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Abstract. Conventional neuro-computing architectures and artificial neural net-

works have often been developed with no or loose connections to neuroscience. As

a consequence, they have largely ignored key features of biological neural process-

ing systems, such as their extremely low-power consumption features or their ability

to carry out robust and efficient computation using massively parallel arrays of lim-

ited precision, highly variable, and unreliable components. Recent developments in

nano-technologies are making available extremely compact and low-power, but also

variable and unreliable solid-state devices that can potentially extend the offerings of

availing CMOS technologies. In particular, memristors are regarded as a promising

solution for modeling key features of biological synapses due to their nanoscale di-

mensions, their capacity to store multiple bits of information per element and the low

energy required to write distinct states. In this paper, we first review the neuro- and

neuromorphic-computing approaches that can best exploit the properties of memristor

and-scale devices, and then propose a novel hybrid memristor-CMOS neuromorphic

circuit which represents a radical departure from conventional neuro-computing ap-

proaches, as it uses memristors to directly emulate the biophysics and temporal dy-

namics of real synapses. We point out the differences between the use of memristors in

conventional neuro-computing architectures and the hybrid memristor-CMOS circuit

proposed, and argue how this circuit represents an ideal building block for implement-

ing brain-inspired probabilistic computing paradigms that are robust to variability and

fault-tolerant by design.
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1. Introduction

The idea of linking the type of information processing that takes place in the brain

with theories of computation and computer science (something commonly referred

to as neuro-computing) dates back to the origins of computer science itself [1, 2].

Neuro-computing has been very popular in the past [3, 4], eventually leading to the

development of abstract artificial neural networks implemented on digital computers,

useful for solving a wide variety of practical problems [5, 6, 7, 8, 9]. However, the

field of neuromorphic engineering is a much younger one [10]. This field has been

mainly concerned with hardware implementations of neural processing and sensory-

motor systems built using Very Large Scale Integration (VLSI) electronic circuits that

exploit the physics of silicon to reproduce directly the biophysical processes that underlie

neural computation in real neural systems. Originally, the term “neuromorphic” (coined

by Carver Mead in 1990 [11]) was used to describe systems comprising analog integrated

circuits, fabricated using standard Complementary Metal Oxide Semiconductor (CMOS)

processes. In recent times, however, the use of this term has been extended to refer to

hybrid analog/digital electronic systems, built using different types of technologies.

Indeed, both artificial neural networks and neuromorphic computing architectures

are now receiving renewed attention thanks to progress in Information and Communi-

cation Technologys (ICTs) and to the advent of new promising nanotechnologies. Some

of present day neuro-computing approaches attempt to model the fine details of neu-

ral computation using standard technologies. For example, the Blue Brain project,

launched in 2005, makes use of a 126kW Blue Gene/P IBM supercomputer to run

software that simulates with great biological accuracy the operations of neurons and

synapses of a rat neocortical column [12]. Similarly, the BrainScaleS EU-FET FP7

project aims to develop a custom neural supercomputer by integrating standard CMOS

analog and digital VLSI circuits on full silicon wafers to implement about 262 thousand

Integrate-and-Fire (I&F) neurons and 67 million synapses [13]. Although configurable,

the neuron and synapse models are hardwired in the silicon wafers, and the hardware

operates about 10000 times faster than real biology, with each wafer consuming about

1kW power, excluding all external components. Another large-scale neuro-computing

project based on conventional technology is the SpiNNaker project [14]. The SpiN-

Naker is a distributed computer, which interconnects conventional multiple integer pre-

cision multi ARM core chips via a custom communication framework. Each SpiNNaker

package contains a chip with 18 ARM9 Central Processing Units (CPUs) on it, and a

memory chip of 128Mbyte Synchronous Dynamic Random Access Memory (DRAM).

Each CPU can simulate different neuron and synapse models. If endowed with sim-

ple synapse models, a single SpiNNaker device ARM core can simulate the activity of

about 1000 neuron in real time. More complex synapse models (e.g. with learning mech-

anisms) would use up more resources and decrease the number of neurons that could

be simulated in real-time. The latest SpiNNaker board contains 47 of these packages,

and the aim is to assemble 1200 of these boards. A full SpiNNaker system of this size
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would consume about 90 kW. The implementation of custom large-scale spiking neural

network hardware simulation engines is being investigated also by industrial research

groups. For example, the IBM group led by D.S. Modha recently proposed a digital

“neurosynaptic core” chip integrated using a standard 45 nm Silicon on Insulator (SOI)

process [15]. The chip comprises 256 digital I&F neurons, with 1024×256 binary valued

synapses, configured via a Static Random Access Memory (SRAM) cross-bar array, and

uses an asynchronous event-driven design to route spikes from neurons to synapses. The

goal is to eventually integrate many of these cores onto a single chip, and to assemble

many multi-core chips together, to simulate networks of simplified spiking neurons with

human-brain dimensions (i.e. approximately 1010 neurons and 1014 synapses) in real-

time. In the mean time, IBM simulated 2.084 billion neurosynaptic cores containing

