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Summary

A method is presented that allows for a life cycle assessment
(LCA) to provide environmental information on an energy
infrastructure system while it evolves. Energy conversion facili-
ties are represented in an agent-based model (ABM) as distinct
instances of technologies with owners capable of making deci-
sions based on economic and environmental information. This
simulation setup allows us to explore the dynamics of assem-
bly, disassembly, and use of these systems, which typically span
decades, and to analyze the effect of using LCA information
in decision making.

We were able to integrate a simplified LCA into an ABM
by aligning and connecting the data structures that represent
the energy infrastructure and the supply chains from source
to sink. By using an appropriate database containing life cycle
inventory (LCI) information and by solving the scaling factors
for the technology matrix, we computed the contribution to
global warming in terms of carbon dioxide (CO2) equivalents
in the form of a single impact indicator for each instance of
technology at each discrete simulation step. These LCAs may
then serve to show each agent the impact of its activities
at a global level, as indicated by its contribution to climate
change. Similar to economic indicators, the LCA indicators
may be fed back to the simulated decision making in the ABM
to emulate the use of environmental information while the
system evolves. A proof of concept was developed that is
illustrated for a simplified LCA and ABM used to generate
and simulate the evolution of a bioelectricity infrastructure
system.
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Introduction

Understanding issues related to sustainability
often involves recognizing that the world is com-
posed of a mix of economic, environmental, and
social systems. These systems are not generally
mutually exclusive but are interconnected with
each other. For example, the economy is inher-
ently dependent on the environment for raw re-
sources, and it is also the result of a multitude of
social decisions.

Modeling has been useful as an exploratory
and analytical technique for understanding these
systems. One of the challenges in dealing with
sustainability, however, relates to the modeling
of interconnected systems. Modeling these can be
very difficult, as it is not unusual for a change or
decision in one part of the system to have rippling
effects elsewhere throughout the system. For ex-
ample, it can be difficult to understand how a
management decision on investment in a certain
type of technology could have environmental im-
pacts due to economic conditions further up the
supply chain for that technology.

To approach these problems of system in-
terconnectedness and interdependency, in this
we examine whether and how the combination
of two types of tools can provide a step for-
ward. One of these tools is life cycle assessment
(LCA), which has become a standard tool for
environmental analysis of our technological pro-
duction systems. The other is agent-based mod-
eling (ABM), a simulation tool that is useful
for generating complex network systems that re-
sult from the decision making of individual en-
tities. LCA is very good at analyzing complex
network structures, although in its current form,
it is a tool for linear modeling of static systems.
Furthermore, traditional LCA does not examine
economic and social concerns (Guinée 2002).
Conversely, ABM provides a means to create
nonlinear dynamic systems, which can be speci-
fied to include social and economic aspects.

We hypothesize that combining these tools
can result in an interesting synergy. In this ar-
ticle, we present a proof of concept that this
integration is possible and provides a means for
modeling interdependent sociotechnical systems.
Our intent is to show that this combination can
provide additional information about sociotech-

nical systems to aid in decision making, rather
than specifying the exact decision that should be
made. It is still up to the decision maker to use his
or her own judgment in interpreting the different
aspects of this information.

The modeling framework developed has been
used in a case study investigating bioelectricity
production in the Netherlands. This is a topic
of much interest, because using biomass as a fuel
is assumed to offset fossil carbon dioxide (CO2)
emissions. Because CO2 emissions are contribut-
ing to a global problem, however, one needs to
examine the biomass supply chains to quantify
the gains or even losses that may be occurring.
The agents in the simulation were defined on the
basis of technologies in these supply chains.

The sections below examine the foundations
for LCA and ABM, the methods used for inte-
grating these two tools, and present then a proof
of principle demonstrating repeated accounting-
type LCAs for a dynamic supply network. This is
followed by a discussion of insights gained, along
with the future outlook and conclusions.

Foundations

Both LCA and ABM are tools that employ
systems approaches. That is, both of them are
used to investigate systems with multiple inter-
acting elements. Simply put, they both examine
“things interacting with other things.” LCA looks
at interacting technologies in the form of supply
chains, whereas ABM is a more general tool that
looks at the interactions of a group of agents. Al-
though they are different tools, they are not fun-
damentally dissimilar in their approaches to rep-
resenting systems. LCA stores the interactions of
technologies in a matrix format. An agent-based
model can be set up to represent interactions in a
network format, where agents are represented by
nodes and edges represent connections between
the agents. From this insight, one of the keys to
integrating these tools was the realization that the
network data structure of the agent-based model
is equivalent to the matrix data structure of the
LCA, which allows the modeled system to be
represented in both formats.

One large difference between LCA and ABM
is that within an LCA, the connections between
technologies are fixed, whereas an agent-based
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model does not have to define fixed connections.
Within an LCA, we know exactly which tech-
nologies use the output from another technology.
Within an agent-based model, however, agents
can be defined as having different options con-
cerning those with whom they interact. Essen-
tially, LCA has a static structure, whereas ABM
can allow for changing and evolving structures.

On the basis of this, we suggest using ABM to
generate a complex dynamic system and an LCA
to analyze it at discrete simulation time steps.
Instead of defining the world as a set of tech-
nologies with fixed connections, this approach
breaks those connections. Technologies are now
represented as agents whose owners must trade
with other agents to buy inputs and sell their
outputs. Supply chains within the simulation self-
assemble due to these interactions between indi-
viduals. By appropriate definition of agents’ de-
cision rules and identity and by inclusion of a
sufficient number of actors in the simulation, this
concept can be extended to emulate socioeco-
nomic decision making and yield dynamic mod-
els of supply networks. By extension, ABM could
ultimately be used to model whole economies or
societies.

The next two subsections give a brief overview
of LCA and ABM to illustrate their approaches,
limitations, and opportunities for integration.

Life Cycle Assessment

LCA is a methodology and tool used to an-
alyze the environmental burden of products
at all stages in their life cycle—from the ex-
traction of resources, through the production
of materials, product parts and the product
itself, and the use of the product to the man-
agement after it is discarded, either by reuse,
recycling or final disposal. (Guinée 2002, 5)

This comes from a recognition that environ-
mental impacts have a systemic origin. In other
words, by choosing one particular product or ser-
vice, we are indirectly supporting environmental
impacts that may occur several stages away from
us in the supply chain that brings a product into
being or provides a service.

