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[1] We propose the Breathing Earth System Simulator (BESS), an upscaling approach to
quantify global gross primary productivity and evapotranspiration using MODIS with a
spatial resolution of 1–5 km and a temporal resolution of 8 days. This effort is novel
because it is the first system that harmonizes and utilizes MODIS Atmosphere and Land
products on the same projection and spatial resolution over the global land. This enabled us
to use the MODIS Atmosphere products to calculate atmospheric radiative transfer for
visual and near infrared radiation wave bands. Then we coupled atmospheric and canopy
radiative transfer processes, with models that computed leaf photosynthesis, stomatal
conductance and transpiration on the sunlit and shaded portions of the vegetation and soil.
At the annual time step, the mass and energy fluxes derived from BESS showed strong
linear relations with measurements of solar irradiance (r2 = 0.95, relative bias: 8%), gross
primary productivity (r2 = 0.86, relative bias: 5%) and evapotranspiration (r2 = 0.86,
relative bias: 15%) in data from 33 flux towers that cover seven plant functional types
across arctic to tropical climatic zones. A sensitivity analysis revealed that the gross
primary productivity and evapotranspiration computed in BESS were most sensitive to leaf
area index and solar irradiance, respectively. We quantified the mean global terrestrial
estimates of gross primary productivity and evapotranpiration between 2001 and 2003 as
118 � 26 PgC yr�1 and 500 � 104 mm yr�1 (equivalent to 63,000 � 13,100 km3 yr�1),
respectively. BESS-derived gross primary productivity and evapotranspiration estimates
were consistent with the estimates from independent machine-learning, data-driven
products, but the process-oriented structure has the advantage of diagnosing sensitivity of
mechanisms. The process-based BESS is able to offer gridded biophysical variables
everywhere from local to the total global land scales with an 8-day interval over multiple
years.
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1. Introduction

[2] There is great interest and need to estimate terrestrial
trace gas and energy fluxes (e.g., CO2 and water) every-
where (e.g., local to the global land) and all the time (e.g.,

8-daily over multiple years). There have been recent advan-
ces to produce such estimates by using machine-learning
techniques in conjunction with remote sensing data and the
flux tower data derived from sparse networks [Beer et al.,
2010; Jung et al., 2010; Xiao et al., 2010]. However, the
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machine-learning technique relies on empirical relation-
ships between forcing variables and fluxes [Jung et al.,
2009], and it only works within the domain of data on
which it is trained.
[3] A process-based diagnostic model that is calibration-

free and can be applied globally has the advantage of
explaining the response of ecosystem metabolism to global
change. This task requires understanding and quantifying a
set of coupled and highly nonlinear biophysical processes
that span 14 orders of magnitude in time and space [Jarvis,
1995; Osmond et al., 1980]. While a generation ago, such
an approach was discouraged due to concerns about the issue
of “garbage-in and garbage-out” [de Wit, 1970]. Today,
advancements in remote sensing, micrometeorology and
ecophysiology together with some recent meta-analysis
studies enable us to deduce key parameters and generate
input variables to quantify mass and energy fluxes at high
spatial and temporal resolution and across vast spatial and
temporal scales.
[4] The key processes that are essential to quantify trace

gas and energy fluxes have been identified. First, photosyn-
thesis and transpiration needs to be coupled as they constrain
each other via the stomata [Baldocchi, 1997; Baldocchi and
Meyers, 1998; Collatz et al., 1991; Leuning et al., 1995].
Second, a two-leaf model (i.e., sunlit and shaded leaves) is
more effective than a big leaf model; it is needed to consider
nonlinear processes in canopy radiative transfer and trace
gas fluxes [Chen et al., 1999; Dai et al., 2004; de Pury and
Farquhar, 1997; Norman, 1982; Sinclair et al., 1976; Wang
and Leuning, 1998]. Third, foliar clumping effects should be
considered as they influence canopy radiative transfer
[Norman and Jarvis, 1975; Ryu et al., 2010a, 2010b],
change the proportion of sunlit and shade leaves, and con-
sequently modify canopy fluxes [Baldocchi and Wilson,
2001; Baldocchi et al., 1984; Chen et al., 1999; Lemeur
and Blad, 1974]. Fourth, atmospheric and land processes
should be coupled as the environment of incoming short-
wave radiation (e.g., the amount of diffuse radiation, solar
zenith angle) substantially modulates surface reflectance
and canopy processes [Alton et al., 2007; Gu et al., 2002;
Kobayashi and Iwabuchi, 2008; Ryu et al., 2010c].
[5] Most land surface flux models that use satellite-derived

parameters and variables have not yet incorporated those
processes. Typically, gross primary productivity (GPP) has
been estimated using light use efficiency models [Hilker
et al., 2009; Ruimy et al., 1996; Running et al., 2004] or
vegetation indices [Huete et al., 2008; Sims et al., 2008].
Evapotranspiration (ET) has been inferred from the energy
balance residual [Norman et al., 1995; Su, 2002], the
Priestley-Taylor equation [Fisher et al., 2008; Priestley and
Taylor, 1972], the Penman-Monteith equation [Cleugh et al.,
2007; Monteith, 1965; Mu et al., 2007] or the hydrological
balance [Rodell et al., 2004]. More recently, a statistical
approach using machine-learning techniques has emerged as
a new tool to quantify GPP and ET [Beer et al., 2010; Jung
et al., 2009; Xiao et al., 2010]. However, even fewer studies
have attempted to connect GPP and ET in concert, at global
scales [Yuan et al., 2010]. Furthermore, many global models
used data inputs and parameters from a mixture of fine
(1 km) and coarse (0.5 to 1 degree) space scales. For
example land surface properties like leaf area index (LAI),
vegetation indices, and land surface temperature were

derived with �1 km resolution. In contrast, many models
derived incoming solar irradiance, the most important driver
of biophysical processes, and meteorological variables from
coarse reanalysis data such as 1-degree resolution of DAO
[Zhao et al., 2005] and ISLSCP-II [Fisher et al., 2008],
0.5-degree resolution of MERRA [Yuan et al., 2010], and
0.125-degree resolution of NLDAS [McCabe et al., 2008].
Thus it is important to recognize that there is a scale mis-
match between land surface and atmospheric inputs that
remains a challenge.
[6] Recent advances in remote sensing, ecophysiology and

recent meta-analysis offer new opportunities to incorporate
the key processes mentioned above into remote-sensing-
based land surface models. The tight correlation between
albedo and nitrogen concentration at closed canopy in tem-
perate and boreal forests [Hollinger et al., 2010; Ollinger
et al., 2008] enables us to apply Farquhar’s photosynthe-
sis model at coarse spatial scales using remote sensing.
Several studies have demonstrated that MODIS atmospheric
products can provide solar irradiance and meteorological
variables at high spatial resolution (1–5 km) [Liang et al.,
2006; Ryu et al., 2008a; Van Laake and Sanchez-Azofeifa,
2004], which provides a possibility to couple land surface
and atmospheric processes at high spatial resolution. Next, a
global scale foliar clumping index map by using multiangle
satellite images has been developed and tested [Chen et al.,
2005; Pisek et al., 2010]. Thus accurate calculation of can-
opy radiative transfer that is important in controlling GPP
and ET has become possible by integrating incoming solar
irradiance, LAI and clumping index information.
[7] In spite of the recent advances mentioned above, one

important barrier to global scale remote sensing research
remains. That is the computational resource and data stor-
age. Global scale remote sensing study requires handling
terabytes of data, in particular when targeting high spatial
resolution (e.g., 1–5 km). Many environmental scientists do
not have access to a high-performance computing to over-
come such computational barriers. Recently, as an alterna-
tive, the cloud computing service (e.g., Microsoft Azure,
Amazon EC2), a kind of web-based super computer, was
used to perform these intensive time-demanding computa-
tions [Li et al., 2010]. Also, corporate collaborations with
scientists have opened doors for global analysis. For exam-
ple, a significant advance is that Landsat satellite imagery
from the last 25 years (much of which was not previously
available online) made available by U.S. Geological Survey
has been processed by the Google Earth Engine using an
analytical tool [Asner et al., 2005], which will allow fine-
scale mapping of deforestation and forest degradation glob-
ally (http://earthengine.googlelabs.com).
[8] In this study, we present the Breathing Earth System

Simulator (BESS) built on the Microsoft Azure cloud
computing service. BESS couples algorithms and models
that compute atmospheric radiative transfer, photosynthesis,
and leaf and soil energy balances by integrating a range of
data streams in MODIS atmospheric and land products
with ancillary data. Together, this system can produce
computations of canopy evaporation and photosynthesis
from 1- to 5-km resolution across the globe at an 8-day
time interval.
[9] The goals of this paper are: first, we describe the BESS

algorithms. Then we evaluate the computational products of
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BESS against 1) data from 33 flux towers across 7 plant
functional types spanning arctic to tropical climatic zones, 2)
data-driven GPP and ET products, and 3) basin scale water
balance data. Last, we use BESS system to address several
key scientific questions that include: 1) can BESS that does
not explicitly consider soil water balance estimate GPP and
ET reliably? 2) what are the global terrestrial estimates of
GPP and ET at annual time scales? 3) how sensitive is BESS
model to environmental and biological drivers?