53× 1010 neurons and 1.37× 1014 synapses in software on the Lawrence Livermore Na-

tional Lab Sequoia supercomputer (96 Blue Gene/Q racks), running 1542× slower than

real time [16], and dissipating 7.9MW. A diametrically opposite approach is represented

by the Neurogrid system [17]. This system comprises an array of sixteen 12 × 14mm2

chips, each integrating mixed analog neuromorphic neuron and synapse circuits with

digital asynchronous event routing logic. The chips are assembled on a 16.5 × 19 cm2

Printed Circuit Board (PCB), and the whole system can model over one million neurons

connected by billions of synapses in real-time, and using only about 3W of power [18].

As opposed to the neuro-computing approaches that are mainly concerned with fast and

large simulations of spiking neural networks, the Neurogrid has been designed follow-

ing the original neuromorphic approach, exploiting the characteristics of CMOS VLSI

technology to directly emulate the biophysics and the connectivity of cortical circuits.

In particular, the Neurogrid network topology is structured by the data and results

obtained from neuro-anatomical studies of the mammalian cortex. While offering less

flexibility in terms of connectivity patterns and types of synapse/neuron models that

can be implemented, the Neurogrid is much more compact and dissipates orders of

magnitude less power than the other neuro-computing approaches described above. All

these approaches have in common the goal of attempting to simulate large numbers of

neurons, or as in the case of Neurogrid, to physically emulate them with fine detail.

Irrespective of the approach followed, nanoscale synapse technologies and devices

have the potential to greatly improve circuit integration densities and to substantially

reduce power-dissipation in these systems. Indeed, recent trends in nanoelectronics have

been investigating emerging low-power nanoscale devices for extending standard CMOS

technologies beyond the current state-of-art [19]. In particular, Resistive Random

Access Memory (ReRAM) is regarded as a promising technology for establishing next-

generation non-volatile memory cells [20], due to their infinitesimal dimensions, their

capacity to store multiple bits of information per element and the minuscule energy

required to write distinct states. The factors driving this growth are attributed to

the devices’ simple (two terminals) and infinitesimal structure (state-of-art is down

to 10×10nm2 [21]) and ultra-low power consumption (< 50 fJ/bit) that so far are

unmatched by conventional VLSI circuits.
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Various proposals have already been made for leveraging basic nanoscale ReRAM

attributes in reconfigurable architectures [22], neuro-computing [23] and even artificial

synapses [24, 25, 26, 27, 28]. However the greatest potential of these nanoscale devices

lies in the wide range of interesting physical properties they possess. Neuromorphic

systems can harness the interesting physics being discovered in these new nanodevices

to emulate the biophysics of real synapses and neurons and reproduce relevant

computational primitives, such as state-dependent conductance changes, multi-level

stability and stochastic state changes in large-scale artificial neural systems.

In this paper we first describe how nanoscale synaptic devices can be integrated into

neuro-computing architectures to build large-scale neural networks, and then propose a

new hybrid memristor-CMOS neuromorphic circuit that emulates the behavior of real

synapses, including their temporal dynamics aspects, for exploring and understanding

the principles of neural computation and eventually building brain-inspired computing

systems.

2. Solid-state memristors

ReRAM cells are nowadays classified as being memory-resistors [29], or memristors for

short, that have first been conceptually conceived in 1971 by Leon Chua [30]; with

the first biomimetic applications presented at the same time. The functional signature

of memristors is a pinched hysteresis loop in the current-voltage (i-v) domain when

excited by a bipolar periodic stimulus [31]. Such hysteresis is typically noticed for all

kind of devices/materials in support of a discharge phenomenon that possess certain

inertia, causing the value of a physical property to lag behind changes in the mechanism

causing it, and has been common both to large scale [32] as well as nanoscale dissipative

devices [33].

2.1. Emerging nanodevices as synapse mimetics

The analogy of memristors and chemical synapses is made on the basis that synaptic

dynamics depend upon the discharge of neurotransmitters within a synaptic cleft (see

Fig. 1a), in a similar fashion that “ionic species” can be displaced within any inorganic

barrier (see Fig. 1b). T iO2-based memristor models [33, 34] hypothesized that solid-

state devices comprise a mixture of T iO2 phases, a stoichiometric and a reduced one

(T iO2 − x), that can facilitate distinct resistive states via controlling the displacement

of oxygen vacancies and thus the extent of the two phases. More recently however it was

demonstrated that substantial resistive switching is only viable through the formation

and annihilation of continuous conductive percolation channels [35] that extend across

the whole active region of a device, shorting the top and bottom electrodes; no matter

what the underlying physical mechanism is.