Today’s production networks have emerged
through the accumulation of choices made by a
multitude of actors driven by a variety of ratio-

nales. LCA provides an accounting of the total
environmental impact of this network and relates
it to a particular product or service. Although it
thus may not be immediately apparent, LCA is at
its heart a type of network metric or a means of
calculating characteristics of a network. In par-
ticular, it is a way of understanding a network’s
structure and performance from the viewpoint of
one node within a network that represents the
functional flow or reference product.

LCA has been a valuable tool in helping us
holistically approach the problem of emissions
reductions. It is not enough to reduce emissions at
a local level; we must be aware of emissions that
occur beyond our horizon as a consequence of
our actions. We cannot fully achieve systematic
emissions reductions without recognizing these
networks of interdependence between industries.

The idea behind LCA is very powerful, al-
though in its current implementation, we believe
its potential is not fully utilized. By connecting
an LCA to an agent-based model, we anticipate
that we can overcome many limitations.

Currently, LCA views the world as being com-
posed of static connections between technolo-
gies. It is also a linear model in that if production
of one good is increased, the flows of the up-
stream technologies are scaled proportionally as
well. Additionally, it does not include any time
or location aspects, which means that impact as-
sessment for certain emissions may be too high,
especially if those emissions are spread out widely
over different time periods and regions (Guinée
2002).

Agent-based Modeling

The concept of representing elements of a sys-
tem as individual agents is central to ABM. As
ABM is used in very diverse scientific fields, how-
ever, it has no exact definition. One explanation
is given by Shalizi (2006, 35), who states that

an agent is a persistent thing which has some
state we find worth representing, and which
interacts with other agents, mutually modify-
ing each others’ states. The components of an
agent-based model are a collection of agents
and their states, the rules governing the inter-
actions of the agents, and the environment
within which they live.
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Kauffman (Ball 1999 as cited in Shalizi 2006,
35) provides a much more succinct definition by
stating, “An agent is a thing that does things to
other things.”

In this sense, agents serve as a flexible abstrac-
tion of the real world. The key idea is that system
behavior is controlled not by a single entity but
by the accumulated effects of decisions made by
the individual agents. When these agents inter-
act with each other, they form networks, which
can then give rise to complex systems. For the
agent-based model in this article, agents must
trade to buy raw materials and sell their products.
Agents are only limited in that they must find a
suitable trading partner who makes a feedstock
they need or is willing to buy what they produce.
If an agent is not profitable, it will “die” and be
removed from the simulation. In the ABM simu-
lation, the technology options available and the
decision-making rules specified for the agents are
the ingredients used to generate the overall sys-
tem structure and content.

ABM is especially suited for types of problems
for which equations either cannot be solved or are
impossible to formulate (Axtell 2000). Compared
to other tools, such as system dynamics, ABM al-
lows the modeling of more complex dynamics, be-
cause the system structure can also change during
the simulation. In system dynamics, a fixed inter-
action structure is defined and maintained, which
means that even before the simulation is started,
one must define how the parts are connected.
Using an ABM, one only defines an interaction
space in the form of the types of interactions that
the agents are allowed to have. This character-
istic of ABM is important, given that many of
the largest problems we face today are difficult to
solve because they exhibit characteristics of com-
plex adaptive systems (CASs). These have been
defined by Holland as

Figure 1 Example of sociotechnical
systems modeled. Nodes in the
Technology Owners box are
companies. CO2 = carbon dioxide;
CH4 = methane; N2O = nitrous
oxide.

a dynamic network of many agents (which
may represent cells, species, individuals,
firms, nations) acting in parallel, constantly
acting and reacting to what the other agents
are doing. The control of a CAS tends to be
highly dispersed and decentralized. If there is
to be any coherent behavior in the system,
it has to arise from competition and coop-
eration among the agents themselves. The
overall behavior of the system is the result of
a huge number of decisions made every mo-
ment by many individual agents (Waldorp
1992, 145).

We use this concept of an agent as a basis for
modeling of technological infrastructures. We ex-
pand the concept by incorporating insights from
studies on large-scale sociotechnical systems (Bi-
jker et al. 1987; Nikolić et al. 2007, 2008). Com-
panies are defined as agents who own and man-
age technologies, as illustrated in figure 1. These
agents must make decisions on how to operate
their technologies and trade with other agents to
sell their products and buy feedstocks. The agents
encounter real-world constraints in that to sur-
vive, they must remain profitable. Technologies
owned by agents are constrained in that they must
balance their mass, energy, and monetary flows.
As the technologies operate, economic and en-
vironmental performance data are gathered and
then fed back to the agents to influence their
management decisions.

Integration of Life Cycle
Assessment into Agent-based
Modeling

Both ABM and LCA deal with networked
structures. Given a suitable system conceptual-
ization, network metrics can be calculated. In an
agent-based model, the network is represented as
a graph consisting of nodes connected by edges.
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Figure 2 Equivalence of graph and matrix implementations.

In an LCA, one conceptualizes the network as a
matrix where nonzero values represent the mag-
nitude of flows between nodes, whose identities
are indicated by the row and column locations.
These two concepts are equivalent, as shown in
figure 2, where a graph is mapped to a matrix. One
of the keys to combining ABM and LCA has
been to interchangeably represent the network
structure in both forms. Graphs are very useful
for keeping track of complex evolving structures,
and algorithms can be written to navigate and
retrieve relevant information from these struc-
tures. The matrix representation of LCA is the
only computationally feasible means for calcula-
tions involving large systems, however (Heijungs
and Suh 2002).

Combining ABM and LCA requires that we
examine the data structures used by both. A typ-

Figure 3 Illustration of life cycle assessment data structure. The left matrix is for material flows between
technologies. The right matrix is for environmental interventions from technologies. Squares represent
nonzero matrix elements.

ical data structure for an LCA is illustrated in
figure 3. Most of the data are stored in two ma-
trices. The technology matrix has information
about material flows between technologies, and
the emissions matrix has information about the
amount of pollution produced by each technol-
ogy. More detail on this is given in the Calcula-
tions section below.

