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Arabidopsis diurnal cycles<p>An analysis of the temporal dynamics of metabolite and transcript levels, as well as enzyme activity, of 137 metabolites during diurnal cycles in <it>Arabidopsis </it>leaves</p>

Abstract

Background: Genome-wide transcript profiling and analyses of enzyme activities from central

carbon and nitrogen metabolism show that transcript levels undergo marked and rapid changes

during diurnal cycles and after transfer to darkness, whereas changes in activities are smaller and

delayed. In the starchless pgm mutant, where sugars are depleted every night, there are

accentuated diurnal changes in transcript levels. Enzyme activities in this mutant do not show larger

diurnal changes; instead, they shift towards the levels found in the wild type after several days of

darkness. This indicates that enzyme activities change slowly, integrating the changes in transcript

levels over several diurnal cycles.

Results: To generalize this conclusion, 137 metabolites were profiled using gas and liquid

chromatography coupled to mass spectroscopy. The amplitudes of the diurnal changes in

metabolite levels in pgm were (with the exception of sugars) similar or smaller than in the wild type.

The average levels shifted towards those found after several days of darkness in the wild type.

Examples include increased levels of amino acids due to protein degradation, decreased levels of

fatty acids, increased tocopherol and decreased myo-inositol. Many metabolite-transcript

correlations were found and the proportion of transcripts correlated with sugars increased

dramatically in the starchless mutant.

Conclusion: Rapid diurnal changes in transcript levels are integrated over time to generate quasi-

stable changes across large sectors of metabolism. This implies that correlations between

metabolites and transcripts are due to regulation of gene expression by metabolites, rather than

metabolites being changed as a consequence of a change in gene expression.

Background
A full understanding of metabolic networks requires quanti-

tative data about transcript levels, protein levels or enzyme

activities, and metabolite levels. Interactions between these

three functional levels will depend on the structure of the

metabolic and signaling network, and on the dynamics of

transcript, protein and metabolite turnover. Many inputs,

including changes in metabolite levels, contribute to the
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regulation of gene expression. Changes in the levels of tran-

scripts modify the levels of the encoded enzymes and the

levels of metabolites or, more broadly, the metabolic pheno-

type. The impact of changes in transcript levels on metabo-

lism will depend on the rates of turnover of the encoded

proteins, their contribution to the control of the metabolic

pathways that they are involved in, and the rates of turnover

of the metabolites that are in, or are produced by, these path-

ways. There have been many focused studies on the impact of

altered expression of single genes on protein and metabolite

levels [1,2], and broader genomics studies that link changes at

the levels of transcripts and proteins or enzymes [3,4], or

transcripts and metabolites [5,6], but relatively few global

studies of responses at all three levels [7]. Most studies have

also concentrated on comparing individual conditions, rather

than analyzing the temporal dynamics during a time series.

The paucity of multilevel studies is partly because of technical

reasons. While global changes in expression can be routinely

analyzed using custom-made or commercial arrays [8-10], it

is more difficult to obtain quantitative information about the

accompanying changes in protein levels and metabolites.

Quantitative proteomics is still in its infancy [3,11]. The

importance of analyzing changes in protein levels is under-

lined by the growing evidence that, at least in eukaryotes, pro-

tein levels can change independently of the levels of the

transcripts that encode them [3,12]. We recently developed a

robotized system to measure the activities of >20 enzymes

involved in central carbon and nitrogen metabolism using

optimized assays, in which the measured activity reflects

changes in protein levels [4]. This platform was used to ana-

lyze changes in enzyme activities during diurnal light/dark

cycles and during several days of darkness in Arabidopsis

leaves. Most enzyme activities changed less and much more

slowly than transcripts, and the attenuation and delay varied

from enzyme to enzyme. Routine analysis of large numbers of

metabolites is complicated by the vast number and chemical

diversity of the metabolites in a given organism [13-16].

Methods have been developed for the profiling of metabolites

using gas chromatography-mass spectroscopy (GC-MS)

[17,18] and liquid chromatography-mass spectroscopy (LC-

MS) [19] or nuclear magnetic resonance (NMR) [20,21], but

to date relatively few studies have applied these technologies

in combination with global analysis of levels of transcripts

[5,6,22,23] or proteins [24,25].

Normalization, analysis and display of multilayered data sets

also pose challenges. While considerable progress has been

achieved for transcript arrays [26-28], there is no consensus

on normalization strategies for metabolites and/or proteins.

Typically, log fold-change normalization is used when metab-

olites are involved. Combined network analysis with imple-

mented causality has been used to generate putative gene-

metabolite communication networks [29] and protein-

metabolite networks [30]. Deeper insights are provided when

the experimental data are integrated with information about

the structure of metabolic or signaling pathways, as illus-

trated in a recent study of glucosinolates and primary metab-

olism [5,6]. Although general metabolic pathway databases

such as KEGG exist to support the integration of previous

knowledge, it is often necessary to edit or extend them for use

with a specific organism or set of organisms. Some specific

plant metabolome/transcriptome pathway databases have

been developed recently [16,22,31]. Software tools are also

emerging that allow multiple facets of data to be displayed on

a common interface [32]. However, such approaches quickly

run into the limitation that only small sectors of metabolism

can be usefully visualized when items are being viewed at dif-

ferent levels.

Plants typically grow in a diurnal light/dark cycle, providing

an amenable system to analyze the temporal dynamics of

changes in gene expression and metabolism. In the light, pho-

tosynthetic CO2 fixation drives the synthesis of sucrose in

leaves and its export to the remainder of the plant to support

growth and storage, whereas at night the plant becomes a net

consumer of carbon [33-36]. The following experiments ana-

lyze changes in transcripts, enzyme activities and metabolites

during a diurnal cycle and under two further conditions that

accentuate changes in sugars; a prolonged dark treatment

and the starchless pgm mutant. Prolongation of the night

leads within a few hours to total exhaustion of starch and a

collapse of sugars and related metabolites, even in wild-type

(WT) plants [22]. This provides a system to investigate the

responses of transcript levels, enzyme activities and metabo-

lite levels over a longer time frame than is available in the 24

h light/dark cycle. Starch normally accumulates in leaves in

the light and is remobilized and converted to sucrose at night

[4,37]. The pgm mutant lacks plastid phosphoglucomutase

activity, which is an essential enzyme for photosynthetic

starch synthesis [38]. It accumulates very high levels of sug-

ars in the day, but has very low levels of sugars in the second

part of the night [36-38]. This provides a system to investi-

gate how recurring accentuated changes in the levels of sug-

ars impact on the diurnal responses of transcript levels,

enzyme activities and other metabolites.