An example of I-V characteristics of T iO2-based memristors is depicted in Fig. 2a.

In this example, consecutive positive voltage sweeps cause any of the cross-bar type
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(a) (b)

Figure 1: (a) Cross-section of a chemical synapse, illustrating the discharge of

neurotransmitters within a synaptic cleft originating from a pre-synaptic neuron. (b)

Schematic representation of solid-state memristors where ionic species can be displaced

within a device’s insulating medium, transcribing distinct resistive states, by application

of electrical stimuli on the top or bottom electrodes of the device.

devices [36] shown in the inset of Fig. 2a to switch from a High-Resistive State

(HRS) to Low-Resistive States (LRSs). When the polarity of the voltage sweeps is

however inverted, the opposite trend occurs, i.e. the device toggles from LRS to HRS

consecutively (as indicated by the corresponding arrows). These measured results are

consistent with analogous ones proposed by other research groups [37, 38, 39] and

demonstrate the devices’ capacity for storing a multitude of resistive states per unit cell,

with the programming depending on the biasing history. This is further demonstrated

in Fig. 2b, by applying individual pulses of -3V in amplitude and 1µsec long for

programming a single memristor at distinct non-volatile resistive states. In this scenario,

the solid-state memristor emulates the behavior of a depressing synapse [40, 41]; the

inverse, i.e. short-term potentiation is also achievable by alternating the polarity of the

employed pulsing scheme.

The development of nanoscale dynamic computation elements may notably benefit

the establishment of neuromorphic architectures. This technology adds substantially

on computation functionality, due to the rate-dependency of the underlying physical

switching mechanisms. At the same time it can facilitate unprecedented complexity

due to the capacity of storing and processing spiking events locally. Moreover,

exploiting the nanoscale dimensions and architecture simplicity of solid-state memristor

implementations could substantially augment the number of cells per unit area,

effectively enhancing the systems’ redundancy for tolerating issues that could stem from

device mismatch and low-yields [42].
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(a) (b)

Figure 2: Characterization of a T iO2-based solid-state memristor. (a) I-V characteristics

for consecutive voltage sweeping. Positive (negative) biasing renders an increase

(decrease) in the device’s conductance. Inset of (a) depicts a 25 × 25 array crossbar

type memristors comprising of T iO2 active areas of 1 × 1µm2. These cells can be

programmed at distinct resistive states as shown in (b) by employing -3V and 1µsec

wide pulses, while evaluation of the device’s states is performed at 0.9V.

2.2. Memristor scaling

Resistive memory scaling has been intensively investigated for realization of nanosized

ReRAM [43]. In principle memristors may be scaled aggressively well below conventional

RAM cells due to their simplicity: fabrication-wise memristors typically rely on a

Metal Insulator Metal (MIM) structure. The memristor action occurs in the insulating

material. Scaling down the thickness of such a material will reduce both the required

set voltage as well as the read voltage used during operation. In this context, thickness

figures of a few nano meters have been demonstrated and operating voltages below 1V

have been shown [44] with a switching energy of a few fJ [45]. Furthermore, reducing

the active device area by down-scaling the electrodes leads to current scaling, as well as

increased device density. Both of these effects are favorable for high complexity circuits.

Currently even though single memristor devices as small as 10 × 10 nm have been

demonstrated [21], cross-bar arrays are the most commonly used architecture [46, 36]

to organize large numbers of individually addressable memristive synapses in a reduced

space. In Fig. 3 we show a large array of nanoscale memristors that we fabricated using

electron beam lithography. This array consists of a continuous Pt bottom electrode and

an active layer deposited by Sputtering. Subsequently, several arrays of nano-memristors

with a size ranging from 20 to 50 nm were defined using E-beam lithography on PMMA

and lift-off of the top Platinum electrode. The array shown here comprises 256 × 256

devices with a periodicity of 200 nm. To access each individual device a conductive

Atomic Force Microscope (AFM) tip was used. Such a structure has been used to study

the variability of the fabricated devices. Using E-beam lithography for both the top and

bottom electrodes a fully interconnected cross bar structure with similar size and pitch

may be fabricated.
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Figure 3: SEM micrograph of a large nanosized memristor array. Top inset shows a

zoom-in of the top left corner where the individual devices are distinguished. Bottom

left inset shows an AFM image of a small part of the array. Individual devices are

addressed by placing a conductive AFM tip on the top electrode.

3. Memristor-based neuro-computing architectures

Memristive devices have been proposed as analogs of biological synapses. Indeed,

memristors could implement very compact but abstract models of synapses, for example

representing a binary “potentiated” or “depressed” state, or storing an analog “synaptic

weight” value [47]. In this framework, they could be integrated in large and dense cross-

bar arrays [48] to connect large numbers of silicon neurons [49], and used in a way to

implement spike-based learning mechanisms that change their local conductance.

