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I
n response to an immunological challenge, immune cells act in 
concert to form a complex and dense cell-signalling network1,2. 
The single-cell evaluation of intracellular signalling responses 

is particularly valuable in characterizing this cellular network as it 
provides a functional assessment of an individual’s immune system. 
In clinical settings, a deep understanding of functional immune 
responses not only provides diagnostic opportunities, but is also 
often the first step in developing immune therapies (recent exam-
ples include stratification of COVID-19 disease severity3,4 and suc-
cessful immune modulation in chronic lymphocytic leukaemia5, 
neurodegeneration6 and Ebola virus disease7).

Advanced flow cytometry technologies can characterize mil-
lions of single cells from a given patient, which enables the identi-
fication of signalling pathways, even in rare cell populations8. The 
recent advent of high-dimensional polychromatic flow cytom-
etry9,10 and mass cytometry11,12 technologies have vastly increased 
our ability to study the human immune system with unprecedented 
functional depth by increasing the number of features measured 
per cell. However, the increased dimensionality relative to the 
cohort sizes in clinical studies, as well as the inherently complex  

networks of internal correlations between the measured cell 
types and pathways present unique computational challenges13. 
Translating complex and high-dimensional observations, like 
immunological data, into relevant computational models requires 
statistically rigorous analysis techniques. Multivariable modelling, 
in contrast to univariable analysis, can simultaneously consider 
all measured aspects of the immune system to improve predic-
tions. However, multivariable modelling requires exponentially 
larger cohort sizes as the number of measurements grows (also 
know as the ‘curse of dimensionality’14–16). This is especially true 
for more modern deep-learning-based models that provide gen-
eral function approximation but require substantially larger sam-
ple sizes. In practice, increasing the cohort size by several orders 
of magnitude to power such analyses is often a significant chal-
lenge in resource-constrained settings. Moreover, multivariable 
analyses performed on all available measurements produce large 
complex models that are difficult to interpret and implement in 
resource-constrained settings17 and often lack robustness18.

Integration of prior knowledge has been broadly recognized as 
an effective approach for reducing model complexity and increasing 
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robustness19–31. In biological sciences, examples of such knowledge 
integration include inference of biological networks24,32 and causal 
pathway modelling33,34. In modern immunological datasets, how-
ever, integration of prior knowledge has been impractical due to 
the unstructured format of prior immunological datasets and the 
complex nature of the measured features. In this work, we propose 
a framework for integration of prior immunological knowledge into 
the model optimization process of the Elastic Net35 (EN) algorithm 
(Fig. 1). Our decision to select the EN as a candidate method was 
primarily motivated by two factors. First, as a sparse model, the EN 
is broadly used when the number of features exceeds the number of 
observations, as is the case with single-cell profiling of the immune 
system. This sparsification not only improves performance, but also 
makes models more interpretable, which would prove indispensable 
for tasks that require accuracy from an interpretable model17 (such 
as conflict forecasting36, drug discovery37, generalizing findings 
from animal models to human studies38,39 and translational clinical 
studies). Second, while other algorithms can potentially be modified 
to account for prior knowledge, this modification for linear mod-
els such as the EN is a natural fit, as demonstrated by the Bayesian 
interpretation of the EN (Methods). Although other multivariable 
models have previously been extended to incorporate feature group 
information21,40,41, none has integrated per-feature prior knowledge 
as needed in this work. In our immunological Elastic-Net (iEN) 
framework, the prior knowledge developed by a panel of expert 
immunologists on a per-feature basis is integrated into the EN algo-
rithm during coefficient optimization (similar to adjusting Bayesian 
priors; Methods). The addition of knowledge-based immunological 
priors guides the sparsification process towards solutions more con-
sistent with biological knowledge while still allowing all measured 
immune features to be included in the exploratory analysis.

In our experiments, the iEN outperformed the standard EN, 
as well as a broad range of standard machine learning algorithms, 
including the K-nearest-neighbours42 (KNN), support vector 
machine43 (SVM), random forest44 (RF) and least absolute shrinkage 
and selection operator45 (LASSO). Additionally, ‘Super Learner’46 
(an ensemble of the aforementioned methods) and two alterna-
tive knowledge-integrated algorithms, Know-GRRF25 and graper41, 

were included in our evaluation. A two-layer repeated 10-fold 
cross-validation (CV) was used to determine model consistency 
and establish a clear comparison of model performance among the 
algorithms. In the first CV layer, the free parameters of the mod-
els were optimized (including a factoring controlling the impact 
of domain knowledge in the case of the iEN) and the second CV 
layer predicted previously unseen observations. These predictions 
were then aggregated and evaluated by an appropriate hypothesis 
test (Pearson or Wilcoxon rank-sum), root-mean-squared error 
(r.m.s.e.) and area under the receiver operator curve (AUROC) to 
measure model performance. This process was repeated with ran-
domly generated CV folds to visualize the distribution of results 
subject to variations in the cohort.