The responses of transcript levels and 23 enzyme activities

during the diurnal cycle and an extended dark treatment in

WT Arabidopsis, and during the diurnal cycle in starchless

pgm mutants, were presented in [4,37]. In WT, over 30% of

the genes expressed in rosettes exhibit significant diurnal

changes in their transcript levels, mainly driven by changes of

sugars and by the circadian clock [37]. Prolongation of the

night leads to marked changes of hundreds of transcripts

within 4 to 6 h [22], and thousands of transcripts after 1 to 2

days (O Blaesing, unpublished data). The accentuated diurnal

changes in sugar levels in the starchless pgm mutant lead to

exaggerated diurnal changes in the levels of >4,000 tran-

scripts [37]. These are mainly due to the low levels of sugars

at night; in the light period the global transcript levels in pgm

resemble those in WT, whereas in the dark the global



http://genomebiology.com/2006/7/8/R76 Genome Biology 2006,     Volume 7, Issue 8, Article R76       Gibon et al. R76.3

c
o

m
m

e
n

t
re

v
ie

w
s

re
p

o
rts

re
fe

re
e
d

 re
se

a
rc

h
d

e
p

o
site

d
 re

se
a
rc

h
in

te
ra

c
tio

n
s

in
fo

rm
a
tio

n

Genome Biology 2006, 7:R76

transcript profile in pgm resembles WT after a 4 to 8 h exten-

sion of the night [4,37]. The responses of enzyme activities

were smaller and much slower than those of transcripts [4],

both during diurnal cycles and the extended dark treatment

in WT, and when WT is compared with pgm. In particular,

whereas transcript levels in pgm resembled WT after a 6 hour

extension of the night (see above), enzyme activities in pgm

resembled WT after several days of darkness [4,22,37].

Based on these results, we propose that: changes in enzyme

activities are strongly delayed compared to changes in tran-

script levels; and a series of transient but recurring changes in

transcript levels are integrated over time as changes in

enzyme activities. This conclusion is based on an analysis of

23 enzymes involved in central carbon and nitrogen metabo-

lism. The following paper generalizes this conclusion by ana-

lyzing the responses of 137 metabolites, measured using GC-

MS and LC-MS. The underlying hypothesis is that changes in

the metabolite profile will integrate the responses of hun-

dreds of enzymes across several sectors of metabolism.

Results and discussion
Changes in transcript levels and enzyme activities

A subset of the published data on changes in transcript levels

and enzyme activities is summarized in Figure 1, to highlight

aspects that are important for the present paper and facilitate

comparison with the new data on metabolites. Figure 1 sum-

marizes the changes in transcript levels for 82 genes, which

encode the 23 enzymes analyzed in [4]. The number of genes

is larger than the number of enzymes because many enzymes

are encoded by small gene families. For each transcript, the

average level was estimated across all the time points in WT

and pgm diurnal cycles, and the prolonged night. These aver-

age values are shown using a monotonic color scale on the far

left-hand side of the figure (the first column), and indicate

which members of a given gene family are expressed at either

a low or high level. A transcript level at a given time was

divided by the average value, converted to a log2 scale and

presented in a false color scale (blue = increase, red =

decrease) to display the temporal changes in the transcript

levels in a concise manner.

Many of the 82 genes show diurnal changes in transcript lev-

els in WT (the second column). The amplitude and timing

varies from gene to gene (Figure 1). Most show an accentu-

ated diurnal change in pgm (the fourth column), including

some that do not show marked diurnal changes in WT.

Almost all of the genes show marked changes in their tran-

script levels after a prolonged night (the third column labeled

XN). In most cases, the response after the prolonged night

treatment represents an extension of the changes towards the

end of the night in WT or pgm. A few genes show a change

after the prolonged night that is opposite to that during the

later part of the diurnal cycle in WT; for example, two genes

(NIA1, NIA2) encoding nitrate reductase and one of the two

genes encoding ferredoxin-glutamate synthase rose at the

end of the night in WT but fell during a prolonged night. For

most of these, the diurnal response in pgm also differs from

that in WT, and the response during a prolonged night resem-

bles that in the last part of the night in the pgm mutant.

The same normalization was used to depict changes in

enzyme activities (Figure 1). As discussed in [4], the ampli-

tudes of the diurnal changes of enzyme activities are unre-

lated to the changes of the encoding transcript levels, and the

daily peak of enzyme activity is delayed compared to the peak

of transcript level by an interval that varies from enzyme to

enzyme. Two further aspects of the data highlight that tran-

script levels and enzyme activities respond with very different

dynamics. First, when plants are subjected to prolonged dark-

ness there are widespread and coordinated changes in the

transcript levels for many genes within 6 h, whereas the

changes in enzyme activity require several days (compare

transcript levels and activities). Second, instead of showing

larger diurnal changes, enzyme activities in pgm are typically

shifted to a new value that qualitatively resembles the WT

after a prolonged dark treatment. For example, transcripts for

glutamate dehydrogenase and invertase show a rapid over-

shoot and a lower but sustained increase in WT in an

extended night, and increase transiently at the end of the

night in pgm (Figure 1). The activities rise gradually over sev-

eral days in an extended night, and show a marked increase in

pgm that is maintained across the entire diurnal cycle. An

analogous response is found for many enzymes involved in

respiratory metabolism, nitrogen assimilation and amino

acid synthesis, including fructokinase, NAD-glyceraldehyde-

3P dehydrogenase, PPi-phosphofructokinase, phosphoe-

nolpyruvate carboxylase, NADP-isocitrate dehydrogenase,

ferredoxin-glutamate synthase, alanine and aspartate ami-

notransferases, fumarase, shikimate dehydrogenase, and

transketolase. In this case, the transcript levels fall rapidly in

a prolonged night, but the activities do not decrease until sev-

eral days later. Their activities during the diurnal cycle are

lower in pgm than WT.

Our approach requires that these measurements of enzyme

activity can be used as a surrogate for measurements of pro-

tein levels. In these assays, the reaction product is determined

via highly sensitive enzymatic cycling systems [4], which

allow the use of highly diluted extracts. All optimized assays

were shown to be linear with time and independent of the

extract concentration, indicating that they are not compro-

mised by inhibitory compounds in the extracts. Substrate lev-

els and other assay conditions were optimized to allow

measurement of Vmax activity [4]. In selected cases, immu-

noassays were used to confirm that the changes in activity

match the changes in protein level, measured by [4] (and

unpublished data).
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Figure 1 (see legend on next page)
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Diurnal changes in metabolite levels in WT Arabidopsis

Figure 2 summarizes the diurnal changes of 70 known metab-

olites during the WT diurnal cycle. The original data, includ-

ing changes in 67 unidentified metabolites, are available in

[Additional data file 1]. The value at each time was divided by

the average level during the whole diurnal cycle; this allowed

a more sensitive visualization of the changes in this data set,

which were small compared to those in other conditions (see

below).

A large proportion of the 137 metabolites exhibit marked

diurnal changes in WT rosettes. The data were evaluated to

identify metabolites that undergo authentic diurnal changes

using an algorithm developed in [4], which generates a

'smoothness value' that has a value of zero if every data point

lies on a smooth curve that moves through one maximum and

one minimum per diurnal cycle, and increases to a maximum

value of one as the data points become increasingly irregular.

Using a cut-off of 0.05 as indicative of a 'good' oscillation [4],

about half the metabolites showed smooth oscillations (Table

1). This includes sucrose, glucose, fructose and more unusual

sugars like raffinose, all of the organic acids, glycerate, all

amino acids except glutamate, which typically shows only

small changes [39], glycerol-3P, many lipids (C16:2, C18:0,

C18:cis[9,12]2, C20:1), many pigments and secondary metab-

olites, including cryptoxanthin, lutein, zeaxanthin and toco-

pherol, some cofactors (coenzymes Q9 and Q10), as well as

many of the unidentified peaks (not shown), some of which

show similar responses to known metabolites. The remaining

metabolites showed more irregular responses or did not show

major diurnal changes.

