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Abstract: Melanoma is a lethal skin disease that develops from moles. This study aimed to integrate
multimodal data to predict metastatic melanoma, which is highly aggressive and difficult to treat.
The proposed EnsembleSKCM method evaluated the prediction performances of long noncoding
RNAs (lncRNAs), protein-coding messenger genes (mRNAs) and pathology images (images) for
metastatic melanoma. Feature selection was used to screen for metastatic biomarkers in the lncRNA
and mRNA datasets. The integrated EnsembleSKCM model was built based on the weighted results
of the lncRNA-, mRNA- and image-based models. EnsembleSKCM achieved 0.9444 in the prediction
accuracy of metastatic melanoma and outperformed the single-modal prediction models based on
the lncRNA, mRNA and image data. The experimental data suggest the importance of integrating
the complementary information from the three data modalities. WGCNA was used to analyze the
relationship of molecular-level features and image features, and the results show connections between
them. Another cohort was used to validate our prediction.

Keywords: bioinformatics; metastatic melanoma; multimodal information fusion; lncRNA; feature
selection

1. Introduction

Melanoma is a type of malignant skin cancer, and its incidence rate has increased
rapidly in recent decades [1–3]. The melanoma incidence rate in Canada is 122.9 cases per
million person a year [4]. The melanoma mortality rate in the U.S. increased by 7.5% from
1986 to 2013 [5]. Early detection and appropriate treatment of non-metastatic melanoma
may decrease the mortality rate and substantially increase survival [6].

Computational models are widely used in the field of disease diagnosis and prognosis.
Systems biology models can incorporate various data sources such as mechanistic details
of biological mechanisms, inter-patient variability and drug–target interactions into the
translational research [7]. Verma et al. fine-tuned the model to predict the liver regeneration
process by integrating signaling mechanisms and cellular functional state transitions [8].
Compared with other studies, they performed the liver failure classification to characterize
the response of recovery and failure. Milberg et al. developed a quantitative systems
pharmacology (QSP) model for the combination immunotherapy specific to melanoma [9].
With the development of high-throughput sequencing and biological technologies, a huge
amount of biomedical data is being rapidly accumulated and machine learning approaches
are also actively utilized.

The detection of metastatic melanoma using machine learning algorithms is a clinically
useful and computationally challenging task. Several machine learning methods delivered
promising prediction performances for metastatic melanoma. Bellomo et al. employed
classifier logistic regression to combine clinicopathologic and gene expression data for
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the detection of metastatic melanoma in sentinel lymph nodes [10]. Garg et al. trained a
random forest model with the screened signature genes to detect metastatic melanoma [11].
Mancuso et al. predicted metastasis in melanoma patients with high and low risk of
metastasis by serum cytokines and Breslow thickness [12]. Shepelin et al. used the SVM
algorithm to identify 44 characteristic signaling pathways associated with melanoma
metastasis [13].

Melanoma may be detected by machine learning methods. Melanoma develops
from moles, and its early detection through the ABCDE criteria may generate some false
negatives depending on the experience of the practicing dermatologists [14]. There are
two main categories of machine learning-based melanoma detection methods, i.e., image-
based and OMIC-based methods [15–18]. Adytia et al. proposed a novel transfer learning
method to classify skin lesions based on the internet of health things [19]. In addition to
the classification task, lesion segmentation is another important machine learning task for
detecting melanoma [20–22]. Rasmiranjan et al. optimized a set of hyperparameters of a
fully convolutional encoder–decoder network (FCEDN) to segment skin cancer lesions [23].
Tang et al. employed end-to-end multistage UNets to segment skin lesions accurately [24].
Afsah et al. explored the feasibility of using hybrid textural analysis to segment and classify
skin cancers based on dermoscopic images [25].

OMIC data provide a molecular-level view of melanoma, and the detected biomarkers
facilitate the understanding of the onset and progression mechanisms of melanoma. Lai
et al. selected the fully connected melanoma subnetwork with the best modularity score
and proposed an autoencoder-based deep learning network to detect different melanoma
subgroups using the genomic data in The Cancer Genome Atlas [26]. Wei revealed 798
differentially expressed genes of melanoma and built a support vector machine (SVM)-
based classifier using the top 110 biomarker genes to achieve at least 0.944 in accuracy
across three independent datasets [27]. Aigli et al. proposed an ensemble dimensionality
reduction technique to estimate melanoma patient prognosis in a large cohort [28].

Long noncoding RNAs (lncRNAs) may act as competing endogenous RNAs (ceRNAs)
and are widely involved in tumor onset and progression [29]. Multiple previous investi-
gations have demonstrated that lncRNAs have a close relationship with the prognosis of
melanoma [30–32]. Yan et al. screened 61 lncRNAs associated with melanoma prognosis
and built a weighted risk score model based on seven key candidate lncRNAs [33]. The
lncRNA U731166 was also observed to be upregulated during the migration and invasion
of melanoma and even played a role in developing vemurafenib resistance [34].