In this Article, we have included two real-world clinical examples 
as well as a large simulation study. The first analysis, as an example 
of a continuous clinical outcome, identified components of mater-
nal immune adaptations in a longitudinal term pregnancy (LTP) 
study, which included an independent validation cohort. The sec-
ond example was a classification analysis of a categorical outcome, 
modelling patient and control populations for chronic periodontitis 
(ChP). The third example used synthetic data generated to replicate 
mass cytometry measurements to enable in-depth understanding of 
the iEN behaviour across varying cohort sizes. Additional analyses 
were performed to determine the effect of prior knowledge on gen-
eral model behaviour and the stability of results subject to errors in 
the expert-defined prior knowledge. Each of the three examples was 
chosen to demonstrate the generalizability of the iEN algorithm, as 
well as its efficacy, in a range of real-world scenarios.

Knowledge integration
Prior knowledge tensors constructed before the analysis empha-
sized receptor-specific signalling responses describing canonical 
pathways activated downstream of the ex vivo stimulation con-
ditions used in the mass cytometry assays. The biological priors 
used in the iEN model were created by an independent panel of 
immunologists, such that features more consistent with known 
biology have higher values (Supplementary Tables 1 and 2). For 
example, panel members broadly agreed on the prioritization of 
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Fig. 1 | The immunological Elastic-Net analysis pipeline. a,b, Immunological prior knowledge for each feature, in response to each ex vivo stimulation 

condition, is extracted by a panel of experts (a) and encoded into a prior knowledge tensor to guide the model optimization process (b). c,d, Individuals 

within the cohort of study (c) provide blood samples, which are subsequently stimulated with ligands ex vivo to activate various signalling pathways of the 

immune system (d). e, This produces single-cell measurements of the immune system, resulting in a complex network of cell types and signalling pathways 

representing both innate and adaptive immunity. f,g, This dataset is then fed into the ieN algorithm (f) for predictive modelling of the outcome of interest (g).

NATuRE MACHINE INTELLIGENCE | VOL 2 | OCTOBeR 2020 | 619–628 | www.nature.com/natmachintell620

http://www.nature.com/natmachintell


ARTICLESNATURE MACHINE INTELLIGENCE

the phosphorylation of signal transducer and activator of tran-
scription 1 (STAT1), STAT3 and STAT5 in all adaptive and innate 
immune cells in response to interferon-α (IFN-α) stimulation47,48; 
the phosphorylation of STAT1, STAT3, STAT5 and extracellular 
signal-regulated kinase 1/2 (ERK1/2) mitogen-activated protein 
kinase (MAPK) in all adaptive and innate immune cells in response 
to the interleukin (IL) cocktail containing IL-2 and IL-649,50; the 
phosphorylation of P38 MAPK, MAPKAPK2, ERK1/2, ribo-
somal protein S6 (rpS6), cAMP-response element binding protein 
(CREB) and nuclear factor κ light-chain-enhancer of activated 
B cells (NF-κB) and total IκB signal in all innate immune cells 
(except plasmacytoid dendritic cells) and in regulatory T  cells 
in response to the lipopolysaccharide (LPS) stimulation condi-
tion51–55. The resulting five tensors from each expert were then 
aggregated into a single median tensor used for iEN analyses. The 
use of median aggregation was to avoid bias by any one expert. An 
example of all measured immune features and those selected by 
this prior knowledge tensor is visualized in Fig. 2a.

These tensor values vary from zero to one, with one represent-
ing the immune features that are most consistent with prior knowl-
edge according to the panel of experts. iEN regularized regression 
models are constructed by optimization of the objective function 
L(β) = ||Y − Xϕβ||2 + λ[(1 − α)||β||2/2 + α||β||1], where X is a matrix 
of p measured immune features (columns) for n patients (rows) 
and Y is a vector of the clinical outcomes of interest. The algorithm 
calculates the coefficients β that minimize the objective function 
subject to the L1 = ||β||1 and L2 = ||β||2 penalties. The combination 
of these penalty terms allow for the selection of the features cor-
related with the outcome of interest and the exclusion of redun-
dant measurements, while also accounting for internally correlated 
measurements. Model optimization for iEN is controlled by three 
parameters: λ, α and φ. These parameters can be interpreted as the 
amount of sparsity in a model (λ), how sparsity is balanced between 
the L1 and L2 penalty terms (α), and the amount of prior knowledge 
prioritization (φ). Prioritization of biologically consistent features 
is accomplished through ϕ, which is a p × p diagonal matrix of the 
form diagðϕÞ ¼ fφ1;1;φ2;2; ¼ ;φp;pg

I

 such that φi;i ¼ e
�φð1�ziÞ

�

I

 
where zi is the score of the ith immune feature, and φ is the amount 
of prioritization attributed to the model}. This definition allows 
for a limited effect of φ on model coefficients while also increasing 
the impact of the features consistent with the prior knowledge ten-
sor (Fig. 3). In the most extreme case, this results in only features 
with a tensor value of 1 being selected (Supplementary Fig. 1b). 
This behaviour allows the iEN to generate sparse models while still 
maintaining the exploratory nature of the EN, as opposed to a priori 
limiting the model to the features consistent with prior knowledge. 
Similar to the α and λ free parameters, prioritization of prior knowl-
edge affects the sparsification (Fig. 3 and Supplementary Fig. 1) and 
optimization of the model (Supplementary Fig. 2). The two-layer 
10-fold CV used for iEN optimization and estimation was imple-
mented and parallelized over parameters α, λ and φ. Runtime analy-
sis for this procedure is presented in Supplementary Fig. 3b.

