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Abstract: Due to increasing security concerns, a complete security system should consist of two major components, a

computer-based face-recognition system and a real-time automated video surveillance system. A computer-

based face-recognition system can be used in gate access control for identity authentication. In recent studies,

multispectral imaging and fusion of multispectral narrow-band images in the visible spectrum have been employed

and proven to enhance the recognition performance over conventional broad-band images, especially when the

illumination changes. Thus, we present an automated method that specifies the optimal spectral ranges under

the given illumination. Experimental results verify the consistent performance of our algorithm via the observa-

tion that an identical set of spectral band images is selected under all tested conditions. Our discovery can be

practically used for a new customized sensor design associated with given illuminations for an improved face

recognition performance over conventional broad-band images. In addition, once a person is authorized to enter

a restricted area, we still need to continuously monitor his/her activities for the sake of security. Because pan-

tilt-zoom (PTZ) cameras are capable of covering a panoramic area and maintaining high resolution imagery for

real-time behavior understanding, researches in automated surveillance systems with multiple PTZ cameras have

become increasingly important. Most existing algorithms require the prior knowledge of intrinsic parameters of

the PTZ camera to infer the relative positioning and orientation among multiple PTZ cameras. To overcome this

limitation, we propose a novel mapping algorithm that derives the relative positioning and orientation between two

PTZ cameras based on a unified polynomial model. This reduces the dependence on the knowledge of intrinsic

parameters of PTZ camera and relative positions. Experimental results demonstrate that our proposed algorithm

presents substantially reduced computational complexity and improved flexibility at the cost of slightly decreased

pixel accuracy as compared to Chen and Wang’s method [18].

Keywords: PTZ cameras • Surveillance systems • Multispectral images

© Versita sp. z o.o.

1. Introduction

Due to increasing security concerns, a complete secu-

rity system should consist of two major components, a

computer-based face-recognition system and a real-time
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automated video surveillance system. Face recognition

has been widely used and has attracted significant re-

search attention because of its wide range of applica-

tions in security and surveillance. Appearance varia-

tions caused by changes in lighting conditions constitute

a major deteriorating factor of the system’s recognition

rate [1]. Multispectral images have been used to improve

face recognition under various illuminations. There are

two advantages of multispectral images over conventional

images, which we took into consideration as our inspira-

tion of utilizing multispectral images for face recognition.

First, it is well known that humans tend to easily spot

any color changes in the skin tones. The main obstacle

for the universal color use in machine vision applications

is that the cameras are not able to distinguish changes

of surface color from color shifts caused by varying illu-

mination [28]. Multispectral images in visible domain can

provide a new avenue to separate the color of a subject

and the illumination. Second, with multispectral images,

we have the freedom to emphasize and/or suppress the

contribution of images from certain narrowbands. Some of

the approaches employed near infrared images that pro-

vide more information than the conventional images in the

visible spectrum [2]. Pan et al. [3] used narrow-band spec-

tral images in near infrared. Our previous work regard-

ing the fusion of narrow-band spectral images [4] in the

visible spectrum was the first performance comparison be-

tween multispectral images and conventional broad-band

images. The fusion of a total or a subset of 25 band im-

ages can outperform conventional images for face recog-

nition, especially when the probe and gallery images are

acquired under different illuminations. This is due to the

freedom to emphasize and/or suppress the contribution of

images from certain narrow bands, when using multispec-

tral images. Contrarily, conventional monochromatic and

RGB images provide only one- or three-broad-band re-

sponses.

In this paper, as an extension of our previous study in

spectral range selection for face recognition [5], we inves-

tigate the robustness of our algorithm, focusing on two

critical steps: probability density function (PDF) estima-

tion and divergence computation. The efficiency of PDF

estimation depends on the selection of the kernel func-

tion, which may depend on the distribution of the actual

input data, in our case the similarity scores of the genuine

and imposter sets. The characteristics of the input data

may vary according to a large variety of factors, such as

the recognition engine and illumination conditions. This

raises the question of whether the performance of the band

selection algorithm depends on the characteristics of the

input data. If the answer is yes, the use of kernel function

and distance measure needs to be optimized empirically in

advance according to the specific set of input data, which

impedes the application of the proposed selection algo-

rithm in a plug-and-play manner. To maximize its uni-

versal applicability, it is desired that the performance of

the proposed algorithm is robust to the selection of the

aforementioned parameters.

Once a person is authorized to enter a restricted area, we

still need to continuously monitor his/her activities for the

sake of security. Due to fatigue, the possibility of missing

alarms is high, even for well-trained security personnel.