2. Methods

2.1. BESS Description

[10] BESS is a biophysical model (Figure 1). In this section,
we describe coupled the key modules that include: atmo-
spheric radiative transfer (section 2.1.1), canopy radiative
transfer (section 2.1.2), canopy photosynthesis (section 2.1.3),
maximum carboxylation rate (section 2.1.4), two-leaf canopy
conductance and temperature (section 2.1.5), and evapotrans-
piration (section 2.1.6), which are important to drive this
process based approach.
2.1.1. Atmospheric Radiative Transfer Model
[11] To calculate incoming shortwave radiation (Rs,i, see

nomenclature in Appendix A), photosynthetic active radia-
tion (Rp,i) and near-infrared radiation (Rn,i) for the beam and
diffuse components at the top of canopy, we used an atmo-
spheric radiative transfer model (FLiES) based on the
Monte-Carlo approach [Iwabuchi, 2006; Kobayashi and
Iwabuchi, 2008]. This model was compared with two other
atmospheric radiative transfer models, 6S model [Vermote
et al., 1997] and Streamer V3.0 [Key and Schweiger, 1998],
and they showed good agreement among each other. The
relative RMSE was 4.3% and 6.7%, for between the current
model and 6S model, and for between the current model and

Streamer V3.0, respectively across a range of atmospheric
condition [Kobayashi and Iwabuchi, 2008]. To apply the
atmospheric radiative transfer model to the globe and reduce
computational needs, we developed a look-up-table for each
radiation component. The input variables include: 1) solar
zenith angle (5, 10, …, 85°), 2) aerosol optical thickness at
550 nm (0.1, 0.3, 0.5, 0.7, 0.9), 3) cloud optical thickness
(0.1, 0.5, 1, 5, 10, 20, 40, 60, 80, 110), land surface albedo
(0.1, 0.4, 0.7), 4) cloud top height (1000, 3000, 5000, 7000,
9000 m), 5) atmospheric profile type (tropical zone for
Tropical type, arid and temperate zones for Midlatitude type,
snow and ice zones for High-latitude type; the climate zones
were defined by Köppen-Geiger global climate classification
map (see section 2.4.4), the atmospheric profile was char-
acterized by Hess et al. [1998]), 6) aerosol type (continental
average except for tropical climatic zone whose aerosol type
was assigned as urban to consider high aerosol loading in
tropics [Martin et al., 2010], the aerosol type was charac-
terized by Hess et al. [1998]), and 7) cloud type (cloud-free,
stratus continental, cumulous continental) [Hess et al.,
1998]. We prepared the input data from a range of MODIS
data streams including MOD04 (aerosol optical thickness),
MOD06 (solar zenith angle, cloud optical thickness, cloud
top height), and MCD43 (albedo). As MODIS did not pro-
vide the types of aerosol and cloud, we used two categories
for aerosol (continental average and urban), and applied two
categories for cloud type (stratus continental and cumulous
continental). We used the cumulous continental type for the
tropical climate zone (see section 2.4.4), and the stratus
continental type for the other areas. The sensitivity analysis
revealed that different cloud and aerosol type combinations
could lead to a maximum difference of 10% and 15%,
respectively in the incoming QP calculation (data not
shown).

Figure 1. Overview of the coupled biophysical model (BESS).
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2.1.2. Two-Leaf Canopy Radiative Transfer Model
[12] We applied a simple canopy radiative transfer model

that quantified absorbed photosynthetically active radiation
(PAR), near-infrared radiation (NIR) and longwave radiation
for sunlit and shade leaves. The sunfleck penetration ( fsun),
the probability of leaf area being irradiated by the direct
beam, plays a key role in the model. The sunlit and shaded
leaves receive different amounts of radiation thus the
expected value of canopy fluxes should be weighted by the
fractions of sunlit and shade leaves to consider nonlinear
processes in the canopy fluxes. Gutschick [1991] derived fsun
at canopy depth L for clumped canopy:

fsun Lð Þ ¼
expð�kLWÞ � expð�kðLþ dLÞWÞ

kdL
¼ Wexp �kLWð Þ ð1Þ

All symbols are defined in Appendix A. The list of optical
parameters appears in Table S1 in the auxiliary material.1

Note that W was multiplied before the exponential term too
(W exp(�kLW)). For a canopy with a random leaf spatial
distribution, W = 1 and equation (1) becomes the conven-
tional gap fraction equation (= exp(�kL)).
2.1.2.1. Absorbed Photosynthetically Active Radiation
by Sunlit and Shade Leaves
[13] We modified the PAR penetration model [de Pury

and Farquhar, 1997], by incorporating foliar clumping
effects and reflected PAR from the soil. We replaced exp
(�kL) in the work by de Pury and Farquhar [1997] with
equation (1), and re-derived the set of equations that depend
upon this relation. Total absorbed incoming PAR by the
canopy (QP) is

Qp↓ ¼ 1� rcbPð ÞIPb 0ð Þ 1� exp �k′PbLcWð Þ½ �

þ 1� rcdPð ÞIPd 0ð Þ 1� exp �k′PdLcWð Þ½ � ð2Þ

where 0 and Lc indicate the leaf area index at the top and the
bottom of the canopy, respectively. rcbP and rcdP are canopy
reflectance for beam PAR and diffuse PAR, respectively. IPb
and IPd are direct beam PAR and diffuse PAR, respectively.
k′Pb and k′Pd are extinction coefficient for beam and scattered
beam PAR, and for diffuse and scattered diffuse PAR,
respectively.
[14] The absorbed incoming beam PAR by sunlit leaves

(QPbSun) is

QPbSun↓ ¼ IPb 0ð Þ 1� sPARð Þ 1� exp �kbLcWð Þ½ � ð3Þ

where sPAR is leaf scattering coefficient for PAR. kb is
extinction coefficient for black leaves.
[15] The absorbed incoming diffuse PAR by sunlit leaves

(QPdSun) is

QPdSun↓ ¼ IPd 0ð Þ 1� rcdPð Þ 1� exp � k′Pd þ kbð ÞLcWð Þ½ �k′Pd

= k′Pd þ kbð Þ ð4Þ

The absorbed incoming scattered PAR by sunlit leaves
(QPsSun) is

QPsSun↓ ¼ IPb 0ð Þ 1� rcbPð Þ 1� exp � k′Pb þ kbð ÞLcWð Þð Þk′Pb½

= k′Pb þ kbð Þ � 1� sPARð Þ 1� exp �2kbLcWð Þð Þ=2� ð5Þ

The total absorbed incoming PAR by sunlit leaves is

QPSun↓ ¼ QPbSun↓ þ QPdSun↓ þ QPsSun↓ ð6Þ

The total absorbed incoming PAR by shade leaves is

QPSh↓ ¼ QP↓ � QPSun↓ ð7Þ

A proportion of the incoming PAR penetrates through the
canopy to the soil surface and is reflected up into the canopy,
which could be significant in open canopy with bright
background. The PAR absorbed by the sunlit leaves as a
result of that reflected by the soil is

QPSun↑ ¼ 1�rcbPð ÞIPb 0ð Þ þ 1�rcdPð ÞIPd 0ð Þ � QPSun↓ þ QPsh↓

� �� �

� rsP � exp �k′PdLcWð Þ ð8Þ

where rsP is soil reflectance for PAR.
[16] The PAR absorbed by the shade leaves as a result of

that reflected by the soil is

QPSh↑ ¼ 1� rcbPð ÞIPb 0ð Þ þ 1� rcdPð ÞIPd 0ð Þ � QPSun↓ þ QPsh↓

� �� �

� rsP � 1� exp �k′PdLcWð Þ½ � ð9Þ

Finally, the total PAR absorbed by the sunlit and shade
leaves is

QPSun ¼ QPSun↓ þ QPSun↑ ð10Þ

QPSh ¼ QPSh↓ þ QPSh↑ ð11Þ

2.1.2.2. Absorbed Near-Infrared Radiation by Sunlit
and Shade Leaves
[17] The absorbed NIR by canopy has the same form as

the absorbed PAR in the canopy. However, the canopy
radiative transfer of NIR differs from PAR because photons
are scattered more in the NIR region within the canopy.
Goudriaan [1977] showed that the NIR penetration may
follow the Beer’s law after modifying the extinction coeffi-
cient for beam and scattered beam NIR (k′Nb) and for diffuse
and scattered diffuse NIR (k′Nd):

k′Nb ¼ kb
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� sNIR

p

ð12Þ

k′Nd ¼ 0:35
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� sNIR

p

ð13Þ

where sNIR is leaf scattering coefficient for NIR.
[18] The total incoming NIR absorbed by sunlit leaves is

QNSun↓ ¼ INb 0ð Þ 1� sNIRð Þ 1� exp �kbLcWð Þð Þ

þ INd 0ð Þ 1� rcdNð Þ 1� exp � k′Nd þ kbð ÞLcWð Þð Þk′Nd= k′Nd þ kbð Þ

þ INb 0ð Þ 1� rcbNð Þ 1� exp � k′Nb þ kbð ÞLcWð Þð Þk′Nb= k′Nb þ kbð Þ½

� 1� sNIRð Þ 1� exp �2kbLcWð Þð Þ=2� ð14Þ

where rcbN and rcdN are canopy reflectance for beam NIR
and diffuse NIR, respectively. INb and INd are direct beam
NIR and diffuse NIR, respectively. k′Nb and k′Nd are extinction
coefficient for beam and scattered beam NIR, and for diffuse

1Auxiliary materials are available in the HTML. doi:10.1029/
2011GB004053.
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and scattered diffuse NIR, respectively. sNIR is leaf scatter-
ing coefficient for NIR.
[19] The total incoming NIR absorbed by shade leaves is

QNSh↓ ¼ 1� rcbNð ÞINb 0ð Þ 1� exp �k′NbLcWð Þð Þ

þ 1� rcdNð ÞINd 0ð Þ 1� exp �k′NdLcWð Þð Þ � QNSun↓ ð15Þ

The NIR absorbed by sunlit leaves as a result of that
reflected by the soil is

QNSun↑ ¼ 1�rcbNð ÞINb 0ð Þ þ 1�rcdNð ÞINd 0ð Þ � QNSun↓ þ QNsh↓

� �� �

� rsN � exp �k′NdLcWð Þ ð16Þ

where rsN is soil reflectance for NIR.
[20] The NIR absorbed by shade leaves as a result of that

reflected by the soil is

QNSh↑ ¼ 1� rcbNð ÞINb 0ð Þ þ 1� rcdNð ÞINd 0ð Þ � QNSun↓ þ QNsh↓

� �� �

� rsN � 1� exp �k′NdLcWð Þ½ � ð17Þ

Finally, total NIR absorbed by sunlit and shade leaves is

QNSun ¼ QNSun↓ þ QNSun↑ ð18Þ

QNSh ¼ QNSh↓ þ QNSh↑ ð19Þ

2.1.2.3. Absorbed Longwave Radiation by Sunlit and
Shade Leaves
[21] We calculated longwave radiation absorbed by sunlit

(QLSun) and shade leaves (QLSh) using the Wang and
Leuning [1998] model.