Experiments
To evaluate the effectiveness of integrating prior immunologi-
cal knowledge using the iEN algorithm, we have provided two 
real-world clinical examples as well as a simulated study.

Analysis of longitudinal term pregnancy. The first example inves-
tigated the adaptations of the maternal immune system during 
pregnancy that can be incorporated into predictive models of gesta-
tional age56. During a healthy pregnancy, the immune system strikes 
a delicate balance to enable tolerance towards the fetus and simulta-
neously mount a response to defend against pathogens. Abnormal 
immune system adaptations during pregnancy have been linked to 
adverse maternal and neonatal outcomes, such as pregnancy loss, 

preterm birth and preeclampsia57–59. This study aims to understand 
the immunological mechanisms behind term birth as a pivotal first 
step in understanding abnormal pregnancies and their impact on 
long-term outcomes60. In this example, a total of 54 blood samples 
from 18 women were studied during and six weeks after pregnancy. 
Three antepartum blood draws were collected at different gesta-
tional ages, with gestation being measured via ultrasound at the 
time of sample collection. The resulting 54 whole-blood profiles of 
the immune system were manually gated (Supplementary Fig. 4) 
into 24 cell types to measure the endogenous activity of 10 signal-
ling markers, as well as the activity of these 10 markers in response 
to ex vivo stimulations with three different ligands, providing 960 
immune features for analysis (Fig. 2a). Unsupervised analysis of 
each antepartum sample using the t-distributed stochastic neigh-
bour embedding (t-SNE)61 algorithm showed no readily identifiable 
patterns associated with gestational age (Supplementary Fig. 5a), 
motivating supervised iEN analysis. Predictive models were built 
using iEN, and model parameters were optimized to minimize the 
residual sum of squares of the predicted versus actual gestational 
age. iEN produced models of immune features that more accurately 
predicted gestational age than the similar EN analysis and other 
contemporary machine learning methods, which were agnostic 
to the immunologic priors (Fig. 4a,e and Supplementary Figs. 5b 
and 6a). iEN analyses of postpartum samples demonstrated that  
the immune system returns to a state that is similar to early preg-
nancy by six weeks postpartum (Supplementary Fig. 5c). An 
additional cohort of 10 women were prospectively studied and 
analysed as an independent validation set. Importantly, the valida-
tion cohort also demonstrated that iEN models produced substan-
tially more accurate results than the EN algorithm (Fig. 4b,f and 
Supplementary Fig. 5e,f). Stepwise reduction of iEN and EN model 
coefficients revealed superior predictions in the validation cohort 
by the iEN compared to the EN algorithm for models of equal size 
(Supplementary Fig. 5d).

Analysis of chronic periodontitis. The second example investi-
gated the classification of patients with ChP, a chronic inflamma-
tory disease of the oral cavity. ChP is associated with severe systemic 
illnesses (such as heart disease, various malignancies and preterm 
labour)62,63 and, in its most severe form, was estimated to affect 
~11% of the global population in 201064. A better understanding 
of the immunological manifestations of ChP is a critical first step 
for the development of immune therapies that may alter the course 
of systemic diseases associated with ChP. This dataset was gener-
ated from 28 participants, 14 diagnosed with ChP and 14 healthy 
controls. Blood samples from the study participants were analysed 
by mass cytometry and manually gated (Supplementary Fig. 4)  
for 18 cell types to measure 11 signalling markers in response to 
ex vivo stimulation with four different ligands; this provided a 
total of 792 immune features for analysis (Supplementary Fig. 7a). 
Unsupervised t-SNE visualization of the entire dataset showed 
no clear separation between case and control populations across 
all immune features, motivating supervised classification analysis 
using iEN (Supplementary Fig. 7b). For this example, iEN and EN 
algorithms were used to fit binomial models for the classification 
of patients and controls. All free parameters were optimized for 
AUROC65. The analysis results indicated that iEN outperformed the 
EN (Fig. 4c,g and Supplementary Fig. 7c) as well as other machine 
learning methods (Supplementary Figs. 6c and 7d).

Simulation study. The third example, a simulation study, dem-
onstrated the advantages of prior knowledge integration in 
high-dimensional studies in relation to cohort size. Datasets were 
generated with 700 features per simulated patient while the number 
of patients varied from 100 to 1,000 in increments of 100. Data were 
generated with features that were random and uniform. A limited 
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number of features were generated to have various degrees of cor-
relation with the response variable. Specifically, 50 highly predic-
tive features, 200 moderately predictive features and 450 randomly 
distributed features were assigned a corresponding biological prior. 
For a more detailed description of the data-generating process see 
the simulated data section in the Methods. Repeated 10-fold analy-
sis of the simulated data with increasing population sizes displayed 
a convergent trend between the iEN and EN models as n increased 
(Fig. 4d,h, Supplementary Fig. 3a and Supplementary Table 6). As 

cohort size increased, iEN captured the highly predictive features 
faster than EN (Supplementary Fig. 3c). These results suggest that 
if the cohort size is too small to the point that model outputs are 
affected by noise, the advantage offered by prior knowledge also 
diminishes (left side, Fig. 4d,h). The results also indicate that inte-
gration of prior knowledge is of particular importance in settings 
where the number of instances (for example, cohort size) is limited 
yet a relatively large number of features are measured, as is common 
in translational systems immunology studies.
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Fig. 2 | Integration of immunological priors. a, Overview of the LTP study. A correlation network of intracellular signalling responses, measured in 

peripheral immune cells and coloured by ex vivo stimulation status, is visualized. edges represent significant (P < 0.05) pairwise correlation after 