Ontologies

Figure 4 shows a sample portion of the data
structure used in the agent-based model. As men-
tioned previously and illustrated in figure 2, the
agent-based model employs a graph-based data
structure. This description is simplified in that
the graph is called an ontology, which is a way of
logically structuring and storing information so
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Figure 4 Partial illustration of the ontology used for agent-based modeling data structure.

that it can be understood by humans and imple-
mented in and retrieved by executable computer
code. An ontology often specifies “is a” and “has
a” relationships for objects. For instance, an apple
is a fruit and has a red color. In particular, an on-
tology is composed of classes, properties, and in-
stances. A class can be used to describe a generic
type or group that something belongs to, such as
a fruit class. This fruit class can then have prop-
erties describing attributes, such as name, shape,
and color. This defines the basic data structure
through which we can describe fruit. We can then
create multiple instances, such as for “this apple”
and “this pear,” using the template specified by
the class to indicate the specific name, shape, and
color of this apple and this pear.

We use the ontology classes to describe the
data structure of the agent, which defines the
types of information it can know about itself. For
instance, all agents have an OperationalConfig-
uration containing a list of inputs and outputs,
represented as ComponentTuples, which hold
information about the amount of goods needed
for manufacturing and the amount of goods pro-
duced. The agents also have InEdges and Out-
Edges, which are used for contracts for items
bought from and sold to other agents. This com-
mon data structure allows agents to communicate

with each other about their properties and aids in
retrieval of information later on, whether by the
agents themselves or for data-logging purposes.

The instances contained in the ontology serve
as a database. When we create an agent, it gets
its own data structure, which is partially filled
in with information, such as its required inputs
and outputs, construction costs, and fixed costs.
As it operates during the simulation, it fills in
other information, such as its profits and lists of
contracts made.

Assembling the Network

Because the other agents have the same type
of data structure defined by the ontology, we can
see the contracts as facilitating the creation of the
network of actors trading among one another.
The information contained in the contracts is
used in calculation of the LCA, as described fur-
ther below in the Technology and Emissions Ma-
trices section.

For TechnologyAgents to sell their goods and
procure the necessary inputs, they must trade with
other agents. When a TechnologyAgent needs an
input, it asks all other TechnologyAgents for a pos-
sible contract. The agents offering goods are able
to set the price in the contract on the basis of
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their own decision making. Once an agent that
needs an input has the complete list of offered
contracts, it will decide to accept the contracts
that it deems best.

To help keep track of all the mass flows that
one will need in calculating an LCA, the con-
cept of a WorldMarket and an Environment agent
is used. Essentially, these agents ensure that ev-
erything in the simulation comes and goes from
somewhere. The WorldMarket agent serves to
connect the TechnologyAgents to the outside mar-
ket. Although TechnologyAgents can buy and sell
among themselves, they may find that no one is
supplying the good they want or that no one is
buying what they produce. In these cases, they
can trade with the WorldMarket. The Environ-
ment is the agent that collects all emissions from
the agents and provides the same inputs as the
real environment does, such as air for processes
involving combustion.

Constructing the LCA

To provide additional information for the
LCA calculations, in this proof of concept we
employ a hybrid approach whereby the World-
Market agent’s supply chains are defined on the
basis of structures contained in a life cycle inven-
tory (LCI) database. This is illustrated in figure 5:
The evolving system is represented by the agent-
based model, which is linked with the appropri-
ate processes and supply chains in the database
containing LCI information. Whenever an agent
buys from the WorldMarket, due to the connec-
tion with the LCI database, we are thus able to
retrieve the upstream environmental emissions
resulting from that purchase. This linkage results
in a coupling of systems, so that we now have
a very large economic network composed of a
core of dynamic actors (the TechnologyAgents)
surrounded by static actors (based on the tech-
nologies described in the database). This allows a
simulation in which we have a “lens” of dynamic
behavior and evolving structures surrounded by
a static definition of the world, as depicted in
figure 6, which shows how conceptually the
model structure changes over time. As indicated,
the set of agents in the agent-based model can in-
crease or decrease with time, whereas during the
whole simulated period we are able to trace each

Figure 5 Systems representation in the hybrid
model. Dynamic supply chains in the agent-based
model connect to static, predefined supply chains.

agent’s upstream flows through the structure de-
fined in the LCI database and linked to the ABM
data structure.

Technology and Emissions Matrices

Figure 7 illustrates the data structure used to
combine LCA within ABM. The simulation is
paused at every time step, and all the informa-
tion about inputs and outputs (i.e., traded flows
and emissions) is retrieved from the simulation’s
data structure. This information is then processed
and placed into a technology and an emissions
matrix, where calculations can begin. At this
stage, economic allocation occurs for technolo-
gies with multiple outputs (multifunctional pro-
cesses). The implementation of this particular
allocation method is relatively easy, with the cal-
culation performed automatically by the software,
and the only user input is a set of initial prices
for goods. With additional programming, other
types of allocation could be used. For this proof-
of-concept stage, however, economic allocation
was used, with the recognition that programming
for other forms of allocation could be worthwhile
extensions to the methodology and models in the
future.

In both of the matrices, one section is com-
posed of information from the external database
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Figure 6 Hybrid model over time. The
agent-based model evolves, and predefined supply
chains are used to provide additional information
about environmental impacts that exist outside it.

containing LCI information. This portion stays
constant throughout the simulation. Additional
rows and columns are added to represent the
agents themselves. Because part of the matrix is
composed of a dynamic system, the matrix will
grow and shrink over time in accordance with
the number of active agents present at each time
step.

Figure 7 illustrates how the links are made be-
tween different processes within the technology
matrix. The diagonal represents the total out-
put of each process. By reading down a column,
we can see the different amounts of inputs used
for a single process. By reading across a row, we
can see how one process supplies several differ-
ent processes. The top left quadrant is composed
solely of the LCI database, whereas the top right

quadrant contains information about where an
agent buys goods from the WorldMarket, which
is connected to the LCI database. The bottom
right quadrant shows trading between individual
agents. The bottom left quadrant is not filled in,
because the processes in the LCI database do not
buy goods from the agents and only use prede-
fined supply chains. An emissions matrix is set up
that is similar, except that the columns represent
individual processes, and rows represent types of
emissions.