Figure 3 summarizes the frequency with which metabolites

show a maximum or a minimum at different times during the

diurnal cycle. A similar trend was seen, irrespective of

whether this analysis was carried out with metabolites that

had a smoothness value <0.05 (not shown) or all metabolites

(Figure 3). Relatively few metabolites show a peak or mini-

mum early in the light period (for example, fructose, glucose,

UDP-glucose, cryptoxanthin, pyruvate) or early in the night

(for example, 2,3 dimethyl-5-phytylquinol, succinate, coen-

zyme Q10). This would be the response expected if the metab-

olite level responds directly to the presence or absence of

light. The vast majority peak at the end of the day, and are

lowest at the end of the night (Figure 3). This is consistent

with their level depending on the cumulative activity of a

pathway that is active in the light. This group of metabolites

included sucrose, many organic acids and amino acids, shiki-

mate, fatty acids, glycerol and glycerol-3P.

Particularly large diurnal changes were found for sugars

(sucrose, glucose, fructose), photorespiratory intermediates

(glycine, serine and glycerate) and, to a lesser extent, other

amino acids (Figure 2). Hexoses peaked relatively early in the

photoperiod (2 to 4 h), as has also been seen in other species

[33,34]. UDP-glucose peaked at 6 h and sucrose at the end of

the day. Malate and fumarate rose until the end of the light

period, while succinate decreased during the day and rose

during the first hours of darkness (Figure 2). Accumulation of

malate during the light period has been previously reported in

other species, and may be related to the accumulation of

malate as a counter-anion of nitrate, which decreases during

the light period due to rapid assimilation of nitrate [33].

Among the fatty acids, palmitolenate (C16:2), stearate

(C18:0), linolenate (C18:cis[9,12]2) and palmitate (C16:0)

had a clear diurnal rhythm (Figure 2), with maxima at the end

of the day and minima at the end of the night. The chloroplast

contains up to 85% of the total lipids in Arabidopsis rosettes,

mainly in the thylakoids [40], making it likely that large diur-

nal changes must reflect changes in this compartment. Palmi-

tolenate (C16:2), which exhibits the strongest oscillations, is

exclusively located within the chloroplast. This fatty acid is

mainly present as a constituent of 1-18:2-2-16:2-monogalac-

tosyldiacylglycerol, and is synthesized via the glycosylglycer-

ide desaturation pathway, which takes place in the

chloroplast [40].

Changes in metabolites in a prolonged night and during 

diurnal changes in the starchless pgm mutant

Figure 4 compares the diurnal changes of metabolites in WT

with the changes during the diurnal cycle in pgm (right-hand

column) and during a prolonged night in WT (middle col-

umn). The same normalization procedure was used as for Fig-

ure 1; as a result the scale used for coloring the values in

Figure 4 is different to that in Figure 2. The original data are

given in [Additional file data 1].

During a prolonged night, many metabolites showed gradual

but marked changes. This included a large decrease in the lev-

els of organic acids and shikimate (an intermediate in the aro-

matic amino acid biosynthesis pathway), a marked decrease

in C16:2 and smaller decreases in other fatty acids, including

C18:0. C18:2, C18:3, and C20:1, a decrease in inositol,

Heat map representing the changes in transcript levels and in the corresponding 23 enzyme activities in rosettes of ArabidopsisFigure 1 (see previous page)

Heat map representing the changes in transcript levels and in the corresponding 23 enzyme activities in rosettes of Arabidopsis. Samples were taken from 
Col0 WT plants and Col0 pgm growing in a 12 h night and 12 h day cycle, throughout one day and night cycle, and in WT plants transferred to an 
extended night (XN). Log2 ratios were calculated for each value, by dividing it by the average of diurnal WT values and applying the logarithm (base 2). Log2 

ratios give the intensity of the blue or red colors, according to the scale from the legend. Relative proportions among isoforms were calculated using the 
entire dataset and give the intensity of the gray color. These data are taken from [4] and [37]. CHO, carbohydrate.
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Figure 2 (see legend on next page)
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ribonate, gluconate and isopentenyl pyrophosphate, and a

marked increase in many amino acids due to release during

catabolism of proteins [22].

In pgm, most metabolites showed similar or smaller diurnal

changes than in WT (Figure 4). The left-hand column of Fig-

ure 5 uses a false color scale to highlight for each metabolite

whether the amplitude of the diurnal change is larger (black-

blue) or smaller (red) in pgm than WT. Of 137 metabolites,

only 18 showed larger diurnal amplitudes in pgm. This

included sucrose, glucose and fructose, which accumulate to

high levels in the light and fall to low levels at night as a direct

consequence of the lesion in starch synthesis (see Back-

ground). Seven amino acids showed a completely altered

diurnal response in pgm, with an increase in the night instead

of the day (Figure 4). This is probably due to enhanced prote-

olysis triggered by carbon starvation [22]. Strikingly, 32

metabolites showed smaller diurnal amplitudes in pgm,

including some photorespiratory intermediates glycine (ser-

ine, glycerate) and several fatty acids.

Figure 5 then compares metabolite levels in pgm with the lev-

els in WT in an extended night. The middle column uses a

false color scale to compare the average level across the diur-

nal cycle in pgm with the average level during a diurnal cycle

in WT. Many metabolites show a change in their level in pgm

(see also Figure 4). The right-hand column in Figure 5 dis-

plays the level of each metabolite in WT after 7 days of pro-

longed darkness, compared to the average level during a

diurnal cycle in WT. Comparison of these two columns

reveals that many metabolites show a qualitatively similar

shift in pgm and an extended night. This is explored further

in Figure 6 where, for each metabolite, the change between

pgm and Col0 (x axis) is plotted against the response to an

extended night in WT (y axis). With the exception of sugars,

the majority of the metabolites change in the same direction

in pgm and in an extended night in WT. This is apparent by 4

h for a subset of metabolites that increase in response to star-

vation, including several amino acids (Figure 4). The agree-

ment increases with time, extending to many metabolites

whose level decreases in response to starvation, like inositol,

glycerate, proline, homoserine, shikimate and several fatty

acids.

The pgm mutant is characterized by a daily alternation

between elevated levels of sugars in the light, and low levels of

sugars in the dark. It has already been shown that most of the

genes that undergo larger diurnal changes in pgm are

responding to the low levels of sugars in the night, rather than

the higher levels of sugars in the day [37]. The finding that the

metabolite profile of pgm leaves (with the exception of sugars

and a few other metabolites) resembles that of WT plants

after a prolonged dark treatment reveals that carbon starva-

tion acts via long term mechanisms to regulate the levels of

many metabolites, and generate a low-carbon metabolic phe-

notype. This phenotype will reflect the response of large

numbers of enzymes across several sectors of central metab-

olism. It provides general support for the conclusions drawn

from a subset of 23 enzymes in [4].