Bonferroni adjustment for multiple hypothesis correction. Node sizes represent the significance of correlations with the response variable (gestational 

age during term pregnancy). b, Immune features that were congruent with domain-specific knowledge as determined by a panel of five immunologists 

were refined into a tensor and used to determine the node colour of the correlation network. Here, immune features that have a value of 1 (full agreement 

among the panel) are coloured red and all other immune features are coloured black. c, The network is coloured by the standard deviation of scores 

assigned to each feature by the panel of immunologists. Overall, the consistency of the prior knowledge among panel members is higher in the features 

with a higher score, indicating a stronger agreement regarding the top features that should be prioritized by the algorithm and disagreements regarding 

features inconsistent with prior knowledge.
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Sensitivity analysis of the prior knowledge tensor. The iEN pipe-
line depends on the prior knowledge tensor. We therefore inves-
tigated the robustness of iEN by introducing errors into the prior 
knowledge tensor in each of the three examples. Introduction of 
moderate to substantial error into the prior tensor resulted in a 
consistent reduction in the predictive benefit of the iEN over the 
traditional EN model. Error was introduced stochastically and pro-
gressed towards uniform random noise, with 11 total incremental 
steps and 100 tensors generated per increment. As the prior tensor 
approaches a uniform random distribution (the highest amount of 
error in the prior knowledge matrix) the iEN and EN performances 
converge. These results remain consistent across the LTP, LTP vali-
dation, ChP and simulation studies (Fig. 5). Additional analyses 
performed on simulated data investigated the effect of errors and 
missing information in the prior knowledge tensor of individual 
experts (Supplementary Fig. 8). This analysis demonstrated that the 
algorithm is more sensitive to erroneous information introduced 
into the prior knowledge tensor than it is to missing information.

Empirical evaluation. In all analyses, the integration of expert 
knowledge improved the prediction of clinical outcomes in 
comparison to EN35 with no prior knowledge (Fig. 4). iEN also 
outperformed standard machine learning algorithms including 
LASSO45, RF44, SVM43,66, KNN42,46, Super Learner46 (an ensemble  

of the aforementioned methods) and the knowledge inte-
grated Know-GRRF25 and graper41 methods (Supplementary 
Figs. 6 and 7d). Further comparison of iEN and EN mod-
els by selected features demonstrated a substantial over-
lap between the models; however, model comparison by 
coefficient weights displayed a substantial difference in the 
predictive importance of the features selected (Supplementary  
Fig. 9). The iEN results demonstrated a higher variability in pre-
dictions (Supplementary Table 5). This is probably caused by the 
additional φ parameter applied in iEN, resulting in a larger search 
space for potential model parameters. Hyperparameter selection 
frequency across all generated models displayed a consistent pri-
oritization of prior knowledge via φ (Supplementary Fig. 10). The 
integration of prior knowledge allows the iEN to determine the 
predictive benefit of prioritizing canonical signalling pathways in 
a data-driven manner (Supplementary Fig. 2). Importantly, this 
enables iEN to function without excluding any of the features 
from consideration, even when scored as inconsistent with prior 
knowledge by the human experts. This behaviour allows for the 
iEN to contain the EN as an edge case when the prior knowledge 
is not beneficial. Similarly, when prioritization is most beneficial, 
the resulting model will contain only features scored as 1 in the 
prior tensor (those with complete consensus among the panel  
of experts).

Discussion
A structured collaboration between clinicians, biologists and com-
puter scientists can lead to machine learning algorithms in the life 
sciences that achieve stronger results67. In this Article, we proposed 
a collaborative framework that enables integration of prior knowl-
edge of cell signalling pathways in a machine learning algorithm to 
improve the predictions and robustness of the resulting models in 
clinical datasets. This knowledge-integrated approach to data analy-
sis can be generalized under the ‘learning using privileged informa-
tion’ paradigm described by Vapnik and Vashist68 where external 
information is used at the time of training to improve the incur-
ring decision rule. In our experiments, this strategy improved the 
accuracy of predictions in both translational clinical studies and 
simulated experiments, even when moderate amounts of noise were 
artificially added to the extracted prior knowledge.

Importantly, the data-driven approach implemented here allows 
for prior knowledge only to be incorporated when an improvement 
in the model is observed. Functionally, this reduces the regulariza-
tion of the features consistent with prior knowledge, resulting in 
the development of sparse models that prioritize features in line 
with previous biological studies. This not only increases the predic-
tive performance, but also facilitates biological interpretation and 
translation of the results. From a biological perspective, the iEN 
enhances the interpretability of the results as model features are 
enriched for cell-type and receptor-specific signalling responses (as 
opposed to over-reliance on visualization using dimension reduc-
tion tools14). These resulting multivariable models with increased 
biological consistency and improved predictive capabilities could 
also contribute to the development of robust and simplified assays 
for resource-limited settings. From a Bayesian perspective, this 
prior knowledge integration could be viewed as a shift in the prior 
distributions over β towards estimates that are more congruent with 
the true underlying distributions. A more explicit connection to the 
Bayesian setting is presented in the Methods.

