
Electronic Notes in Theoretical Computer Science 80 (2003)
URL: http://www.elsevier.nl/locate/entcs/volume80.html 23 pages

Integration of Informal and Formal
Development of Object-Oriented Safety-Critical
Software: A Case Study with the KeY System

Richard Bubel 1,2,3,4

University of Karlsruhe
Department of Computer Science
D-76128 Karlsruhe, Germany

Reiner Hähnle 1,3,5

Chalmers University of Technology
Department of Computing Science

S-41296 Gothenburg, Sweden

Abstract

The KeY system allows integrated informal and formal development of object-
oriented Java software. In this paper we report on a major industrial case study
involving safety-critical software for computation of a particular kind of railway time
table used by train drivers. Our case study includes formal specification of require-
ments on the analysis and the implementation level. Particular emphasis in our
research is put on the challenge of how authoring and maintenance of formal spec-
ifications can be made easier. We demonstrate that the technique of specification
patterns implemented in KeY for the language OCL yields significant improvements.

1 Introduction

In this paper we report on one of the first case studies done with the KeY
tool. This is also one of the first full-fledged industrial case studies, where
formal methods are applied to object-oriented software development.

1 We would would like to express our gratitude to all members of the KeY team for their
continuing committment. Sincere thanks go to DBSystems for the kind permission to use
their SbF product in this case study and for the permission to publish the results.
2 Support by Deutsche Forschungsgemeinschaft is kindly acknowledged.
3 Supported by a STINT Institutional Travel Grant.
4 Email: bubel@ira.uka.de
5 Email: reiner@cs.chalmers.se

c©2003 Published by Elsevier Science B. V.

http://www.elsevier.nl/locate/entcs/volume80.html

Bubel and Hähnle

The KeY system allows integrated informal and formal development of
object-oriented Java software. The structure and philosophy of the KeY
tool is briefly described in Section 2, and in detail in [1]. The case study
is derived from a safety-critical industrial software package, and is concerned
with computing a specialized railway time table for train drivers from certain
properties of the engine and the track infrastructure. This application is
described in Section 3.

Our starting point was an implementation in Smalltalk plus an informal
requirements specification in German language. Using the KeY tool we began
by extracting a UML-based analysis model from the informal specification.
Requirements that could not be captured in UML, were expressed in the Ob-
ject Constraint Language (OCL), a textual and formal constraint language,
which is a substandard of the UML. We discuss our OCL formalization in
Section 4.

The KeY tool supports users in writing and maintaining specifications
written in OCL in various ways: of course, there is a parser and semantic
analyser for OCL expressions. More importantly, a number of specification

idioms and patterns help users to get started and produce specifications for
standard situations in a fast and reliable way. Standard design patterns (such
as GoF patterns) are enriched by formal specifications of their characteristic
properties. We illustrate this feature and discuss its advantages in Section 5.

In a second step, we reimplemented the target application in Java, which is
the target language of KeY. At this point, additional OCL constraints pertain-
ing to the implementation level were added. Work on automatic refinement of
constraints in KeY, based on user-defined refinements of the model or imple-
mentation, is in progress [11], but could not yet be employed. Accordingly, the
analysis level constraints had to be remodelled on the implementation level
by hand. This is work in progress, and it is described in Section 6.

Before we conclude the paper, we talk about the lessons that we learned
from this case study. These relate to formal methods in object-oriented soft-
ware development in general, to using UML/OCL, and to consequences for
the further development and usability of KeY.

2 The KeY Project

The aim of the KeY project (i12www.ira.uka.de/~key) is the integration
of informal, but practically used software development processes with formal
methods. It has been shown time and again that formal methods work: used
in suitable domains by expert users, they can drastically improve the quality
of specifications and software, exhibit bugs that are not found by other means,
and increase the trustworthyness of software by mechanical verification of crit-
ical properties. The number of security- and safety-critical software applica-
tions is growing significantly. The ubiquity of powerful, embedded computers
only sharpens this trend.

2

http://i12www.ira.uka.de/~key

Bubel and Hähnle

Why then, are formal methods not used much more often, and often deni-
grated by practitioners as useless academic toys? One could try to blame it to
short-sightedness and ignorance in the software industry (and perhaps point
to the hardware sector, where formal methods became indispensable already a
while ago). But the academic formal methods community should realize that
many complaints of the industry directed to them are justified:

• Very few formal methods are integrated into standard industrial software
development processes and tools.

• Very few formal methods support actually used programming languages.

• Many proponents of formal methods envisaged that they would replace tra-
ditional development tools. This is wrong: such ingredients of software
engineering as object-oriented modeling, patterns, refactoring, testing, code
reviews (to name just a few) are efficient and work well. The point of formal
methods is to extend the reach of traditional methods in those areas, where
quality matters a lot.

In the KeY project, we address the concerns expressed above: on the sur-
face (that is, after starting up), the KeY tool looks like a standard UML-based
CASE tool for object-oriented SW development. In fact, KeY is (currently)
based on the commercial CASE tool Borland Together Control Center 6 . The
user sees a few additional menus pertaining to formal method support. These
can be used (or ignored) in as much as one wants to work formally. To
use the “formal” part of KeY, one attaches system requirements formally ex-
pressed in OCL to UML model elements. The user is supported in authoring
such OCL constraints. Next, from a predefined set of standard properties
of specifications (e.g., consistency or adherence to structural subtyping), one
can automatically generate proof obligations. This entails (fully automatic)
translation from OCL to first-order logic [5].