Both image and OMIC data provide complementary information about melanoma,
and the integrated analysis of multimodal data is important to fully utilize these different
data modalities [35,36]. Both image and OMIC data have large numbers of features, and
most do not contribute to detecting melanoma. Such “large p small n” datasets may lead to
prediction model overfitting [37]. Feature selection is one of the methods used to tackle
this challenge [38–40].

This study proposes an ensemble detection algorithm, EnsembleSKCM, for metastatic
melanoma by integrating the data sources of lncRNAs, protein-coding mRNAs and pathol-
ogy images. The extremely high dimensionalities of lncRNAs and mRNAs were screened
for redundancies by feature selection algorithms. The image-extracted cell features were
combined with the results of lncRNAs and mRNAs for the final classification between
metastatic and non-metastatic melanoma samples. The experimental data support the
necessity of integrating multimodal data for the detection of metastatic melanoma. The
Python source code and the multi-modal datasets are freely available at http://www.
healthinformaticslab.org/supp/, accessed on 4 September 2022.

http://www.healthinformaticslab.org/supp/
http://www.healthinformaticslab.org/supp/
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2. Materials and Methods
2.1. Summary of Datasets

This study retrieved the features of pathology images, lncRNAs and mRNAs of
melanoma from The Cancer Genome Atlas (TCGA) database [41,42]. The mRNA expression
refers to the expression level of the corresponding gene. FPKM was used to normalize the
transcript expression data. The dataset’s metadata are shown in Supplementary Table S1.
This TCGA–SKCM cohort selected patients with a diagnosis of primary metastatic cutaneous
melanoma or metastatic melanoma of an unknown primary, and they were also required
to have had no previous systemic therapy (except that adjuvant interferon-α ≥ 90 days
prior was permitted) [43]. This study investigated the integrated analysis of metastatic
melanoma based on multi-modality data sources, i.e., lncRNA, mRNA and pathology
images. Therefore, the samples without regional lymph node metastasis information
were removed. There were 414 melanoma samples with regional lymph node metastasis
information, lncRNAs, mRNAs and images in the TCGA database. The number of primary
melanoma samples was 235 and that of metastasis melanoma samples was 179. Multiple
samples may be extracted from one patient and one of these samples from the same patient
was randomly chosen for further analysis. There were 411 remaining patients, among
whom there were 257 males and 154 females. The majority (392) of this cohort was white
people, and there were only 12 Asian and 1 black or African American. This cohort
consisted of only 19 patients under the age of 30. The remaining patients included 191
and 183 patients under and over 60-years-old, respectively. Some samples did not have
information on sex, ethics or age.

A binary classification between primary melanoma (n = 0, positive samples) and
melanoma with regional lymph node metastasis (n > 0, negative samples) was investigated.
A sample was a melanoma patient, and a feature was an lncRNA’s expression level, an
mRNA’s expression level or a cell type’s percentage within the pathological image in
this study. Each sample had 6919 lncRNA features and 19051 mRNA features. A feature
in a sample was the expression level of the corresponding lncRNA or mRNA gene, or
the percentage of a cell type in the pathological image of that sample. The annotations
were generated by UCSC for the Dec. 2013 (GRCh38/hg38) assembly of the human
genome. For the processing of missing values, all of the 411 samples were considered
(including both primary and lymph node metastatic melanoma samples). If the ratio
of missing values of a feature was greater than 50%, this feature was removed. The
remaining missing values were filled with 0, assuming that the sequencing technology
cannot detect the low expression levels of these genes. We did not process the missing
values in the primary and metastatic melanoma samples separately, to avoid the case that
these two groups of samples may have different features. Eight features were retrieved
from the pathology images to describe the percentages of lymphocyte infiltration, monocyte
infiltration, necrosis, neutrophil infiltration, normal cells, stromal cells, tumor cells and
tumor nuclei. The detection and counting of the different cell types were conducted using
the CellProfiler software and the percentages of these cell types were calculated as the
representative features for the pathology images [44]. After the preprocessing step, there
were 1716 lncRNAs, 1827 mRNAs and 8 image features. The example pathology images
are shown in Figure 1 by the freeware ImageScope version 12.4.6 [45]. The image came
from the sample “TCGA-BF-A1Q0–01A-02-TSB”. The scale bar of Figure 1a is 1 mm and
the scale bars of Figure 1b,c are 200 µm. Figure 1b,c were cropped randomly from (a). This
dataset was denoted as “TCGA-SKCM”.
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Figure 1. The example pathology image and its randomly cropped patches. (a) Shows the whole
pathology image; (b,c) are patch images cropped randomly from (a) to show the detailed information.

We screened the GEO database and found only one transcriptomic cohort (GSE59455)
of metastatic melanoma for further validation of the experimental results in the above
sections. We did not find a cohort with both pathological images and RNA-seq transcrip-
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tomes. The GSE59455 dataset was an array-based transcriptomic profile and consisted
of 141 samples. It does not have as detailed metadata as the TCGA–SKCM dataset. The
samples without information on primary or metastatic cancers were removed, and the
remaining samples consisted of 17 primary cancers and 43 metastatic cancers. The array-
based GSE59455 dataset and the RNA-seq-based transcriptomic dataset from the TCGA
database had large differences in both the feature list and the expression patterns. Only
2 lncRNAs and 198 mRNAs overlapped between the GSE59455 and the TCGA melanoma
datasets, while the optimal EnsembleSKCM model used 200 lncRNAs and 200 mRNAs
from the RNA-seq-based transcriptomic profiles.