QLSun ¼ �k′LsT
4
a ɛl 1� ɛað Þ 1� exp � kb þ k′Lð ÞLcð Þð Þ= kb þ k′Lð Þð

þ 1� ɛsð Þ ɛl � ɛað Þ 1� exp �2k′LLcð Þð Þ= 2k′Lð Þ

� 1� exp � kb � k′Lð ÞLcð Þð Þ= kb � k′Lð ÞÞ � cpgr TSun � Tað Þ

ð20Þ

where k′L is extinction coefficient for longwave radiation.
ɛa, ɛl and ɛs are emissivity for air, leaf and soil, respec-
tively. cp is specific heat of the air, gr is radiative con-
ductance. TSun and Ta are sunlit leaf and air temperature,
respectively.

QLSh ¼ �k′LsT
4
a ɛl 1� ɛað Þ 1� exp �k′LLcð Þð Þ=k′L � 1� ɛsð Þð

� ɛl � ɛað Þ � exp �k′LLcð Þ 1� exp �k′LLcð Þð Þ=k′LÞ � QLSun

� cpgr TSun � Tað Þ � cpgr TSh � Tað Þ ð21Þ

where TSh is shade leaf temperature.
2.1.2.4. Net Radiation
[22] We calculated net radiation by extending the MODIS

derived clear sky net radiation scheme [Ryu et al., 2008a]
into the whole sky condition that includes clear and cloudy
conditions. The atmospheric radiative transfer model
enabled us to calculate the incoming shortwave radiation
under the whole sky condition. We briefly present the pro-
cedure used in the net radiation calculation here. The out-
going shortwave radiation was calculated as the product of
incoming solar radiation and land surface albedo from
MODIS (MCD43B3). For the cloudy days, we used the

white-sky albedo which represents the albedo for diffuse
conditions. For the clear sky days, we calculated actual
albedo by using a look-up-table provided by Boston Uni-
versity MODIS BRDF project (http://www-modis.bu.edu/
brdf/userguide/tools.html). The look-up-table requires solar
zenith angle, aerosol optical thickness, which all derived
from the MOD04_L2 (aerosol product). For the incoming
longwave radiation, we used the Prata [1996] model. Input
data include air and dew point temperature at the screen
level, which were derived from MOD07_L2 (atmospheric
profile product). Under cloudy conditions when the
MOD07_L2 does not provide temperature information, we
used the NCEP/NCAR reanalysis derived temperature data
included in MOD06_L2 only. The fraction of cloud cover
per each pixel was extracted from MOD06_L2 (1 km), and
the incoming longwave radiation for clear [Prata, 1996] and
cloudy (sTa

4) conditions were combined to produce the
incoming longwave radiation per each pixel [Crawford and
Duchon, 1999]. The outgoing longwave radiation was cal-
culated using land surface emissivity and land surface tem-
perature from MOD11_L2 (land surface temperature
product). For the cloudy sky areas, we used the land surface
temperature from the NCEP/NCAR reanalysis data.
2.1.3. Photosynthesis
[23] We used the biochemical photosynthesis models for

C3 [Collatz et al., 1991; Farquhar et al., 1980] and C4
plants [Collatz et al., 1992]. The information on the pro-
portion of C3 and C4 plants per pixel is given in section
2.4.3. The two-leaf canopy photosynthesis was calculated
using:

Ac;j ¼ min Al;j;Av;j;As;j

� �

� Rc;j ð22Þ

where j = Sun or Sh indicate sunlit or shade leaf,
respectively.
[24] Al is the light limited rate of CO2 assimilation (see

symbols in Appendix A):

Al; j ¼ Jmax; j
pi � G

∗; j

4 pi þ 2G
∗; j

� � for C3 species ð23aÞ

Al; j ¼ 0:067� QPj for C4 species ð23bÞ

[25] Av is the rubisco limited rate of CO2 assimilation:

Av; j ¼ Vmax; j
pi � G

∗; j

pi þ Kc; j 1þ O=Ko; j

� �

 !

for C3 species ð24aÞ

Av; j ¼ Vmax; j for C4 species ð24bÞ

[26] As is the capacity for the export or utilization of the
products of photosynthesis for C3 species, and CO2 limited
flux for C4 species:

As; j ¼ 0:5Vmax; j for C3 species ð25aÞ

As; j ¼ 0:7� 106 �
pi

P
for C4 species ð25bÞ
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We fixed the ratio of leaf internal CO2 concentration to the
ambient CO2 concentration as 0.7 (C3 species) and 0.4 (C4
species) [Baldocchi, 1994; Jones, 1992; Norman, 1982;
Wong et al., 1979].
[27] Rc is the two-leaf canopy respiration.

Rc; j ¼ Vmax; j
25C � 0:015� exp EaCKc Tj � 298

� �

= 298� R� Tj
� �� �

for C3 species ð26aÞ

Rc; j ¼ Vmax; j
25C � 0:025� 2 Tj�298ð Þ=10= 1þexp 1:3� Tj�328ð Þð Þð Þf g

for C4 species ð26bÞ

2.1.4. Maximum Carboxylation Rate (Vmax)
[28] The Vmax is a key parameter in the Farquhar photo-

synthesis model [Farquhar et al., 1980; Houborg et al.,
2009; Wang et al., 2007]. Previous studies used a constant
Vmax for each PFT over the year [Baldocchi and Wilson,
2001; Chen et al., 1999; Cramer et al., 2001]. Here we
parameterized Vmax using albedo-N relation or look-up-table
that classified Vmax based on PFT and climatic zones, then
we varied Vmax over the season.
[29] We used the albedo-N relation for closed-canopy

temperate and boreal forests where the relation was tested
[Hollinger et al., 2010; Ollinger et al., 2008]:

N %ð Þ ¼ a� 0:02ð Þ=0:067 ð27Þ

where a is shortwave albedo.
[30] The N(%) was converted to leaf mass per area, then

converted to N(area) based on a global data set of leaf traits
[Schulze et al., 1994; Wright et al., 2004]:

LMA ¼ 102:24N %ð Þ�0:97 ð28Þ

N areað Þ ¼ 10�0:52LMA0:38 ð29Þ

Finally, the N(area) was converted to Vmax@25C (Vmax
25C) by

multiplying by the Nitrogen use efficiency (NUE (Table S2),
the ratio of Vmax

25C to N (g m�2), mmolCO2 gN
�1 s�1) which

was estimated using 723 data points [Kattge et al., 2009]. For
open canopies, non-woody vegetation, or PFTs located in
arid and tropical climatic zones, we used Vmax

25C values based
on a literature survey that considered both PFT and climatic
zones (see section 2.4.4) (Table S2). We assigned vegetation
to ‘open canopy’ if the gap fraction of the zenith direction at
peak L is higher than 0.3 (i.e., exp(�0.5 LW) > 0.3).
[31] We considered the seasonal variation of Vmax

25C [Kosugi
et al., 2003; Limousin et al., 2010; Xu and Baldocchi, 2003],
as it proved critical to calculate canopy fluxes accurately
[Houborg et al., 2009; Muraoka et al., 2010; Reichstein
et al., 2003]. We assumed that the seasonal pattern of
Vmax
25C followed the seasonal pattern of L [Houborg et al.,

2009]. This pattern has been observed previously in tem-
perate forests [Hikosaka et al., 2007; Kosugi et al., 2003;
Muraoka et al., 2010;Wang et al., 2008;Wilson et al., 2001]
and Mediterranean forests [Reichstein et al., 2003; Xu and
Baldocchi, 2003]. For each individual pixel, we selected
the date when MODIS LAI showed the peak value. We

quantified the Vmax
25C for that date (PeakVmax

25C), then calculated
Vmax
25C over the season:

Vmax
25C ¼ a� PeakVmax

25C þ 1� að Þ � PeakVmax
25C �

Lc � Lmin

Lmax � Lmin

ð30Þ

where Lmax, Lmin and Lc are maximum, minimum and cur-
rent leaf area index over the year. We determined the
threshold, a, as 0.3 arbitrarily. We calculated the maximum

rate of electron transport (Jmax
25C) using a linear relation with

Vmax
25C [Wullschleger, 1993]:

Jmax
25C ¼ 29:1þ 1:64� Vmax

25C ð31Þ

We upscaled the leaf-level Vmax
25C to the canopy level. The

total Vmax
25 in the canopy (Vmax,tot

25C ) is:

Vmax;tot
25C ¼ LcVmax

25C � 1� exp �knð Þ½ �= knð Þ ð32Þ

where kn is the nitrogen extinction coefficient, and we

assumed it is same as the beam and scattered beam PAR

extinction coefficient (k′Pb) for optimal carbon gain [Anten

et al., 1995; Hikosaka, 2003].
[32] The sunlit canopy Vmax

25C is

Vmax;sun
25C ¼ LcVmax

25C �
1

kn þ kbLc
1� exp � kn þ kbLcð Þð Þ½ � ð33Þ

The shaded canopy Vmax
25C is

Vmax;sh
25C ¼ Vmax;tot

25C � Vmax;sun
25C ð34Þ

The Jmax
25C was upscaled to the two-leaf canopy in a same

manner as Vmax
25C. Both Vmax,j

25C and Jmax,j
25C for the two leaf

canopy ( j = sun or shade) was converted to the values at the
actual air temperature (Vmax,j and Jmax,j) using a temperature
correction function [Kattge and Knorr, 2007].
2.1.5. Two-Leaf Canopy Conductance and
Temperature
[33] We used Ball-Berry equation to calculate two-leaf

canopy conductance [Ball, 1988]:

Gc;j ¼ m
Ac;jRH

Ca

þ b ð35Þ

We fixed the Ball-Berry slope (m) as 10 for C3 species
[Collatz et al., 1991; Harley and Baldocchi, 1995; Harley
et al., 1992; Xu and Baldocchi, 2003], and 4 for C4 species
[Collatz et al., 1992; Hanan et al., 2005].
[34] The enzymatic activity in the photosynthesis models

changes with leaf temperature, thus getting the correct leaf
temperature is important. We used an analytic solution based
on leaf energy balance to calculate two-leaf temperatures
[Paw U and Gao, 1988]. However, as the solution requires
Gc, j as an input variable, which needs Tj for photosynthesis
calculation, we iteratively calculated Ac, j, Gc, j, and Tj until
convergence. The Ball-Berry equation enabled an explicit
coupling of photosynthesis and evapotranspiration, although
the two ‘m’ values could be refined [Law et al., 2001].
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2.1.6. Evapotranspiration
[35] We used a quadratic form of the Penman-Monteith

equation to calculate the two-leaf canopy latent heat flux
(lEj, j = sun or shade) [Monteith, 1965; Paw U and Gao,
1988]. This approach uses the second order Taylor expan-
sion to estimate saturated vapor pressure at the leaf surface
using air temperature; on the other hand, the conventional
Penman Monteith equation uses the first order Taylor
expansion (i.e., linearization). When the temperature differ-
ence between the air and leaf is large (e.g., >5°C), the first
order approximation can underestimate lE by 10–20% [Paw
and Gao, 1988]. Because BESS is designed for global
applications, we adopted the quadratic form of the Penman-
Monteith equation, which requires exactly the same input
variables as the conventional Penman-Monteith equation:

alEj
2 þ blEj þ c ¼ 0; ð36aÞ

where

a ¼
ra

2

2 raCpg ra þ rc;j
� �� �

d2es Tað Þ

dTa2
ð36bÞ

b ¼ �1� ra
des Tað Þ

dTa

1

g ra þ rc;j
� ��

Rn;jra
2

raCpg ra þ rc;j
� �

d2es Tað Þ

dTa2

ð36cÞ

c ¼
raCpD

g ra þ rc;j
� �þ

raRn;j

g ra þ rc;j
� �

des Tað Þ

dTa
þ
1

2

ra � Rn;j

� �2

raCpg ra þ rc;j
� �

�
d2es Tað Þ

dTa2
ð36dÞ

where ra and rc,j are aerodynamic and canopy ( j represents
sunlit or shade leaf) resistance, respectively. ra is air density.
g is psychrometric constant. es(T) is saturated vapor pressure
at temperature, T [Henderson-Sellers, 1984]. Rn, j is net
radiation ( j represents sunlit or shade leaf).
[36] The two-leaf lEj shares all input variables except for

rc,j and Rn,j.
[37] We calculated soil evaporation (lEsoil) using a simple

equilibrium evaporation model constrained by a soil water
stress function. It was reported that soil litter layer substan-
tially controls on the soil evaporation [Baldocchi et al.,
2000; Lee and Mahrt, 2004; Wilson et al., 2000]; however,
due to the lack of soil litter layer information at global scale,
we adopted a simple approach:

lEsoil ¼
s

sþ g
Rn;soil � Gsoil

� �

� RHD=1000 ð37Þ

The soil water stress function (RHD/1000) was proposed in
Fisher et al. [2008]. The Rn,soil is net radiation at the soil
surface:

Rn;soil ¼ Rn � Rn;Sun þ Rn;Sh

� �

ð38Þ

Gsoil is the soil heat flux:

Gsoil ¼ 0:35� Rn;soil ð39Þ

The constant of 0.35 was the mean between its likely limits
of 0.2 and 0.5 [Choudhury et al., 1987].

2.2. MODIS-Azure Cloud Computing Service

[38] BESS requires downloading, standardizing and pro-
cessing approximately 15 terabytes of MODIS data. We
built the MODIS-Azure service on the Microsoft Azure
cloud computing platform to operate BESS system [Agarwal
et al., 2011; Li et al., 2010]. The basic idea is “download
MODIS data to the Cloud, process/analyze data in the
Cloud, and download results from the Cloud to my PC”
(Figure 2). The MODIS-Azure web portal allows 1) sub-
mitting job requests and 2) monitoring the processing job
status in real-time. One can request the number of virtual
machines (1–250 virtual machines currently) depending on
the estimated computing needs, which offer highly scalable
performance. As shown in Figure 2, after a scientist submits a
computation request to the MODIS-Azure system through
the Web portal, the request is sent to the Azure system for
processing. First, all the required source product data are
automatically downloaded from the external MODIS data
FTP sites to the Azure storage; the geographic metadata
information for all data files are also maintained in Azure
storage. Second, all Level 2 MODIS products (swath type)
are reprojected into sinusoidal projection as used in Levels 3,
4, and 5 inMODIS Land products. These steps are performed
as necessary to satisfy the needs of the science computation
and the results are cached in Azure storage. Third, an exe-
cutable file encoded with the scientists’ computation algo-
rithm is executed at individual virtual machines in parallel to
produce the final results. Finally, a download link to the final
result data produced by the computation is sent to the scien-
tist in a notification email. Detailed description on the
MODIS-Azure system is given by Li et al. [2010].

2.3. Processing MODIS Data

2.3.1. MODIS Atmospheric Products
[39] We used the MODIS-Azure service to grid Level 2

(swaths) MODIS atmospheric products (collection 5). We
followed the MODIS Land tile conventions (sinusoidal tiles,
each tile is �1200 km by �1200 km) [Wolfe et al., 1998] to
standardize the Level 2 MODIS atmospheric products. This
step enabled us to co-locate MODIS Land and Atmospheric
products. The Level 2 products were gridded for each sinu-
soidal tile per day using either MOD (Terra) or MYD
(Aqua). Primarily, we used MOD (Terra), but when it was
not available due to satellite outage, we used MYD (Aqua).
The gridded Level 2 MODIS atmospheric products include
MO(Y)D04_L2 (aerosol product), MO(Y)D05_L2 (water
vapor product), MO(Y)D06_L2 (cloud product), MO(Y)
D07_L2 (atmospheric profile product). We determined the
sinusoidal tile location first, then the MODIS-Azure system
searched all granules that cover the requested tile area using
a spatial prescreening technique [Hua et al., 2007] and
downloaded the granules from the NASA FTP server (ftp://
ladsweb.nascom.nasa.gov/allData/5/). We used an inverse
gridding approach [Konecny, 1979; Wolfe et al., 1998] to
make the sinusoidal tiles of Level 2 MODIS atmospheric
products. The spatial resolution of Level 2 MODIS atmo-
spheric products ranges between 1 km (a portion of the cloud
product) and 10 km (aerosol product) (Table 1). We gridded
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the Level 2 MODIS data with a 1 km resolution for the
sinusoidal tiles that include the U.S. and the flux towers that
were used in this study, and with a 5 km resolution for the
other areas to reduce the data size. The air and dew point
temperature were retrieved from MO(Y)D07 only for clear
sky days [Houborg et al., 2007; Ryu et al., 2008a]. Under
cloudy sky days, we used the NCEP/NCAR reanalysis data
(see section 2.4.1) to fill the data gaps. The data gaps in
aerosol optical depth (MO(Y)D04) were filled using
monthly mean aerosol depth.
2.3.2. MODIS Land Products
[40] We used four gridded MODIS Land products (sinu-

soidal projection) and one swath Land product (MO(Y)
D11_L2) (collection 5) (Table 1). The MO(Y)D11_L2 was
gridded as done for the L2MODIS atmospheric products (see
section 2.3.1). For the MODIS LAI product (MCD15A2), we
only used the data classified as “Main (RT) method used, best
result possible (no saturation)” or “Main (RT) method used
with saturation. Good, very usable” in the quality flags. For
the MODIS albedo product (MCD43B3), we selected the
data classified as “best quality, 75% or more with best full
inversions” or “good quality, 75% or more with full inver-
sions” in the data quality flag (MCD43B2). The data gaps
in the MCD15A2 and MCD43B2 were filled using the
following procedures: 1) if at least three years of data exist
with acceptable quality among the five years (2001–2005)
for the same date, we used the multiyear mean value to fill
the data gap for the specific date; this procedure was sug-
gested in the previous studies [Fang et al., 2008, 2007],
2) if unfilled, we applied the information from moving
windows with 2, 5, 10 km size at the same tile and used
their mean value to fill the data gap, 3) if unfilled, we

calculated the mean values for each plant functional type,
defined in MODIS land cover product (MCD12Q1), at the
same tile, and filled the data gaps using the mean values.
For the MODIS albedo product, we separated the data gap
filling procedures for snow and snow-free areas [Fang et al.,
2007]. The MODIS LAI product in rainfall tropical forests
was seriously contaminated by clouds [Zhao et al., 2005],
thus we selected the maximum leaf area index in a 8-week
interval and kept the value over the 8-weeks. The data gaps
in MO(Y)D11_L2 under cloudy condition or satellite
outages were filled using the NCEP/NCAR reanalysis skin
surface temperature data (see section 2.4.1).

2.4. Ancillary Data

2.4.1. NCEP/NCAR Reanalysis 1
[41] For variables not available from the MODIS system,

we retrieved information from the NCEP/NCAR Reanalysis

Table 1. The List of MODIS Data Used in This Studya

Product Name
Spatial

Resolution
Temporal
Scale

MO(Y)D04_L2 aerosol 10 km 5 min
MO(Y)D05_L2 water vapor 5 km 5 min
MO(Y)D06_L2 cloud 1 km or 5 km 5 min
MO(Y)D07_L2 atmospheric profile 5 km 5 min
MO(Y)D11_L2 land surface temperature 1 km 5 min
MCD12Q1 land cover 0.5 km yearly
MCD15A2 leaf area index 1 km 8 day
MCD43B2 BRDF-albedo quality 1 km 16 day
MCD43B3 albedo 1 km 16 day

aAll Land products are version 5. MOD, Terra; MYD, Aqua; MCD,
Terra+Aqua.