These issues lead to the need for a real-time automated

surveillance system that automatically detects, tracks, and

records security violations. Surveillance systems [10, 11]

with multiple PTZ cameras became popular in the past

decade, because of their capacity to simultaneously cover

wide area and maintain high resolution imagery. Due to

the time-varying relations among PTZ cameras, how to

coordinate multiple PTZ cameras by means of changing

their poses to achieve a better observation of the object of

interest remains challenging. Even though there is a vast

amount of literature on automatically calibrating larger

camera networks [12, 13], those works mainly deal with

stationary perspective cameras.

Thus, the works of Chen and Wang [14, 18] and Everts et

al. [19] proposed to use known intrinsic parameters of PTZ

cameras to direct their poses, namely pan, tilt, and zoom

values, whenever a change is needed. In other words, we

have to individually calibrate each PTZ camera [15, 16]

to obtain their intrinsic parameters beforehand. This im-

pedes their direct application to automated surveillance

systems with changing configurations and a larger number

of PTZ cameras. In particular, due to errors in the estima-

tion of intrinsic parameters of PTZ camera, the works of

Chen and Wang [14, 18] need one more optimization pro-

cess, sensitivity analysis, to obtain the pose relation be-

tween PTZ cameras. This increases the system’s computa-

tional complexity in the calibration process. To overcome

their limitations, we propose a novel mapping approach

that directly derives a unified polynomial model between

the pan, tilt, and zoom values of PTZ cameras with un-

known intrinsic parameters and setups in the scene.

In summary, the contributions of this paper are: (1) The

robustness and consistency of the proposed algorithm is

verified by the observation that identical band ranges are

selected via various implementations for different input

data. Therefore, with the most basic implementation of the

Gaussian kernel and Jeffrey divergence, a smaller number

of narrow-band images can be selected according to the

illumination conditions and fused for an improved recog-

nition performance; (2) Our approach is able to derive the

relation of pan, tilt, and zoom values between any pair

of PTZ cameras without prior knowledge of their intrin-
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sic parameters and relative positions. In comparison with

the reference algorithm [18], our proposed approach not

only reduces the dependence on the knowledge of intrin-

sic parameters of PTZ camera, but improves the degree of

autonomy and reduces the system’s computational com-

plexity at the cost of slightly decreased pixel accuracy. In

general, this slightly decreased pixel accuracy does not

affect the overall performance for the application of auto-

mated surveillance systems, as long as the desired object

can be seen within the field of view and can be com-

pensated by consistent labeling approaches [27] without

added cost.

The remainder of this paper is organized as follows. Sec-

tion2 presents our band selection algorithm and describes

various implementations of PDF estimation and diver-

gence computation. Section3 shows our cooperative map-

ping method. Experimental results are given in Section4

and conclusions are drawn in Section5.

2. Band selection approach

Face recognition starts typically with image preprocess-

ing including segmentation and normalization. Afterward,

salient features are extracted based on which similarity

scores of a pair of face images, one as the probe and the

other as the gallery, are calculated. Let Sk
ij denote the

similarity score between the gallery image of the ith sub-

ject and the probe image of the j th subject collected at

the k th band. The similarity scores in each band can be

divided into two groups, referred to as the genuine Gk

and imposter Ik sets. The genuine and imposter sets are

defined as: Gk : {Sk
ij , i = j} and Ik : {Sk

ij , i 6= j}, respec-

tively. The genuine set contains the similarity scores with

probe and gallery images from the same subject while the

imposter set consists of similarity scores with the probe

and gallery images from different subjects. Without loss

of generality, we assume that a higher similarity score in-

dicates a better match. Ideally, the genuine and imposter

sets should cluster at the high and low end of the score

scale, respectively, without overlap so that an appropri-

ate threshold can be derived to completely separate the

genuine matches from the imposter ones. Under such con-

ditions, a perfect 100% recognition rate can be achieved.

However, in practical situations, there usually exist over-

lapped regions between these two sets. An important cri-

terion in evaluating the effectiveness of the recognition

system is the separation between the similarity scores

of the genuine and imposter sets. Please refer to our

previous work [5] for detailed discussions regarding band

separation.

We propose using the band separation between the gen-

uine and imposter sets to select the optimal spectral range

of face images for given illumination conditions. Figure 1

illustrates the pipeline of the face recognition algorithm

with our automated band selection mechanism. Based on

the features extracted from probe and gallery images, sim-

ilarity scores for all pairs of probe and gallery images are

computed. Then, band selection is performed as follows.

(1) The distribution of the similarity scores of the genuine

and imposter sets are estimated using kernel functions.

(2) Divergence is calculated to quantitatively describe the

separation between these two distributions. (3) The op-

timal m bands can be chosen by sorting the divergence

values in a descending order. The m bands corresponding

to the first m divergence values in the sorted sequence

are selected. Finally, the images from the selected bands

are fused and fed into a classification engine that outputs

the recognition rate.