2.2. Performance Measurements

The classification model was evaluated by five widely used measurements, i.e., ac-
curacy, F1-score, precision, recall and AUC. Assume that P and N are the numbers of
positive and negative samples, respectively. The numbers of correctly predicted positive
and negative samples are true positive (TP) and true negative (TN). False positive (FP) and
false negative (FN) are the numbers of incorrectly predicted positive and negative samples.
The performance measurements were defined as follows.

Accuracy =
TP + TN

TP + FN + TN + FP
(1)

Precision =
TP

TP + FP
(2)

Recall =
TP

TP + FN
(3)

F1 =
2 ∗ Precision ∗ Recall

Precision + Recall
(4)

AUC is the area under the ROC curve, which is a good parameter-independent
measurement for a binary classification model. A stratified 5-fold cross-validation (S5FCV)
strategy was used to evaluate the models.

2.3. The Proposed EnsembleSKCM Method

The proposed EnsembleSKCM algorithm integrated the information of lncRNAs,
mRNAs and pathology images to detect metastatic melanoma, as shown in Figure 2. A
data preprocessing step was used to remove the features, and an additional step of feature
selection was used to remove the redundant lncRNA and mRNA features to avoid the
overfitting problem [46–48]. For image data, a feature extraction step was used to obtain the
image feature representation. A three-layer fully connected neural network was designed
to detect metastatic melanoma using eight pathology image-based features. The three data
sources were then ensembled with different weights to generate the final prediction results.

2.4. Feature Selection and Classification Algorithms

Three feature selection algorithms were evaluated in this study, including SVM–
RFE [49], variance [50] and t-test [51]. SVM–RFE trained a support vector machine (SVM)
model [52,53] and selected features using their weights in the trained SVM model to
alleviate the possibility of the “large p small n” paradigm [37]. The redundant features
were iteratively removed by the SVM-based recursive feature elimination (SVM–RFE)
strategy [49,54,55]. The incremental feature selection (IFS) strategy [56] was used to find the
best subset of features ranked by variance (descendent order) or t-test (ascendent order).

This study evaluated six classifiers in the prediction task of metastatic melanoma:
random forest (RF) [57], support vector machine (SVM) [58], linear regression (LR) [59],
k-nearest neighbor (KNN) [60], decision trees (DT) [61] and naïve Bayes (NB) [62].
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Figure 2. The workflow of the proposed EnsembleSKCM. First, for lncRNAs and mRNAs, data
preprocessing was used to remove missing values, and feature selection methods were used to
remove redundant features. For images, feature extraction was used to obtain structural features.
Next, a support vector machine (SVM) was used to predict metastatic melanoma for lncRNAs and
mRNAs, and an artificial neural network (ANN) was used to predict metastatic melanoma for
imaging features. Finally, the results from different data modalities were integrated by assigning
different weights.

2.5. Fully Connected Neural Network

A two-layer fully connected neural network was designed to predict metastatic
melanoma using pathology image features, as shown in Figure 2. The first layer was
designed as X1 = Batchnorm(relu(linear(X0))), while the second layer was designed as
X2 = Batchnorm(relu(linear(X1))). The third layer was designed as X3 = Batchnorm(relu
(linear(X2))). The output layer was designed as X4 = Batchnorm(relu(linear(X3))). X0 is
the input data of the network, and X4 is the output data of the network.
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2.6. Construction of the WGCNA Network

To verify whether image features contribute useful information to the molecular
features, the WGCNA analysis was used to calculate the relationship between these two
kinds of features. If the correlation between two features was high, these features were
redundant to each other. Otherwise, the image features represented useful information for
predicting metastatic melanoma. A total of 400 lncRNAs and mRNAs were screened out by
the WGCNA package version 1.70–3 [63] in the R-Studio 4.1.3 software.

2.7. Implementation Details

The proposed EnsembleSKCM framework integrated multimodal information to
predict metastatic melanoma. For lncRNA features, SVM–RFE was used to remove the
inter-feature redundancy. The SVM used the linear kernel, and the parameter C was
0.1. SVM–RFE removed one feature per iteration. For mRNA features, SVM–RFE was
used to remove redundant features again, and the linear kernel was used. The parameter
C was 1. SVM–RFE removed 10 features per iteration due to the very large number of
mRNA features. Then, the SVM classifier was used to classify the metastatic version of
non-metastatic melanoma. The parameter C was evaluated by the values 0.1, 1, 10 and
100. The four kernels were evaluated, including ‘linear’, ’rbf’, ’poly’ and ’sigmoid’. The
grid search was used to screen for the best parameter values. For the image features, we
built a two-hidden-layer neural network. Both hidden layers contained 40 neurons. The
stochastic gradient descent (SGD) with a batch size of 32 was used to optimize our model
for 1000 epochs. The momentum and weight decay parameters were set to 0.9 and 1 × 10−4,
respectively. The initial learning rate was 0.01. This study was carried out on the Windows
10 operating system with an Intel(R) Core(TM) i7–8750H CPU@2.20GHZ 2.21GHZ and
8 GB RAM.