Calculations

An LCA system can be written in the form
shown in equation 1 (Heijungs and Suh 2002).
Here, Ã is the technology matrix, which is also
shown in figure 7. The vector y is the demand
on the LCA system and represents the functional
unit. For instance, if one wanted to perform an
LCA on 1 kilowatt hour (kWh) of electricity
from a specific process, this vector would be all
zeros, except for a 1 placed at the location cor-
responding to the process of interest. The vec-
tor s represents the scaling factors that one must
apply to the technology matrix to provide the
functional unit. When we perform an LCA, the
values for Ãand y are already defined by the user,
and we must solve for s, which results in equation
(2).

Ãs = y (1)

s = y Ã−1 (2)

Solving for s is a nontrivial exercise. Although
equation (2) shows a simple, elegant formula for
solving a complicated system, there are quite a
few implications behind this. Performing an LCA
calculation means that one must balance sup-
ply and demand by appropriately scaling each
technology in the matrix. Because an LCA is
done over a supply chain, scaling one technology
means that one must scale the connecting tech-
nologies as well to ensure that the mass balance
is satisfied for the entire system. For complex in-
terdependent supply chains that include feedback
loops between technologies, this turns into a very
complicated operation that truly necessitates the
use of a matrix.
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Figure 7 Creating the technology matrix for life cycle assessment (LCA) calculations. The figure
corresponds to Ã shown in equation (1).

Although a matrix makes these types of cal-
culations computationally feasible, there are still
issues with the amount of time needed, espe-
cially if one desires to perform multiple LCAs
on a dynamic system, as demonstrated in this
article. A major bottleneck lies in calculating
the inverse of the technology matrix, as required
by equation (2). In the worst case, most matrix
inversion algorithms are said to run in O(n3)
time, which means that as the size of the matrix
increases by n, the maximum calculation time
needed to invert it increases at a rate of n3. In
other words, one may need a fraction of a second
to invert a technology matrix of 100 processes,
whereas one may need 2 minutes for one involv-
ing 1,000 processes (Heijungs and Suh 2002).

The iterative matrix inversion algorithm pro-
posed by Peters (2006) was designed to overcome
this problem. This particular algorithm runs in
Cn time, where C is generally a very large con-
stant. This means that algorithms running in
O(n3) time have an advantage when used for
small matrices, but this iterative algorithm has a
significant advantage in dealing with large ma-
trices. In practice, this algorithm has been in-

valuable in the creation of the model, as it is not
uncommon to conduct dozens of simplified LCAs
during each simulation time step.

Within the simulation, a simplified LCA is
generated for every agent during every time step.
The functional unit is chosen on the basis of a
single unit of the main flow from the agent and
currently remains the same throughout the sim-
ulation. In other words, power plants will have a
functional unit of 1 kWh of electricity, whereas
another agent that makes palm oil will have a
functional unit of 1 kg of palm oil. We performed
a simplified LCA to evaluate climate change on
the basis of emissions of CO2, methane (CH4),
and nitrous oxide (N2O). We used the charac-
terization factors of the LCA methodology to
estimate the global warming potential (GWP)
in terms of CO2-equivalents. The models could
readily be extended to more extensive LCAs
considering the full LCI and more impact cat-
egories, and these are considered areas of future
extension of the methodology. At this proof-of-
concept stage, however, the models were limited
to this simplified LCA. Only contribution to cli-
mate change was evaluated, as it was considered
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to be the most important impact category for this
case study, which focuses on energy provision.

Overview of Steps

To summarize, the list below gives an overview
of the steps by which LCA was integrated into the
agent-based model, as described in the paragraphs
above. A more complete description is given in
the original work (Davis 2007).

1. Run the simulation for one time step, al-
lowing the agents to trade with each other.

2. Construct the technology and emissions
matrices for each agent.
(a) Collect information on all the flows

in the system.
(b) If an agent trades with the World-

Market, link it to the supply chain
described in the LCI database.

(c) Perform economic allocation if nec-
essary.

3. Calculate an LCA for each agent.
(a) Determine the functional unit to be

used for each agent, on the basis of the
main product produced. An agent’s
functional unit is presently constant,
as agents currently do not produce
different products over different time
steps.

(b) Calculate an LCA for each agent on
the basis of functional unit.

(c) Aggregate CO2, CH4, and N2O into
a single category on the basis of their
GWP values.

4. Send results from the LCA to the agent for
use in decision making.

5. Run the simulation for the next time step,
and repeat.

As has been shown, it is possible to use a
simplified LCA within an agent-based model.
This opens up new realms when we consider
that sustainability is an emergent property of a
network (Allenby 1999), which LCA, to an ex-
tent, inherently recognizes. Sustainability can-
not be measured at the level of individuals; it
can only be measured at the level of the total
system itself. The value of this setup is that it
allows us to create a dynamic model that can ex-
plore the possible effects of independent as well

as interconnected decisions. This can allow for
a dynamic representation of the system, includ-
ing feedback loops and other dynamic system
properties.

Proof-of-Principle Illustration

Bioelectricity

The types of agents used in this case study
were based on inventory data gathered during
a separate study investigating bioelectricity pro-
duction in the Netherlands (Van der Voet et al.
2008). This study was performed to create a cal-
culation tool to allow for comparison of differ-
ent bioelectricity supply chains with regard to
their greenhouse emissions. The greenhouse gas
accounting was limited to CO2, N2O, and CH4.
Several different electricity production methods
appropriate to the Dutch situation were chosen,
in addition to the types of biomass that would
likely be used to supply them. Inventory data
were collected for all stages, from biomass pro-
duction to transportation, processing, and final
conversion to electricity. Several types of biomass
were chosen from different parts of the world, and
the electricity production methods ranged from
small scale (10 MW) to large scale (500 MW).
From this information, an LCA was performed
of the different chains, which allowed for com-
parison of the greenhouse gas emissions resulting
from 1 kWh of electricity production from each
of these different possible supply chains. Other
aspects, such as land use change, biodiversity
impacts, and economic development, were not
investigated.