For implemented classes and operations, it is also possible to formally
verify the implementation against the attached OCL constraints. The target
language of KeY is Java Card, a sublanguage of Java intended to run on
small embedded devices such as smart cards. In practice, any Java program
that adheres to the restrictions expressed in the Java Card standard [12] can
be handled. The main restrictions are: no multithreading, no dynamic class
loading, no floating point types. Many realistic Java applications, including
the present case study, lie in this class. Although not all Java (or even
Java Card) features can be handled yet in KeY, it has a larger coverage of
the Java language than any other Java source code verifier. It includes all
object-oriented features, exceptions, Java integer data types, loops, aliasing,
expressions with side effects, and abrupt termination.

Again, there is a set of standard proof obligations (e.g., total correctness
wrt given pre- and postconditions) that can be generated automatically. Proof

6 www.togethersoft.com/products/controlcenter/index.jsp

3

http://www.togethersoft.com/products/controlcenter/index.jsp

Bubel and Hähnle

obligations in logic are obtained from a given UML model, OCL constraints,
and the currently selected class or method. We use an extension of dynamic
logic called Java DL [4] to express and reason about properties of Java

programs. Most aspects (currently about 90%) of the Java Card language
are axiomatized in Java DL. The KeY tool features a powerful interactive
theorem prover for mechanical derivation of Java DL formulas. The proofs
follow the symbolic execution paradigm and are relatively intuitive.

3 The Case Study

Several hundred trains run at any given time on the network of the German
railway company Deutsche Bahn AG (DB). Strict compliance by the train
driver to numerous restrictions such as speed limits, signals and brake dis-
tances, is an absolute safety requirement. 7

Fixed rules (such as maximum speeds for a given stretch) as in use for
individual road traffic are not enough: applicable restrictions for trains de-
pend in complex ways on several track infrastructure and train parameters.
These include acclivity/declivity, engine type, number and type of cars, tilt-
ing capabilities, etc. In order to realize full flexibility, also with regard to
future technological developments, an individual schedule for the train driver
is computed for each train/route combination, which contains the restrictions
to obey on each segment of the journey. This schedule is published either in
printed or in electronic form. Fig. 1 shows the initial part of the schedule
for train 775 from Hamburg-Altona to Basel. The header contains general
information such as:

• period of validity (here: 5 Nov 2000 to 9 June 2001);

• route (Hamburg-Altona Pbf 8 to Basel Bad Bf), train type (ICE-A), and
train number (775);

• used train engine (Tfz 401) and minimal required brake power (up to Lam-
pertheim: Mbr 212 MG , ex Lampertheim: Mbr 210 MG), as well as the
maximum of the computed train speed during any part of the journey.

The columns below the header give detailed information for each route
segment: the first column is the kilometer distance that uniquely identifies
a segment of a railway line. The value of the second column is the allowed
maximum speed at the current position. This column can be divided up into
two separate columns (2a and 2b) when, for example, train and infrastructure
permit the use of tilting technology. If two rail tracks (left and right) are
available, then the speed for the left rail is given in angle brackets. 9 Additional

7 The case study uses traditional technical terms in German language. We tried as far as
possible to give intuitive translations for them, but we do not claim adherence to railway
specific vocabulary in English, which uses somewhat different terms anyway.
8 Pbf: train station for passengers (in contrast to Gbf: station for freight).
9 In contrast to most other countries, trains drive by default on the right in Germany.

4

Bubel and Hähnle

Fig. 1. Schedule for an ICE from Hamburg to Basel (from: [13])

information about signals, shortened brake distances, tunnels, etc., is given in
column 3a; The remaining columns are not relevant for this paper.

These schedules are computed by the software system Satzerstellung be-
trieblicher Fahrplanunterlagen (SbF) developed by DBSystems, the informa-
tion technology company of DB. SbF is written in Smalltalk. It was nec-
essary to reimplement parts of the system, because KeY supports Java as
target language for verification.

SbF is clearly a safety critical application, as for example a too high speed
may easily result in a derailment of the train, in particular in curves or the
train may be unable to stop in time.

DBSystems kindly let us have an informal requirements specification in
(German) natural language and the implementation itself as a starting point.
One of the first steps was to extract an analysis model out of the written
specification with only marginal use of implementation details. The resulting
class diagram is shown in Fig. 2. We now describe briefly its main classes.

TrackPoint: a train route is modelled by a directed acyclic graph with track
points as nodes. A node can have up to two ingoing and up to two outgoing
edges depending on whether the route allows to switch between rails at this
point. The usage of an association (instead of an aggregation) when mod-
elling the edges, enforces the explicit specification of the graph property
”acyclic” in OCL. A train object (train) and a non-empty set of infras-
tructure properties (properties) is owned by each track point. A track

5

Bubel and Hähnle

Schedule

isValid:boolean
ScheduleProcessor

1

creatorschedule

1

BasicBrakeTable

brakeConfiguration:String

brakeDistance:int

0..* brakeTables

Table
0..1

Entry

rowValue:int

columnValue:int

content:int

entries0..*

Property

BrakeDistance

kind:String

distance:int

AdministrativeInstruction

instruction:String

Slope

gradient:int

acclivity:boolean

Signal

Speed

common:boolean

kmh:int

GeneralSpeed

DeadEndSpeed

DeviationSpeed

SwitchSpeed

Train

carMaxSpeed:int

. . .

guaranteedBrakePowerClient:int

brakeConfiguration:String

TrainParameter
1..* parameters

Engine

kind:String

EngineType

type:String

FreightTransport

special:String

ServiceInstruction

instruction:String

Tilting

kind:String

deviantTiltingSpeed:int

TrackPoint

km:int

predecessor0..2

successor
0..2

train1

properties1..*

Route

0..2startPoints

1route

1processor

Result

technicalError:boolean

errorMsg:String

ResultEntry

speed:int

brakePower:int

. . .