Figure 2. Overview of the MODISAzure system [Li et al., 2010].
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1 data (Surface Flux) [Kalnay et al., 1996]. The NCEP data
set includes information on air temperature, dew point tem-
perature, land surface temperature, and wind speed. The
temperature variables (i.e., air, dew point and land surface)
were used to fill the data gaps in MODIS which mostly
appeared in the cloudy days. The wind speed data were used
to calculate aerodynamic conductance. The spatial coverage
of NCEP data includes 88.542N-88.542S, 0E-358.125E
with a T62 Gaussian grid (192 � 94 points). Its temporal
resolution is 6-hourly. We linearly interpolated the 6-hourly
data to match with the time stamp of the MODIS data. To
remove the abrupt change on the boarders between the
coarse pixels, we applied a 3 by 3 moving window average.
The NCEP data was resampled using the nearest neighbor-
hood method with the sinusoidal projection at a 1 km
resolution.
2.4.2. Global Foliar Clumping Index Map
[42] To consider non-randomness of leaf distribution in

space, we used the global foliar clumping index map
developed using the multiangle remote sensing data,
POLDER 3 [Chen et al., 2005; Pisek et al., 2010]. It offers
the clumping index in the growing season at a 6 km reso-
lution. It was resampled using the nearest neighborhood
method with the sinusoidal projection at a 1 km resolution.
2.4.3. Global C3 and C4 Distribution Map
[43] To incorporate different ecophysiological processes

between C3 and C4 species, we used the global C3 and C4
distribution map [Still et al., 2003]. It offers the proportion
of C4 species per pixel at a 1 degree resolution. To remove
the abrupt change on the boarders between the coarse pixels,
we applied a 3 by 3 moving window average. We resampled
using the nearest neighborhood method with the sinusoidal
projection at a 1 km resolution. The two-leaf model was
performed for the C3 and C4 species separately in a pixel,
and the sum of relative proportion of C3 and C4 for the pixel
determined the GPP and ET at the pixel.
2.4.4. Köppen-Geiger Global Climate Classification
Map
[44] To incorporate the information of climate zone into

the look up table of the Vmax
25C where the N-albedo relation was

not applied, we used the Köppen-Geiger global climate
classification map which represented the average condition
between 1951 and 2000 [Kottek et al., 2006]. We used the
classification on the main climates that include equatorial,
arid, warm temperate, snow, and polar. It provides 0.5 degree
resolution. We resampled using the nearest neighborhood
method with the sinusoidal projection at a 1 km resolution.

2.5. Temporal Upscaling From Snap-Shots to 8-Day
Mean Daily Sums

[45] BESS system quantifies instantaneous GPP and ET
first as the radiation components, the main driver of GPP and
ET, are derived from the MODIS snap-shots. We upscaled
instantaneous GPP and ET estimates to an 8-day mean daily
based on a recent study [Ryu et al., 2012]. The potential
solar radiation (RgPOT) can be easily calculated with only a
few basic pieces of information on the Sun-Earth geometry
[Liu and Jordan, 1960]:

RgPOT ¼ Ssc � 1þ 0:033 cos 2ptd=365ð Þ½ � cosb ð40Þ

where Ssc is the solar constant (1368 W m�2), td is the day of
year, and b is solar zenith angle that is calculated following
Michalsky [1988]. The upscaling factor is defined as:

SFd tð Þ ¼
1800s� lE tð Þ
R

d
lE tð Þdt

≈
1800s� RgPOT tð Þ
R

d
RgPOT tð Þdt

ð41Þ

where SFd(t) is the upscaling factor for a particular day (d) of
the year and function of the time t of the instantaneous lE.
The 1800s is the number of seconds in 30 min. Then the
8-day mean daily sum lE is:

lE8day ¼
1

8

X

8

d¼1

1800s� lE tdð Þ

SFd tdð Þ
ð42Þ

where the time of the snapshot, td, may change between
one day and another accordingly to the satellite passages.
[46] This temporal upscaling scheme was tested against

data from 33 flux towers across seven plant functional types
from boreal to tropical climatic zones. The results showed
that the upscaled and measured 8-day mean daily sum ET
showed a strong linear relation (r2 = 0.92) and small bias
(�2.7%) [Ryu et al., 2012]. Furthermore, it was found that
the temporal upscaling scheme can be used to upscale
instantaneous estimates of GPP and solar irradiance to 8-day
mean daily sum estimates as accurately as ET.

2.6. Flux Tower Data and Evaluation of BESS

[47] To test BESS, we used data from 33 flux towers that
cover seven plant functional types (PFT) across arctic to
tropical climatic zones to test simulations of water and car-
bon fluxes from BESS (Table 2, the citation for each site is
shown in Table S3). The data were extracted from LaThuile
2007 FLUXNET data set v.2 (www.fluxdata.org). We
selected at least three sites for each PFT with data gaps less
than 30 days per year, and selected one year of measure-
ments per site that was represented by the least of data gaps
over the available years. Data gaps were filled using the
marginal distribution sampling method in a harmonized and
standardized way for the LaThuile 2007 FLUXNET data set
[Reichstein et al., 2005].

2.7. Sensitivity Analysis of Evapotranspiration

[48] A non-dimensional relative sensitivity of ET was
quantified [Beven, 1979; McCuen, 1974]:

Si ¼
∂ET

∂V

V

ET
ð43Þ

where Si is the relative sensitivity ranged between �1
(negatively highly sensitive) to 1 (positively highly sensi-
tive), ET is the conventional Penman-Monteith equation
[Monteith, 1965] to keep simplicity in the differentials, V is
the input variable in the Penman Monteith equation such as
available energy and canopy conductance. The sensitivity of
ET to V is very low as the Si approaches to the zero.

3. Results

3.1. Evaluation of BESS Against Flux Tower Data

[49] BESS derived solar irradiance (Rs,i), GPP and ET at
1 km resolution were evaluated against the flux tower data
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at the scale of daily sum averaged over an 8-day interval
(Figures 3–5). We selected the pixel that included a flux
tower, then compared the BESS-derived estimates with the
flux tower measurements. There was a strong linear

relation between BESS Rs,i and flux tower Rs,i (r
2 > 0.8)

except for the tropical forests (see Table 2 for the list of
tropical forests) where the seasonal variation of Rs,i was
not pronounced (e.g., BR-Ji2 and BR-Sa3, coefficient of

Table 2. Flux Tower Site Informationa

PFT Site ID Site Name Latitude Longitude Year Climate

CRO U.S.-Bo1 Bondville 40.0 �88.3 1998 Temperate (Dfa)
DE-Geb Gebesee 51.1 10.9 2004 Temperate (Cfb)
U.S.-Ne1 Mead–irrigated continuous maize site 41.2 �96.5 2004 Temperate (Dfa)

DBF CA-Oas Sask.–SSA Old Aspen 53.6 �106.2 2004 Boreal (Dfc)
DE-Hai Hainich 51.1 10.5 2004 Temperate (Cfb)
U.S.-MOz Missouri Ozark Site 38.7 �92.2 2005 subtropical, Mediterranean (Cfa)
U.S.-Bar Bartlett Experimental Forest 44.1 �71.3 2005 temperate (Dfb)
JP-Tak Takayama 36.1 137.4 2003 temperate-continental (Dfb)
U.S.-MMS Morgan Monroe State Forest 39.3 �86.4 2003 subtropical, Mediterranean (Cfa)
U.S.-UMB Univ. of Mich. Biological Station 45.6 �84.7 2003 temperate-continental (Dfb)

EBF BR-Ji2 Rond.–Rebio Jaru Ji Parana–Tower A �10.1 �61.9 2001 tropical (Aw)
BR-Sa1 Santarem-Km67-Primary Forest �2.9 �55.0 2003 tropical (Am)
BR-Sa3 Santarem-Km83-Logged Forest �3.0 �54.5 2003 tropical (Am)
VU-Coc CocoFlux �15.4 167.2 2003 tropical (Af)
AU-Tum Tumbarumba �35.7 148.2 2003 temperate (Cfb)
ID-Pag Palangkaraya 2.3 114.0 2002 tropical (Af)

ENF FI-Hyy Hyytiala 61.8 24.3 2006 boreal (Dfc)
CA-Obs Sask.–SSA Old Black Spruce 54.0 �105.1 2003 boreal (Dfc)
CA-Ojp Sask.–SSA Old Jack Pine 53.9 �104.7 2003 boreal (Dfc)
RU-Fyo Fedorovskoje-drained spruce stand 56.5 32.9 2003 temperate-continental (Dfb)
U.S.-Wrc Wind River Crane Site 45.9 �122.0 2004 subtropical, Mediterranean (Csb)
U.S.-Me2 Metolius-intermediate aged ponderosa pine 44.5 �121.6 2004 subtropical, Mediterranean (Csb)
U.S.-Me3 Metolius-second young aged pine 44.3 �121.6 2004 subtropical, Mediterranean (Csb)
DE-Tha Tharandt- Anchor Station 51.0 13.6 2004 temperate (Cfb)

GRA CN-HaM Haibei Alpine Tibet site 37.4 101.2 2003 Arctic (ET)
CA-Let Lethbridge 49.7 �112.9 2005 temperate (Dfb)
DE-Meh Mehrstedt 1 51.3 10.7 2005 temperate (Cfb)

MF JP-Tom Tomakomai National Forest 42.7 141.5 2003 temperate-continental (Dfb)
CA-Gro Groundhog River-Mat. Boreal Mixed Wood 48.2 �82.2 2005 boreal (Dfb)
CA-WP1 Western Peatland 55.0 �112.5 2005 boreal (Dfc)

WSA U.S.-SRM Santa Rita Mesquite 31.8 �110.9 2005 dry (Bsk)
AU-How Howard Springs �12.5 131.2 2003 tropical (Aw)
U.S.-Ton Tonzi ranch 38.4 �121.0 2005 subtropical, Mediterranean (Csa)

aAbbreviations in the plant functional types (PFT) include: CRO: crop, DBF: deciduous broadleaved forest, EBF: evergreen broadleaved forest, ENF:
evergreen needle leaved forest. GRA: grassland, MF: mixed forest, WSA: woody savanna. The abbreviations in the climate (in the parenthesis)
followed the Köppen-Geiger global climate classification (see the Figure 7 for the definition of the abbreviations).