Figure 1. Illustration of the algorithm pipeline. The proposed band
selection algorithm is highlighted in bold

To achieve automated selection of optimal multispectral

bands, we need an accurate estimation of the PDFs of

the genuine p̂G,k (x) and imposter p̂I,k (x) sets for the k th

band and a quantified measure D to evaluate the sep-

aration between them. In this paper, we investigate the

performance of the proposed algorithm with various im-

plementations of PDF estimation and divergence compu-

tation. Our motivation is to show that our algorithm is

sufficiently robust so that its performance is independent

of the implementation of the PDF estimation and diver-

gence computation. This is an attractive attribute and is

important for practical implementation.

From the similarity scores of various subjects, the dis-

tributions of the genuine and imposter sets, p̂G,k (x) and

p̂I,k (x), are estimated by using kernel density estimation

(KDE) [6]:

p̂G,k (x) =
1

NhG,k

N
∑

i=1

K

(

x − Sk
ii

hG,k

)

, (1)

p̂I,k (x) =
1

N (N − 1) hI,k

N
∑

i=1

N
∑

j=1,j 6=i

K

(

x − Sk
ij

hI,k

)

, (2)
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where K () denotes the kernel function with the property of
∫

K (t) dt = 1, hG,k /hI,k is the smoothing parameter, and

N is the total number of subjects.

The quality of a kernel estimate depends on both the

shape of the kernel and the value of its smoothing param-

eter. The following kernel functions are commonly used:

triangle (1 − |t|), Gaussian 1√
2π

exp(−t2/2), Epanechnikov
3
4
(1−t2), biweight/quaritic 15

16
(1−t2)2, triweight 35

32
(1−t2)3,

and cosine π
4

cos( π
2
t). The Gaussian function is defined in

(−∞, ∞) while others are defined in [−1, 1].

As its name suggests, the smoothing parameter controls

the smoothness of the density estimate. A smaller smooth-

ing parameter leads to spiky estimates. The bias in the

density estimate is small but the variance is large. In

contrast, a larger smoothing parameter results in over-

smoothing with a smaller variance but a larger estimation

bias. Minimizing the asymptotic mean integrated square

error (AMISE) [7] is the most commonly used method of

choosing the smoothing parameter, which is normally de-

noted as hAMISE :

hAMISE =

[

ρ(K )

Nµ(K )2σ (p′)

]1/3

, (3)

where ρ(K ) = 2
∫∞

−∞ xK (x)KI (x)dx , µ(K ) =
∫∞

−∞ x2K (x)dx , and σ (p′) =
∫∞

−∞ p′(x)2dx with

KI (x) =
∫ x

−∞ K (x)dx . A more advanced approach of

estimating the smoothing parameter explores a more

complicated criterion that considers the trade-off between

the estimation bias and variance. The optimal param-

eter hICOMP is obtained by minimizing the information

complexity (ICOMP) defined as follows [8]:

ICOMP(K, h) = 2n ln (n − 1) + 2n ln (h) +

− 2

n
∑

i=1

ln





n
∑

j 6=i

K
(xi − xj

h

)



+

+ 2C1

(

Cov(θ̂)
)

, (4)

where the covariance matrix is given by Cov (θ̂) =

F̂ −1
f̂

R̂F̂ −1
f̂

. F̂ −1
f̂

is the Inverse Fisher Information Matrix

(IFIM) and R̂ is the estimated outer-product form of the

Fisher information. n represents representative principal

components. The C1 (•) information complexity is defined

by:

C1

(

Cov(Θ̂)
)

=
s

2
ln





trace
(

Cov(Θ̂)
)

rank
(

Cov(Θ̂)
)



− 1

2
ln
∣

∣

∣
Cov(Θ̂)

∣

∣

∣
,

(5)

where trace refers to the trace of the matrix. Equation

(4) measures the lack of fit of the model, and Equa-

tion (5) measures the complexity of the estimated IFIM,

which gives a scalar measure of the celebrated Cramér-

Rao lower bound matrix. This takes into account the ac-

curacy of the estimated parameters. The minimum value

of ICOMP reveals the feature variable-subset is optimal

in dimensionality and information content. More details

behind the derivation of this formulation are available

in [22]. In this paper, we only use generic algorithm (GA)

as searching method along with the use of ICOMP criteria

as the fitness function. How to use a GA-based procedure

with informational complexity as the fitness function em-

ployed in this work is detailed in Bearse and Bozdogan [8].