0..1

woTilting

0..1

activeTilting

Fig. 2. Class diagram at analysis level

point is modelled each time the train or one of the infrastructure properties
changes.

(Infrastructure) Property (and subclasses) model the characteristics of the
rail infrastructure, for example, speed limits (Speed). Note that there can
be several kinds of speed limits active at the same time: in addition to
the general speed (GeneralSpeed) derived from physical track properties,
this can be, for example, a dead-end track speed (DeadEndSpeed). Other
properties include slope (Slope) or the available brake distance (Brake-
Distance).

Train, Trainparameter (and subclasses) model a train including the used
engine (Engine, EngineType), as well as service instructions or available
technologies like tilting. The guaranteed brake power from the client (ie,
train) side (guaranteedBrakePowerClient) and the configuration of brakes
(brakeConfiguration) are important train attributes.

A ScheduleProcessor computes the schedule’s speed column based on
the modelled infrastructure. This computation makes crucial use of so-called
brake tables:

BasicBrakeTable brake tables describe a relation between slope (rows), speed
(columns), and the required brake power (entries). If the current posi-
tion of a train has a certain declivity, then the train must guarantee at
least the brake power specified by the brake table for the current declivity
and speed limit. For the acclivity case, the speed limit is a default roll
back speed value. The relation depends on the brake configuration (at-
tribute brakeConfiguration) and the available brake distance (attribute
brakeDistance). There is a unique brake table for each combination of

6

Bubel and Hähnle

these two attributes. 10 An example brake table (for brake configuration
"R/P" and brake distance 1000m) is in Fig. 3.

Fig. 3. Brake table for distance 1000m and configuration "R/P" (from: [13])

We illustrate the UML model with the (fictitious) route in Fig. 4. Fig. 5
shows an object diagram of the route which is an instance of Fig 2.

Fig. 4. Route from Karlsruhe to Durlach (fictitious route)

The computation of the speed entry 11 in a row of the schedule can be
divided into two parts: first, the maximal permitted train speed (vmax) for a
given track point is computed, disregarding brake power and slope. This com-
putation involves train parameters/attributes such as the train’s top speed,
the car covering, and speed properties of the infrastructure. The minimum
of these speeds is computed obeying a prioritisation of infrastructure speed
limits, in case there are several active speed limits. In a second step, the slope

10 This account is somewhat simplified for this presentation. See [6] for a full discussion.
11 Again, we omit some complications for purposes of presentation.

7

Bubel and Hähnle

Fig. 5. Object diagram for route in Fig. 4

and available brake distance are taken into account. Further computation is
broken down into several steps:

(i) compute the guaranteed brake power of the train

(ii) identify the applicable brake table by the key attributes brakeConfig-

uration and brakeDistance

(iii) obtain the brake table entry for the given declivity and speed v (declivity:
v = vmax, acclivity: v is default roll back speed). If the given slope does
not occur in the brake table, one has to linearly interpolate between the
two nearest rows.

(iv) acclivity case: the value of the determined brake table entry is taken for
the minimal required brake power

(v) declivity case: if the value of the determined brake table entry exceeds
the guaranteed brake power as computed in step (i), one has to reduce
vmax until the resulting brake table entry is less than or equal to the
guaranteed brake power. The value of this brake table entry is then
taken for the minimal required brake power and the resulting speed as
the maximal speed in the current row of the schedule.

4 Formal Specification of Analysis Level

We illustrate our OCL formalization of requirements with the computation
of minimal required brake power in the acclivity case (see previous section).
The acclivity case is described in the SbF technical description [13] as follows
(translated from German by us and slightly simplified):

If acclivity of the relevant slope is zero per mill, then the train requires
0 Mbr. 12 Otherwise, the required brake power has to be derived from the

12 For German “Mindestbremshundertstel”, a measuring unit for brake power.

8

Bubel and Hähnle

basic brake tables. Each basic brake table is identified by the pair of brake
distance and brake configuration. For the brake distance of the current
track point there must be a basic brake table (for steep slopes take 400m
table). For trains with brake configuration “G”, use the accordingly labeled
brake table. For other brake configurations use brake tables labelled “R/P”.
In brake tables determined this way, the relevant Mbr value is the entry for
the given acclivity and the default roll back speed. If the given acclivity lies
between two acclivities of the basic brake table, then the value has to be
interpolated between the smaller and the greater acclivity. Non-integer Mbr

values must be rounded up to the safe side.

Note that, although quite precise, this natural language specification leaves
several things unspecified. Partly, these are terms with an “obvious” meaning,
such as “rounded up to the safe side” where, clearly, the next larger integer
number is intended. Less obvious is the requested kind of interpolation. The
implementation realizes linear interpolation, which is also what we take.

The specification above is implemented by method requiredBrakePower()

in class ScheduleProcessor. Before the pre- and postconditions of this
method are presented, we give some convenience definitions of operators in
OCL. These are attached to class ScheduleProcessor, but this is a bit mis-
leading, because the operators are fairly generally applicable, and should be
available as part of an OCL library. We come back to this issue.