Figure 3. Comparison of 8-day mean daily sum solar irradiance between the 33 flux towers and the
BESS.
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variance <15%) or seasonal fires were intense (e.g., ID-Pag
and AU-How) (Figure 3). The RMSE varied from 1.2 MJ
m�2 d�1 (U.S.-Ton) to 3.8 MJ m�2 d�1 (AU-How) with the
mean of 2.3 MJ m�2 d�1. The bias ranged from 0.2 MJ m�2

d�1 (CN-HaM) to 2.2 MJ m�2 d�1 (U.S.-Bo1) with the
mean of 1 MJ m�2 d�1.
[50] For the GPP, BESS showed low r2 (<0.4) for the

tropical forests where seasonal pattern of GPP was not pro-
nounced (e.g., BR-Sa1, BR-Sa3, ID-Pag, VU-Coc; the
coefficient of variance was <20%) (Figure 4). The average
of r2 over the all sites was 0.69. The RMSE and bias varied
from 0.7 (U.S.-SRM) to 3.4 (AU-Tum) gC m�2 day�1, and

�1.8 (U.S.-Me2) to 2.3 (AU-Tum) gC m�2 day�1, respec-
tively. The average of RMSE and bias over the all sites
were 1.8 and 0.02 gC m�2 day�1, respectively. BESS
underestimated GPP in all evergreen needleleaf forest sites
except for the RU-Fyo site; the bias ranged from 0 (RU-
Fyo) to �1.96 (U.S.-Me2) gC m�2 day�1. BESS over-
estimated GPP of all deciduous broadleaved forest sites; the
bias ranged from 0.1 (DE-Hai) to 1.5 (U.S.-MMS) gC m�2

day�1.
[51] BESS-derived lE showed linear relations with the

observed lE from the flux towers (r2 > 0.7) except for the
tropical forests (e.g., BR-Sa1, BR-Sa3, ID-Pag, VU-Coc,

Figure 4. Comparison of 8-day mean daily sum gross primary productivity between the 33 flux towers
and the BESS.

Figure 5. Comparison of 8-day mean daily sum latent heat flux between the 33 flux towers and the
BESS.
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BR-Ji2; coefficient of variance was <25%) (Figure 5). The
RMSE and bias varied from 0.7 (CN-HaM) to 2.6 (VU-Coc)
MJ m�2 d�1 and �1.4 (VU-Coc) to 1.8 (BR-Sa1) MJ m�2

d�1, respectively. The average of RMSE and bias over the
all sites were 1.6 and 0.3 MJ m�2 d�1, respectively.
[52] We evaluated the BESS-derived annual sum of Rs,i,

GPP, and lE against the flux tower data (Figure 6). BESS
showed strong linear relations with the flux tower data for

annual Rs,i, GPP and lE (r2 = 0.95, 86, and 86, respec-
tively). All three variables showed positive biases, with
overestimates from BESS. Both relative RMSE and bias
were higher for lE than GPP.

3.2. Evaluation of BESS Against Data-Driven Products
and Basin Water Balance Data

[53] We compared BESS-derived GPP and ET against the
empirical flux-tower-data-driven GPP [Beer et al., 2010] and
ET [Jung et al., 2010] products for each bioclimatic zone
defined from the Köppen-Geiger global climate classifica-
tion map. The flux-tower-data driven products were devel-
oped by formulating statistical models based on the available
FLUXNET data, thus they offer “data-driven” but totally
empirical estimates [Jung et al., 2009]. We found that
BESS-derived GPP showed an excellent agreement with the
GPP estimates of Beer et al. [2010] with an r2 of 0.98, 12%
of relative RMSE and 0% of relative bias (Figure 7). BESS-
derived ET also showed a very good agreement with the ET
estimates of Jung et al. [2010] with an r2 of 0.92, 23% of
relative RMSE and 0% of relative bias (Figure 8).
[54] We compared the BESS-derived ET against the

basin-scale ET derived using a water balance approach
(rainfall minus runoff) as reported by Jung et al. [2010].
They calculated the annual mean ET for 112 basins (on
average, 15 years) using the discharge data from the Global
Runoff Data Centre and the rainfall data from the six dif-
ferent rainfall products (see details in auxiliary material)
[Jung et al., 2010]. We used BESS-derived mean annual ET
over three years (2001–2003) to compare with the water
balance derived ET. BESS derived basin ET showed r2 of
0.78, RMSE of 168 mm yr�1, and bias of 1.9 mm against the
water balance derived ET (Figure 8c). For comparison, the
data-driven mean annual ET that covered the same period
with water-balance ET showed r2 of 0.92, RMSE of 149 mm
yr�1, and bias of 17 mm yr�1 of bias against the water bal-
ance derived ET [Jung et al., 2010].

3.3. Sensitivity Analysis on BESS-Derived GPP and ET

[55] We performed a simple sensitivity analysis for BESS-
derived GPP and ET over the global land in July, 2003
(Figure 9). We selected five variables that included solar
irradiance (Rs,i), leaf area index (Lc), Vmax

25C, vapor pressure
deficit (D), and wind speed. We changed the values of each
variable by �30% while keeping the other four variables,
and compared the BESS outputs. The consistent relative
change for each variable offered all outputs comparable and
we assumed the natural variability is well within the range of
�30% of the variables. BESS-derived GPP was most sen-
sitive to the Lc, and next Vmax

25 . A 30% change in Lc was
associated with a �25% change in GPP. A 30% change in
Vmax
25 was associated with a �15% change in GPP. ET was

most sensitive to Rs,i, and next Lc. The 30% change in Rs,i

was associated with a �20% change in ET. For both GPP
and ET, BESS was less sensitive to D and wind speed.
[56] The sensitivity of ET to available energy and canopy

conductance was investigated (see 2.7) in July 2003
(Figure 10). The ET was highly sensitive to the available
energy in the rainfall forests in Amazon, Congo, and Indo-
nesia. The ET was highly sensitive to the canopy conduc-
tance in dry region such as mid-west U.S., Spain, Australia
and Central Asia.

Figure 6. Comparison of (a) annual solar irradiance,
(b) gross primary productivity, and (c) latent heat flux
between the flux towers and the BESS.
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3.4. Global and Yearly Estimates of Terrestrial GPP
and ET

[57] We quantified the mean annual land GPP over the
three years (2001–2003) as 118 � 26 PgC yr�1 (or 938 �
206 gC m�2 yr�1) (Figure 11a). To estimate the error
bounds, we calculated the mean RMSE between flux tower
and BESS for each PFT, assigned the RMSE to the global
land which was classified with the same PFT, then quanti-
fied the RMSE at global scale. The global annual GPP var-
ied 115, 117, 122 PgC yr�1 across the three years. The
annual mean global land ET over the same period was 500�
104 mm yr�1 (equivalent to 63,000 � 13,100 km3 yr�1)
(Figure 11b). The uncertainty was estimated as done in GPP.

The global land ET varied 498, 498, 504 mm yr�1 for the
three years. For the unit conversion in GPP (PgC yr�1 to gC
m�2 yr�1) and ET (mm yr�1 to km3 yr�1), we used the
global land area as 1.26� 108 km2 determined from MODIS
land cover product. We excluded urban, Greenland, Arctic
and Antarctic regions in the land area estimation.

4. Discussion

4.1. Efficacy of BESS

[58] The mechanistic, coupled biophysical model pro-
duced reliable estimates of GPP and ET against flux tower
data (Figures 4–6), data-driven products (Figures 7 and 8),

Figure 7. Comparison of gross primary productivity between Beer et al. [2010] and the BESS across
bioclimatic zones classified by the Köppen-Geiger global climate classification map (see section 2.4.4).
The abbreviations for the bioclimatic zones are as follows: Af, equatorial, fully humid; Am, equatorial,
monsoonal; As, equatorial, summer dry; Aw, equatorial, winter dry; BWk, cold arid desert; BWh, hot arid
desert; BSk, cold arid steppe; BSh, hot arid steppe; Cfa, humid, warm temperate, hot summer; Cfb, humid,
warm temperate, warm summer; Cfc, humid, warm temperate, cool summer; Csa, summer dry, warm tem-
perate, warm summer; Csb, summer dry, warm temperate, warm summer; Cwa, winter dry, warm temper-
ate, hot summer; Cwb, winter dry, warm temperate, warm summer; Dfa, snow, humid, hot summer; Dfb,
snow, humid, warm summer; Dfc, snow, humid, cool summer; Dsb, snow, summer dry, warm summer;
Dsc, snow, summer dry, cool summer; Dwa, snow, winter dry, hot summer; Dwb, snow, winter dry, warm
summer; Dwc, snow, winter dry, cool summer; ET, polar tundra.
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and basin water balance derived ET (Figure 8c). The for-
mulation of BESS model was entirely independent from flux
tower data, which contrast with previous empirical studies
that used flux tower data to calibrate key parameters [Yuan
et al., 2010; Zhang et al., 2010] or to apply machine-
learning technique [Beer et al., 2010; Jung et al., 2010;
Xiao et al., 2010]. The success of BESS demonstrates that
the advancements in remote sensing, micrometeorology,
and ecophysiology enable us to develop a globally appli-
cable model based on first principles, which was discour-
aged a generation ago due to the concerns about garbage-in
and garbage-out [de Wit, 1970].
[59] We note that BESS did not explicitly include a soil

moisture effect, which is a major factor that limits GPP and
ET in water-limited ecosystems [Ciais et al., 2005; Rambal
et al., 2003; Ryu et al., 2008b; Scott et al., 2010; Xu and
Baldocchi, 2004], and evaporation from intercepted rainfall
in the canopy, which could be �20% of rainfall in forests
[Miralles et al., 2010]. Why did BESS perform well in spite

of the lack in the two terms? BESS assumed that the soil
moisture stress is reflected in the seasonal pattern of leaf
area index, which in turn influences the seasonal pattern of
Vmax
25 (see section 2.1.4). We found that this assumption

enabled us to capture the seasonal water-limiting effects in
most seasonally dry ecosystems such as U.S.-Ton, U.S.-
SRM, and AU-How sites. BESS-derived GPP and ET in dry
regions were comparable with the data-driven products
(Figures 7b and 8b). However, this assumption did not work
where MODIS incorrectly quantified leaf area index in semi-
arid pine forests that have low seasonality of leaf area index
with low annual rainfall and cold winter temperatures (e.g.,
U.S.-Me2, 535 mm mean annual precipitation [Thomas
et al., 2009]; see section 4.2).The evaporation from inter-
cepted rainfall was not explicitly considered in BESS.
However, in the wet canopy where intercepted rainfall
is dominant, canopy conductance tends to be high (say,
>20 mm s�1) [Baldocchi et al., 1997]. Consequently, can-
opy transpiration calculated by BESS likely reflects the