Comparison of the amplitudes of the changes in 

transcript levels, enzyme activities and metabolites in 

diurnal cycles

Comparison of the data sets for transcripts, enzyme activities

and metabolites indicates that transcript levels change mark-

edly and rapidly, whereas enzyme activities and metabolites

typically change less and/or change far more slowly. These

temporal dynamics are investigated more systematically in

Figures 7 and 8.

Figure 7 shows the frequency distribution of the amplitudes

of the diurnal changes of transcript levels for all 2,433 genes

assigned to metabolism by the MapMan ontology [22,32]

(Figure 7a; [Additional data file 2]), the 82 genes that encode

the enzymes treated in this paper (Figure 7b), 23 enzyme

activities (Figure 7c), and 137 metabolites (Figure 7d). The

data for WT and pgm diurnal cycles are shown separately.

The x axis shows the amplitude of the diurnal change

(expressed as (max-min)/max), and the y-axis shows the pro-

portion of genes that show an amplitude in that magnitude.

Although current data processing of Affymetrix arrays may

underestimate the extent of changes in transcript levels by a

factor of two to three [41,42], this should not lead to serious

error when the amplitudes are compared because this

involves comparison of relative changes.

In WT, the peak values were approximately 0.15 for tran-

scripts, and approximately 0.2 for metabolites and enzymes.

The amplitudes of the changes of transcript levels were

slightly larger for the 82 transcripts that encode the enzymes

measured in [4] than for all 2,433 genes assigned to

metabolism. The spread of amplitudes is larger for transcripts

than enzymes. While most metabolites show smaller ampli-

tudes, some show comparable diurnal changes to the most

strongly responding transcripts. The pgm mutant has larger

diurnal changes in transcript levels (approximately 0.28) but

similar diurnal changes in enzyme activities and metabolites

(approximately 0.2) to those in WT. There was a shift to a bi-

modal distribution curve in pgm, with substantial numbers of

transcripts, some enzyme activities and a few metabolites

Heat map representing the changes in metabolite levels in rosettes of ArabidopsisFigure 2 (see previous page)

Heat map representing the changes in metabolite levels in rosettes of Arabidopsis. Metabolites of Col0 WT plants growing in 12 h light and 12 h night 
throughout one day and night cycle are shown. Log2 ratios were calculated for each value by dividing it by the average. Log2 ratios give the intensity of the 
blue or red colors according to the scale bar. CHO, carbohydrate.
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(mainly sugars) undergoing a diurnal change with larger

amplitude. This analysis illustrates in a condensed form that

large diurnal changes in transcript levels do not lead to a sys-

tematic increase of the amplitudes of the diurnal changes in

enzyme activities or metabolites.

Comparison of the temporal dynamics of the changes 

in transcript levels, enzyme activities and metabolites 

in a prolonged night

An analogous approach was taken to compare the speed and

extent of the changes in metabolites, transcript levels and

enzyme activities in WT during a prolonged night (Figure 8).

All values were normalized on a reference value at the end of

the normal night. The normalized values are shown as a series

of frequency plots, which compare the amplitudes of the

changes of transcript levels (Figure 8a), enzyme activities

(Figure 8b) and metabolites (Figure 8c) after different times

in an extended dark treatment. Figure 8a shows the changes

for all 2,433 genes assigned to metabolism by the MapMan

ontology. A similar result was obtained with the genes encod-

ing the set of enzymes (not shown). After a 2 h extension of

the night, a small subset of metabolites, including glucose,

fructose, and glycerate, showed a marked change in their

level. By 4 h, changes in transcript levels were becoming

marked and by 8 h these were more widespread than the

changes in metabolites. At this time, there were only minimal

changes in enzyme activities. After 24 and 48 h, the changes

in transcript levels became even larger and changes in

Table 1

Metabolites with smooth diurnal oscillations in Arabidopsis Col0 

WT plants growing in 12 h day and 12 h night cycles.

Metabolite Smooth factor

Isoleucine 0.000

Cryptoxanthin 0.000

Citrulline 0.000

Proline 0.000

Shikimate 0.000

Palmitolenate (C16:2) 0.000

Threonine 0.000

Fumarate 0.000

Glycerate 0.000

Malate 0.000

Stearate (C18:0) 0.004

Homoserine 0.004

Pyruvate 0.005

Tyrosine 0.005

Phosphate 0.005

Glycine 0.005

Glucose 0.009

Raffinose 0.009

Lutein 0.010

Methionine 0.011

Serine 0.012

Ubiquinone-50 (Coenzyme Q10) 0.013

Succinate 0.014

Alanine 0.014

Tryptophan 0.014

DOPA 0.015

2,3-dimethyl-5-phytyl-Quinol 0.015

Sucrose 0.018

GABA 0.021

Valine 0.022

Linoleate (C18:cis[9, 12]2) 0.027

Glutamine 0.028

Arginine 0.035

Phenylalanine 0.036

Glycerol-3-P (polar fraction) 0.039

Eicosenoate (C20:1) 0.040

Fructose 0.041

Ferulate 0.043

Inositol 0.045

beta/gamma-Tocopherol 0.047

Leucine 0.047

alpha-Tocopherol 0.049

Zeaxanthin 0.049

Smoothness values were calculated on data previously smoothed using 
the moving average method. Only known metabolites with a 
smoothness value below 0.05 are listed.

Timing of maxima and minima for metabolites across a 12 h light and 12 h night cycle, in rosettes of Arabidopsis Col0 WT plantsFigure 3

Timing of maxima and minima for metabolites across a 12 h light and 12 h 
night cycle, in rosettes of Arabidopsis Col0 WT plants. Data were 
smoothed prior to calculations. The shaded region indicates the dark 
period.
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enzyme activities became apparent, while the changes in

metabolites became only slightly larger. Only data for enzyme

activities and metabolites are available for 72 and 144 h. At

these times, there were large changes in sets of enzyme activ-

ities and metabolites.

Comparison of changes in specific transcripts, enzyme 

activities and metabolites

The data set was next inspected to identify examples where

changes of metabolites in pgm or prolonged darkness can be

associated with the induction or repression of specific path-

way genes and/or variations in enzyme activities.

In central carbon metabolism, the accumulation of sugars in

pgm in the light includes an increase of sucrose and a partic-

ularly large increase of glucose and fructose. The pgm mutant

has increased levels of transcripts for most of the gene family

for sucrose-P synthase, a small increase in sucrose-P synthase

activity, a large increase in the levels of transcripts for two and

a small increase in the levels of transcripts for another three

genes encoding acid invertase, and a large increase in acid

invertase activity (Figures 1 and 4). The lower levels of tran-

scripts and activities for enzymes involved in glycolysis and

organic acid synthesis in WT in prolonged darkness and in

pgm is accompanied by lower average levels of pyruvate and,

to a lesser extent, malate and fumarate. It should be noted

that there are also changes in these metabolites within the

diurnal cycles, and that these are not related to momentary

changes in the enzyme activity (as measured in optimized

conditions in vitro). Thus, changes in enzyme levels contrib-

ute to the mid-term shifts of metabolite levels, but are not

responsible for the shorter-term changes within an individual

diurnal cycle. The same holds for many of the other metabo-

lites discussed in this section.