— OCL-Helpers —

context ScheduleProcessor def:

l e t ceiling (r : Real) : Integer =

i f (r.floor () < r) then

r.floor () + 1

e l se

r.floor ()

endif

l e t maximum (entries : Collection(Entry)) : Entry =

-- return an element of ’entries ’ with maximal value

-- of attribute ’rowValue ’

entries -> select (max : Entry |

entries -> forAll (e : Entry |

e.rowValue <= max.rowValue) -> any ()

l e t minimum (entries : Collection(Entry)) : Entry =

-- analogous to ’maximum ’

The following definitions are domain specific:

9

Bubel and Hähnle

— OCL-Definitions —

context ScheduleProcessor def:

l e t rollSpeed : Integer = 20

l e t getBrakeTable (dist : Integer ,

conf : String) : BasicBrakeTable =

self.brakeTables ->

select (tbl:BasicBrakeTable |

tbl.brakeConfiguration = conf and

tbl.brakeDistance = dist) -> any ()

l e t interpolate (x1 : Real , y1 : Real ,

x2 : Real , y2 : Real ,

intermediate : Real) : Real =

((y2 -y1) / (x2-x1)) * (intermediate -x1) + y1

l e t interpolate (e1 : Entry , e2 : Entry ,

intermediateSlope : Real) : Real =

interpolate (e1.rowValue , e1.content ,

e2.rowValue , e2.content ,

intermediateSlope)

The first operation getBrakeTable (Integer, String) selects the appli-
cable brake table. The non-deterministic choice ’any ()’ is only apparently so,
because the arguments are a key for the brake tables. For linear interpolation
of brake table entries the next two definitions are used. On the analysis level
interpolation operates on Real types, while in the implementation Integer

with fixed precision is used.

We can now focus on the brake power computation. Method required-

BrakePower takes three parameters. The first one indicates the mode in which
the computation is done, that is, whether tilting technology is assumed. The
only difference this makes here is the place where the computation result is
stored in the result object that is the third parameter. The second parame-
ter tp specifies the track point for which the speed and, hence, the minimal
required brake power is computed.

— OCL-Specification: Acclivity Case —

context ScheduleProcessor ::

requiredBrakePower (tilting : Boolean ,

tp : TrackPoint ,

cRes : Result)

pre : -- make sure we deal with acclivity case

(tp.properties -> select (Slope)->any ()).acclivity

post: -- definitions :

10

Bubel and Hähnle

l e t brakeDistance : Integer =

(tp.properties ->

select (BrakeDistance) -> any ()).distance in

l e t brakeTable : Table =

getBrakeTable (brakeDistance ,

tp.train.brakeConfiguration).table

in

l e t slope : Slope =

(tp.properties -> select (Slope) -> any ()) in

l e t nextSmaller : Entry =

maximum (brakeTable.entries@pre ->

select (e | e.rowValue <= slope.gradient and

e.columnValue = rollSpeed)) in

l e t nextGreater : Entry =

minimum (brakeTable.entries@pre ->

select (e | e.rowValue >= slope.gradient and

e.columnValue = rollSpeed)) in

l e t computedBrakePower : Integer =

i f (nextSmaller.rowValue = slope.gradient) then

nextSmaller.content

e l se

ceiling (interpolate (nextSmaller ,

nextGreater ,

slope.gradient))

endif in

-- postcondition :

i f (computedBrakePower > guaranteedBrakePower) then

self.schedule.isValid = false and

cRes.technicalError = true

e l se

cRes.technicalError@pre = cRes.technicalError and

i f (tilting) then

cRes.activeTilting.brakePower = computedBrakePower

and

cRes.activeTilting.speed =

cRes.activeTilting.speed@pre

e l se

cRes.woTilting.brakePower = computedBrakePower and

cRes.woTilting.speed = cRes.woTilting.speed@pre

endif

endif

11

Bubel and Hähnle

In the precondition we ensure that the method is called for the acclivity
case. Then a series of let-expressions collects auxiliary values. The first three
of these are self-explaining, so consider the nextSmaller-expression: first, all
brake table entries for the default roll speed are collected 13 and from them
only the ones, whose gradient is less than or equal to the gradient at the current
track point. Then, nextSmaller is set to the table entry with maximal slope
gradient (analogous for nextGreater). Here and in the following, expressions
of the form select(Class) are used as a shorthand for the type selection
expression select(o | o.oclIsTypeOf (Class)).

The result of the method is computed in computedBrakePower where, if
possible, the exact entry is obtained (then case) and otherwise interpolation
between the next smaller and next greater entry is performed (else case).
The final if -cascade simply ensures that the result is stored in the correct
attribute (tilting or non-tilting). It also ensures that, if the train’s brake power
is insufficient to handle the roll back speed, then the schedule is marked as
invalid. Note that this error handling requirement does not explicitly occur
in the specification of the acclivity case (although it occurs in other parts of
the specification).

5 Specification Idioms and Patterns

Working with the OCL formalization in this case study shows some serious
shortcomings: for a start, some (elements of) constraints are very repetitive.
This in turn causes OCL constraints to be difficult to maintain, because it is
time-consuming to track changes. The need to express closely related require-
ments often, seduces to resort to a cut-and-paste technique, which is likely to
introduce errors. In addition, the constraints become hard to read. One could
argue that OCL should offer a richer set of pre-defined operators (such as, for
example, in RSL or Z), but this does not suffice in general: first, there will
always be domain-specific stuff (here, for example, interpolation); second, a
very large language is unlikely to be made proper use of; third, it is often de-
sirable to have application-specific identifiers for operators instead of abstract
mathematical nomenclature.

In Section 4 we alleviated the redundancy problem by starting with some
helper definitions, but this doesn’t solve all problems either:

• The maximum(Collection(Entry)) operator, for example, is still application-
specific and has to be rewritten for each new context. This moves the
redundancy problem only from the constraints to helper definitions.