Figure 8. (a and b) Comparison of evapotranspiration between Jung et al. [2010] and the BESS across
bioclimatic zones classified by the Köppen-Geiger global climate classification map (see section 2.4.4).
(c) Comparison of evapotranspiration between the water-balance derived evapotranspiration from
global 112 basins (see section 3.2) and the BESS. The abbreviations for the bioclimatic zones are same
as in Figure 6.
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evaporation by the intercepted rainfall at least to some
degree. These limitation in BESS model proved not to have
a detrimental effect on the model performance, as the
model seems to work well at a number of scales against
measurements.
[60] We made BESS most sensitive to the variables that

we can quantify reliably. We determined the variables as the
atmospheric and canopy radiation components as it is pos-
sible to estimate incoming radiation and canopy structure
variables such as leaf area index and clumping index from
space. We found that BESS offered robust estimates of solar
irradiance, except for the tropical regions that experienced
intensive biomass burning (e.g., ID-Pag and AU-How sites)
(Figures 3 and 6a). We believe the integration of atmosphere
and sunlit-shade canopy radiative transfers at the same
spatialc (1–5 km) and temporal (instantaneous) resolutions
greatly reduced uncertainties related with nonlinear pro-
cesses in canopy fluxes. Previous studies have illustrated
scale-mismatches at both spatially (e.g., coarse resolution of
solar irradiance with high resolution canopy properties) and
temporally (e.g., use of daily to monthly mean solar irradi-
ance) [Fisher et al., 2008;Mu et al., 2007; Yuan et al., 2010;

Zhao et al., 2005]. Leaf area index was the most important
variable that controlled canopy radiative transfer, and we
found that the MODIS LAI was reliable at regional and
seasonal scales although several important limitations were
identified (see section 4.2). The clumping index that modi-
fies canopy radiative transfer and the proportion of sunlit
and shade leaves has been mostly ignored in global carbon
and water flux studies even though field level studies have
suggested the importance of clumping index in canopy
modeling studies [Baldocchi, 1997; Baldocchi et al., 2002,
1985; Chen et al., 1999; Norman and Jarvis, 1974]. We
compared the global GPP and ET between random canopy
(clumping index = 1) and clumped canopy for the year 2002.
The clumped canopy reduced GPP (1.5 PgC yr�1) and
increased ET (1,888 km�3 yr�1) compared to the random
canopy (W = 1). The difference in GPP was comparable to
the carbon emissions caused by deforestation and forest
degradation globally (1.2 PgC yr�1) [van der Werf et al.,
2009] and caused by global transportation sector (1.7 PgC
yr-1) [Kahn Ribeiro et al., 2007], thus incorporating the
foliar clumping effect into the carbon cycle model is
important to reduce uncertainty in the global carbon cycle.
The Vmax

25 was the second most important variable that con-
trols GPP (Figure 9a). To estimate the values of Vmax

25 , we
applied emerging ecological scaling rules that included the
nitrogen concentration-albedo relationships [Hollinger et al.,
2010; Ollinger et al., 2008] and the nitrogen concentration-
leaf mass area relationships [Reich et al., 1997;Wright et al.,
2004] for the closed canopy in boreal and temperate forests
(see section 2.1.4). For the other land covers, we used the
values of Vmax

25 from the literature survey by considering
both climate zones and plant functional types (Table S2).
Finally we applied seasonality of Vmax

25 which tends to reflect
seasonal environmental stress [Muraoka et al., 2010; Wilson
et al., 2001; Xu and Baldocchi, 2003]. We believe deducing
Vmax,tot
25C by integrating the experimental evidences men-

tioned above enabled us to estimate GPP accurately.
[61] It has been reported that vapor pressure deficit from

global reanalysis data introduced a major source of uncer-
tainties in the MODIS GPP product [Heinsch et al., 2006;
Zhao et al., 2006]. That was because the vapor pressure
deficit directly controlled canopy conductance in the MODIS
GPP algorithm. Physiologically, GPP is sensitive to both
vapor pressure deficit and soil moisture availability to roots.
For MODIS GPP, sensitivity to vapor pressure deficit was
increased to represent moisture limitations to GPP because
reliable data on the spatial water availability were not avail-
able. In BESS, we intended to avoid the dependence of GPP
on the vapor pressure deficit by fixing the ratio of internal
leaf and ambient CO2 concentration (see section 2.1.4). In
fact, BESS-derived GPP and ET were not highly sensitive to
the vapor pressure deficit (Figure 9). Zhao et al. [2006]
reported that different sources of coarse global reanalysis
meteorological data could cause substantial differences
(>20 PgC yr�1) in the global GPP estimates based on the
MODIS GPP algorithm. BESS avoided this issue by directly
calculating meteorological variables from MODIS atmo-
spheric products at high spatial resolution (1–5 km).
[62] The process-oriented approach enabled us to inves-

tigate what controls ET at the global scale (Figure 10).
In situ data revealed that ET was highly correlated with net

Figure 9. Sensitivity analysis of the BESS. Each variable
was changed �30%, and the output from the BESS for
(a) gross primary productivity and (b) evapotranspiration
was compared. D, vapor pressure deficit; Lc, leaf area index;
Rs,I, incoming solar irradiance; Vmax

25C, maximum carboxyla-
tion rate at 25C.
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Figure 10. Global maps of sensitivity of ET to (a) available energy and (b) canopy conductance in
July 2003. The sensitivity ranges between 0 (less sensitive) to 1 (positively highly sensitive).
See section 2.7 for the calculation of the sensitivity.
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radiation in rain forests of Brazil whereas the correlation was
less in southern Brazil due to water stress during the dry
period [Hasler and Avissar, 2007]. This spatial gradient was
well captured by BESS (Figure 10a). The sensitivity of ET
to the available energy was positively high (>0.8) at the rain
forests in Brazil and the sensitivity decreased along the
southeast direction toward the cerrado, the tropical savanna
ecoregion in Brazil. The sensitivity of ET to canopy con-
ductance was fairly high (>0.5) in the cerrado region where
dry winter season is pronounced between May and Oct.

4.2. Sources of Uncertainty in BESS

[63] The sensitivity analysis revealed that BESS-derived
GPP was most sensitive to Lc (Figure 9). We found that

inaccuracies in MODIS LAI led to major uncertainties at
several sites. For example, the BESS showed substantial
overestimation of GPP and ET at the AU-Tum site (see
Figures 3 and 4). The peak Lc of MODIS LAI was twofold
higher than the in situ Lc in this site (5 vs 2.5) [Leuning et al.,
2005; Strahler et al., 2008]. It has also been reported that
MODIS LAI overestimated Lc in eastern Australian open
forests and woodlands [Hill et al., 2006]. Next, seasonality
of MODIS LAI for evergreen needleleaf forest types was
exaggerated at most sites. For example, the in situ Lc in
the Me2 site varied 2.6–3.5 over the year (Law, this study),
but the MODIS LAI ranged 0–4. The MODIS LAI for the
RU-Fyo site showed 0–4.8 over the year, but the field
observation showed 2.5–3.5 over the year (A. Varlagin,

Figure 11. Global maps of (a) gross primary productivity and (b) evapotranspiration.
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personal communication, 2010). The leaf area index of 0 in
evergreen forests is unrealistic. The incorrect representation
of phenology caused a simulated delay from BESS in the
increase of GPP in the spring at the U.S.-Me2 and RU-Fyo
sites. We found that the underestimated Lc during spring or
autumn caused the underestimation of BESS-GPP in most
evergreen needleleaf forest sites (Figure 4c). In the tropics,
the selected MODIS LAI data that passed the quality check
were few (see section 2.3.2) and provided a noisy signal and
therefore a correction to Lc was unavoidable (i.e., keeping
the peak Lc value over a 8-weeks period, see section 2.3.2).
BESS-derived ET is coupled with GPP (equation (35)), and
thus the uncertainty in GPP will be translated to uncertain-
ties in ET. The sensitivity analysis revealed that BESS-
derived ET was most sensitive to the Rs,i (Figure 9b). Our
Rs,i model was generally reliable (relative RMSE and bias
were 10% and 8%, respectively, see Figure 6a) although
improvements were required in the tropics (see section 4.1);
thus the uncertainty of Lc, which was the second most sen-
sitive variable (Figure 9b), is likely to contribute a major
source of uncertainty in the ET calculation. However, we
note that the Rs,i model in BESS overestimated Rs, during
intensive biomass burning events in tropical forests (e.g.,
ID-Pag [Hirano et al., 2007] and AU-How [Kanniah et al.,
2010]). We speculate that the characterization of aerosol
properties used in the BESS needs improvement. Last, BESS
did not consider complex terrain and heterogeneity of land-
scapes in a pixel, which might cause substantial biases in
land surface radiation and energy balances [Baldocchi et al.,
2005; Giorgi and Avissar, 1997; Ryu et al., 2008a]. We note
that the uncertainty sources in input data and the gap-filling
processes (see sections 2.3.1 and 2.3.2) can influence the
results in the sensitivity analysis. In particular, a substantial
data gap of MODIS data in the tropics and the way to fill the
data gaps might impact the results in the sensitivity analysis
substantially. We leave the detailed analysis on the impacts
of the uncertainty sources on the sensitivity analysis for the
next study.