3. Results
3.1. Performance of the lncRNA-Based Models

Multiple lncRNAs have been implicated in cancer onset and development [64]. Ma-
chine learning methods have been widely used to predict metastatic melanoma [11,12]. In
this section, we use the lncRNA biomarkers to predict metastatic melanoma by machine
learning methods and investigated which method achieved a better performance. We
abbreviated the expression level of an lncRNA as an lncRNA feature in this study.

There were 6919 lncRNAs whose expression levels were profiled in the TCGA–SKCM
dataset used in this study, which was much larger than that (414) of the samples. If
the expression levels of all these 6919 lncRNAs (also called 6919 lncRNA features) were
used to train the prediction models, it would be very easy to overfit the model and a
stable prediction performance would not be achieved. We hypothesized that the feature
selection methods could remove the redundant features and improve the performance of the
prediction model. Therefore, feature selection algorithms were used to screen the lncRNAs
whose expression levels were associated with melanoma metastasis [65,66]. Three feature
selection algorithms were evaluated using lncRNA features, including SVM–RFE [49],
variance [50] and t-test [51]. We used the above feature selection algorithms to select 200
lncRNAs and compared their classification performances with each other. Figure 3a shows
that the model using all the features only achieved 0.5918 in accuracy. The prediction
accuracy was improved to 0.8696 if SVM–RFE was used to screen the subset of metastasis-
related features. SVM–RFE outperformed the t-test and variance in accuracy in selecting
features for the prediction task of metastatic melanoma. The best AUC value of 0.8638 was
also achieved by SVM–RFE. Therefore, the following section uses SVM–RFE as the feature
selection algorithm for the lncRNA data source. Information on all the selected lncRNAs is
shown in Supplementary Table S2 in the Supplementary Materials.
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Figure 3. Performance evaluations of the lncRNA-based models. (a) Evaluation of the models using
three feature selection algorithms and all the features (without FS). The horizontal axis gives the
performance measurements. SVM was used as the classifier. Abbreviations: without FS, without
the feature selection method; SVM–RFE, support vector machine recursive feature elimination.
(b) Evaluation of the six classifiers using the SVM–RFE feature selection algorithm. The horizontal
axis is the same as in (a). Abbreviations: RF, Random Forest; SVM, Support Vector Machine; LR,
Linear Regression; KNN, K-Nearest Neighbor; DT, Decision Tree; NB, Naïve Bayes. (c) Evaluation of
different numbers of features. The horizontal axis gives the number of features used in the SVM–RFE
feature selection algorithm. SVM was used as the classifier. Abbreviations: SVM, support vector
machine; LR, linear regression.
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The classification algorithm is another important factor for prediction performance.
Different models are suitable for different data types. To choose the most suitable model,
this study evaluated six classifiers on the prediction task of metastatic melanoma, including
random forest (RF) [57], support vector machine (SVM) [58], linear regression (LR) [59],
k-nearest neighbor (KNN) [60], decision trees (DT) [61] and naïve Bayes (NB) [62]. Figure 3b
shows that SVM and LR achieved the top two best prediction accuracies of 0.8671 and
0.8696, respectively. LR performed slightly better than SVM in both accuracy and AUC.
Therefore, the classifier LR was used for the lncRNA data in the following sections.

The number of features selected by the feature selection algorithms was an important
factor for prediction performance. The important melanoma-associated features need to
be selected, but the redundant features should be eliminated from the final model. SVM
and LR achieved similarly good prediction performance, shown in in Figure 3b, and were
further evaluated using different numbers of features, shown in in Figure 3c. The AUC
values increased with more features eliminated by SVM–RFE until the number of features
reached 200. The AUC model decreased to 0.8178 and 0.8243 for LR and SVM, respectively.
The best AUC values of 0.8638 and 0.8610 were achieved by LR and SVM using 200 features,
respectively. Therefore, 200 was the default number of lncRNAs whose expression levels
were chosen for the classification models.

3.2. Performance of the mRNA-Based Models

Protein-coding genes represent another important component of the progression of
melanoma. This section investigates how the expression levels of mRNAs (also called
mRNA features) could facilitate the melanoma metastasis prediction task.

There were 19051 mRNAs whose expression levels were profiled in the TCGA–SKCM
dataset. This number was also much larger than that (414) of the samples. In order to
avoid the overfitting problem, feature selection algorithms were used to reduce the feature
dimension. Figure 4a shows that the prediction models using all the mRNA features did not
achieve a good performance and the models using the variance-selected features performed
only slightly better. The features selected by SVM–RFE achieved the best accuracy of
0.8913, which was 0.3116 better in accuracy than the prediction model using all the mRNA
features. Information on all the selected mRNAs is shown in Supplementary Table S3 in
the Supplementary Materials.