This study has several limitations, which will guide our future 
research directions. First, definition of the prior knowledge tensor 
by individual human experts has the potential to induce a source 
of bias into the analysis. Although our analysis suggested that the 
method is robust to potential errors in the prior knowledge tensor, 
a more accurate and consistent definition of prior knowledge would 
improve this pipeline. In addition, the development of the prior 
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(y axis) change to select models consistent with immunological priors. 

We have highlighted two examples where a feature is emphasized or 

de-emphasized (in red and black, respectively) by prior knowledge. In 

this example, the STAT1 response to IFN-α stimulation in regulatory 

T cells is prioritized as STAT1 is downstream of the IFN-α/β receptor and 

is integral to their homeostasis and function86. Conversely, the prpS6 

response to stimulation by IL-2 and IL-6 in non-classical monocytes is 

increasingly deprioritized as this signalling response is inconsistent with 

prior understanding of these signal transduction pathways in this cell type; 

IL-2 primarily drives T-cell differentiation through the Janus kinase (JAK)/

STAT pathway87. Similarly, IL-6 primarily activates the JAK/STAT pathway 

and IL-6 receptors are expressed only in a subset of immune cells88,89. This 

confirms that integration of the priors can not only modify the algorithm’s 

behaviour, but also that the intensity of this impact can be controlled 

through the φ free parameter.
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knowledge is labour-intensive and requires careful and objective 
analysis of a broad range of studies. We believe stronger results can 
be achieved using text-mining strategies for direct extraction of prior 
knowledge from the literature (for example, see immuneXpresso69). 
Second, although our simulations point to trends in the advantages 
of prior knowledge integration in relation to cohort size, they can-
not be used for specific guidance regarding the cohort size needed 
in future studies. Preliminary studies for determining the effect  
size and proper power analysis should be performed to guide this 

decision for a new study. Third, this work relies on manual analysis 
for the identification of all cell types (Supplementary Fig. 2) and map-
ping them to the prior knowledge. This process is labour-intensive, 
error-prone and may not identify all cell populations of interest70. In 
our future studies, we will combine state-of-the-art cell population 
identification algorithms71–76 with our prior knowledge integrated 
to dynamically match clusters to the prior knowledge tensors for 
a more unbiased analysis. Fourth, this work only investigated the 
incorporation of prior knowledge into the EN algorithm. However, 
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Fig. 4 | Incorporation of prior knowledge improves predictions in two clinical studies and a simulated experiment. a, Boxplot of Pearson correlation 

P values calculated on out-of-sample predictions from repeated 10-fold cross-validation of eN (black) and ieN (red) models for the LTP dataset. b, 

Validation of the LTP model on an independent validation cohort. These predictions were compared against the true response variable using −log10 Pearson 

correlation P values. c, Boxplots of Wilcoxon rank-sum test P values similarly calculated on out-of-sample predictions for the ChP dataset (null hypothesis: 

the sample-to-class assignment probabilities produced by the model are equal between the two outcome classes). Comparison of model performance 

for the respective datasets demonstrated improved predictions for the ieN, as shown by −log10 P values. d, A simulated study with varying cohort sizes of 

simulated ‘patients’ with 700 features demonstrated a larger gain (measured by −log10 Pearson’s test P values) for the integration of prior immunological 

knowledge in datasets with a relatively small cohort size and a large number of features. Locally fitted polynomial curves of prediction performance over 

multiple cohort sizes are displayed with 95% confidence intervals (CIs). e–h, R.m.s.e. values to demonstrate the effect sizes of the models in a–d.
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Fig. 5 | iEN is robust to errors in the prior knowledge tensor. a–d, Various levels of noise were artificially added to the prior knowledge values, as indicated 

by the r.m.s.e. values of the true prior values versus the simulated ones (x axis). As the value on the x axis increases, the amount of noise in the simulated 

prior increases until all priors are sampled from a uniform and random distribution (vertical dashed line). Reassuringly, at this point, the performance of ieN 

is close to that of the eN (with no priors), as indicated by a horizontal dashed line. Importantly, ieN continues to outperform the eN (horizontal dashed line) 

for even high amounts of error in the priors. All curves are locally fitted polynomials of predictive performance with the shaded region representing 95% CI.
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other methods can similarly be extended to incorporate expert 
knowledge (for example, see ref. 19 for a relevant extension of SVMs). 
In our future work, we will focus particularly on the incorpora-
tion of prior knowledge into deep learning methods77,78. Although 
these algorithms can model complex relationships that are valuable 
in high-throughput characterization of the immune system, the 
number of patients that are required for training a large neural net-
work is often beyond the reach of typical immunological studies. 
We believe incorporation of prior immunological knowledge can 
reduce the number of patients required for implementation of deep 
learning approaches in clinical studies79.

Additional research directions include exploring ensembles 
of prior knowledge integrated models, application of the iEN to 
domains outside of clinical immunology such as proteomics, metab-
olomics and transcriptomics, and application of domain-knowledge 
integrated models to multi-omic studies, which would provide a 
systems-level perspective on human biology80.