Once the PDFs of the similarity scores from the genuine

and imposter sets are estimated, the remaining question

is how to quantitatively evaluate the distance between

the two PDFs. Probabilistic distance measures are ex-

ploited. To simplify the notations, we use p1 (x) and p2 (x)

to represent the density functions of two sets, which in

our case are the genuine and imposter sets. Table 1 de-

fines a list of probabilistic distance measures often found

in literature [9]. These distances have the following rela-

tions. (1) The Bhattacharyya distance is a special case

of the Chernoff distance with α1 = α2 = 1
2
. (2) The Ma-

tusita distance is related to the Bhattacharyya distance

by DM =
√

2 [1 − exp (−DB)]. (3) The relation between

the Kullback-Leibler and Jeffrey divergence (a symmet-

ric version of the Kullback-Leibler divergence) is given

by DJ (p1, p2) = DKL (p1||p2) + DKL (p2||p1). (4) The Kol-

mogorov distance is a special case of the Lissack-Fu dis-

tance with α1 = 1.

3. Cooperative mapping approach

The setup of a pair of PTZ cameras is shown in Figure 2.

We choose the coordinate of the zero position of a selected

camera as the reference world coordinate, where pan and

tilt angles are both set to 0. A point Pi = (Xi, Yi, Zi)
T

in the reference world coordinate is projected onto the j th
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Table 1. List of probabilistic distances and their definitions, where 0 < α1, α2 < 1, α1 + α2 = 1, and π1 and π2 are prior probabilities of classes 1
and 2, respectively

Distance Definition

Bhattacharyya DB (p1, p2) = − log
{

∫

X

√

p1 (x) p2 (x)dx
}

Chernoff DC (p1, p2) = − log
{∫

X p
α2
1 (x) p

α1
2 (x) dx

}

Kullback-Leibler DKL (p1||p2) =
∫

X p̂1(x) log p̂1(x)
p̂2(x) dx

Jeffrey DJ =
∫

[p1(x) − p2 (x)] log p1(x)
p2(x) dx

Matusita DM (p1, p2) =

√

∫

X

[

√

p1 (x) −
√

p1 (x)
]2

dx

Patrick-Fisher DPF (p1, p2) =
√

∫

X [p1 (x) π1 − p2 (x) π2]2 dx

Lissack-Fu DLF =
∫

X |p1 (x) π1 − p2 (x) π2|α1 [p1 (x) π1 + p2 (x) π2]α2 dx

Kolmogorov DK =
∫

X |p1(x)π1 − p2(x)π2dx

PTZ camera’s image coordinate (xij , yij , λij ) by













xij

yij

λij













=













fzoom,j szoom,j xzoom,j

0 αzoom,j fzoom,j yzoom,j

0 0 1













·

·













cos θT ,j 0 − sin θT ,j

0 1 0

sin θT ,j 0 cos θT ,j













·

·













1 0 0

0 cos θP,j sin θP,j

0 − sin θP,j cos θP,j

























Xi

Yi

Zi













, (6)

where θP,j and θT ,j represent the pan and tilt angles of the

j th PTZ camera, respectively. (xzoom,j , yzoom,j ) represents

the principal point in the j th PTZ camera. fzoom,j denotes

the focal length of the j th. αzoom,j and szoom,j respectively

represent the aspect ratio and skew of the j th PTZ camera.

In essence, (xzoom,j , yzoom,j ), fzoom,j , αzoom,j , and szoom,j are

subject to the changes of zoom value Zj of the j th camera.

The same point is projected onto pih = (xc, yc, 1)T , the

center of the image coordinates of the hth PTZ, by proper

pan, tilt, and zoom values:













xC

yC

1













=













fzoom,h szoom,h xzoom,j

0 αzoom,hfzoom,j yzoom,j

0 0 1













·

·













cos θT ,h 0 − sin θT ,h

0 1 0

sin θT ,h 0 cos θT ,h













·

·













1 0 0

0 cos θP,h sin θP,h

0 − sin θP,h cos θP,h

























Xi

Yi

Zi













+ thj , (7)

where thj denotes the translation vector between the op-

tical center of the hth and j th PTZ cameras.
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Figure 2. Typical setup of a pair of PTZ cameras

Based on the point correspondences, two equations can

be derived from,













Xi

Yi

Zi













=













1 0 0

0 cos θP,h sin θP,h

0 − sin θP,h cos θP,h













·

·













cos θT ,h 0 − sin θT ,h

0 1 0

sin θT ,h 0 cos θT ,h













·

·













1
fzoom,h

−szoom,h

fzoom,h

−xzoom,h

fzoom,h

0 1
αzoom,hfzoom,h

yzoom,h

αzoom,hfzoom,h

0 0 1

























xc

yc

1













− thj

=













1 0 0

0 cos θP,j − sin θP,j

0 sin θP,j cos θP,j

























cos θT ,j 0 sin θT ,j

0 1 0

sin θT ,j 0 cos θT ,j













·

·













1
fzoom,j

−szoom,j

fzoom,j

−xzoom,j

fzoom,j

0 1
αzoom,j fzoom,j

yzoom,j

αzoom,j fzoom,j

0 0 1

























xij

yij

λij













, (8)