In [25, 24] the authors proposed a scheme where neurons can drive memristive

synapses to implement a Spike-Timing Dependent Plasticity (STDP) [50] learning

scheme by generating single pairs of pre- and post-synaptic spikes in a fully asynchronous

manner, without any need for global or local synchronization, thus solving some of the

problems that existed with previously proposed learning schemes [51, 28]. The main idea

is the following: when no spike is generated, each neuron maintains a constant reference

voltage at both its input and output terminals. During spike generation, each neuron

forces a pre-shaped voltage waveform at both its input and output terminals, as shown

in Fig. 4a, to update the synaptic weight value stored in the memristor state. Since

memristors change their resistance when the voltages at their terminals exceed some

defined thresholds, it is possible to obtain arbitrary STDP weight update functions,

including biologically plausible ones, as the one shown in Fig. 4b [50]. Moreover by

properly shaping the spike wave-forms of both pre- and post-synaptic spikes it is possible

to change the form of the STDP learning function, or to even make it evolve in time as
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Figure 4: Single memristor synapse concept.(a) One Memristor synapse with pre- and

post-synaptic pulse-shaping neuron circuits. (b) Example of a STDP weight update

learning function ξ(∆T ), where ∆T represents the difference between the timing of the

post-synaptic and pre-synaptic spikes. (c) Circuit architecture comprising three neuron

layers connected by means of synaptic crossbars. (d) Hybrid memristor/CMOS neurons

and AER 2D chip architecture for spike/event routing and processing. Parts of this

figure were adapted from [24].

learning progresses [52, 25]. Fully interconnected or partially interconnected synaptic

crossbar arrays, as illustrated in Fig. 4c, could facilitate hierarchical learning neural

network architectures. Since there is no need for global synchronization, this approach

could be extended to multi-chip architectures that transmit spikes across chip boundaries

using fully asynchronous timing. For example, a common asynchronous communication

protocol that has been used in neuromorphic systems is based on the Address Event

Representation (AER) [53, 54]. In this representation, each spiking neuron is assigned an

address, and when the neuron fires an address-event is put on a digital bus, at the time

that the spike is emitted. In this way time represent itself, and information is encoded

in real-time, in the inter-spike intervals. By further exploiting hybrid CMOS/memristor

chip fabrication techniques [55], this approach could be easily scaled up to arbitrarily

large networks (e.g., see Fig. 4d). Following this approach each neuron processor would

be placed in a 2D grid fully, or partially interconnected through memristors. Each

neuron would perform incoming spike aggregation, provide the desired pre- and post-
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synaptic (programmable) spike waveforms, and communicate incoming and outgoing

spikes through AER communication circuitry. Using state-of-the-art CMOS technology,

it is quite realistic to provide in the order of a million such neurons per chip with about

104 synapses per neuron. For example, by using present day 40 nm CMOS technology

it is quite realistic to fit a neuron within a 10µm × 10µm area. This way, a chip of

about 1cm2 could host of the order of one million neurons. At the same time, for the

nano wire fabric deposited on top of CMOS structures, present day technology can

easily provide nano wires of 100nm pitch [21]. This would allow to integrate about 104

synapses on top of the area occupied by each CMOS neuron. Similarly, at the PCB

level, it is possible to envisage that a 100-chip PCB could host about 108 neurons, and

40 of these PCBs would emulate 4 billion neurons. In these large-scale systems the

bottleneck is largely given by the spike or event communication limits. To cope with

these limits such chips would inter-communicate through nearest neighbors, exploiting

2D-grid network-on-chip (NoC) and network-on-board (NoB) principles. For example,

in [56] the authors proposed a very efficient multi-chip inter-communication scheme that

distributes event traffic over a 2D mesh network locally within each board through inter-

chip high speed buses. Reconfigurability and flexibility would be ensured by defining

the system architecture and topology through in-chip routing tables. Additionally, by

arranging the neurons within each chip in a local 2D mesh with in-chip inter-layer event

communication, it is possible to keep most of the event traffic inside the chips. At

the board level, the 2D mesh scheme would allow for a total inter-chip traffic in the

order of Ev = 4Nch × Epp, where Nch = 100 is the number of chips per board, Epp is

the maximum event bandwidth per inter-chip bus (which we may assume to be around

100Meps - mega events per second), and 4 reflects the fact that each chip is connected

to its four nearest neighbors [56]. With these numbers, the maximum traffic per board

would be in the order of Ev ≈ 4 × 1010eps, which is about 400 eps per neuron just

for inter-chip event exchange. In practice, inter-board traffic could be much sparser,

if the system is partitioned efficiently. Such numbers are quite realistic for present

day CMOS technology, and the approach is scalable. Regarding power consumption

of the communication overhead, we can use as reference some recent developments

for event-based fully bit-serial inter-chip transmission schemes over differential micro

strips [57, 56], where consumption is proportional to communication event rate. Each

link would consume in the order of 40mA at 10Meps rate (this includes driver and

receiver pad circuits [57] as well as serializers and deserializers [58]). If each neuron

fires at an average rate of 1Hz, and if each chip has 1 million neurons, the current

consumption of the communication overhead would be about 4mA per chip. If voltage

supply is in the 1-2V range, this translates into 4-8mW per chip. For a 100 chip

PCB the inter-chip communication overhead power consumption would thus be about

400-800mW, for 1Hz average neuron firing rate.
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4. Neuromorphic and hybrid memristor-CMOS synapse circuits