Methods
Integration of immunological priors. �e iEN framework extends the EN 
regularized regression method by integrating prior biological knowledge of 
cellular signal transduction into the coe�cient optimization process. Consider an 
analysis with mass cytometry that generated features X, composed of observations 
(rows) Xi = (xi1,...,xip)

T for i = 1, 2, ..., n, with each observation consisting of 
p measurements, where p ∈ N and p is much greater than n. Corresponding 
to each observation is a value of interest yi. Values of interest then constitute 
the response vector Y = (y1,...,yn)

T. Response vectors are dataset-speci�c (for 
example, a vector of gestational age during pregnancy in the LTP example). A 
multivariable regression model can be constructed by computing the coe�cients 
β = (β1,β2,...,βp)

T that optimize the objective function, L(β) = ||Y − Xβ||2. �e EN 
method expands this de�nition with a linear combination of two regularization 
terms, the L1 = ||β||1 and L2 = ||β||2 penalties from the least absolute shrinkage and 
selection operator (LASSO) and ridge regression, respectively81. L1 penalization 
reduces the model complexity and increases sparsity, while simultaneously 
selecting more descriptive features. However, it can select, at most, the number 
of observations when working in a high-dimensional space (speci�cally 
high-dimensional small observation size) and cannot select multiple, highly 
correlated features. L2 penalization reduces the coe�cient size and encourages the 
inclusion of highly correlated features, but cannot remove features completely. 
Incorporating both L1 and L2 regularization terms compensates for these issues. 
Penalization is applied to coe�cients during model �tting and is determined by 
a penalization factor λ, as well as the ratio of penalization applied to each penalty 
term, α. �e optimal ratio (α) and degree (λ) of penalization can be determined 
through optimization of the EN objective function:

LðβÞ ¼ jjY � Xβjj2 þ λ½ð1� αÞjjβjj2=2þ αjjβjj
1


EN models are agnostic to any information not included in X. However, the 
iEN incorporates a third parameter that encodes prior immunological knowledge: 
ϕ, a p × p diagonal matrix of the form diagðϕÞ ¼ fφ1;1;φ2;2; ¼ ;φp;pg

I

 where 
φi;j ¼ 0 8i≠j

I

. The ϕ factor guides models to be more consistent with the current 
understanding of signal transduction response. Biological priors compiled a priori 
by an independent panel of immunologists are used to prioritize certain signal 
transduction responses by scaling the features of X. The adapted model takes  
the form

LðβÞ ¼ jjY � Xϕβjj2 þ λ½ð1� αÞjjβjj2=2þ αjjβjj
1


The biological priors, represented as a tensor of domain-specific knowledge, 
are manually constructed by a panel of experts. These biological priors are 
represented as a tensor of scores where features more consistent with known 
biology have higher values. These priors are a conservative indication of response 
from canonical signalling pathways that the field has a high level of confidence 
in observing. They are constructed as an m × l × o tensor, Z ∈ [0,1]m×l×o, where 
the associated mass cytometry assay consists of m cell types, l stimulations and o 
measured responses. An element in this tensor would correspond to a particular 
cell type and whether it will elicit a specific signalling response in response to 
each ex vivo stimulation. To make the connection between the prior tensor Z 
and the iEN parameter ϕ clear, consider the function FðZÞ ! diagðϕÞ 2 RP

½0;1

I; that is to say, diag(ϕ) is a vector of dimension m × l × o = p with values in the 
range [0,1]. In other words, Z is transformed to a p-dimensional vector, where 
diagðϕÞ ¼ fφ1;1;φ2;2; ¼ ;φp;pg

I
 such that φi;i

¼ e
�φð1�ziÞ

�

I

, where zi is the score 
of the ith immune feature, and φ is the amount of prioritization applied}. This 
formulation of φi;i

2 diagðϕÞ
I

 as e�φð1�ziÞ

I

 affects features with lower prior value 
more than features with larger values. This definition allows for increased model 

stability than a formulation with φi;i
2 diagðϕÞ

I

 as eφzi
I

 for large values of φ 
(Supplementary Fig. 1a,b).

Bayesian interpretation. The EN has a Bayesian representation82 with priors 
over the estimates of β. This can help define the role of immunological priors in 
improving model predictions. The unnormalized version of this prior is reported 
as follows:

pðβjλ; αÞ / exp½�λfð1� αÞjjβjj2 þ αjjβjj1g

In the following, we show that the iEN has a similar interpretation, in 
which the prior distributions over β are altered according to the prioritization 
of biological knowledge, that is, the value of φ and the shape of Z. That 
is to say, our definition of the iEN can be represented as an alteration of 
the prior distribution over β given ϕ. The objective function of the iEN is 
β̂ ¼ argminðjjY � Xϕβjj2 þ λ½ð1� αÞjjβjj2=2þ αjjβjj1Þ
I

. Now let �β ¼ ϕβ
I

, then 
substitution for β results in the following optimization problem:

β̂ ¼ argminðjjY � Xβjj2 þ λ½ð1� αÞjjϕ�1βjj2=2þ αjjϕ�1βjj1Þ

From this formulation, the adjusted Bayesian prior for the iEN can be directly 
derived as follows:

pðβjλ; α; ϕÞ / exp½�λfð1� αÞjjϕ�1�βjj2 þ αjjϕ�1�βjj1g

To further illustrate the connection between iEN and the regular EN and their 
Bayesian interpretations, we show that the EN is a special case of iEN. For this, let 
us define the following two sets:

S1 ¼ fPjwhere zp ¼ 1g

S2 ¼ fPjwhere zp<1g

These sets indicate which estimates of β̂ are affected by φ and which remain 
unaffected as previously defined. We can then subset the Z vector accordingly, 
with ZS1 being all biological priors of value one and ZS2 being all biological priors 
of value less than one. Therefore, we can separate the L1 and L2 norms according to 
these sets, reformulating the optimization problem as follows:

β̂ ¼ argmin kY � Xβk2 þ λ ð1� αÞkβS1k
2=2þ αkβS1k1

��

þð1� αÞðe�φð1�zs2
ÞÞ�2kβS2k

2=2þ αðe�φð1�zs2
ÞÞ�1kβS2k1

��

Here, �βS1
I

 and �βS2
I

 represent the betas that are affected by the φ value. This 
allows for us to replace ϕ with e�φð1�zÞ

I

 respective of S1 and S2, which demonstrates 
how prioritization affects the estimation of β. Similar separation in the prior 
distribution also illustrates how priors over β are affected in the same manner:

pðβjλ; α; ϕÞ / exp �λ ð1� αÞk�βS1k
2=2þ αk�βS1k1

��

þð1� αÞðe�φð1�zs2 ÞÞ�2k�βS2k
2=2þ αðe�φð1�zs2 ÞÞ�1k�βS2k1

��

Because φ alters the prior distribution over β, this can be used to improve 
estimates of the true β in the Bayesian setting of iEN, as it does in the classic 
formulation. This also allows for the EN estimates to be included as a special case 
of the iEN when φ = 0.

Parameter optimization. iEN parameters were optimized over a grid of possible 
parameter values for each parameter (φ,α,λ). The φ search grid was generated from 
a logarithmic sequence with values between 0 and 100, which allows for the EN as 
a special case (φ = 0). Similarly, α was uniformly generated from values between 
0 and 1. Generation of λ was done so that a large range of model sizes were tested 
during the 10-fold CV. Specifically, λ values were generated during the inner CV 
loop to avoid any possible information leak. The metrics used to justify parameter 
selection were the residual sum of squares for continuous response and the 
AUROC curve, as appropriate for each example presented.

Simulated data. All simulated data were generated using the ‘simglm’ R package83. 
A total of 450 features were generated with a standard deviation of 15. However, 
200 of these features had a mean value sampled from N(N(0,102),152) to simulate 
features moderately associated with prior knowledge and 50 were sampled from 
N(N(0,52),152), representing features highly associated with prior knowledge. 
The response variable was then generated as a linear combination of these 250 
features. The additional 450 features represented features not associated with prior 
knowledge and were generated randomly using a normal distribution.

LTP cohort. Twenty-one pregnant women were included in the LTP study, all of 
whom received routine antepartum care at Lucile Packard Children’s Hospital. 
Three patients were excluded from the study due to premature delivery (<37 weeks 
of gestation). Analysis was performed on the remaining 18 women who delivered 
at term (≥37 weeks of gestation). These 18 participants were aged 31.9 years (±3.4 
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(s.d.)). An independent cohort of 10 pregnant women who delivered at term were 
later enrolled as a validation cohort.

ChP cohort. A total of 30 patients were enrolled in the study of ChP: 15 healthy 
controls and 15 patients with ChP receiving treatment at Bell Dental Centre (San 
Leandro) and Stanford University School of Medicine. Two participants were 
excluded from the analysis, one patient due to autoimmune disease and one control 
due to onset of hand infection during the study. The final cohort consisted of 14 
patient (aged 42.2 ± 10.5 years) and 14 control (36.5 ± 8.07 years) samples, each of 
which were split by gender: eight female and six male.

Whole blood sample processing. Whole blood samples were collected in 10-ml 
heparin-containing tubes and processed within 1 h of collection. Samples for the 
LTP cohort were stimulated with either 1 μg ml−1 of LPS, 100 ng ml−1 of IFN-α 
or a cocktail of 100 ng ml−1 IL (IL-2, IL-6), or they were left unstimulated to 
measure endogenous cellular activity. Samples for the ChP cohort were stimulated 
with LPS, IFN-α, tumour necrosis factor-α or a cocktail of IL-2, IL-4, IL-6 and 
granulocyte-macrophage colony-stimulating factor, or left unstimulated. Samples 
were fixed using a stabilization buffer (SmartTube) according to the manufacturer’s 
instructions and stored at −80 °C until further processing.

Mass cytometry analysis. Post-thaw, fixed samples were added to an erythrocyte 
lysis buffer (SmartTube) and underwent two rounds of erythrocyte lysis. Cells 
were then barcoded as previously described84. In summary, 20-well barcode plates 
were prepared with a combination of two Pd isotopes out of a pool of six (102Pd, 
104Pd, 105Pd, 106Pd, 108Pd, 110Pd) and added to the cells in 0.02% saponin/phosphate 
buffered saline. Samples were pooled and stained with metal-conjugated antibodies 
collectively to minimize experimental variation. The panels for the different 
cohorts are listed in Supplementary Tables 3 and 4. Intracellular staining was 
performed in methanol-permeabilized cells. Cells were incubated overnight at 
4 °C with an iridium-containing intercalator (Fluidigm). Before mass cytometry 
analysis, cells were filtered through a 35-μm membrane and resuspended in a 
solution of normalization beads (Fluidigm).