4.3. Global Terrestrial Estimates of GPP and ET

[64] The global estimates of GPP and ET are still uncertain
as reports varied between 107 and 167 PgC yr-1 [Cramer
et al., 2001; Knorr and Heimann, 2001], 123 PgC yr�1

[Beer et al., 2010], 129 PgC yr�1 [Demarty et al., 2007],
133 PgC yr�1 [Ruimy et al., 1996], 109 PgC yr�1 [Zhao
et al., 2005], and 111 PgC yr�1 [Yuan et al., 2010]. We
quantified the mean global GPP between 2001 to 2003 as
118 � 26 PgC yr�1. Recently, Beer et al. [2010] quantified
the global GPP as 123 � 8 PgC yr�1 based on merging
global flux tower data (i.e., “data-driven” approach). Inter-
estingly, we found that BESS showed an excellent agree-
ment with the Beer et al. (2010) across bioclimatic zones
(Figure 7). Even if the two approaches were totally different
(i.e., empirical vs process-based), they showed convergent
estimates of global GPP. The global land ET is also highly
uncertain [Lettenmaier and Famiglietti, 2006]. For example,
a modeling study assumed a constant global land ET of
527 mm yr�1 without spatial and temporal variation of ET
[Wentz et al., 2007]. A range of global land ET was reported
such as 613 mm yr�1 [Fisher et al., 2008], 286 mm yr�1 [Mu

et al., 2007], 410 mm yr�1 [Yuan et al., 2010], 550 mm yr�1

(65,000 km3 yr�1) [Jung et al., 2010], and 539 mm yr�1

[Zhang et al., 2010]. A recent ET synthesis study reported
that the ensemble means of diagnostic models, land surface
models, reanalysis models, IPCC AR4 models showed
606 mm yr�1, 544 mm yr�1, 631 mm yr�1 and 602 mm yr�1,
respectively [Mueller et al., 2011]. Our global land ET esti-
mate between 2001 and 2003 was 500 � 104 mm yr�1

(equivalent to 63,000 � 13,100 km3 yr�1). We note that our
global ET estimate included deserts and alpine regions in
Himalaya whereas some other studies only included vege-
tated land area which differs depending on the land cover
product used. Thus reporting global ET as km3 yr�1 unit is
highly recommended to avoid any confusion. Our global
ET estimate (63,000 km2 yr�1) was comparable from
65,000 km2 yr�1 [Jung et al., 2010] and 65,500 km2 yr�1

[Oki and Kanae, 2006]. BESS-derived ET showed good
agreement with the data-driven global ET product across
bioclimatic zones and basin-level water balance ET [Jung
et al., 2010] (Figure 8). A systematic inter-comparison
project across available GPP and ET models is warranted
to identify where the models agree and disagree and how
to improve them. The process-based BESS which couples
two-leaf energy balance, canopy nitrogen, GPP and ET
could offer mechanistic interpretation of the disagreement
in the models, which is unlikely to be done in empirical
approaches.

5. Summary and Conclusions

[65] In this study, we described and evaluated the mech-
anistic, coupled biophysical model, BESS. BESS coupled
atmospheric and canopy radiative transfer processes, two-
leaf photosynthesis, energy balance, and evapotranspiration
using MODIS. The integration of biophysical processes with
some assumptions that included soil water deficit is embed-
ded inside the variations of leaf area index offered robust
estimates of GPP and ET compared with the flux tower data,
data-driven products, and basin-level water balance ET.
Because we purposely increased sensitivity of BESS to leaf
area index and solar irradiance, they were the most important
variables that control GPP and ET, respectively. Over the
three year period between 2001 and 2003, BESS quantified
the global mean annual GPP and ET as 118 � 26 PgC yr�1

and 500� 104 mm yr�1 (equivalent to 63,000� 13,100 km3

yr�1), respectively. BESS enabled us to investigate the sen-
sitivity of ET to environmental and biological variables,
which well captured the gradient of wetness from rain forests
to seasonally drought forests in the Amazon. As BESS offers
relatively high spatial resolution over the world (1- to 5-km
resolution), we expect that BESS could be useful in local to
the global applications such as climate research, water
resources management, and identifying spots for solar
harvesting.

Appendix A

[66] Appendix A includes the nomenclature and values
used in this study. Table A1 includes symbols, their defini-
tions, and if available, their values.
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Table A1. Nomenclature and Values

Symbols Definition Value (or Derivation)

rcbP canopy reflectance for beam PAR MODIS black-sky PAR albedo calculated with solar zenith
angle and aerosol optical thickness

rcdP canopy reflectance for diffuse PAR MODIS white-sky PAR albedo calculated with solar zenith
angle and aerosol optical thickness

rcbN canopy reflectance for beam NIR MODIS black-sky NIR albedo calculated with solar zenith
angle and aerosol optical thickness

rcdN canopy reflectance for diffuse NIR MODIS white-sky NIR albedo calculated with solar zenith
angle and aerosol optical thickness

rsP soil reflectance for PAR Table S1
rsN soil reflectance for NIR Table S1
sPAR leaf scattering coefficient for PAR Table S1
sNIR leaf scattering coefficient for NIR Table S1
QPijk absorbed photosynthetically active radiation (mmol m�2 s�1);

i = b for beam, and i = d for diffuse; j = Sun for sunlit leaf,
and j = Sh for shade leaf; k = ↓ for from sky to land direction,
and k = ↑ for land to sky direction

equations (10) and (11)

QNijk absorbed NIR radiation (W m�2); i = b for beam, and i = d
for diffuse; j = Sun for sunlit leaf, and j = Sh for shade leaf;
k = ↓ for from sky to land direction, and k = ↑ for land to
sky direction

equations (18) and (19)

QLj absorbed longwave radiation (W m�2); j = Sun for sunlit leaf,
and j = Sh for shade leaf

equations (20) and (21)

a shortwave albedo MCD43B3 albedo calculated with solar zenith angle and
aerosol optical thickness

Vmax, j
25C maximum carboxylation rate at 25C (mmol m�2 s�1); j = Sun

for sunlit leaf, j = Sh for shade leaf, and j = tot for the entire
canopy; no indication of j is leaf.

see section 2.1.4

Jmax,j
25C maximum electron transfer rate at 25C (mmol m�2 s�1); j = Sun

for sunlit leaf, j = Sh for shade leaf, and j = tot for the entire
canopy; no indication of j is leaf

see section 2.1.4

Ac, j canopy photosynthesis; j = Sun for sunlit leaf, and j = Sh for
shade leaf

equation (22)

Al, j light limited rate of CO2 assimilation; j = Sun for sunlit leaf,
and j = Sh for shade leaf

equation (23)

Av, j Rubisco limited rate of CO2 assimilation; j = Sun for sunlit leaf,
and j = Sh for shade leaf

equation (24)

As, j capacity for the export or utilization of the products of
photosynthesis for C3 species, and CO2 limited flux for C4
species; j = Sun for sunlit leaf, and j = Sh for shade leaf

equation (25)

pi intercellular CO2 partial pressure (Pa) C3: 0.7 � [CO2] � 10�6 � P and C4: 0.4 � [CO2] � 10�6 � P,
where [CO2] is atmospheric CO2 concentration (370 ppm) and
P is atmospheric pressure (Pa)

Ca ambient atmospheric CO2 concentration 370 ppm
P atmospheric pressure (Pa) MOD07
G*,j CO2 compensation point of photosynthesis in the absence

of mitochondrial respiration (Pa); j = Sun for sunlit leaf, and
j = Sh for shade leaf

3.69 at 25C [de Pury and Farquhar, 1997]; see de Pury and
Farquhar [1997, Table 4] to convert the value at the actual
temperature

KC,j Michaelis-Menten constant of Rubisco for CO2 (Pa) 40.4 at 25C [de Pury and Farquhar, 1997]; see de Pury and
Farquhar [1997, Table 4] to convert the value at the actual
temperature

KO,j Michaelis-Menten constant of Rubisco for O2 (Pa) 24800 at 25C [de Pury and Farquhar, 1997]; see de Pury and
Farquhar [1997, Table 4] to convert the value at the actual
temperature

O oxygen partial pressure (Pa) 20500 at 25C [de Pury and Farquhar, 1997]; see de Pury and
Farquhar [1997, Table 4] to convert the value at the actual
temperature

Rc,j canopy respiration; j = Sun for sunlit leaf, and j = Sh for
shade leaf

equation (26)

Ea_KC activation energy for Kc 59400 [de Pury and Farquhar, 1997]
R universal gas constant (J mol�1 K�1) 8.314
m Ball-Berry slope (equation (35)) C3, 10; C4, 4
b Ball-Berry offset (equation (35)) C3, 104 mmol m�2 s�1; C4, 4 � 104 mmol m�2 s�1

[Houborg et al., 2009]
ra aerodynamic resistance (s m�1) NCEP wind speed; canopy height (Table S1)
rc,j canopy resistance for water vapor (s m�1); j = Sun for

sunlit leaf, and j = Sh for shade leaf
Ball-Berry equation (equation (35))

Ga aerodynamic conductance (m s�1) 1/ ra
Gc,j canopy conductance (m s�1); j = Sun for sunlit leaf, and

j = Sh for shade leaf
Ball-Berry equation (equation (35))

N(%) nitrogen concentration (mg g�1) equation (27)
N(area) nitrogen content (g m�2) equation (29)
LMA leaf mass per area (g m�2) Wright et al. [2004]
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