Different classifiers can achieve different performances in a dataset. This study evalu-
ated six classifiers on how the SVM–RFE-selected features performed on the mRNA-based
metastasis prediction task, as shown in Figure 4b. The three classifiers, RF, KNN and DT,
only achieved an accuracy smaller than 0.6000, while NB achieved a slightly better accuracy
of 0.6522. The other two classifiers, SVM and LR, achieved the best two accuracies of 0.8913
and 0.8116, respectively. The best classifier, SVM, achieved the best AUC of 0.8856.

Different numbers of selected features can influence the prediction performance, as
evaluated in Figure 4c. There were fluctuations in the prediction models’ AUC values
using 600–1000 features for both SVM and LR classifiers. After the number of features
was reduced to less than 600, the prediction AUC values rapidly increased to peaks using
200 features, i.e., an AUC of 0.8041 and 0.8856 for LR and SVM, respectively. The prediction
models using 100 features did not achieve the best AUC values.
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Figure 4. Performance evaluations of the mRNA-based models. (a) Evaluation of the models using
three feature selection algorithms and all the features (without FS). The horizontal axis gives the per-
formance measurements. SVM was used as the classifier. Abbreviations: without FS, without feature
selection method; SVM–RFE, support vector machine recursive feature elimination. (b) Evaluation of
the six classifiers using the SVM–RFE feature selection algorithm. The horizontal axis is the same
as in (a). Abbreviations: RF, Random Forest; SVM, Support Vector Machine; LR, Linear Regression;
KNN, K-Nearest Neighbor; DT, Decision Tree; NB, Naïve Bayes. (c) Evaluation of different numbers
of features. The horizontal axis gives the number of features used in the SVM–RFE feature selec-
tion algorithm. SVM was used as the classifier. Abbreviations: SVM, support vector machine; LR,
linear regression.
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3.3. Performance of the Image-Based Models

Pathology imaging provides an important view of cancer tissue and has been widely
used in diagnosing primary and metastatic cancers [67–69]. Eight cell types were segmented
and counted from the pathology images and the percentage of each cell type among all the
detected cells was denoted as the image feature of this cell type for the corresponding sam-
ple. Figure 5 shows that the six classifiers used for the lncRNA and mRNA features did not
achieve accuracies better than 0.6000. Therefore, we further built a fully connected neural
network (MLP) for comparison with the six conventional classifiers. The MLP achieved
the best accuracy of 0.6667, while the next best classifier, DT, only achieved an accuracy
of 0.5821. The MLP’s performance accuracy of 0.6667 was much smaller than those of the
lncRNA-based and mRNA-based models. Therefore, we hypothesized that the integration
of multi-modal data sources might achieve better metastasis prediction performance.

Figure 5. The performance of different classifiers using the features extracted from the pathology
images. The horizontal axis lists the performance measurements. The vertical axis gives the values of
these measurements. Seven classifiers were evaluated. The performance measurements of some clas-
sifiers are zero. Therefore, their corresponding bin heights are 0%, which cannot be displayed in the
histogram. Abbreviations: RF, Random Forest; SVM, Support Vector Machine; LR, Linear Regression;
KNN, K-Nearest Neighbor; DT, Decision Tree; NB, Naïve Bayes; MLP, Multi-Layer Perceptron.

3.4. Integration of Multimodal Data

All three data modalities (lncRNA, mRNA and image features) contributed useful in-
formation for melanoma metastasis, and we hypothesized that their integration may obtain
better prediction performance. Figure 6 supports the necessity of integrating multimodal
data for the metastasis prediction task. Both lncRNA and mRNA features facilitated the
prediction models with accuracies >0.8500, while the prediction model using the image-
extracted features only achieved an accuracy of 0.6667. After the integration of all three
data modalities, EnsembleSKCM achieved a much better prediction accuracy of 0.9444,
improving the three lncRNA, mRNA and image data modalities by 0.0749, 0.0531 and
0.2778 in accuracy, respectively.

3.5. Integration of Image Features with Molecular-Level Features

Molecular-level data fully reflected the genetic information of melanoma, while image
features represented the macrolevel information. To verify our ensembling hypothesis,
we integrated the image features with the molecular-level features and evaluated the
integration performances. As shown in Table 1, the image features may improve the model
based on mRNA features by 0.0024 in accuracy and 0.0211 in AUC. The model based on
lncRNA features may be improved via the integration of the image features by 0.0023 in
AUC, with a slight decrease of 0.0049 in accuracy. The improved parameter-independent
AUC suggests that integrating the image features provides a more balanced prediction
performance. The proposed EnsembleSKCM model integrated all three data sources and
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improved the model using only the mRNA and lncRNA features by 0.0024 in accuracy and
0.0030 in AUC. The above data suggest the importance of adding pathological imaging
features for predicting metastatic melanoma.

Figure 6. Contribution comparison of multimodal data for the metastasis prediction task. The
horizontal axis lists the performance measurements. The vertical axis gives the values of the measure-
ments. Three modalities were evaluated, including lncRNA, mRNA and image. lncRNA, mRNA and
image features were used to train models and showed the best performance. Their integration was
denoted as the proposed EnsembleSKCM model. The best model of each data modality was used.
For each measurement, integrating all the data modalities can achieve the best performance.