so as to solve for θ̂P,h, θ̂T ,h, and Ẑh. In essence, to avoid

the needed knowledge of internal and external parame-

ters of each PTZ camera in the scene, we propose to use a

set of polynomials to directly relate (xih, yih, θP,h, θT ,h, Zh)

and (xij , yij , θP,j , θT ,j , Zj ) from a training set. The train-

ing set is collected from tracking the same object in two

PTZ cameras where the centroid of the object stays at

the image center of the hth camera, but can be anywhere

in the image of the j th camera. This object in both im-

ages maintains a constant-sized pixel resolution for the

future applications such as behavior understanding, face

recognition, and so forth. As a result, once Equation (9),























θ̂P,h = fP (xij , yij , θP,j , θT ,j , Zj )

θ̂T ,h = fT (xij , yij , θP,j , θT ,j , Zj )

Ẑh = fZ (xij , yij , θP,j , θT ,j , Zj )

(9)

is derived, we can direct the hth PTZ camera to the posi-

tion where the ith object is supposed to be placed at its

image center with a desired pixel size, which is based on

the pan, tilt, zoom values and the image coordinates of the

ith object in the j th PTZ camera.

Our cooperative mapping methodology is inspired by the

work of Chen et al. [24]. They pointed out that exist-

ing algorithms [21, 25, 26] in the area of spatial map-

ping between the omnidirectional and PTZ cameras need
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to have prior knowledge of project models of cameras,

namely internal and external parameters, and the envi-

ronment geometry. This impedes their direct application

to surveillance systems with changing configurations. This

is similar to surveillance systems with multiple PTZ cam-

eras. Thus, our proposed cooperative method can be di-

vided into two phases, the data acquisition phase and

the data fitting phase. Figure 3 illustrates the flow chart

of these two phases. The purpose of data acquisition

phase is to collect desired information to relate directly

(xih, yih, θP,h, θT ,h, Zh) and (xij , yij , θP,j , θT ,j , Zj ). The pur-

pose of data fitting phase is to derive Equation (9) by the

collected data set from data acquisition phase.

Figure 3. Illustration of our proposed cooperative mapping method

3.1. Data acquisition phase

At first, a single object moves around randomly in the

overlapped field of views (FOVs) of the j th and hth

PTZ cameras to collect its motion trajectory including

(xih, yih, θP,h, θT ,h, Zh) and (xij , yij , θP,j , θT ,j , Zj ). The

centroid of the object stays at the image center of the hth

camera but can be anywhere in the image of the j th cam-

era. This object in both images maintains a constant-sized

pixel resolution for the future applications such as behav-

ior understanding, face recognition, and so forth. Since

the focus of this paper is not developing a size preserving

tracking approach, we utilize the algorithm proposed by

Fayman at al. [22] in here. Once (xih, yih, θP,h, θT ,h, Zh)

and (xij , yij , θP,j , θT ,j , Zj ) are collected, we enter to data

fitting phase to obtain Equation (9).

3.2. Data fitting phase

Since the derivations for pan, tilt, and zoom functions are

similar, in the following discussion, we will take the pan

angle, θ̂P,h = fP (xij , yij , θP,j , θT ,j , Zj ), as an example to

save space. In general, we first fit a model with all possible

predictor variables [17, 23] with different nth-order terms

such as θP,j , ..., θn
P,j , θT ,j , ..., θn

P,j , ... ,Zj , ..., Z n
j ,... , xij , yij ,

x2
ij ,Zjxijyij ,y

2
ij , ...,xn

ij , xijy
n−1
ij , ..., and θn

T ,jy
n
ij . Let wi, with

i = 1, ...k , represent these k predictor variables. The pan

angle in a complete model can then be expressed as:

θ̂P,h(C ) = γ0 + γ1w1 + γ2w2 + ... + γkwk + εC , (10)

where γi denotes the model fitting parameter and εC is a

random error term with E {εC } = 0.

Usually not all predictor variables are equally significant.

A subset of these variables can be found forming a reduced

model:

θ̂P,h(R ) = γ0 + γ1w1 + γ2w2 + ... + γgwg + εR , (11)

where g < k and εR is a random error term with E {εR } =

0. Let SSEC and SSER denote the sum of squared error

of the complete and reduced models:

SSEC = ΘT
P,C ΘP,C +

− ΘT
P,C WP,C (W T

P,C WP,C )−1W T
P,C ΘP,C ,

SSER = ΘT
P,R ΘP,R +

− ΘT
P,R WP,R (W T

P,R WP,R )−1W T
P,R ΘP,R , (12)

where ΘP,C /ΘP,R is the vector of all response variables in

a complete/reduced model and WP,C /WP,R is the vector of

all predictor variables wk /wg in a complete/reduced model.