Barcoded and stained cells were analysed on a Helios mass cytometer 
(Fluidigm) at an event rate of 500 to 1,000 cells per second. The data were 
normalized using Normalizer v0.1 MATLAB Compiler Runtime85 and debarcoded 
with a single-cell MATLAB debarcoding tool84. Gating was performed using 
Cytobank (cytobank.org). Gating strategies for the different cohorts are shown in 
Supplementary Fig. 4.

Correlation network visualization. All datasets were visualized using correlation 
network structures. Each immune feature was denoted by a node and the network 
layout was calculated using the t-SNE algorithm applied to the complete adjacency 
matrix. For visualization purposes, only the edges with Bonferroni-corrected 
Pearson correlation P values of less than 0.05 were visualized.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this Article.

Data availability
Longitudinal term pregnancy raw data, processed data and source code for 
reproduction of the results are publicly available at http://flowrepository.org/id/
FR-FCM-ZY3Q and http://flowrepository.org/id/FR-FCM-ZY3R for the original 
and validation studies, respectively. Similarly, chronic periodontitis raw data, 
processed data and source code for reproduction of the results are publicly available 
at https://flowrepository.org/id/FR-FCM-ZYT6.

Code availability
The iEN source code as well as scripts for reproduction of the results are available 
through: https://nalab.stanford.edu/immunological-elastic-net/ and https://
github.com/Teculos/immunological-EN under an MIT licence with https://doi.
org/10.5281/zenodo.3885868.
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Methodology

Sample preparation Post-thaw, fixed samples were added to an erythrocyte lysis buffer (SmartTube Inc) and underwent two rounds of 

erythrocyte lysis. Cells were then barcoded. In summary, twenty-well barcode plates were prepared with a combination of 2 

Pd isotopes out of a pool of six (102Pd, 104Pd, 105Pd, 106Pd, 108Pd, 110 563 Pd) and added to the cells in 0.02% saponin/

PBS. Samples were pooled and stained with metal565 conjugated antibodies collectively to minimize experimental variation. 

The panel for the different cohorts are listed in Supplementary Tables 3, and 4. Intracellular staining was performed in 

methanol-permeabilized cells. Cells were incubated overnight at 4°C with an iridium-containing intercalator (Fluidigm). Prior 

to mass cytometry analysis, cells were filtered through a 35μm membrane and resuspended in a solution of normalization 

beads (Fluidigm). Barcoded and stained cells were analysed on a Helios Mass Cytometer (Fluidigm) at an event rate of 500 to 

1000 cells per second. The data was normalized using Normalizer v0.1 MATLAB Compiler Runtime89 and debarcoded with a 

single-cell MATLAB debarcoding tool8. Gating was performed using Cytobank (cytobank.org).

Instrument Helios Mass Cytometer

Software CyTOF Software v.7.0 and CellEngine. Longitudinal term pregnancy raw data, processed data, and source code for 

reproduction of the results are publicly available at http://flowrepository.org/id/FR-FCM-ZY3Q and  http://

flowrepository.org/id/FR-FCM-ZY3R for the original and validation studies, respectively.  Similarly, chronic periodontitis raw 

data, processed data, and source code for reproduction of the results are publicly available at https://flowrepository.org/id/

FR-FCM-ZYT6. 

Cell population abundance Not applicable

Gating strategy Two-dimensional dot plots depicted for a representative sample. Gating was performed using ImmuneAtlas (https://

cellengine.com). Live singlet leukocytes were derived from DNA+CD235ab–CD61–cPARP– events, which are split into 

mononuclear cells (CD45+CD66–) and neutrophils (CD45+CD66+). Adaptive cell populations are gated from the mononuclear 

cells (CD19+CD3– B cells and CD19–CD3+ T cells). T cells are divided into TCRgd+, CD4+, and CD8+ subpopulations. Among 

the CD4+ T cells, T helper (Tbet+) regulatory T (FoxP3+CD25+), naïve (CD45RA+), and memory (CD45RA–) cells are identified. 

Among the CD8+ T cells, naïve (CD45RA+), memory (CD45RA–), Tbet+CD45RA+ and Tbet+CD45RA- cells are identified. The 

CD19–CD3– population is further split into CD7+ NK cells (CD56dimCD16+ and CD56+CD16–, respectively) and CD14+CD16– 

classical monocytes, CD14+CD16+ intermediate monocytes, and CD14–CD16+ non-classical monocytes. A subpopulation of 

myeloid-derived suppressor cells (HLA-DRlo) is derived from classical monocytes. Dendritic cell populations are defined as 

CD14–CD16–HLA-DR+, and subdivided into CD11c+ mDC, and CD123+ pDC. Please see supplemental materials for details.

Tick this box to confirm that a figure exemplifying the gating strategy is provided in the Supplementary Information.
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