Table 1. How the image features influence the performance of the model. mRNA + Image indicates
the performance of integrating mRNA and image features. mRNA indicates the performance of
mRNA features. LncRNA + Image indicates the performance of integrating lncRNA and image
features. LncRNA indicates the performance of LncRNA features. LncRNA + mRNA indicates the
performance of integrating lncRNA and mRNA features. EnsembleSKCM indicates the performance
of all features.

mRNA +
Image mRNA LncRNA +

Image LncRNA LncRNA +
mRNA

Ensemble
SKCM

Accuracy 0.8937 0.8913 0.8647 0.8696 0.9420 0.9444
F1 score 0.8659 0.8703 0.8372 0.8448 0.9306 0.9333
Precision 0.7933 0.8988 0.8045 0.8698 0.8994 0.8994

Recall 0.9530 0.8436 0.8727 0.8212 0.9641 0.9699
AUC 0.9067 0.8856 0.8661 0.8638 0.9456 0.9486

3.6. Correct Prediction of Samples Using Different Data Modalities

We further investigated the details of how different modalities facilitated the metasta-
sis prediction task, as shown in Table 2. All three modalities led to metastasis prediction
models with satisfying numbers of correctly predicted positive samples, i.e., primary
melanoma. The lncRNA-based and mRNA-based models correctly detected approxi-
mately 0.8100 metastatic melanomas, while the image-based model correctly detected only
0.3911 metastatic melanomas. However, the image-based features represented an impor-
tant view of metastatic melanoma, and its integration with the lncRNA and mRNA features
improved the ensembled model to 0.8994 in the percentage of correctly predicted metastatic
melanoma samples.
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Table 2. The numbers of correctly predicted positive and negative samples using different modalities.
The “Total” column gives the total numbers of positive and negative samples. The “lncRNA”,
“mRNA” and “image” columns give the data for the individual data modalities. The last column
gives the numbers of correctly predicted positive (true positives, TP) and negative (true negative, TN)
samples using the multimodal EnsembleSKCM model.

Total lncRNA mRNA Image EnsembleSKCM

TP 235 214 225 206 230

TN 179 146 145 70 161

3.7. Comparison of EnsembleSKCM with Existing Metastatic Melanoma Prediction Methods

Metastatic melanoma is a high-risk cancer, and several machine learning methods have
been published to predict metastatic melanoma. Bellomo et al. used the logistic regression
algorithm to combine the clinicopathologic and gene expression features to predict sentinel
lymph node metastatic melanoma [10]. They achieved a prediction AUC of 0.82. Garg et al.
used random forest trained with signature genes to predict metastasis and achieved the
best AUC of 0.68 [11]. Mancuso et al. classified early-stage melanoma patients with high
and low risk of metastasis and achieved an AUC of 0.8922 [12]. Shepelin et al. used SVM
to identify 44 characteristic signaling pathways associated with melanoma metastasis [13].
Their model achieved accuracies of 0.94 for metabolic pathways and 0.923 for signaling
pathways. As summarized in Table 3, the proposed EnsembleSKCM model outperformed
the existing methods based on the AUC and accuracy performance metrics.

Table 3. Comparison of EnsembleSKCM with other studies. The “Publication” column gives the
authors’ names and the publication date. The “Methods” column gives the method used in this study.
The “Key Finding(s)” column gives the main findings of this study. The “Performance” column gives
the value of evaluating indicator.

Publication Methods Key Finding(s) Performance

Bellomo et al.,
2020 [10]

Logistic regression model
optimized by penalized maximum

likelihood estimation algorithm

The model combining clinicopathologic and
gene expression features better predicted SLN

metastases than only one type of
above features

AUC = 0.82

Garg et al.,
2021 [11] Random Forest

The machine learning models trained with
signature genes performed better in predicting
metastases than models trained with clinical

covariates or published prognostic signatures

AUC = 0.68

Mancuso et al.,
2021 [12]

Logistic Regression, Support Vector
Machine, Decision Tree, Gaussian

Naïve Bayes, K-Nearest Neighbors

The machine learning method that classified
early-stage melanoma patients with high and
low risk of metastasis by serum cytokines and

Breslow thickness can best predict
metastatic melanoma

AUC = 0.8922.
Accuracy = 0.8502

Shepelin et al.,
2018 [13] SVM Identified 44 characteristic signaling pathways

associated with metastatic melanoma

Accuracy (metabolic
pathways) = 0.94

Accuracy (signaling
pathways) = 0.923

Ours EnsembleSKCM
Integrates LncRNA, mRNA and image features

to obtain better performance in recognizing
metastatic melanoma

Accuracy = 0.9444.
AUC = 0.9486.