Intuitively, if w1, w2, ..., and wk are important information

contributing variables, the complete model should have a

smaller prediction error than the reduced model: SSEC ≤
SSER . The greater the difference (SSER − SSEC ) is, the

stronger is the evidence to support the complete model

that w1, w2, ..., wk are significant information contributing

terms and to reject the reduced model: H0 : γg+1 = γg+2 =

... = γk = 0. Conversely, the acceptance of the reduced

model suggests that the additional predictors in the com-

plete model, wg+1, wg+2, ..., wk , introduce no improvement

to fitting accuracy. The predictors, w1, w2, ..., wg in the

reduced model are sufficient and more significant informa-

tion contributing terms than predictors, wg+1, wg+2, ..., wk .

In other words, this becomes a model selection prob-

lem. Thus, we use the recently proposed extension to

Akaike’s information criterion called information complex-

ity (ICOMP) [8] as our fitness function, which is briefed

in Section 2. ICOMP has been proved more efficient than

existing fitness functions such as F test used in [20, 23].

Other than its efficiency, another rationale for ICOMP as

our fitness function is that it combines a badness-of-fit

term with a measure of complexity of a model by taking

into account the interdependencies of the parameter esti-

mates, as well as the dependencies of the model residuals.

This can increase the accuracy of estimation [23].
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4. Experimental results

First, the performance as well as robustness of the band

selection method is investigated via a variety of choices

of kernels, smoothing parameters, and distance measures.

Two experiments are conducted with gallery and probes

images collected from different illuminations. Next, we

compare our proposed cooperative mapping approach with

the reference algorithm [18] in an indoor surveillance sys-

tem including two Pelco PTZ cameras(Spectra III SE dome

with 640 × 480 pixels, 0◦ ∼ 360◦ pang angle, 0◦ ∼ 90◦

tilt angle, and 1 ∼ 184 zoom position).

4.1. Fluorescent gallery and halogen probe

In this experiment, the spectral bands of multispectral face

images under halogen light are selected via the proposed

algorithm while gallery images are under a different in-

door lighting, fluorescent light. There are 25 sets of probe

images, sub-spectral narrow-band images between wave-

length 480 nm and 720 nm with an increment of 10 nm. We

investigate the ranking results via various distance mea-

sures of these 25 bands. The PDFs are estimated using

different kernel functions with the smoothing parameter

optimized by the AMISE and ICOMP criteria.

Table 2 lists the top three bands with the highest sepa-

ration between the genuine and imposter sets. It is obvi-

ous that regardless of the different combinations of kernel

functions, smoothing parameters, and distance measures,

the same band range, 610 nm-640 nm, is identified. We

could conclude that the ranking results of bands are robust

to the selection of parameters. The normalized distances

with respect to the band wavelength are shown in Fig-

ure 4. To save space, only the results based on the Gaus-

sian and cosine kernels with hAIMSE are shown. Similar

observations apply to other combinations. Even though

the distances show various values at certain wavelength,

the trends and ranking results from the largest distance

values to the smallest distance values are clearly similar.

For example, the top band is 610 or 620 nm for all the

tested kernels and distance measures. The above exper-

iment verifies the robustness of the proposed algorithm.

We now study the recognition performance of the images

obtained by the fusion of multispectral narrow-band im-

ages of the chosen bands. Figures 5 and 6 demonstrates

the rank-one recognition rate of various probes, includ-

ing the single subspectral band, conventional broadband,

and fused images from two and three bands. As expected,

the fused images from the selected narrowbands yield a

higher recognition rate, indicted by an increase of 20%

relative improvement in the rank-one rate in comparison

with the conventional broadband image set.

The rank-one recognition rate for (610 nm, 630 nm, and

640 nm) and (610 nm, 620 nm, and 640 nm) are the same

(97.14%), as shown in Figure 5, which outperforms the

conventional broad-band images by approximately 8.58%.

This demonstrates the effeteness of our band selection

algorithm.

(a)

(b)

Figure 4. Normalized probability distances along the visible spec-
trum based on the Jeffery divergence (JD), Bhattacharyya
distance (BD), Matusita distance (MD), and Patrick-Fisher
distance (PFD). (a) Gaussian kernel and (b) cosine ker-
nel. The smoothing parameter is obtained by AMISE. The
distance values are normalized to [0, 1] for comparison
purpose

Figure 5. Rank-one recognition rate of different probe sets, includ-
ing conventional broad-band images, single sub-spectral
images, and fused images from selected spectral range in
the experiment of fluorescent gallery and halogen probes