We’ve shown how memristive devices and nano-technologies can be exploited to

dramatically increase integration density and implement large-scale abstract neural

networks. However to faithfully reproduce the function of real synapses, including their

temporal dynamic properties, passive memristive devices would need to be interfaced

to biophysically realistic CMOS circuits that follow the neuromorphic approach, as

described in [10, 11]. On one hand, building physical implementations of circuits

and materials that directly emulate the biophysics of real synapses and reproduce

their detailed real-time dynamics is important for basic research in neuroscience, on

the other, this neuromorphic approach can pave the way for creating an alternative

non-von Neumann computing technology, based on massively parallel arrays of slow,

unreliable, and highly variable, but also compact and extremely low-power solid-

state components for building neuromorphic systems that can process sensory signals

and interact with the user and the environment in real-time, and possibly carry out

computation using the same principles used by the brain. Within this context, of

massively parallel artificial neural processing elements, memory and computation are

co-localized. Typically the amount of memory available per each “computing node”

(synapse in our case) is limited and it is not possible to transfer and store partial results

of a computation in large memory banks outside the processing array. Therefore, in

order to efficiently process real-world biologically relevant sensory signals these types of

neuromorphic systems must use circuits that have biologically plausible time constants

(i.e., of the order of tens of milliseconds). In this way, in addition to being well matched

to the signals they process, these systems will also be inherently synchronized with

the real-world events they process and will be able to interact with the environment

they operate in. But these types of time constants require very large capacitance and

resistance values. For example, in order to obtain an equivalent RC time constant

of 10ms with a resistor even as large as 10MΩ, it would be necessary to use a

capacitor of 100 pF. In standard CMOS VLSI technology a synapse circuit with this

RC element would require a prohibitively large area, and the advantages of large-scale

integration would vanish. One elegant solution to this problem is to use current-mode

design techniques [59] and log-domain subthreshold circuits [60, 61]. When Meal Oxide

Semiconductor Field Effect Transistors (MOSFETs) are operated in the subthreshold

domain, the main mechanism of carrier transport is that of diffusion [60], the same

physical process that governs the flow of ions through proteic channels across neuron

membranes. As a consequence, MOSFETs have an exponential relationship between

gate-to-source voltage and drain current, and produce currents that range from femto-

to nano-Ampères. In this domain it is possible to implement active VLSI analog filter

circuits that have biologically realistic time-constants and that employ relatively small

capacitors.
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Figure 5: Neuromorphic electronic synapses (a) Log-domain DPI circuit diagram of an

excitatory silicon synapse. Red arrows show the translinear loop considered to derive

the circuit response. Input voltage spikes Vin are integrated by the circuit to produce

post-synaptic currents Isyn with biologically faithful dynamics. (b) Experimental data

showing the EPSP response of the circuit for two different settings of synaptic weight bias

voltage Vw. The data was measured from the DPI synapses of 124 neurons, integrated on

the same chip, with shared common bias settings. The dashed and solid lines represent

the average response, while the shaded areas (standard deviation) indicate the extend

of the device mismatch effect.

4.1. A CMOS neuromorphic synapse

An example of a compact circuit that can produce both linear dynamics with biologically

plausible time constants as well as non-linear short-term plasticity effects analogous to

those observed in real neurons and synapses is the Differential Pair Integrator (DPI)

circuit [62] shown in Fig. 5a. It can be shown [63] that by exploiting the translinear-

principle [64] across the loop of gate-to-source voltages highlighted in the figure, the

circuit produces an output current Isyn with impulse response of the form:

τ
d

dt
Isyn + Isyn =

IwIth
Iτ

, (1)

where τ , CUT/κIτ is the circuit time constant, κ the subthreshold slope factor [60],

and UT = KT/q represents the thermal voltage. The currents Iw and Ith represent local

synaptic weight and a global synaptic scaling gain terms, useful for implementing spike-

based and homeostatic plasticity mechanisms [65, 66]. Therefore, by setting for example,

Iτ = 5 pA, and assuming that UT = 25mV at room temperature, the capacitance

required to implement a time constant of 10ms would be approximately C = 1pF. This

can be implemented in a compact layout and allows the integration of large numbers

of silicon synapses with realistic dynamics on a small VLSI chip. The same circuit

of Fig. 5a can be used to implement elaborate models of spiking neurons, such as the
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“Adaptive Exponential” (AdExp) I&F model [67, 49]. Small (minimum-size, of about