3.8. Analysis of the Relationship between Molecular and Image Features Using WGCNA

To verify whether image features were redundant to molecular features, the WGCNA
analysis was used to calculate the relationship between two kinds of features. As shown in
Figure 7a, the soft-threshold power was defined as 3 and the scale-free topology index was
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0.85, which conformed to the power law distribution. As shown in Figure 7b, when the soft
threshold is 3, the curve tends to smooth and proves the good network connectivity. The
gene dendrograms and respective module colors are shown in Figure 7c. We divided the
molecular features into 12 modules. Figure 7d shows the relationship between the molecular
modules and image features. The strongest correlation coefficient of 0.32 (p = 5 × 10−11)
was observed between neutrophils and MEpink. We also provide information about the
genes corresponding to each module in the Supplementary Table S4. There were only a
few other significant correlations between the molecular modules and the image features.
Therefore, most of the imaging features could contribute nonredundant complementary
information to the prediction of metastatic melanoma.

3.9. Validation of the Results in Another Cohort

To further verify the validity of the model, another cohort was used to test the model.
The classification models were trained using TCGA samples and tested using the GSE59455
dataset. Table 4 evaluates different classifiers using the two data sources, lncRNA and
mRNA, and their integration. The classifier GBDT achieved the best accuracy of 0.6333 us-
ing the combined list of lncRNAs and mRNAs, which improved the two GBDT models
using lncRNAs and mRNAs, separately. The prediction accuracies had large room for
improvement due to the variations between the two transcriptomic profiling technologies’
array and RNA-seq. However, the overall data support the observation that lncRNAs and
mRNAs contribute complementary information to each other, and their combination leads
to better prediction models.

Table 4. Accuracies of different modalities by different classifiers. The “mRNA” row gives the predic-
tion accuracies of the mRNA-based classification models. The “lncRNA” row gives the prediction
accuracies by different classifiers based on lncRNA data. The “EnsembleSKCM” row evaluates
different classifiers by combining both data sources. The prediction model was trained using TCGA
samples and tested on array-based transcriptomic samples from GSE59455.

NB GBDT SVM KNN DT LR RF

mRNA 0.3000 0.5333 0.4667 0.4500 0.5167 0.4500 0.3667
lncRNA 0.3000 0.5333 0.2833 0.4500 0.4167 0.2833 0.4167

EnsembleSKCM 0.3000 0.6333 0.4667 0.5000 0.5167 0.4500 0.4333

The same stratified five-fold cross-validation (S5FCV) strategy was used to evaluate
the proposed EnsembleSKCM algorithm on the new GSE59455dataset, as shown in Table 5.
The top 10 lncRNAs and top 10 mRNAs ranked by t-test were evaluated. The classifier NB
achieved the best models on both lncRNA (Acc = 0.9500) and mRNA (accuracy = 0.8333)
features, while the best prediction model (Acc = 0.9667) was achieved by combining the
lncRNA and mRNA features. In summary, NB and all the other classifiers supported the
importance of combining the complementary data sources of lncRNAs and mRNAs.

Table 5. Accuracies of different modalities by different classifiers. The “mRNA” row gives the predic-
tion accuracies of the mRNA-based classification models. The “lncRNA” row gives the prediction
accuracies by different classifiers based on lncRNA data. The “EnsembleSKCM” row evaluates
different classifiers by combining both data sources. The prediction accuracies were calculated using
the stratified five-fold cross-validation (S5FCV) strategy.

NB GBDT SVM KNN DT LR RF

mRNA 0.8333 0.7167 0.7167 0.8167 0.6167 0.7167 0.8000
lncRNA 0.9500 0.8500 0.9333 0.8000 0.8500 0.9333 0.9000

EnsembleSKCM 0.9667 0.8500 0.9333 0.8500 0.8500 0.9500 0.9167
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Figure 7. WGCNA analysis. (a) The network topology for different soft-threshold powers. This image
shows the scale-free topology fit index influenced by soft-threshold power. The scale-free topology
index was 0.85, which conformed to the power law distribution. (b) The network topology for differ-
ent soft-threshold powers. This image shows mean connectivity influenced by soft-threshold power.
(c) Gene clustering tree using hierarchical clustering of adjacency-based dissimilarity. (d) The module–
image relationships. The correlation between the imaging features and molecular features was low;
imaging features can provide complementary information to the prediction of metastatic melanoma.
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4. Discussion

This study proposed the EnsembleSKCM framework to integrate the data modalities of
lncRNA, mRNA and pathology images for the prediction of metastatic melanoma. The data
suggest that each data modality represents an important view of the metastatic melanoma.

Some lncRNAs are known to be closely associated with the prognosis of
melanoma [30,64]. Machine learning methods have already been utilized to investigate
how lncRNAs are involved in the prognosis of melanoma [33]. Not all lncRNAs con-
tributed to metastatic melanoma and the experimental design supported this through
feature selection algorithms.

The view of lncRNA features alone did not achieve a satisfying prediction performance
of metastatic melanoma. Therefore, the mRNA features and image-based features were also
evaluated for single-modal prediction performance. The mRNA-based model achieved a
similar performance as the lncRNA-based model, while the image-based model achieved a
much worse performance.

However, the integration of all three data modalities generated the best model, with
an accuracy rate of 0.9444. The experimental data suggest that the multimodal Ensem-
bleSKCM model outperformed the models using only single-modal data, although the
image-based model only achieved 0.3911 in the percentage of correctly predicted metastatic
melanoma samples.