4.2. Fluorescent gallery and daylight probe

In this experiment, a more challenging lighting condition,

daylight, is used for probe sets. To simulate practical
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Table 2. The top three bands selected by different distance measures with four different kernels for the experiment of fluorescent gallery and
halogen probe

hAMISE

Gaussian Triangle Epanechnikov Cosine

Jeffrey 610 620 640 610 620 640 610 620 640 610 620 640

Bhattacharyya 610 630 640 610 630 640 610 630 640 610 630 640

Matusita 610 630 640 610 630 640 610 630 640 610 630 640

Patrick-Fisher 610 630 640 610 630 640 610 630 640 610 630 640

hICOMP

Gaussian Triangle Epanechnikov Cosine

Jeffrey 610 620 640 610 620 640 610 620 640 610 620 640

Bhattacharyya 610 630 640 610 630 640 610 630 640 610 630 640

Matusita 620 630 640 610 630 640 610 630 640 610 630 640

Patrick-Fisher 610 620 640 610 630 640 610 630 640 610 630 640

face recognition, stable indoor fluorescent light is used for

gallery images while all the probes are acquired under

varying daylight. The spectral range is selected among

13 sets of narrow-band spectral images from wavelength

480 nm to 720 nm with an increment of 20 nm. Identical

bands (640 mm, 680 mm, and 720 mm) are selected from

various implementations of the proposed algorithm. The

fused images from these selected bands produce a 97.14%

rank-one recognition rate, 2.86% higher than that of the

broad-band images, as shown in Figure 6.

Figure 6. Rank-one recognition rate of different probe sets, includ-
ing band 680 nm, 700 nm, 720 nm, broad-band image,
and fused images from selected spectral range in the ex-
periment of fluorescent gallery and daylight probe

4.3. Comparisons for mapping approaches

To compare the accuracy between our and the reference

algorithms [18], we conduct the following experiment. In

our cooperative mapping approach, a total of 825 sam-

ples uniformly distributed in the scene are collected by

a single moving person as the training set for the corre-

spondence functions, which are shown in Equation (13)

based on Equation (9). Figure 7 shows the estimation

error in pan values, where Figure 7(a) and 7(b) indicate

the estimation error in comparison with the original sam-

ple set (825 sample) and relative pan angles (0◦ ∼ 360◦),

respectively. Figure 8 shows the estimation error in tilt

values, where Figure 8(a) and 8(b) indicate the estima-

tion error in comparison with the original sample set (825

sample) and relative tilt angles (0◦ ∼ 90◦), respectively.

Figure 9 shows the estimation error in zoom values, where

Figure 9(a) and 9(b) indicate the estimation error in com-

parison with the original sample set (825 sample) and

relative zoom positions (1 ∼ 184). The estimation error

is based on how many degrees the system is supposed

to pan, tilt, or zoom to keep the object in the center of

image. In average, the estimation error in pan angle is

less than ± 6.3. The estimation error in tilt angle is less

than ±8.5. The estimation error in zoom value is less than

±19.5. For the reference algorithm, we manually calibrate

two PTZ cameras to learn their intrinsic parameters fist.

This manual intervention impedes their direct application

to surveillance systems with changing setups and larger

261

Brought to you by | Old Dominion University

Authenticated

Download Date | 6/19/17 8:10 PM



Integration of multispectral face recognition and multi-PTZ camera automated surveillance for security applications

number of PTZ cameras in the scene:

Θ̂P,h = 155.376 − 16.612ΘP,j + 37.412ΘT ,j +

− 10.290xj + 2.977yj + 5.469Θ2
P,j +

− 23.364Θ2
T ,j + 2.067x2

j − 0.804ΘP,jΘT ,j +

+ 6.764ΘP,jxj − 1.940ΘT ,jyj − 0.658xjyj ,

Θ̂T ,h = −7.964 − 29.955ΘT ,j − 6.465yj − 0.900Θ2
T ,j +

+ 24.060Θ2
T ,j − 0.558y2

j − 1.386ΘP,jxj +

+ 0.7291ΘP,jyj − 1.940ΘT ,jyj ,

Ẑh = −0.439 + 0.7324ΘP,j − 0.6218Zj + 0.1221yj +

+ 0.0817Θ2
P,j + 0.086Θ2

T ,j + 0.5934Z 2
j +

+ 0.0218x2
j − 0.0141y2

j + 0.0153ΘP,jΘT ,j +

+ 0.0723ΘT ,jyj + 0.0596Zjxj + 0.0596Zjyj +

+ 0.0125xjyj . (13)

(a)

(b)

Figure 7. Estimation errors in pan values: (a) comparison to the
original sample set (825 samples), (b) relative pan angle
(0◦ ∼ 360◦)

Then we have 20 points forming a rectangular pattern in a

1 meter high table to estimate pose relationship based on

back projections. Afterwards, we compare their accuracy

to infer pixel correspondences between two PTZ cameras,

where a single moving person is tested in the scene. Ta-

ble 3 illustrates the comparison between our and reference

algorithms. In Table 3, the averaged pixel distance devi-

ation indicates the distance between the centroid of the

object in the image and image center (320 × 240), when

normalized with respect to the half of image width (320).