10µm2) prototype VLSI chips comprising of the order of thousands of neurons and

synapses based on the DPI circuit have been already fabricated using a conservative

350 nm CMOS technology [68]. The data of Fig. 5b shows the average response of a DPI

synapse circuits measured from one of such chips [68]. The data represents the average

Excitatory Post Synaptic Potential (EPSP) produced by 124 neurons in response to a

single spike sent to the DPI synapses of each neuron. The shaded areas, representing

the standard deviation, highlight the extent of variability present in these types of

networks, due to device mismatch. The main role of the DPI circuit of Fig. 5a is to

implement synaptic dynamics. Short-term plasticity, STDP learning, and homeostatic

adaptation mechanisms can be, and have been, implemented by interfacing additional

CMOS circuits to control the DPI Vw bias voltage, or to the Ith bias current [62, 69, 70].

Long-term storage of the Vw weights however requires additional power-consuming and

area-expensive circuit solutions, such as floating gate circuits, or local Analog to Digital

Converter (ADC) and SRAM cells.

4.2. A new hybrid memristor-CMOS neuromorphic synapse

Nano-electronic technologies offer a promising alternative solution for compact and

low-power long-term storage of synaptic weights. The hybrid memristor-CMOS

neuromorphic synapse circuit we propose here, shown in Fig. 6a, exploits these features

to obtain at the same time dense integration of low-power long-term synaptic weight

storage elements, and to emulate detailed synaptic biophysics for implementing relevant

computational properties of neural systems.

The circuit depicted in Fig. 6a represents a possible implementation of a dense

array of N synapses with independent weights but with the same, shared, temporal

dynamics. Depending on their size, each memristor in Fig. 6a could represent a full

synaptic contact, or an individual ion channel in the synaptic cleft (see also Fig. 1a). If

the currently accepted model of filament formation in memristive devices is true, then

down-scaled memristors should approach single filament bistable operation. While this

is a severe limitation for classical neural network applications in which memristors are

required to store analog synaptic weight values with some precision, it would actually

provide a very compact physical medium for emulating the stochastic nature of the

opening and closing of ion channels in biological synapses.

The shared temporal dynamics are implemented by the DPI circuit in the top part

of Fig. 6a. Indeed, if this circuit is operated in its linear regime, it is possible to time-

multiplex the contributions from all spiking inputs, thus requiring one single integrating

element and saving precious silicon real-estate. The Vw bias voltage of this circuit is

a global parameter that sets the maximum possible current that can be produced by

each memristor upon the arrival of an input spike, while the memristor conductance

modulates the current being produced by the synapse very much like conductance

changes in real synapses affect the Excitatory Post Synaptic Currents (EPSCs) they
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Figure 6: Neuromorphic memristive synapse. (a) Schematic circuit implementing an

array of memristive synapses, with independent inputs and synaptic weights, but with

shared temporal dynamics. (b) SPICE simulations of the circuit in Fig. 6a showing the

output Isyn EPSC in response to a pre-synaptic input spike, for 4 different memristor

conductance values.

produce. Larger memristor conductances, which represent a larger number of open

proteic channels in real synapses, correspond to larger synaptic weights.

Figure 6b shows the results of SPICE simulations of the circuit in Fig. 6a, for a

180 nm CMOS process. The Ithr and Iτ current sources were implemented with p-type

MOSFETs, biased to produce 2 pA and 10 pA respectively, and the Vw voltage bias was

set to 700mV. The data was obtained by simulating the response of one input memristive

branch to a single input spike, while sweeping the memristor impedance from 1KΩ to

7KΩ. In these simulations we set the memristor in its LRS, and assumed we could

modulate the value of the resistance to obtain four distinct analog states analogous to

the ones measured experimentally in Fig. 2b. Of course the circuit supports also the

operation of the memristor as a binary device, working in either the HRS state or the

LRS one. This bi-stable mode of using the memristor would encode only an “on” or

“off” synaptic state, but it would be more reliable and it is compatible with biologically

plausible learning mechanisms, such as those proposed in [71], and implemented in [69].

The circuit of Fig. 6a shows only the circuit elements required for a “read” operation,

i.e., an operation that stimulates the synapse to generate an EPSC with an amplitude set

by the conductance of the memristor. Additional circuit elements would be required to

change the value of the memristor’s conductance, e.g., via learning protocols. However

the complex circuitry controlling the learning mechanisms would be implemented at the

Input/Output (I/O) periphery of the synaptic array, for example with pulse-shaping

circuits and architectures analogous to the ones described in Section 3, or with circuits

that check the state of the neuron and of it’s recent spiking history, such as those
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proposed in [61], and only a few additional compact elements would be required in each

synapse to implement the weight update mechanisms.