The lncRNA–mRNA interaction network described the close connections between the
two data modalities, lncRNA and mRNA, and novel insights could be derived from the net-
work view about melanoma compared with studies using only one modality [31,70]. This
study further integrated the macrolevel image features with the molecular-level lncRNA
and mRNA features. The experimental data suggest that the integration of these three data
modalities may further improve the prediction performance of metastatic melanoma.

WGCNA was used to analyze the relationship between the molecular features and the
image features. The data suggest that there are limited correlations between molecular and
image features. Therefore, it is important to integrate both molecular and imaging features
for a better prediction of metastatic melanoma.

We compared our method with the existing metastatic melanoma prediction methods.
The comparison data suggest the necessity of integrating lncRNA, mRNA and image
features for the prediction of metastatic melanoma. The integrated model of the three data
modalities also outperformed the existing studies in this task.

Due to the limitation in data availability, the dataset used in this study is already
the largest cohort. The ideal validation cohort consists of melanoma patients with paired
samples before and after metastasis, and the transcriptomes are profiled by RNA-seq tech-
nology. A minimum requirement is a cohort of gender- and race-matched patients with
metastatic and non-metastatic melanoma, considering the gender- [71,72] and racial dispar-
ities [73]. We only found an array-based transcriptomic dataset of metastatic melanoma to
validate our method. The experimental results of both the TCGA-trained model and the
proposed EnsembleSKCM algorithm support the importance of combining the complemen-
tary lncRNA and mRNA data sources. In addition to the lncRNA, mRNA and pathology
image features, dermoscopic images and somatic mutations may also be considered in the
integrated EnsembleSKCM framework in future studies.

This study quantitatively suggested that the precise diagnosis of metastatic melanoma
may need to integrate complementary information from both molecular and macroscopic
features, including lncRNAs, mRNAs and pathology images. These features represent
the dynamic situations of melanoma lesions. In future research, in addition to integrating
dynamic lncRNA and mRNA features, other slowly altered features, such as somatic muta-
tions, will be evaluated in the integrated EnsembleSKCM framework for their contributions
to the performance of metastatic melanoma prediction. In addition, more handcrafted
feature types will be considered for the pathology images. Deep neural networks are good
at automatically learning the latent patterns within images and will also be utilized to
extract useful features from pathology images for the metastatic melanoma prediction task.
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Additional RNA-seq transcriptomic datasets together with pathological images unbi-
ased across multiple ethnic groups will be sought to further validate our proposed model
in future studies.

5. Conclusions

This study extensively evaluated metastatic melanoma prediction models using three
data modalities. The experimental data support the necessity of removing redundant
features and testing different classifiers. The integration of all three data modalities also
improved the single-modal models by at least 0.0531 in prediction accuracy. Metastatic
melanoma has a high mortality rate, and the recently developed immunotherapy has
produced major clinical success in treating lethal melanoma [74]. The precise risk assess-
ment of melanoma provides important information for deciding follow-up treatment plans,
including immunotherapy. Therefore, it is both clinically important and computationally
challenging to develop precise risk assessment models for melanoma [75,76].

There are still limitations remaining in the proposed model. We trained and validated
our model across different transcriptome profiling platforms (RNA-seq and microarray). Al-
though the cross-platform validation results show that our detected transcriptome biomark-
ers delivered satisfactory melanoma metastasis prediction performances, the integrated
model of the three data sources (lncRNA, mRNA and image) remains to be evaluated on
an independent cohort. Melanoma has a 12-times higher incidence rate in the United States
than in China [77]. Therefore, an independent cohort across different ethnic group will be
recruited to cover the multi-modal data sources in the future studies. The experimental
evaluation of the validity and robustness of our EnsembleSKCM model is also worth future
studies for the detection of metastatic melanoma in the clinical practice.

System biology models have the capability of integrating heterogeneous data sources
in network settings. We plan to explore the possibility of combining systems biology and
machine learning approaches via the graph convolutional network for the prediction of
melanoma metastasis.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/genes13101916/s1, Table S1. The metadata information of the TCGA
dataset. The sample names were in the column “Sample”. The classes of “Primary” or “Metastasis”
were in the column “Class”. The other metadata are listed in the other columns. Table S2. Summary
of LncRNA selected by the feature selection algorithm. The ensembl IDs were given in the column
“ENSEMBL”, the chromosome names were given in the column “Chr”, the start coordinates of genes
were given in the column “Start”, the end coordinates of genes were given in the column “End”, the
gene names were given in the column “SYMBOL”. Table S3. Summary of mRNA selected by the
feature selection algorithm. The ensembl IDs were given in the column “ENSEMBL”, the chromosome
names were given in the column “Chromosome”, the start coordinates of genes were given in the
column “Start”, the end coordinates of genes were given in the column “End”, the gene names were
given in the column “SYMBOL”. Table S4. The information about the gene corresponding to each
WGCNA module. The ensembl IDs were given in the column “Gene Name”, the module names were
given in the column “WGCNA-Module”.
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