Qualitative agreement was also found between changes in

transcript levels, enzyme activities and mid-term changes in

metabolites in nitrogen metabolism. The levels of glutamine

and glutamate were always lower in pgm than in WT Arabi-

dopsis (Figure 4), as were the activities of nitrate reductase,

glutamine synthetase and ferredoxin-glutamate synthase and

transcript levels for the corresponding genes (Figure 1). It is

known that nitrate reductase expression is regulated by sug-

ars, acting at the level of transcription, translation and pro-

tein stability [43]. The levels of most minor amino acids,

including the aromatic and branched chain amino acids,

increased in a prolonged night and in pgm. This was associ-

ated with increased levels of transcripts for genes assigned to

amino acid degradation, including GDH and several genes

annotated as branched chain amino acid dehydrogenases

[22,37], and increased glutamate dehydrogenase activity

(Figure 4).

Agreement between the three functional levels was also found

for phospholipid biosynthesis. Several genes predicted to be

involved in plastidial phospholipid synthesis [44] showed a

marked diurnal cycle in the pgm mutant ([Additional data file

3]) and for some a strong decrease in transcript levels was

observed in an extended night. For example, transcripts

encoding the enzymes catalyzing the first two steps of the

pathway, plastidial glycerol-3P dehydrogenase and glycerol-

3P acyltransferase, showed a four-fold reduction after 48 h of

prolonged night, and were also found to be lower in pgm.

Glycerol-3P dehydrogenase activity was significantly (with a

p value of 2E-8) decreased by 26% in pgm compared to WT

during the diurnal cycle, and decreased gradually in a pro-

longed night (Figure 9a). Glycerol-3-P levels were lower in

pgm and decreased in a prolonged night. Furthermore, these

alterations were accompanied by a decrease in the levels of

fatty acids in pgm and in WT after an extended night,

especially C16:2, which is essentially contained in plastid

glycerolipids (see above).

In some cases, there is agreement between the changes in the

levels of transcripts and metabolites, but enzyme activities

are not available to establish a clear correlation between all

three levels. For example, the lower levels of inositol found in

pgm and WT plants exposed to several days of darkness were

associated with the strong induction of MIOX2 and MIOX4,

which encode related inositol oxidases [45] (Figure 9b; [Addi-

tional data file 3]). The decreased levels of isopentenyl pyro-

phosphate observed after several days of prolonged darkness

and in the pgm mutant were related to coherent changes in

the levels of transcripts of a large proportion of genes encod-

ing enzymes from the non-mevalonate pathway. Typically,

these transcripts dropped strongly at night in pgm, or in WT

plants transferred to a prolonged night ([Additional data file

3]). In contrast, no consistent changes were found within the

mevalonate pathway. This suggests that at low carbon levels,

the decrease in isopentenyl pyrophosphate synthesis mainly

occurs within the chloroplast, as the non-mevalonate path-

way is located in the plastids and the mevalonate pathway is

in the cytosol [46].

In other cases, there are discrepancies between the functional

levels. Cytosolic fructose-1,6-bisphosphatase and ADP-glu-

cose pyrophosphorylase activity change independently of the

levels of the corresponding transcripts. This discrepancy

indicates that translation or degradation of these enzymes is

regulated. These two enzymes and NADP-glyceraldehyde-3P

dehydrogenase activity also respond differently in pgm and in

a prolonged night, with activity being lower during the diur-

nal cycle in pgm, especially in the light, but unchanged or

even increased in a prolonged night (Figure 1). One possibility

is that the high sugar levels during the light period in pgm

inhibits translation and/or promotes degradation of these

proteins. Another example relates to shikimate

dehydrogenase: lower levels of shikimate in pgm and in a

prolonged dark treatment correlate with decreased activity of

shikimate dehydrogenase, but there are no marked changes

in SDH transcript levels. This indicates that post-transcrip-
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Figure 4 (see legend on next page)
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tional mechanisms contribute to the regulation of this

enzyme.

There are also cases where discrepancies are already appar-

ent, even though only two of the three functional levels have

been analyzed. The increase in tocopherols in extended

darkness and in pgm could not be related to any clear change

at the level of transcripts for genes involved in tocopherol

synthesis (data not shown). A similar picture emerged for fer-

ulate, which decreased in a prolonged night and was lower in

the pgm mutant. In these examples, measurements of

enzyme activity or protein will be needed to define whether

the changes in metabolites are due to translational or post-

translational regulation.

Comparison of the global relationship between 

metabolite levels and transcript levels

The data set was also analyzed to detect correlations between

metabolite and transcript levels. The relatively slow response

of enzyme activities and most metabolites to changes in tran-

script levels indicates that most correlations during short

term responses will be due to regulation of gene expression by

metabolites, rather than vice versa.

We first compared the changes in levels of metabolites and

transcripts during the diurnal cycle. The first step in the anal-

ysis involved calculation of Pearson's correlation coefficients

between metabolites during diurnal cycles in WT or pgm

(Figure 10). These are visualized as a correlation network.

Several features of the network mirrors known functional

relationships. For example, glucose and fructose were con-

nected, as were a set of intermediates from the photorespira-

tory pathway (glycine, serine, glycerate). The next step was to

search for correlations (Pearson) between metabolites and

the diurnal changes in transcript levels for all the genes on the

ATH1 array. The number of genes that correlated with a

metabolite (p < 0.01) is represented by the size of the green

circle (see figure legend for scale). The number of transcripts

that were correlated to sugars increased dramatically in pgm

(Figure 10).

While the analysis in Figure 10 documents a qualitative dif-

ference between WT and pgm, these separate data sets con-

tain too few data points to provide highly significant p values

for individual genes. The data sets for diurnal cycles in WT

and pgm and for WT transferred to an extended night were,

therefore, combined and re-analyzed to determine if there

was a relationship between the p values of the correlation

coefficients and selected metabolites (Figure 11a). This was

done using values for sucrose, fructose and glucose that had

been obtained by reanalysis using enzyme-based assays. The

results obtained with fructose are not shown, as glucose and

fructose were highly correlated, and, therefore, both sugars

have similar correlations with transcripts. In addition, we

measured glucose-6-P, an intermediate in sugar metabolism.

The transcript and metabolite levels were expressed on a log-

arithmic scale before analyzing the correlation coefficients. A

large number of genes showed a high positive or negative cor-

relation with sucrose or glucose-6-P. Relatively few genes

showed a positive, and even less a good negative, correlation

with glucose. A similar trend but with slightly fewer correla-

tions was obtained when log values of transcript levels were

compared with untransformed metabolite levels. Correla-

tions calculated between untransformed transcript values

and logarithmic metabolite values gave the lowest enrich-

ments (data not shown).