5. Brain-inspired probabilistic computation

While memristors offer a compact and attractive solution for long-term storage of

synaptic state, as done for example in Fig. 6, they are affected by a high degree of

variability (e.g., much higher than the one measured for CMOS synapses in Fig. 5b).

In addition, as memristors are scaled down, unreliable and stochastic behavior becomes

unavoidable. The variability, stochasticity, and in general reliability issues that are

starting to represent serious limiting factors for advanced computing technologies, do

not seem to affect biological computing systems. Indeed, the brain is a highly stochastic

system that operates using noisy and unreliable nanoscale elements. Rather than

attempting to minimize the effect of variability in nanotechnologies, one alternative

strategy, compatible with the neuromorphic approach, is to embrace variability and

stochasticity and exploit these “features” to carry out robust brain-inspired probabilistic

computation.

The fact that the brain can efficiently cope with a high degree of variability is

evident at many levels: at the macroscopic level trial-to-trial variability is present for

example in the arm trajectories of reaching movement tasks. It is interesting to note

that the variability of the end position of the reaching movement is reduced, if the task

requires to hit or touch a target with high accuracy [72]. Variability is evident at the

level of cortical neurons: there is significant trial to trial variability in their responses

to identical stimuli; it is evident also at the level of chemical synapses, where there is a

high degree of stochasticity in the transmission of neurotransmitter molecules [73], from

the pre-synaptic terminal to the post-synaptic one. The release probability of cortical

synapses ranges from values of less than 1% to 100% [74]. This indicates that stochastic

synaptic release may not merely be an unpleasant constraint of the molecular machinery

but may rather be an important computational feature of cortical synapses.

What could be the computational benefit of using hardware affected by variability

and stochasticity in biological and artificial computing systems? Recent advances in

cognitive science demonstrated that human behavior can be described much better in the

framework of probabilistic inference rather than in the framework of traditional “hard”

logic inference [75], and encouraged the view that neuronal networks might directly

implement a process of probabilistic inference [76]. In parallel, to this paradigm shift,

research in machine learning has revealed that probabilistic inference is often much more

appropriate for solving real-world problems, then hard logic [77]. The reason for this is

that reasoning can seldom be based on full and exact knowledge in real-world situations.

For example, the sensory data that a robot receives is often noisy and incomplete such

that the current state of the environment can only partially be described. Probabilistic

reasoning is a powerful tool to deal with such uncertain situations. Of course, exact

probabilistic inference is still computationally intractable in general, but a number of
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approximation schemes have been developed that work well in practice.

In probabilistic inference, the idea is to infer a set of unobserved variables (e.g.,

motor outputs, classification results, etc.) given a set of observed variables (evidence,

e.g., sensory inputs), using known or learned probabilistic relationships among them.

Specifically, if the distribution P (x̄) describes the probabilistic relationships between

the random variables x1, . . . , xn, and if x1, . . . , xk of this distribution are observed, then

one can infer a set of variables of interests xk+1, . . . , xk+l by determining the posterior

probability P (xk+1, . . . , xk+l|x1, . . . xk). One of the most popular techniques used to

perform inference is belief propagation [77]. While this message passing algorithm can

be implemented by networks of spiking neurons [78], a more promising alternative

approach, also well suited to model brain-inspired computation, is to use sampling

techniques [79]. Probably the most important family of sampling techniques in this

context is Markov-Chain Monte Carlo (MCMC) sampling. Since MCMC sampling

techniques operate in a stochastic manner, stochastic computational elements are a

crucial and essential feature. Recent studies have shown that probabilistic inference

through MCMC sampling can be implemented by networks of stochastically spiking

neurons [79, 80]. Therefore, MCMC sampling is a computational paradigm optimally

suited for emulating probabilistic inference in the brain using neuromorphic circuits and

nanoelectronic synapses.

Within this context, it is important to see if and how the distribution P (x̄)

can be learned from observations, i.e., how the artificial neural system can build its

own model of the world based on its sensory input and then perform probabilistic

inference on this model. For a relatively simple model [81], it has been shown that

this can be accomplished by a local spike-driven learning rule that resembles the

STDP mechanisms measured in cortical networks [50]. Analogous learning mechanisms

have been demonstrated both experimentally in neuromorphic CMOS devices [69], and

theoretically, with circuit models of memristive synapses [25].