• Newcomers to OCL are unlikely to write elegant and correct constraints. In
fact, formal specification languages are as difficult to master as programming
languages, but the learning culture and tool support for them is much less

13 The @pre qualification is necessary, because in the interpolation case, the interpolated
entries could be (and in fact are) cached.

12

Bubel and Hähnle

developed.

The solution that KeY provides is inspired by the success story of design
patterns [7]. Design patterns capture the accumulated knowledge and best
practices of designers and developers, they allow the reuse of good solutions
for related design problems. They are presented on an abstraction level that
is high enough to cover a large class of problems, but at the same time can be
instantiated specifically for each application.

KeY extends the pattern mechansim to formal specifications: it offers
an extensible library of specification patterns. More precisely, we distin-
guish between KeY-Idioms, which are OCL-specific solutions to self-contained,
relatively small specification problems (for example, maximum()), and KeY-

Patterns, which are attached to object-oriented design patterns.

Basically, these specification patterns are normal OCL constraints contain-
ing placeholders that have to be instantiated (example follows). We call them
OCL templates. The instantiation mechanism makes use of the CASE tool’s
(here: TogetherCC) pattern support:

First the context model element (class or operation) is selected; then ac-
tivation of the pattern library lists applicable patterns, including KeY-Idioms
and -Patterns. After selection, the user adapts the pattern interactively to
the model context. Finally, the pattern is instantiated by the system, and
the resulting OCL constraints are attached to the classes and operations they
belong to.

We illustrate how this mechanism can help to improve the specification
process. We demonstrate the usage of a simple idiom first, followed by a more
complex example related to relational databases.

/**

* @invariants

* BasicBrakeTable .allInstances -> forAll

* (b1 , b2 : BasicBrakeTable |

* (b1.brakeDistance = b2.brakeDistance and

* b1.brakeConfiguration = b2.brakeConfiguration)

* implies b1 = b2)

*/

public c la s s BasicBrakeTable { . . . }

Fig. 6. Automatically generated OCL constraint for key property

A typical example for a KeY-idiom is the key property of a set of attributes,
which occurred in the example of Section 4 alone twice already: the members of
class BasicBrakeTable are uniquely identified by the pair (brakeDistance,
brakeConfiguration), which is, therefore, a (derived) key attribute of the
class. A similar situation occurs for table entries, which are uniquely char-
acterized by (rowValue, columnValue). Several of the constraints that select
certain entries rely on this property to work correctly (witnessed by the use

13

Bubel and Hähnle

of any ()).

The KeY user simply selects the “key attribute” idiom and interactively
specifies the set of attributes that form a derived key. The correct OCL
constraint is generated and attached to class BasicBrakeTable as shown in
Fig. 6 by the push of a button.

An important point is that OCL templates can be written in a generic

way, independently of the number and kind of features in the underlying UML
model. For example, the OCL template from which the constraint in Fig. 6
is derived, is written independently of the number and type of key attributes.
This is possible if one permits access to the UML meta model in OCL expres-
sions, see [2] for details.

Selection of certain entries in a brake table is central for the computation of
minimal required brake power. In addition to the acclivity case shown in the
previous section, this must be done as well for declivity and in combination
with several other parameters. A moment’s reflection shows that this kind
of operation can be seen as a relational database query. This motivates the
inclusion of specification patterns that characterize the result of frequently
needed SQL queries.

For example, in SQL a query for the next greater entry would be written
like this:

se l ec t * from tbl

where

columnValue = rollSpeed and

rowValue =

(se l ec t min (rowValue) from tbl

where

rowValue >= gradient and

columnValue = rollSpeed);

In KeY we provide a pattern that models SQL queries as shown in Fig. 7
(underlined identifiers represent the parameters of the pattern). All predefined
SQL queries such as selectAll(), min, etc., come already formally specified
via OCL templates as shown in Fig. 8.

Instantiating such templates allows one to formulate OCL specifications of
custom SQL expressions (“mySelect”) in SQL style, which is familiar to many
users. It is merely necessary to specify the mapping from OCL template
parameters to the concrete model as done in Fig. 9.

The only non-trivial expression is the where argument of custom query
mySelect. Its value in Fig. 9, and that of the where clause in the SQL ex-
pression above are identical up to some syntactic sugar. The formal specifica-
tion of selectAll, select_rowValue, select_columnValue, min, max, all<=

is provided together with the pattern and needs not be supplied by the user.

In summary, from the mapping in Fig. 9 and the OCL templates in Fig. 9
KeY creates automatically the following OCL constraints:

14

Bubel and Hähnle

— Instantiated OCL Pattern —

context Table def:

l e t selectAll

(coll : Collection (Entry),

expr : OCLExpression) : Collection (Entry) =

coll -> select (expr)

l e t select_rowValue

(coll : Collection (Entry)) : Bag (Integer) =

coll -> collect (rowValue)

. . .

l e t min (coll : Collection (Integer)) : Integer =

coll ->

iterate (it : Integer;

res : Integer = coll -> any () |

i f (res > it) then it

e l se res endif)

. . .

l e t nextGreater : Collection (Entry) =

selectAll (entries@pre ,

e | e.columnValue = rollSpeed and

e.rowValue = min (select_rowValue

(selectAll (entries@pre ,

e | e.rowValue >= gradient and

e.columnValue = rollSpeed))))

Using these automatically created constraints, the formal specification of
method requiredBrakePower becomes considerably simpler and more regular:

— OCL Specification with SQL Query Pattern —

context ScheduleProcessor :: requiredBrakePower

(tilting : Boolean ,

tp : TrackPoint ,

cRes : Result)

pre :

(tp.properties -> select (Slope) -> any ()).

acclivity

post :

l e t brakeDistance : Integer = . . . as before . . .

