will

gradually become increasing similar.

As forward-looking research, this paper may also to inspire

more efforts in this field.
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