To provide independent evidence that expression of these

genes may be regulated by sugars or closely related metabo-

lites, several transcript profiling data sets from published

experiments in which sugar levels were changed by several

different methods were inspected to complete a list of 1,312

'sugar responsive' genes. The criteria were that the genes

show: a >2-fold change after addition of 15 mM glucose or 15

mM sucrose to Arabidopsis seedlings that had been carbon-

starved for two days; and a >2-fold change between Arabi-

dopsis rosettes that had been illuminated for 4 h in the

presence of ambient [CO2] or low [CO2] to prevent photo-

synthesis [37]. The procedure is described in [37], where it is

additionally shown that about 70% of these sugar-regulated

genes show diurnal changes in WT, and even more in pgm. A

list of these genes is provided in [Additional data file 4]. Fig-

ure 11a shows, for the genes whose transcript levels correlate

positively or negatively with glucose, sucrose or glucose-6-P

in the combined data set, what proportion is found in this list

of 1,312 'sugar-responsive' genes. There was an increasingly

large overlap as the p value was increased (Figure 11b). At p

values <0.001, the highest overlap was found for the genes

that correlated with glucose-6-P and sucrose (847 genes, that

is to say >60% of sugar responsive genes).

In a reverse comparison, we asked what proportion of the

1,312 sugar-responsive genes shows highly significant p val-

ues (<10-3) with sucrose, glucose-6-phoshopate or glucose in

the combined data set. To do this, the genes showing a corre-

lation with glucose, sucrose or glucose-6-P with a p value <10-

3 (Figure 11a) were filtered, by requiring that they should be in

the list of 1,312 'sugar-responsive' genes. This operation can

Heat map representing the changes in metabolites throughout one day and night cycle in rosettes of Arabidopsis Col0 WT plants, in Col0 pgm growing in a 12 h night and day cycle, and in WT plants transferred to an extended night (XN)Figure 4 (see previous page)

Heat map representing the changes in metabolites throughout one day and night cycle in rosettes of Arabidopsis Col0 WT plants, in Col0 pgm growing in a 
12 h night and day cycle, and in WT plants transferred to an extended night (XN). Log2 ratios were calculated for each value by dividing it by the average 
of diurnal WT values and applying the logarithm (base 2). Log2 ratios give the intensity of the blue or red colors, according to the scale bar. CHO, 
carbohydrate.
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Figure 5 (see legend on next page)
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be performed in a spreadsheet provided in [Additional data

file 4]. Of the 1,312 genes in the 'sugar-responsive' set, 426

showed positive and 125 negative correlations with glucose,

626 positive and 408 negative correlations with sucrose, and

579 positive and 371 negative correlations with glucose-6-

phosphate in the combined data set. More genes correlate

with changes of sucrose or glucose-6-P than with glucose.

Further, sucrose and glucose-6-P induce and repress similar

proportions of genes during diurnal cycles, whereas glucose

acts mainly to induce gene expression (Figure 11a). In total,

this analysis identified a robust core of 1,141 genes whose

transcripts correlate with endogenous changes in sugars, and

also changes in response to addition of sugars and to a treat-

ment that alters the endogenous sugar level.

Hexoses are sensed via at least three pathways, including one

that does not require phosphorylation, one that requires

hexokinase as a sensor, and one that requires phosphoryla-

tion of glucose [47], whereas there may be separate sucrose-

specific sensing and signaling pathways [48]. The sensing

mechanisms for sucrose are largely unknown. There is con-

siderable overlap between genes that correlate with sucrose

or glucose-6-phosphate, but little overlap between these and

the genes that correlate with glucose (Figure 11b). It is tempt-

ing to speculate that glucose and sucrose act via different

pathways. To further test this hypothesis, we inspected the

responses of a set of 363 genes that respond >2-fold 30 min-

utes after adding sucrose to carbon-starved seedlings (Osuna

D, Usadel B, Morcuende R, Gibon Y, Bläsing OE, Höhne M,

Günter M, Kamlage B, Trethewey R, Scheible WR, and Stitt

M, unpublished). Of these 363 genes, 194 and 188 were corre-

lated at a p value of <0.001 to sucrose or glucose-6-P,

respectively. Only 68 genes were found to be correlated to

glucose at this p value.

Blaesing et al. [37] used a set of filters to identify genes whose

expression might be subject to sugar-regulation during the

diurnal cycle. The correlative approach in the present paper

provides a refined list of candidate genes that may be regu-

lated by a particular sugar or their derivatives ([Additional

data file 4]). To assign genes to a given sugar, we performed a

ranking based on the p values ([Additional file 4]). With strin-

gent p values below 10-6, 8 genes were assigned to glucose,

493 to sucrose, and 211 to glucose-6-P. Strikingly, all six

sugar-regulated genes encoding trehalose phosphate syn-

thases or phosphatases were highly correlated to sucrose

and/or to glucose-6P, namely At4g17770 (TPS5), At1g70290

(TPS8), At1g23870 (TPS9), At1g60140 (TPS10) and

At2g18700 (TPS11) and At2g22190 (TPP H). An over-repre-

sentation analysis using Fisher exact tests as in [49] was per-

formed using MapMan [22,32] BINs as categories to identify

functional groups of genes that may respond to a given sugar.

This approach was carried out with genes that were positively

correlated to the various sugars at different p value

thresholds. Genes involved in protein biosynthesis were over-

represented among genes for which transcript levels are pos-

itively correlated to sugars (see [Additional data file 4] for

accession codes) and genes involved in protein degradation

were over-represented among the negatively correlated genes

(Fisher exact test; see [Additional data file 4] for accession

codes). This suggests the occurrence of tight links between

sugar sensing and protein turnover. Previous studies have

shown that a number of genes involved in protein synthesis

are repressed and genes involved in protein degradation are

induced in carbon starved Arabidopsis [22,50].

About 5,500 genes correlate (p <10-3) with sucrose, glucose or

glucose-6-P in diurnal changes and extended night treat-

ments (Figure 10a,b), but are absent from the list of 1,312

'sugar-responsive' genes. These correlations may be due to

secondary effects, or the genes might have been excluded

from the list of 'sugar responsive' genes because they do not

respond in one of the treatments used as filters in compiling

this list. Similarly, genes that are regulated by a sugar-related

input will not be necessarily correlated to endogenous sugar

levels in a given set of treatments. For some genes, sugar

repression only takes places below a given threshold, which is

not passed in a diurnal cycle in WT plants. For example, the

transcripts encoding inositol oxidases, MIOX2 and MIOX4,

show little or no diurnal variations in WT (Figure 8b), but

respond strongly to carbon starvation in both WT in a pro-

longed night and pgm at night.

Further experiments are needed to validate these correla-

tions, and establish whether they reflect a causal relationship

in which metabolites directly or indirectly regulate gene

expression. Use of a wider range of conditions might exclude

some false positives. However, stringent validation will

require additional strategies, for example, the use of reverse

genetics to generate small changes in the levels of specific

metabolites. A two- to three-fold decrease in protein level and

enzyme activity typically has little or no impact on the path-

way flux, but often leads to small shifts in the levels of the sub-

strates, products and other ligands of the enzyme, and other

closely linked metabolites [51,52]. A partial inhibition of gene

expression can be obtained using techniques like antisense

RNA or interference RNA. The availability of large collections

of knock-out mutants may allow a general strategy to be used,

in which heterozygotes are used to partially inhibit enzyme

activity. For many enzymes, activity is halved in a heterozy-

Comparative analysis of metabolite profiles obtained from Arabidopsis Col0 pgm and WT plants transferred to an extended night (XN)Figure 5 (see previous page)

Comparative analysis of metabolite profiles obtained from Arabidopsis Col0 pgm and WT plants transferred to an extended night (XN). Heat map 
representing the differences in amplitudes of diurnal changes in individual metabolites calculated as maximum value - minimum value from smoothed data 
in WT and pgm (left); Log2 values of average (pgm) to average (WT) levels (middle), and Log2 values of average(WT) to 144 h XN (right). Scales are given 
in the legend.
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Correlation plots comparing changes in 137 metabolites in pgm to changes due to the extension of the night in WTFigure 6

Correlation plots comparing changes in 137 metabolites in pgm to changes due to the extension of the night in WT. Colored plots correspond to the 
metabolites listed in the legend.
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gote between the WT and a null mutant [52]. A further possi-

bility is the use of inducible gene expression to generate small

and reversible changes in the levels of specific metabolites.