. . .

l e t nextSmaller : Integer =

15

Bubel and Hähnle

brakeTable.nextSmaller -> any () in

l e t nextGreater : Integer =

brakeTable.nextGreater -> any () in

l e t computedBrakePower : Integer . . . as before . . .

SQLTable

selectAll (c : Collection (SQLEntry),
e : OCLExpression) : Collection (SQLEntry) {isQuery}

select_Attri (c : Collection (SQLEntry)) : Bag (Ti) {isQuery}

min (c : Collection (SQLEntry)) : Ti {isQuery}

· · ·
mySelect (from : OCLExpression,

where : OCLExpression) : Collection (SQLEntry){isQuery}

for each attribute

for SQL operations min, max, <=all, ...

Fig. 7. SQL Pattern

It is possible to extend this example with more complex SQL expressions.
We really appreciated the advantages of the specification pattern technique in
the case of determining next nearest entries (and closely related expressions),
which was necessary eight times on the implementation level specification. In
addition, users who are familiar with SQL need not know much about OCL
at all.

Other specification patterns are available in KeY (for example, relating to
the GoF [7] design patterns) [3].

In the present case study, which we consider as representative, judicious use
of these patterns can reduce the amount (number of lines) of the specification
that must be hand-coded by 25%. As a side effect, this reduced the potential
of introducing errors considerably.

6 Formal Specification of Implementation Level

On the implementation level the system is split into several modules (in Java:
packages). The modules consist of 10 to 30 classes. Altogether the specified
system consists of around 80 classes with an average of 10 methods per class.
At least 75 % of the methods have been formally specified. The number of

16

Bubel and Hähnle

context SQLTable def:

l e t selectAll

(coll : Collection (SQLEntry),

expr : OCLExpression) : Collection (SQLEntry) =

coll -> select (expr)

-- created for all attributes of SQLEntry with type Ti

l e t select_Attri

(coll : Collection (SQLEntry)) : Bag (Ti) =

coll -> collect (Attri)

-- SQL operations like min , max , avg , >=all , etc.

-- created for all attributes of SQLEntry with type Ti

-- for which ’<’, ’>’ ... are defined

l e t min (coll : Collection (Ti) : Ti =

coll ->

iterate (it : Ti ;

res : Ti = coll -> any () |

i f (res > it) then it

e l se res endif)

. . .

l e t all <= (below : T,

coll : Collection (T)) : Boolean =

coll -> forAll (e : T | below <= e)

l e t mySelect : Collection (SQLEntry) =

selectAll (from, where)

Fig. 8. SQL query pattern

lines needed to specify a method vary between a few lines (for example, get/set
methods or simple queries) and over 80 lines for methods performing complex
computations with a number of side effects.

To get a rough impression of the complete system, the most important
modules are described below:

TrainDataAnalysis initialises schedule computation. The route is parti-
tioned into sections of maximal length, where the train object is invariant.

TableComputation controls computation of the schedule table. Also serves
as interface to infrastructure and train data. Actual computation of speed
entries in schedule is done in:

SpeedComputation contains speed computation logic and classes repre-
senting brake tables.

InfrastructureView models track infrastructure at a suitable abstraction
level.

17

Bubel and Hähnle

mapgeneral =

SQLTable ; Table

SQLEntry ; Entry

mapspecific =

T ; Integer

mySelect ; nextGreater

from ; entries@pre

where ;

e | e.columnValue = rollSpeed and

e.rowValue = min (select rowValue (

selectAll (entries@pre,

e | e.rowValue >= gradient and

e.columnValue = rollSpeed)))

. . .

Fig. 9. SQL Pattern Instantiation Mapping

ScheduleInterface models the resulting schedule.

IntervalPropertyRestricted

Impassable

Speed

NumberOfTracks

BrakeDistance

Tunnel

RouteFrequencyBand

IntervalPropertyProperty

RouteServiceStation

LocalFrequencyBand

TrackPoint

trackpoint 0..1

KilometreMileage

km 0..1

properties0..*

predecessor0..1

successor
0..1

Route
route

0..1

firstTrackPoint

0..1

0..1

firstTrackPointDeviant

leftServiceStations 1..* rightServiceStations1..*

Fig. 10. Implementation Level: Partial View of Package InfrastructureView

The specification of requirements on the implementational level differs from
the analysis level in several important aspects: for example, one must take
into account caching of previously computed results (interpolated brake table
entries), and also the refined modelling of train and infrastructure properties
with accordingly more complex navigation expressions.

To illustrate the difference between the analysis and implementation level
we focus on the infrastructure properties for a given track point. Fig. 10 shows
part of the class diagram of the InfrastructureView package. In total the
package consists of over 30 classes.

On the analysis level, an infrastructure property holds at a track point if

18

Bubel and Hähnle

and only if the property occurs in the value of the properties attribute of this
track point. At the implementation level this is not true any longer, because
one distinguishes between two different kinds of infrastructure properties:

(i) Local properties are like properties on the analysis level: they hold at
a track point if and only if the property occurs in the value of the
properties attribute of this track point. A typical example of a local
property is a member of the class RouteServiceStation, which models
service position along the route such as train stations.

(ii) Interval properties hold for a flexible sequence of track points. An in-
terval property inherits from class IntervalProperty. Properties that
apply only to certain kinds of trains inherit from its subclass Interval-
PropertyRestricted. A typical interval property is a tunnel (member
of Tunnel).