With regard to learning, the variability and stochasticity “features” described above

can provide an additional benefit: for many learning tasks, humans and animals have

to explore many different actions in order to be able to learn appropriate responses in

a given situation. In these so-called reinforcement learning setups, noise and variability

naturally provide the required exploration mechanisms. A number of recent studies

have shown how stochastic neuronal behavior could be utilized by cortical circuits in

order to learn complex tasks [82, 83, 84]. For example, Reservoir Computing (RC, also

known under the terms Liquid State Machines and Echo State Networks) is a powerful

general principle for computation and learning with complex dynamical systems such

as recurrent networks of analog and spiking neurons [85, 86] or optoelectronic devices

[87]. The main idea behind RC is to use a heterogeneous dynamical system (called

the reservoir) as a nonlinear fading memory where information about previous inputs

can be extracted from the current state of the system. This reservoir can be quite

arbitrary in terms of implementation and parameter setting as long as it operates in

a suitable dynamic regime [88]. Readout elements are trained to extract task-relevant
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information from the reservoir. In this way, arbitrary fading memory filters or even

arbitrary dynamical systems (in the case when the readout elements provide feedback to

the dynamical system) can be learned. One long-standing disadvantage of traditional RC

was that readouts had to be trained in a supervised manner. In other words, a teacher

signal was necessary that signals at each time point the desired output of readouts. In

many real-world applications, such a teacher signal is not available. For example, if the

task for a robot controller is to produce some motor trajectory in order to produce a

desired hand movement, the exact motor commands that perform this movement are

in general not known. What can be evaluated however is the quality of the movement.

Recently, it has been demonstrated that noisy readouts can be trained with a much less

informative reward signal, which just indicates whether some measure of performance

of the system has recently increased [84]. Of course, such reward-based learning can in

general be much slower than the pure supervised approach (see, e.g.,[89]). The actual

slowdown however depends on the task at hand, and it is interesting that for a set of

relevant tasks, reward-based learning works surprisingly fast [84].

Since the functionality of reservoirs depends on its general dynamical behavior and

not on precise implementation of its components, RC is an attractive computational

paradigm for circuits comprised of nanoscale elements affected by variability, such as

the one proposed in Section 4.2. In fact, if the reservoir is composed by a large number of

simple interacting dynamic elements – the typical scenario – then heterogeneity of these

elements is an essential requirement for ideal performance. Parameter heterogeneity

is also beneficial in so-called ensemble learning techniques [90]. It is well-known that

the combination of models with heterogeneous predictions for the same data-set tends

to improve overall prediction performance [91]. Hence, heterogeneity of computational

elements can be a real benefit for learning. Examples for ensemble methods are random

forests [92], bagging [93], and boosting [94].

6. Discussion and conclusions

Memristors, and in particular nanoscale solid state implementations, represent a

promising technology, baring benefits for emerging memory storage as well as revisiting

conventional analog circuits [95]. Given their low-power and small-scale characteristics,

researchers are considering their application also in large-scale neural networks for neuro-

computing applications. However, the fabrication of large-scale nano-scale cross-bar

arrays involves several issues that are still open: the realization of nano sized electrodes

requires nanopatterning [96] techniques, such as Electron Beam Lithography (EBL) or

Nano-Imprint Lithography (NIL) [97]. This directly correlates to reduced electrode

cross section which results in increasing resistance. As electrode resistance scales with

length, this can rapidly become a critical issue for fully interconnected nanoscale cross-

bar structures. Furthermore, down-scaling the electrode size to reduce the device active

area requires simultaneous down-scaling of the thickness of the metalizations due to

fabrication concerns. This in turn further increases the resistance of the electrodes,
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much like the interconnects in modern CMOS circuitry. These factors introduce a large

offset in the write voltages required to change the state of ReRAMs cells that depends

on the position of the cell in the array. This problem is especially critical in neuro-

computing architectures where these cells represent synapses, as the offsets directly

affect the weight-update and learning mechanisms.

Integrating memristors as synapse elements in large-scale neuro-computing

architectures also introduces the significance of process variability in memristor

dimensions [98], which in turn introduces a significant amount of variability in the

characteristics of the synapse properties. In addition to their large variability, another

important issue relating to these types of synapses, that is still ignored in the vast

majority of neuro-computing studies, is the effect of limited resolution in memristive

states. In particular, it is not known what the trade-off between desired synaptic weight

resolution and memristor size is. And it is not known to what extent the multi-step

synaptic weight model holds true for aggressively down-scaled memristor sizes.

These scaling, integration, and variability issues are serious limiting factors for

the use of memristors in conventional neuro-computing architectures. Nonetheless,

biological neural systems are an existence proof that it is possible to implement

robust computation using nanoscale unreliable components and non-von Neumann

computing architectures. In order to best exploit these emerging nanoscale technologies

for building compact, low-power, and robust artificial neural processing systems it is

important to understand the (probabilistic) neural and cortical principles of computation

and to develop at the same time, following a co-design approach, the neuromorphic

hardware computing substrates that support them. In this paper we elaborated on this

neuromorphic approach, presenting an example of a neuromorphic circuit and of a hybrid

nanoelectronic-CMOS architecture that directly emulate the properties of real synapses

to reproduce biophysically realistic response properties, thus providing the necessary

technology for implementing massively parallel models of brain-inspired computation

that are, by design, probabilistic, robust to variability, and fault tolerant.
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