A particular problem in multicellular eukaryotes is that cellu-

lar or subcellular compartmentation can mask correlations

between a specific pool of a metabolite and the transcript

level. For example, whereas sucrose is distributed between

the cytoplasm and vacuole in leaves, the vast majority of the

glucose is located in the vacuole [53]. The poor correlation

between transcript levels and glucose noted above shows that

vacuolar glucose is not a major signal, but it remains possible

that other smaller pools of glucose in other compartments, or

fluxes of glucose between compartments, act as signals. In

principle, techniques are available to allow comprehensive

measurements of subcellular metabolite levels [53]. How-

ever, such measurements would be very time consuming, and

would not provide reliable information about minor pools

due to errors in correcting for cross-contamination. Powerful

technologies are emerging that use imaging techniques to

measure the local concentrations of specific metabolites

[54,55]. A complementary strategy would be to use reverse

genetics to generate targeted changes in metabolites in spe-

cific compartments. For example, overexpression of invertase

in the vacuole, the cytosol and the cell wall space can be used

as a strategy to alter the sucrose/reducing sugar ratio in these

different metabolic compartments [51]. Notwithstanding cur-

rent limitations, the occurrence of highly significant correla-

tions in light/dark cycles and their independent validation in

independent experiments in which sugars are added or

endogenous pools are manipulated by changing [CO2] pro-

vides an initial step in dissecting these interactions.

Conclusion
It is not yet possible to systematically establish a comprehen-

sive gene-protein-metabolite network in plants, due to theo-

retical limitations in current gene annotations and technical

limitations that prevent the measurement of all enzymes and

metabolites (see Background). However, analysis of the

dynamics of enzymes and metabolites that are technically

accessible does allow a general comparison of responses and

dynamics at these different levels of metabolic function,

provided enough parameters are analyzed to obtain a repre-

sentative picture of the response at each functional level. In

the experimental systems studied in this article, levels of tran-

scripts and some metabolic intermediates in central metabo-

Figure 7
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Distribution of amplitudes of diurnal changes in transcripts, metabolites and enzyme activitiesFigure 7

Distribution of amplitudes of diurnal changes in transcripts, metabolites 
and enzyme activities. Distribution of amplitudes of diurnal changes in (a) 

2,433 transcripts assigned to metabolism, (b) the subset of 82 transcripts 
encoding the enzymes measured, (c) 23 enzyme activities, and (d) 137 
metabolites. Distributions are expressed as probability densities and were 
calculated with R using the function 'density', which computes kernel 
density estimations. The same bandwidth of 0.06 was used for all datasets.
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lism show rapid changes, but the majority of the 137

metabolites investigated show slow changes, which reflect the

dynamics with which changes in transcript levels lead to

changes in 23 enzyme activities. These results have two

important implications. First, the enzyme activity profile and

the metabolite profile represent an integration, over time, of

faster but more transient changes in transcript levels. This

may reflect the fact that plants are subject to recurrent diur-

nal changes and many other irregular fluctuations with a time

frame of hours, days or weeks. The temporal dynamics of

enzyme turnover may be hardwired to allow the metabolic

phenotype to adjust to changes when they are maintained for

several days, while being largely independent of short term

fluctuations or recurring diurnal changes. Second, the slow

response of enzyme activities, and the resulting time delay

between changes in transcript levels and changes in metabo-

lite levels, implies that correlations between transcripts and

metabolites are likely to reflect a regulatory impact of

metabolites on gene expression, rather than the impact of

changes of gene expression on metabolism.

Even though a comprehensive analysis is not yet possible,

analysis of the responses of individual parameters at all three

levels already provides some functional information. Analysis

of the responses of transcript and metabolite levels identified

over 1,141 transcripts, whose levels are strongly correlated

with endogenous changes of sugars, and half of which could

be cross-validated by analyzing how they respond to changes

in levels of sugars in other experimental systems. Further

experiments will be required, for example using genotypes

Distribution of global changes in transcript and metabolite levels and enzyme activities during the diurnal cycle and an extended night (XN)Figure 8

Distribution of global changes in transcript and metabolite levels and enzyme activities during the diurnal cycle and an extended night (XN). Distribution of 
changes in (a) 2,433 transcripts assigned to metabolism, (b) 23 enzyme activities and (c) 140 metabolites after 2, 4, 8, 24, 48, 72 and 144 h of extension of 
the night. Transcript levels were not determined at 72 and 144 h. Distributions are expressed as probability densities and were calculated with R using the 
function 'density', which computes kernel density estimations. The same bandwidth of 0.2 was used for all datasets.
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Details of specific changes in transcript levels, metabolites and enzyme activities during the diurnal cycle and an extended nightFigure 9

Details of specific changes in transcript levels, metabolites and enzyme activities during the diurnal cycle and an extended night. Changes in specific 
transcripts, enzyme activities and metabolites in rosettes of Arabidopsis Col0 WT plants (WT diurnal) and pgm (pgm diurnal) throughout a day and night 
cycle, and in WT transferred to an extended night. (a) Glycerolipid metabolism: levels of transcripts encoding glycerol-3P dehydrogenase (At5g40610) and 
fatty acid desaturase 6 (At4g30950), activity of glycerol-3P dehydrogenase, and levels of glycerol-3P and palmitolenate. (b) Inositol metabolism: levels of 
transcripts encoding inositol oxidase (At5g56640, At4g26260 and At2g19800), and inositol levels. FW, fresh weight.
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Figure 10 (see legend on next page)
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with altered levels of specific enzymes or transporters, to

generate more specific changes in the levels of individual

metabolites and their subcellular pools and identify the

underlying metabolic signals more precisely. Analyses of the

combined changes in transcript levels, enzyme activities and

metabolites also identified cases where changes in expression

could contribute to the changes in metabolism, and other

cases where additional regulation at the level of protein syn-

thesis or degradation is probably required.

More generally, our results show that comprehensive infor-

mation about protein levels is required to dissect the causal

relationship between transcription and cellular responses.

The present analysis used robotized enzyme assays as a proxy

for protein levels. Enzyme activity measurements are precise,

have a relatively high throughput, do not require expensive or

complex infrastructure and can be used in species where com-

prehensive genome sequence data are not available. How-

ever, it is sometimes not possible to unambiguously link the

measured enzyme activity to a single gene, and this approach

is only applicable to a small sector of the genome, that is,

genes that encode enzymes whose activities can be easily

measured. Advances in hardware and data evaluation

software are currently allowing advances in quantitative pro-

teomics [3,12]. This will ultimately allow comprehensive

analysis of the dynamics of all types of proteins, including

those involved in signaling and cellular structure.