An interval property starts to hold at a track point containing this prop-
erty with attribute isEnd set to false. It holds for this track point and all
successor track points until the occurrence of a track point containing the same

interval property whose isEnd attribute has value true. This marks the first
track point at which the property does not hold any longer. While an interval
property holds, it can be overwritten anytime by interval property objects
of the same subclass with possibly updated information. Different interval
properties may overlap arbitrarily.

Fig. 11 shows a chain of track points: a tunnel starts at kilometre 22.5
and ends just before kilometre 24.0. The route radio frequency is 200Khz
from kilometre 22.6, and this value is kept until kilometre 25.1, where it is
overwritten and set to 220Khz. The local radio frequency is a different, local
property. It does not override the route radio frequency and it only holds only
at kilometre 23.5.

frequency = 20 kHz

LocalFrequencyBand

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

frequency= 200Khz

isEnd=trueisEnd=false

Tunnel Tunnel

frequency=220 Khz

RouteFrequencyBand RouteFrequencyBand

isEnd=false isEnd=false

22.5 km 22.6 km 22.9 km 23.5 km 23.6 km 24.0 km 25.1 km

Fig. 11. Interval Properties

To keep track of interval properties, that hold at a given point, there is a
status object of type CreationStatus, which contains a set with the currently
holding properties. It has a method newProperty that inserts a new interval
property into that set. It must first remove all properties in the same category.

19

Bubel and Hähnle

Only in case the new property is not marked as an end point (attribute isEnd
is false) it is added. The formal specification of newProperty is as follows:

— OCL: Tracking Interval Properties —

context CreationStatus def:

l e t updateResult (

oldPropertySeq : Sequence (IntervalProperty),

newProperty : IntervalProperty)

: Sequence (IntervalProperty) =

i f (not newProperty.isEnd) then

oldPropertySeq -> reject (a : IntervalProperty |

newProperty.equal_category (a)) ->

including (newProperty)

e l se

oldPropertySeq -> reject (a : IntervalProperty |

newProperty.equal_category (a))

endif

context CreationStatus :: newProperty (

newProperty:IntervalProperty)

pre : newProperty <> null

post : self.intervalProperties = self.updateResult

(self.intervalProperties@pre -> asSequence (),

newProperty)

7 Discussion

Although the work on this case study is not yet completed, we are able to
draw a number of conclusions from our experience so far.

First of all, we note the usual finding of most industrial projects using
formal methods: the requirements specifications in natural language contain
a considerable number of ambiguities, even though the SbF software is very
well designed and carefully implemented. We did so far not encounter in-
consistencies or major errors in the specification, but nevertheless we found
some interesting ambiguities: at some point, the rules for choosing the kind of
speed limit with the highest precedence are laid down (recall that there can be
several speed limits in place at a track point). These rules allow two different
interpretations of which one is potentially fatal. As it turns out, the correct
interpretation is implemented, but it would be better not to leave this open.
Some of the other ambiguities are mentioned in Section 4.

More surprising is perhaps that our formal analysis exhibited an ineffi-
ciency in the coding that led to a suggestion for considerable performance

20

Bubel and Hähnle

improvement of the product: infrastructure speeds are ordered wrt a given
prioritization and the one with highest priority is taken for further compu-
tation. Specifying the method to return the speed of highest priority from
a given list of speeds revealed an inefficient way of determining the maxi-
mum: first the list is sorted and then its head is returned. The architecture
of Smalltalk’s collection framework seduces the developer to such solutions.

Let us now turn to some problems. To begin with, there are shortcomings
of OCL as a specification language: some important concepts, such as built-
in support for tuples or transitive relations are missing. What is perhaps
surprising is that OCL is ignorant of certain object-oriented concepts: there is
no notion of constraint inheritance or visibility. Both is very annoying in the
presence of overloaded or overwritten methods. Some issues will be addressed
in OCL 2.0. Notwithstanding these problems, OCL worked reasonably well:
important object-oriented concepts, such as navigation and object types are
integrated well. We were able to work around the missing features without
too much overhead. 14 We see currently no serious contender for OCL. For
example, in JML [9] even our simpler requirements would be very cumbersome
to express, because set theoretic and collection-related operators are missing.

All major software projects go through various levels of refinement. The
tendency of modern development processes to have incremental, short cycles
strengthens this even. Unfortunately, neither the UML, nor the OCL, nor
the Java community has developed any suggestions for notions of refinement.
Relatively few formal approaches include refinement aspects at all. We are not
aware of any suitable formal refinement approach to object-oriented software
development (see [11] for a literature overview). An object-oriented theory of
refinement tailored to UML and Java is currently developed within the KeY
project [11]. We plan to graft our case study onto this refinement framework
once it is implemented. An important advantage of a formal refinement rela-
tion is that part of the target specification are automatically generated from
the source specification, thus reducing effort and eliminating errors.

A major challenge in large formal specification projects is the phenomenon
that very similar requirements occur in many places. This is, of course, ag-
gravated by the current shortcomings of OCL discussed above, but it is not
specific to OCL. The problem is to keep specifications consistent and readable,
and to avoid the cut-and-paste bad practice. It turns out that the usual ab-
breviation mechanisms (such as the let construct) of specification languages
don’t suffice. Since we are working in an object-oriented setting, we are able to
make use of a mechanism akin to design patterns. Our specification patterns

discussed in Section 5 turned out to be a powerful tool when authoring speci-
fications. It is also an important pedagogical help for novices who learn about
good solutions to specification problems, and need not start with a blank page.
In a larger setting, specification patterns lead to a natural division of labour

14 We don’t discuss these solutions here, because we find them less interesting and they are,
hopefully, of a temporary nature. Full details are in [6].