(a)

(b)

Figure 8. Estimation errors in tilt values: (a) comparison to the
original sample set (825 samples), (b) relative tilt angle
(0◦ ∼ 90◦)

The averaged pixel size deviation indicates the difference

between the derived pixel size of the object and the de-

sired pixel size (50×170 = 7500 pixels), when normalized

with respect to the desired pixel size (7500). We can see

that our proposed approach reduces the dependence on

the knowledge of intrinsic parameters of the PTZ cam-

era and improves the degree of autonomy at the cost of

slightly decreased pixel accuracy, as compared to Chen

and Wang’ method.

Figure 10 and 11 show real-time video sequences for our

proposed, and Chen and Wang’s approaches. In Figures

10 and 11, the j th PTZ camera uses Equation (13) to ob-

tain θ̂P,h, θ̂T ,h, and Ẑh to direct the hth PTZ camera to

place the object in the center of the image with desired

pixel size (7500) ideally. Figure 10 shows the example

where the single object is far away (18 meters) from the

hth PTZ camera (The tilt angle of the hth PTZ camera

is about 17◦). Figure 11 shows the example where the

single object is close to (3 meters) the hth PTZ camera

(The tilt angle of the hth PTZ camera is about 75◦). In

both Figures 10 and 11, the first row shows five different

locations in images of the j th PTZ camera, the second row

shows their respective pixel locations and sizes, derived

by our approach, in images of the hth PTZ camera, and

the third row shows their respective pixel locations and

sizes, derived by Chen and Wang’s approach, in images

of the hth PTZ camera. In both examples, the averaged

pixel distance deviations are 12.6% and 10.3% for our pro-
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(a)

(b)

Figure 9. Estimation errors in zoom values: (a) comparison to the
original sample set (825 samples), (b) relative zoom posi-
tion (1 ∼ 184)

posed, and Chen and Wang’s methods, respectively. The

averaged pixel size deviations are 14.6% and 12.7% for

our proposed, and Chen and Wang’s methods, respectively.

Figure 12 illustrates how we calculate their pixel distance

deviation and pixel size deviation.

Regardless of our proposed or Chen and Wang’s methods,

a consistent labeling approach is needed to identify the

object of interest in both PTZ cameras after the occur-

rence of changing pose. Since this object of interest is

maintained within the field of view of the hth PTZ cam-

era by both methods and maximal estimation errors for

pan and tilt angles are 6.3◦ and 8.5◦ for our proposed

method. Consistent labeling approaches can be carried

out without added cost in here, because existing con-

sistent labeling approaches such as scale-invariant fea-

ture transform (SIFT) [26] had been proved efficient when

viewing angle is less than 50 degree. In other words,

this slightly decreased pixel accuracy in our proposed ap-

proach has comparable result for the application of au-

tomated surveillance systems, as compared with Cheng

and Wang’s method. However, we reduce the dependence

on the knowledge of intrinsic parameters of PTZ camera,

thus holding the direct application to automated surveil-

lance systems with changing configurations and a larger

number of PTZ cameras.

Table 3. Comparison between our and reference algorithms

Averaged Pixel Averaged Pixel

Distance Deviation Size Deviation

Our Method 11.1% 16.7%

Chen and Wang [18] 9.2% 15.2%

5. Conclusion

In this work, we investigated two studies: 1) using narrow-

band spectral images instead of conventional broad-band

images to improve recognition performance; 2) directly de-

riving a unified polynomial model between the pan and

tilt values of PTZ cameras with unknown intrinsic param-

eters and system setups in the scene. We demonstrated

the robustness and consistency of the automated band se-

lection algorithm under various implementations of kernel

functions, smoothing parameters, and distance measures.

An improved face recognition rate over the conventional

broad-band images was achieved under various illumina-

tion conditions by the fusion of images from the selected

bands. The robustness of the algorithm facilitates the ap-

plication of the proposed algorithm in a plug-and-play

manner that is independent of the characteristics of the

input data. The second proposed approach, which directly

derives a unified polynomial model between the pan and

tilt values of PTZ cameras with unknown intrinsic parame-

ters and system setups in the scene, has proven to reduce

the dependence on the knowledge of intrinsic parameters

of the PTZ camera, which most existing algorithms find

challenging. Experimental results showed that our pro-

posed method improves the feasibility and autonomy of the

spatial mapping between PTZ cameras and reduces sys-

tem’s computational complexity at the cost of slightly de-

creased pixel accuracy, as compared with the work of Chen

and Wang. This slightly decreased pixel accuracy can be

compensated by consistent labeling approaches without

added cost for the application of automated surveillance

systems along with changing configurations and a larger

number of PTZ cameras.
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or Chen and Wang’s method. The size deviation is cal-
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