Materials and methods
Plant growth

Arabidopsis thaliana var Col0, WT, and a plastidic pgm [38]

were grown in an 8 h day growth chamber. At least 3 weeks

before their use, the plants were transferred into a small

growth cabinet with a 12 h day of 160 μE and 20°C throughout

the day/night cycle. Harvests of 15 plant rosettes at a time

point were carried out sequentially every 2 or 4 h within a

day/night cycle, or after 0, 2, 4, 8, 24, 48, 72 and 144 h in total

darkness. Each sample typically contained 3 rosettes, equiva-

lent to approximately 500 mg fresh weight. The entire sample

was powdered under liquid nitrogen and stored at -80°C until

its use. Each experiment was repeated two times.

RNA isolation and expression analysis with 22K 

Affymetrix arrays

Isolation of total RNA, cDNA synthesis, cRNA labeling and

the hybridization on the GeneChip Arabidopsis ATH1

genome array was done as described in [22] and recom-

mended by the manufacturer (part no. 900385, Affymetrix

UK Ltd., High Wycombe, UK). The microarray suite software

package (MAS 5.0, Affymetrix) was used to evaluate probe set

signals of the array. The generated data files (.cel) were the

input for the software package RMAExpress, which was used

to normalize and estimate raw signal intensities [56]. Nor-

malization was performed on the entire set of transcript pro-

files used in the present study, that is, WT and pgm diurnal

cycles [37], and WT transferred to 0, 2, 4, 8, 24 and 48 h of

extension of the night ([Additional data file 2]).

Extraction and assay of metabolites

Batches of 15 samples, and 5 control samples obtained from

200 Col0 rosettes grown in the greenhouse, pooled and

homogenized, were used. The analysis of metabolites by GC-

MS was performed as described in [17]. The LC-MS [57], anal-

yses were performed using an Agilent 1100 capillary LC sys-

tem (Agilent, Technologies, Waldbronn, Germany) coupled

with an Applied Biosystems/MDS SCIEX API 4000 triple

quadrupole mass spectrometer (Applied Biosystems, Darm-

stadt, Germany). After reversed phase HPLC separation,

detection and quantification was performed in the multiple

reaction monitoring (MRM) mode [58]. Results are

expressed as ratios between samples and the median calcu-

lated for control samples. Sucrose, glucose, fructose and glu-

cose-6P were extracted and measured as in [36].

Extraction and assay of glycerol-3P dehydrogenase

Aliquots of 20 mg fresh weight were extracted by vigorous

mixing with 1 ml extraction buffer. The composition of the

extraction buffer was 20% (v/v) glycerol, 0.25% (w/v) bovine

serum albumin, 1% (v/v) Triton-X100, 50 mM Hepes/KOH

pH 7.5, 10 mM MgCl2, 1 mM EDTA, 1 mM EGTA, 1 mM ben-

zamidine, 1 mM aminocapronic acid, 10 μM leupeptin and 1

mM DTT.

Glycerol-3P dehydrogenase activity was determined in micro-

plates using a stopped assay, in which 2 μl extract as well as

glycerol-3P standards prepared in the extraction buffer and

ranging from 0 to 100 μM were incubated for 30 minutes in

20 μl medium containing 50 mM Hepes/KOH pH 7.5, 10 mM

MgCl2, 0.5 mM NADH, and 0 or 1 mM dihydroxyacetone-P.

The reaction was stopped with 20 μl of 0.5 M NaOH. After

heating for 10 minutes at 95°C to destroy dihydroxyacetone-

P [59], the wells were neutralized with 20 μl of 0.5 M HCl.

Glycerol-3P was then determined as in [4].

Statistics

Standard procedures were carried out using functions of the

Microsoft Excel program. Heat maps were generated in Excel

using a macro. Smoothness was calculated as described in [4].

Density plots were calculated in R [60] using the 'density plot'

Metabolite correlation networks resulting from diurnal changesFigure 10 (see previous page)

Metabolite correlation networks resulting from diurnal changes. Correlation networks of 137 metabolites determined across a day and night cycle in 
Arabidopsis Col0 WT plants and pgm growing in 12 h day/12 h night cycles. Metabolites with significant correlations are linked together; green discs 
represent the number of transcripts correlated to a given metabolite. Solid lines indicate positive correlations, dotted lines indicate negative correlations.
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Figure 11 (see legend on next page)
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function. Smoothing was achieved by calculating means for

two consecutive points.

Correlation networks were generated by calculating all pair-

wise correlations in R and considering all pair-wise correla-

tions with a significant p value (0.05) calculated as described

earlier [61] as connected. The resulting network was then dis-

played using Pajek [62] using the Kamada layout process

option. When displaying correlations of transcripts and

metabolites, the number of transcripts correlated with a

metabolite was indicated by the size of the metabolite token.

Genes showing a significant and strong correlation to glucose,

fructose and sucrose were extracted from the list of sugar reg-

ulated genes generated by [37] using an R script. These were

then tested for a deviation of biological processes defined by

MapMan BINS from all approximately 1,312 sugar regulated

genes using Fisher's exact test.

All scripts and macros are available upon request.

Additional data files
The following additional data are available with the online

version of this paper. Additional data file 1 lists metabolite

levels in WT and pgm throughout a 12 h day/12 h night cycle,

and in WT plants transferred to an extended night for 2, 4, 8,

24, 48, 72 and 148 h. Data are expressed as means and stand-

ard deviation (n = 5) of ratios to the median calculated for a

set of 5 control samples. Additional data file 2 lists Affymetrix

array data for the conditions described. Data are given as

means of RMA-normalized data, and numbers of replicates

are indicated. Additional data file 3 lists levels of transcripts

encoding enzymes involved in the glycerolipid and inositol

metabolism, and the mevalonate and non-mevalonate

pathways. Transcript levels were determined using the

Affymetrix ATH1 array.Additional data file 4 lists correlation

coefficients (Pearson) calculated between sugar responsive

genes and sucrose, glucose or fructose. Sugar responsive

genes were retrieved from [37]. Significant correlation coeffi-

cients are indicated in bold.

Additional data file 1Metabolite levels in WT and pgm throughout a 12 h day/12 h night cycle, and in WT plants transferred to an extended night for 2, 4, 8, 24, 48, 72 and 148 hData are expressed as means and standard deviation (n = 5) of ratios to the median calculated for a set of 5 control samplesClick here for fileAdditional data file 2Affymetrix array data for the conditions describedData are given as means of RMA-normalized data, and numbers of replicates are indicatedClick here for fileAdditional data file 3Levels of transcripts encoding enzymes involved in the glycerolipid and inositol metabolism, and the mevalonate and non-mevalonate pathwaysTranscript levels were determined using the Affymetrix ATH1 arrayClick here for fileAdditional data file 4Correlation coefficients (Pearson) calculated between sugar responsive genes and sucrose, glucose or fructoseSugar responsive genes were retrieved from [37]. Significant corre-lation coefficients are indicated in boldClick here for file
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