This study by Van der Voet and colleagues
(2008) was, in turn, part of a larger investiga-
tion commissioned by the Dutch government to
explore issues related to the use of biomass for en-
ergy and material production. This was performed
by the Sustainable Production of Biomass Project
Group (Commission Cramer), which investi-
gated criteria for the evaluation of sustainable
production of biomass (Projectgroep Duurzame
productie van biomassa 2006).

We give a brief explanation here to illustrate
the system and the nature of the problem that
was modeled.
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Initial Settings

Each simulation starts with three large fossil-
based power plants. These technologies are coal
cofired with biomass, coal cofired with syngas,
and natural gas and heavy oil cofired with bio-oil.
Each of these large technologies is able to cofire
biomass at a fixed ratio, in addition to being able
to use pure fossil fuels.

The system is driven by the demand for elec-
tricity, which has an effect on the number of
agents added. The actual initial demand for elec-
tricity is set slightly above the production capa-
bilities for the three main fossil electricity plants,
which allows for additional, smaller producers to
join in to fill the gap.

Agent Addition and Removal

At the beginning of each simulation time step,
new TechnologyAgents have the opportunity to
join the simulation. During this period, candidate
types of TechnologyAgents are picked at random
and asked whether they want to invest. Once 10
in a row have declined, the simulation continues,
as it is considered unlikely that any others may
want to invest.

A candidate TechnologyAgent’s investment
decision is based on several factors. First, the
demand-to-supply ratio for its reference product
must be higher than a specified value to avoid
oversaturating the market. If this condition is
met, then the candidate will evaluate whether
it can be profitable under current market con-
ditions by calculating its expected revenue from
the sale of its products and then subtracting its
fixed operating costs and variable costs of inputs.
If this profit is positive, then the TechnologyAgent
will decide to invest and join the simulation at
that time step.

Agents will be removed if they are consistently
unprofitable for a specified length of time. They
will also be removed if the lifetime of their tech-
nology has run out.

Carbon Dioxide Tax

The CO2 tax is directly related to the fossil
CO2 output for each of a technology’s Opera-
tionalConfigurations. This CO2 output refers to

local emissions, not the ones indicated on the
basis of its GWP, calculated from the LCA. For
the simulations run, a parameter sweep was per-
formed using different values of the CO2 tax in or-
der to find transition points where system changes
could be observed.

Agent Operational Decision Making

Many of the agents have multiple Operational-
Configurations. An individual OperationalConfig-
uration is a list of the types and amounts of input
and output flows that pass through the agent. For
example, a coal-fired electricity plant will use a
specified amount of coal and limestone as inputs
and will generate a specified amount of electricity,
ash, and several types of emissions. The sizes of
the flows are fixed for the agents and are represen-
tative of the amount of the flows in a year. Each of
these configurations represents the use of a differ-
ent feedstock. For example, if an agent wants to
cofire soybean oil instead of palm oil, it will have
to switch to a different OperationalConfiguration.
Furthermore, the agent can only choose a single
OperationalConfiguration per simulation time step
and cannot perform actions such as adjusting the
ratio of cofiring of biomass to fossil fuels.

Each agent keeps a record of profit and LCA
scores associated with each of its Operational-
Configurations. When the agent is initialized, it
first collects these data by iterating through all
of its OperationalConfigurations on consecutive
time steps. Essentially, the agent wakes up and
assesses the economic and environmental state
of the world from its own point of view. Once
the agent has completed this stage, it will then
select future OperationalConfigurations on the ba-
sis of the decision behavior that has been specified
for it. In other words, once it has looked through
its options, it will now, at every consecutive time
step, make a decision about what it thinks is best.
Every time it makes a decision, it will then up-
date the profit and calculate GWP for the Oper-
ationalConfiguration just chosen. For every Oper-
ationalConfiguration, there is only a single value
stored for profit and a single value for the calcu-
lated GWP. Older values are overwritten, and the
agents do not employ prediction or optimization
techniques but just look at the last values encoun-
tered. For this simulation, TechnologyAgents are
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Figure 8 Global warming potential
(GWP) over time; the figure shows
results for a single type of agent
under different decision types.

able to pick feedstocks on the basis of those re-
sulting in the most profit or the greatest reduction
in CO2-equivalent emissions. In this case, maxi-
mizing profit simply means picking the cheapest
feedstock, and minimizing GWP means picking
the feedstock with the lowest calculated LCA
emissions.

In the current setup, all agents were speci-
fied to have the same type of decision making
throughout a simulation. That is, we ran a sim-
ulation in which they would all try to maximize
their profit or in which they would all try to mini-
mize their greenhouse gas emissions, as measured
through the GWP calculated from the LCA.

Simulation Results

The simulation setup allowed two primary
means for the system to change. First, the over-
all portfolio of electricity-producing technolo-
gies could change on the basis of the CO2 tax
that was chosen. All agents would have to pay a
tax based on their fossil CO2 emissions. Second,
agents could choose particular feedstocks to max-

imize profits or environmental benefit. As for data
quality, the main focus in the case study was on
gathering LCI data. The economic data gathered
were more uncertain in comparison.

Effect of Decision Making
Figure 8 shows the effect that different styles

of decision making can have given a fixed CO2

tax. When the agents start out, they must evalu-
ate the different feedstocks available to them and
record information related to the profitability and
LCA scores of each. The agent does not have
a long-term memory of these values but rather
stores the last values encountered. For example,
the number stored for profitability is only based
on the agent’s profit calculated in the previous
simulation time step. No prediction or optimiza-
tion is done on the basis of previous values. As
shown in the graph, once the evaluation stage
is complete where the agent iterates through all
feedstocks, the agents will consistently choose a
feedstock on the basis of whether they are set to
maximize profit or minimize their LCA score per
each simulation time step.
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Figure 9 Exploring simulation outcomes under different combinations of carbon dioxide (CO2) tax and
decision-making types. Each histogram represents 100 model runs after 20 simulated years. LCA = life cycle
assessment.