21

Bubel and Hähnle

methods specialists write domain- and application specific patterns, while the
others only use them.

8 Conclusion, Future Work

In summary, we think our work shows that industrial object-oriented software
of non-trivial size can be formally specified. We think that the resulting OCL
specification is reasonably easy to understand and to maintain. We expect that
a consequent usage of specification patterns will diminish the effort for similar
projects in the future considerably. The design of an extensive specification
pattern library is ongoing work.

Some future work has already been mentioned: an interesting task will
be the formal verification of the Java reference implementation against the
implementation level specification. Once a refinement concept is implemented
we intend to connect analysis and implementation level formally.

Although OCL has been designed to be more easily readable than most
traditional formal specification languages, it is still much too “formal”, for
example, with managers or customers. In KeY we explore the use of technol-
ogy from computational linguistics to provide a systematic link between OCL
and less formal descriptions: the Grammatical Framework [10] links formal
and informal languages with a common abstract grammar. We have a proto-
typic instance of this framework that allows to render OCL automatically in
English [8]. We plan to use the present case study to improve the legibility
of this rendering by domain-specific rules, which can be extracted from the
underlying UML model.

References

[1] Ahrendt, W., T. Baar, B. Beckert, R. Bubel, M. Giese, R. Hähnle, W. Menzel,
W. Mostowski, A. Roth, S. Schlager and P. H. Schmitt, The KeY tool, Technical
Report 2003-05, Department of Computing Science, Chalmers University of
Technology and Göteborg University (2003).

[2] Baar, T. and R. Hähnle, An integrated metamodel for OCL types, in: R. France,
B. Rumpe and J. Whittle, editors, Proc. OOPSLA 2000 Workshop Refactoring
the UML: In Search of the Core, Minneapolis/MI, USA, 2000.

[3] Baar, T., R. Hähnle, T. Sattler and P. H. Schmitt, Entwurfsmustergesteuerte
Erzeugung von OCL-Constraints, in: K. Mehlhorn and G. Snelting, editors,
Softwaretechnik-Trends, Informatik Aktuell (2000), pp. 389–404.

[4] Beckert, B., A dynamic logic for the formal verification of Java Card programs,
in: I. Attali and T. Jensen, editors, Java on Smart Cards: Programming and
Security. Revised Papers, Java Card 2000, International Workshop, Cannes,
France, LNCS 2041 (2001), pp. 6–24.

22

Bubel and Hähnle

[5] Beckert, B., U. Keller and P. H. Schmitt, Translating the Object Constraint
Language into first-order predicate logic, in: Proceedings, VERIFY, Workshop
at Federated Logic Conferences (FLoC), Copenhagen, Denmark, 2002,
http://i12www.ira.uka.de/~key/doc/2002/BeckertKellerSchmitt02.ps.gz.

[6] Bubel, R., “Formale Spezifikation und Verifikation sicherheitskritischer Software
mit dem KeY-System,” Diplomarbeit, Fakultät für Informatik, Universität
Karlsruhe (2002), (English, with German abstract).

[7] Gamma, E., R. Helm, R. Johnson and J. Vlissides, “Design Patterns: Elements
of Reusable Object-Oriented Software,” Addison-Wesley, Reading/MA, 1995.

[8] Hähnle, R., K. Johannisson and A. Ranta, An authoring tool for informal
and formal requirements specifications, in: R.-D. Kutsche and H. Weber,
editors, Fundamental Approaches to Software Engineering (FASE), Part of
Joint European Conferences on Theory and Practice of Software, ETAPS,
Grenoble, LNCS 2306 (2002), pp. 233–248.

[9] Leavens, G. T., E. Poll, C. Clifton, Y. Cheon and C. Ruby, “JML Reference
Manual,” (2002).
URL ftp://ftp.cs.iastate.edu/pub/leavens/JML/jmlrefman.pdf

[10] Ranta, A., Grammatical framework: A type-theoretical grammar formalism,
Journal of Functional Programming (to appear, 2003).
URL http://www.cs.chalmers.se/~aarne/articles/gf-jfp.ps.gz

[11] Roth, A., “Deduktiver Softwareentwurf am Beispiel des Java Collections
Frameworks,” Diplomarbeit, Fakultät für Informatik, Universität Karlsruhe
(2002),
http://i12www.ira.uka.de/~aroth/publications/diplomarbeit.pdf.

[12] Sun Microsystems, Inc., Palo Alto/CA, “Java Card 2.0 Language Subset and
Virtual Machine Specification,” (1997),
ftp://ftp.javasoft.com/docs/javacard/JC20-Language.pdf.

[13] Transport-, Informatik- und Logistik-Consulting GmbH, “DELTA —
Gemeinsame Fahrplandatenhaltung, Produktbeschreibung Redesign SbF (SbF-
R),” (2001).

23

http://i12www.ira.uka.de/~key/doc/2002/BeckertKellerSchmitt02.ps.gz
ftp://ftp.cs.iastate.edu/pub/leavens/JML/jmlrefman.pdf
http://www.cs.chalmers.se/~aarne/articles/gf-jfp.ps.gz
http://i12www.ira.uka.de/~aroth/publications/diplomarbeit.pdf

	Introduction
	The KeY Project
	The Case Study
	Formal Specification of Analysis Level
	Specification Idioms and Patterns
	Formal Specification of Implementation Level
	Discussion
	Conclusion, Future Work
	References