The histograms in figure 9 show how accumu-
lated individual agent behavior affects the overall
system behavior. These six graphs show permu-
tations of three levels of CO2 taxation and the
two types of decision making. Each graph repre-
sents multiple simulations where the agents are
only allowed to employ a single specified type
of decision making. That is, they will all, during
the entire simulation, try to maximize their profit
or minimize their LCA score, as specified by the
modeler at the start of the simulation. The CO2

tax increases as one moves from the left column
to the right column of figure 9. The top row rep-
resents agents trying to maximize profit, whereas
in the bottom row all the agents try to minimize
their LCA scores. For each permutation of a CO2

tax and decision-making type, a set of 100 simu-
lations is completed wherein the order in which
agents act during each simulation time step is ran-
domly varied. This is our attempt to see whether
trends are general and consistent, not an artifact
of model construction. The simulation setup thus
reflects that agents are not guaranteed to have
the same or the best trading partners. For exam-

ple, someone could have bought up all the supply
from a preferred partner. As described above, the
agent addition process is also randomized, which
adds to the inherent variability to be expected in
the simulation results.

At the end of each simulation, we tabulated
and processed the total emissions for all the
agents to calculate the ratio of fossil CO2 to
total CO2 (i.e., fossil + biogenic CO2). This
gives a rough indicator of the amount of bio-
electrity being produced versus electricity being
produced from fossil fuels. We then placed each
of these measurements in a histogram to see the
distribution of possible system outcomes over the
set of simulations for a combination of a type
of decision making and a specific CO2 tax rate.
These can be understood as showing system at-
tractors that indicate the range of values that
may be encountered, rather than showing specific
outcomes.

Starting from the left column of figure 9, we
see that the agents’ decision making does not
make a great deal of difference. There is some shift
away from complete use of fossil fuels, although
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it is not necessarily significant. This is due to the
dominance of large electricity producers, which
can only cofire a limited percentage of biomass.
Although they try to minimize their LCA score,
the current technology as defined is incapable of
achieving significant emissions reductions. As we
move from left to right and look at the scenarios
with higher CO2 tax rates, the types of emissions
undergo a noticeable shift, indicating that more
bioelectricity is being used, instead of electric-
ity produced from fossil fuels. It also should be
noted that the distribution of outcomes is flatter
for higher tax rates, which indicates less certainty
of one specific outcome. This is due to transitions
occurring in the types of technologies in the sim-
ulation as fossil-based electricity producers can
no longer afford to pay the CO2 tax. Due to the
nature of the simulation, there is no one single
way this transition could happen, which leads to
a larger variety of potential outcomes over the
simulated time frame.

Essentially, we see that the ability of the sys-
tem to change is defined by the dynamics of com-
petition between the different technologies. In
the simulation, new agents are added on the basis
of the ratio of supply to demand and the possibil-
ity that they can operate profitably. This means
that some of the larger fossil-based electricity pro-
ducers can block out the entry for some of the
smaller biobased electricity producers if the mar-
ket is saturated. Some of these smaller biobased
electricity producers can fill in the gaps as old
technologies go offline, although they may not
be able to make up a large percentage of total
electricity production.

From the simulation runs, it was found that the
most effective way to reduce CO2 emissions was
to impose a high CO2 tax rate, rather than only
having the agents pick the feedstock that would
lead to the lowest emissions. This means that for
drastic CO2 reductions to occur, the cofiring lim-
itation mentioned above is a barrier unless it can
be overcome. Otherwise, given the assumptions
and framework used for this case study, one must
change the portfolio of technologies to achieve
these reductions.

In viewing these results, readers should note
that these outcomes were case study specific and
thus tied to the definitions of technologies used.
One characteristic to observe is that the tech-

nologies currently defined mostly formed linear
supply chains. Electricity-producing agents had a
greater choice of possible feedstocks than agents
further up the supply chain. In other words, the
number of possible supply chain network config-
urations was somewhat limited. This hints that
other case studies involving different industries
with more variety of possible connections could
lead to much different results, as a greater variety
of networks could emerge. In these cases, sup-
plying information on environmental impacts to
agents may have a much greater impact, as the
agents would not be so constrained in their op-
tions.

Readers should also remember that an agent-
based model can generate a large number of data.
For instance, while the model is running, we use
data logging to record all the monetary, environ-
mental, and mass flows between the agents over
time. Although a subset of these data is used to
calculate a simplified LCA, many other ways of
interpreting the data are possible. The modeler
can decide to aggregate the data into system-level
indicators or to filter them to examine properties
of individual agents. This ability to process data
in different ways can aid in the evaluation of dif-
ferent policies or decision-making types.

Discussion

Developers of ABM and LCA may find this
merger of tools interesting from their own per-
spectives. From the point of view of LCA, ours
is a modeling structure that allows for the sim-
ulation of dynamic, evolving supply chains. Al-
though this is not a true dynamic LCA, it does
provide a step forward. For those in the ABM
community, this article shows a means to repre-
sent environmental impact information from the
outside world through the inclusion of an LCI
database. Additionally, LCA allows for examina-
tion of the supply chains that emerge from the
simulation.

What Does Life Cycle Assessment Gain
From Agent-based Modeling?

Platform for Analysis of Dynamic Systems
Traditional LCA includes several simplifica-

tions, such as linear definitions of technologies,
analysis based on steady-state situations, and no
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spatial differentiation of environmental inter-
ventions or impacts. Heijungs and Suh (2002)
talk about challenges researchers encounter in
overcoming these simplifications by creating fur-
ther extensions to LCA in the form of nonlinear
models, spatially differentiated models, and dy-
namic models. Although the method presented
in this article does not solve all of the issues Hei-
jungs and Suh mention, it does represent a first
step in providing a platform that could conceiv-
ably be extended to address them.

Nonlinear models of technologies can be used
within an agent-based model if appropriate rules
are defined. Such rules could state why indi-
vidual agents change the production levels of
their technologies. Additional rules could specify
why agents decide to enter and leave the market
and invest in new technology. To define these
rules, one must formalize them and program them
within the model.

Researchers can deal with spatial differentia-
tion of environmental interventions and impacts
to an extent by assigning a location to each in-
stance of a technology. For example, power plants
can be given specific geographical coordinates,
which allows for maps of emissions to be cre-
ated. This solution does not deal with diffusion
of emissions but rather allows the researcher to at
least have data on the sources of emissions. Us-
ing ABM with geographic information systems is
becoming more common (Gimblett 2002), and
this combination of tools could facilitate a more
dynamic look at the effects of emissions on a local
scale.

The analysis described in this article is dy-
namic in the sense that the structure of the
system generating electricity changes with time.
Calculations are done that involve the network
state at every simulation time step. This is not a
true dynamic LCA, according to the definition
of Heijungs and Suh (2002, 194), who stipulate
that “in making LCA a dynamic model, processes
must be specified according to the time at which
they are active for the product under review.”

The calculations performed do not incorpo-
rate time delays and thus do not track individual
goods over time but rather examine the path-
ways through which goods flow. The agent-based
model could conceivably be extended to include
waiting times; however, one must also encode in

the model the different factors that create these
delays. This can potentially lead to enormous data
requirements.

As shown, we have created a data represen-
tation and modeling structure that allows for the
simulation of dynamic, evolving supply chains.
Although it is not a true dynamic LCA, it does
provide a step forward, and further extensions
to the modeling framework offer a platform for
addressing several of the simplifications of tradi-
tional LCA discussed above.

Uncertainty Analysis
The use of a simplified LCA within ABM has

interesting implications for a type of uncertainty
analysis. Some LCA programs include the ability
to perform an uncertainty analysis, for instance,
by specifying a probability distribution for the
emissions from a process. Such a feature can be
useful, given the uncertainties due to measure-
ment accuracy and system variability that are of-
ten encountered in the collection of inventory
data. The uncertainty analysis can be quite im-
portant for balanced interpretation of results, as
it provides the researcher a means to see how
uncertainty from individual system components
can propagate to give a range of LCA scores. For
researchers comparing two different systems, this
analysis will indicate whether their results are
statistically distinct or whether there is so much
overlap that they cannot confidently determine
which one is better.

This type of uncertainty analysis only looks at
one piece of the puzzle, however, as it assumes
a static supply chain with predefined connec-
tions between technologies. If one wants to ex-
amine other possible supply chain configurations,
one must manually construct them. For the im-
plementation described in this article, the sup-
ply chains assemble themselves on the basis of
economics and other system conditions. This
flexibility can show us the range of possible sup-
ply chain configurations that can exist given the
conditions in the simulation. In other words, we
can test which supply chain configurations are
likely to emerge given specified simulation pa-
rameters. These parameters may take the form of
a decision-making type or a certain tax regime.
One may find that there is only a single possible
configuration or perhaps many. Additionally, one
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could test whether a policy inadvertently encour-
ages the emergence of undesirable supply chains.

Running the simulation multiple times with
fixed parameters can lead to a type of uncertainty
analysis in which we record the results of LCA
calculations by the agents. These results will not
necessarily be the same over time, and we can
then use these data to create a distribution of
possible values. This distribution will show the
range of emissions possible given changes in the
evolving supply chain.

Because ABM is inherently a dynamic tool,
this development leads to interesting implica-
tions. Not only can we perform an uncertainty
analysis based on structural dynamics, but we can
do it under different system conditions, such as
policy regimes or economic circumstances, that
we choose to program into the model.

Limitations
The use of an LCA within an ABM only

makes sense in certain circumstances, on the ba-
sis of the type of research question being inves-
tigated. This technique is especially suited for
looking at environmental performance of evolv-
ing systems. For example, if one seeks to find
out the environmental performance of current
systems in a specific configuration, then a tra-
ditional LCA would be more useful, due to the
ease of implementation and the nature of the
investigation.

This methodology represents a level of com-
plexity above a normal, traditional LCA due to
additional data requirements. The integration of
LCA into ABM can be very valuable when there
are many possible permutations of supply chain
elements that can lead to nonlinear effects. The
same is true if decision making can lead to a wide
variety of outcomes. If these conditions do not
exist, then this type of analysis may not be very
valuable. This is similar to LCA itself, for which
studies may involve different levels of detail de-
pending on the needs of the research.

The current methodology employed does not
attempt to find the globally optimal solution but
merely seeks a solution in which each agent is se-
lecting a feedstock with the lowest cost or GWP.
What we have shown does, however, provide a
platform that can be expanded to test different

theories about how system-level emissions reduc-
tions may be realized.

The implementation described in this article
has many simplifications that can be dealt with in
future work. For instance, agents only make deci-
sions on the basis of current information and do
not consider historical information or make any
type of prediction. There are no lead times for
technologies, and the construction of new tech-
nologies is instantaneous. Additionally, innova-
tion is currently not considered.

What Does Agent-based Modeling Gain
From Life Cycle Assessment?

Developers of agent-based models can bene-
fit from concepts of LCA in several ways. Two
such benefits are explored below. First, the LCA
methodology allows for a type of structural anal-
ysis to be performed. Second, the use of the LCI
database in this article demonstrates how this
information can be used to abstract the world
outside the simulation.

Structural Analysis
The value of ABM lies in its ability to gen-

erate complex emergent behavior. Although this
is a benefit compared to other types of modeling
techniques, it can also present a challenge, as one
needs a means to analyze the systems that emerge.
LCA is one such method. It important to realize
that LCA is really a particular implementation
of a class of algorithms meant to analyze network
structure. LCA builds on the achievements of the
fields of ecology and economics, which have long
been concerned with studying money, material,
and energy flows within systems (Suh 2004). To
put this in perspective, we should not just think
about combining ABM and LCA. Instead, we
should think about combining ABM with var-
ious forms of material and energy flow analysis
techniques.

Abstracting the World
As already mentioned, the WorldMarket of the

agent-based model is actually a portal to an LCI
database. This integration means that we can
simulate a system in which we have a “lens” of
complex dynamic behavior where agents inter-
act with a static definition of the world. One
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can further refine this concept to create a more
sophisticated representation of the world. For
instance, one could allow the WorldMarket to
use macroeconomic input−output tables. Such
a combination would allow the agents to operate
within a more realistic macroeconomic environ-
ment while also allowing one to simulate microe-
conomic effects (Peters and Brassel 2000).

Outlook

The work shown is the result of trends in
the development of information technologies,
which are changing the ways we handle massive
amounts of complex data. This is coupled with
advances in the understanding of complexity sci-
ence and a shift toward what some would call the
generative sciences, in which the question “Can
you explain it?” is replaced by the question “Can
you grow it?”(Epstein 1999). Claims of under-
standing are backed by a model whose structure
emerges as a result of rule sets based on those
claims. The model can then act as a learning tool
that allows us to test different theories about how
the system operates. This can turn into an edu-
cational feedback loop, where the results of the
model inform the designer, who then updates the
model to match observed real-world behavior.

We can get closer to this vision through ex-
panding the work mentioned in several ways.
First, we can use more realistic decision making
and scenarios to better model the dynamics of
the systems we are interested in. Second, the in-
tegration of existing industrial ecology tools can
help us understand the patterns that emerge and
provide the use of real-world data to define the
world that agents exist within.

More Realistic Decision Making
and Scenarios

The decision making employed by the agents
in this study was rather basic, although it could
be made much more sophisticated. For instance,
instead of only examining information from the
previous simulation tick, the agents could have a
memory of information encountered throughout
the simulation for use in their decision making.
One could also use different optimization tech-
niques to try to better balance complex trade-offs.

As for more complex scenarios, one could con-
sider analyzing effects from economies of scale or
incorporating learning effects. The learning ef-
fects could take the form of reduced investment
costs and greater efficiency with each additional
instance of a particular technology. One could
also test different types of policy regimes and eco-
nomic circumstances to elucidate their effect on
the performance of the system. For instance, one
might investigate what could happen if the price
of a certain feedstock suddenly went up or if fi-
nancial incentives were given for certain types of
technologies.

Integrating Tools

As more processing power becomes available,
it is easier to overcome limitations and criticisms
of the current analysis tools through more so-
phisticated calculations that are able to handle
increasing amounts of data. This is seen with
implementations such as hybrid LCA, in which
economic input−output tables are included as a
means to overcome the problem of limited system
boundaries.

Although it is clear that the capabilities and
sophistication of tools such as LCA are expand-
ing, we should also consider the shape of this
expansion. In essence, are we making this tool
deeper or broader? Are we diving deeper and try-
ing to calculate more accurate numbers, when
perhaps a different, broader insight into the sys-
tem is necessary? Are we closer to understanding
the complex relationship among human equity,
economy, and the environment? It is understand-
able that LCA was initially developed at a time
when only static situations could be analyzed;
however, the growth in computing power gives
us the opportunity to do so much more.

Figure 10 illustrates an environmental analy-
sis “toolbox” commonly used for exploring prob-
lems at different resolutions of flows and in-
dustrial networks. Material flow analysis (MFA)
examines flows of resources of a region on
an aggregated mass basis. An MFA examining
flows at a substance level (e.g., chlorine, cad-
mium) is referred to as a substance flow analy-
sis (SFA). A process-level MFA (PMFA) is an
MFA done at the level of individual processes.
Physical input−output tables (PIOTs) are similar
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Figure 10 Approaches of quantitative materials and energy flow analysis in industrial network systems (Suh
2004, used with permission). SFA = substance flow analysis; IOA = input−output analysis; LCA = life cycle
assessment; MFA = material flow analysis; PIOT = physical input−output analysis; PMFA = physical material
flow analysis.

to the input−output tables (IOTs) that describe
monetary flows between industries, except that
they document physical flows. Environmental
input−output analysis is also similar in that it
links environmental statistics to the information
contained in IOTs (Suh 2004).

Although this article focuses on LCA, we be-
lieve that the integration of these other industrial
ecology tools with the ABM platform should be
explored as well. These tools can be used to an-
alyze what has emerged or to add information
about the outside world that the agents operate
within. For example, just as an LCI database was
connected to the WorldMarket agent, the IOT-
based tools may be connected to it as well. Al-
though this has not been attempted yet, the im-
plementation may have parallels to the hybrid
analysis techniques that seek to combine LCA
and input−output analysis, as discussed by Suh
and Huppes (2005).

It is interesting that input−output analysis al-
lows the creation of potentially large, evolving
networks containing connections based on mon-
etary, mass, and environmental flows. We can
grow these networks, and, because an ontology
is used for their representation, we can under-
stand what each of the edges in such a network
represents. We can then create algorithms that
navigate these networks to extract information,
such as an MFA. In other words, we have the

potential to generate large amounts of data about
evolving systems that can be analyzed in multi-
ple ways while coupled to real-world data. This
vision is not a reality yet, but the work shown
indicates that it may be possible.

Conclusions

This article has demonstrated a method for
the creation of a data representation and mod-
eling structure that allows for the simulation of
dynamic, evolving supply chains. An LCA has
been used to evaluate this network in the form
of a repeated accounting-type LCA. The net-
works that emerge are subject to and caused by
different types of decision making, technologi-
cal constraints, and economic factors. Some of
the challenges addressed involve connecting the
data structures of these two tools and reducing
the computational time needed by the LCA.
Some of the simplifications of traditional LCA
can be overcome either by the demonstrated work
or by extensions that have been proposed.

Future development can proceed in sev-
eral directions. First, the current limited
implementation of LCA could be expanded to-
ward a full-featured LCA involving improve-
ments such as inclusion of more environmen-
tal impacts and impact categories. Integration of
the ABM platform with other industrial ecology
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tools should be investigated as well. Work is also
needed on incorporating more realism into the
systems modeled. A large opportunity exists to
incorporate more domain-specific knowledge in
areas such as decision making and economics.
For instance, one may program the agents to em-
ploy multicriteria decision making or to evaluate
future investments based on standard economic
calculations. Many further improvements can be
made, and it is hoped that the presentation of
the work shown can lead to further discussions
of possibilities that can be realized by new types
of tool development for industrial ecology.
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