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Abstract

Rapid advances in neuroimaging techniques have provided an efficient and noninvasive way for

exploring the structural and functional connectivity of the human brain. Quantitative measurement

of abnormality of brain connectivity in patients with neurodegenerative diseases, such as mild

cognitive impairment (MCI) and Alzheimer’s disease (AD), have also been widely reported,

especially at a group level. Recently, machine learning techniques have been applied to the study

of AD and MCI, i.e., to identify the individuals with AD/MCI from the healthy controls (HCs).

However, most existing methods focus on using only a single property of a connectivity network,

although multiple network properties, such as local connectivity and global topological properties,

can potentially be used. In this paper, by employing multikernel based approach, we propose a
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novel connectivity based framework to integrate multiple properties of connectivity network for

improving the classification performance. Specifically, two different types of kernels (i.e., vector-

based kernel and graph kernel) are used to quantify two different yet complementary properties of

the network, i.e., local connectivity and global topological properties. Then, multikernel learning

(MKL) technique is adopted to fuse these heterogeneous kernels for neuroimaging classification.

We test the performance of our proposed method on two different data sets. First, we test it on the

functional connectivity networks of 12 MCI and 25 HC subjects. The results show that our method

achieves significant performance improvement over those using only one type of network

property. Specifically, our method achieves a classification accuracy of 91.9%, which is 10.8%

better than those by single network-property-based methods. Then, we test our method for gender

classification on a large set of functional connectivity networks with 133 infants scanned at birth,

1 year, and 2 years, also demonstrating very promising results.

Index Terms

Connectivity network; connectivity property; mild cognitive impairment (MCI); multikernel
learning (MKL); topological property

I. INTRODUCTION

ALZHEIMER’S disease (AD) is the most common type of dementia, accounting for 60%–

80% of age-related dementia cases. It is predicted that the number of affected people will

double in the next 20 years, and 1 in 85 people will be affected by 2050 [1]. Since the AD-

specific brain changes begin years before the patient becomes symptomatic, early clinical

diagnosis becomes a challenging task. Accordingly, there have been a lot of studies focusing

on possible identification of such changes at the early stage, i.e., mild cognitive impairment

(MCI), by leveraging neuroimaging data [2], [3]. Recently, machine learning and pattern

classification approaches have been widely used to identify AD and MCI at an individual

level [4]–[8], rather than at a group level, i.e., only the comparison between different clinical

groups. Most of these works focused on using regions-of-interest (ROIs) or voxel-wise

features extracted from single imaging modality or multiple imaging modalities, e.g.,

magnetic resonance imaging (MRI) or/and fluorodeoxyglucose positron emission

tomography (FDG-PET).

In the literature, it has been shown that many neurological and psychiatric disorders can be

categorized as dysconnectivity/hyperconnectivity syndromes, which are commonly

associated with the disrupted synchronization or the abnormal integration of different brain

regions [9], [10]. Rapid advances in neuroimaging techniques have provided an efficient and

noninvasive way for studying the structural and functional connectivity of human brain [11].

Functional connectivity, which is referred to as the functional association pattern among

brain regions, provides a view to understand the relationship between the activities in certain

brain regions and the specific mental functions, and thus could provide an insight into the

pathophysiological mechanism in neurodegenerative diseases, such as MCI and AD.

Several groups have investigated the connectivity of brain networks in neurodegenerative

diseases (e.g., MCI and AD) by using group analysis, where abnormal connectivities are
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found in a series of brain networks, including default-mode network (DMN) [12] and other

resting-state networks (RSNs) [13]. These findings indicate that AD/MCI is associated with

a large-scale highly connected functional network, rather than a single isolated region [14].

For instance, “small-world” properties (characterized by high local clustering and short path

length) have been reported to be disrupted in functional brain network of AD and MCI

patients [15].

On the other hand, connectivity network based methods have also been applied to accurately

identify individuals with AD and MCI from the healthy controls (HCs) [8], [16]–[22]. For

example, some researchers used local measures (e.g., local clustering coefficients and the

weights between nodes) of connectivity network to identify AD/MCI patients [8], [16], [23].

However, to the best of our knowledge, most of the existing approaches use only a single

type of network property for AD and MCI classification, although multiple network

properties, including local connectivity and global topological properties, can potentially be

used. Intuitively, effective integration of these multiple network properties may further

improve the classification performance.

Accordingly, in this paper, we present a new connectivity network based classification

framework to accurately identify individuals with MCI from the HCs. The key to our

approach involves the use of kernel-based method to quantify and integrate multiple

properties of connectivity network. Specifically, for each brain connectivity network, we

first construct two different types of kernels: a vector-based kernel corresponding to the

conventional local network property (e.g., local clustering coefficients) and a graph kernel

corresponding to the global topological property of the network, and then we effectively

integrate them for classification. Our method provides a new perspective to apply different

yet complementary properties of the connectivity network for improving brain disease

classification.

II. MATERIALS AND METHOD

A. Data Acquisition

Subjects used in the current study were recruited by the Duke-UNC Brain Imaging and

Analysis Center (BIAC), Durham, North Carolina, USA. There are totally 37 participants,

including 12 MCI patients and 25 HCs. Demographic information of the participants is

shown in Table I. Informed consent was obtained from all participants, and the experimental

protocols were approved by the institutional ethics board. All recruited subjects were

diagnosed by expert consensus panels. A 3.0-T GE Signa EXCITE scanner was used to

acquire resting-state functional MRI (fMRI) volumes. The fMRI volumes of each participant

were acquired with the following parameters: TR/TE = 2000/32 ms, flip angle = 77°,

acquisition matrix = 64 × 64, FOV = 256 × 256 mm2, voxel resolution = 4 × 4 × 4 mm3, 34

slices, 150 volumes, and voxel thickness = 4 mm. During scanning, all subjects were

instructed to keep their eyes open and stare at a fixation cross in the middle of the screen,

which lasted for 5 min.
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B. Method

It has been reported that the connectivity patterns/properties of the brains with AD/MCI

differ from those of the normal brains [13], [24]. Thus, these properties may serve as

potential biomarkers for disease diagnosis. In this paper, we propose a new method for

integrating multiple properties of a connectivity network to improve the disease diagnosis

performance. Fig. 1 illustrates the framework of our proposed method. Specifically, for each

subject, a functional connectivity network is first constructed from the respective fMRI data.

In order to remove weak or potentially insignificant connections and also to reflect multiple

levels of topological properties of the original functional connectivity network, multiple pre-

defined values are used to separately threshold the functional connectivity network. Then,

two different types of kernels, i.e., a vector-based kernel and a graph kernel, are respectively

computed to quantify two different yet complementary network properties, i.e., local

clustering and global topological properties. Finally, the multikernel support vector machine

(SVM) is adopted to fuse these two heterogeneous kernels for distinguishing the individuals

with MCI from the HCs. Different from the previous multimodality-based integrating

methods [6], [7], which combine the same type of kernels from multiple data sources, in this

study, we combine different types of kernels from different properties of the same

connectivity network. The core of our proposed method is summarized below and will be

discussed comprehensively in the subsequent sections:

1. Extraction of multilevel topological properties of connectivity network using

multiple thresholds;

2. Measurement of topological similarity using graph kernel;

3. Feature selection using the least absolution shrinkage and selection operator

(LASSO) method;

4. Integration of different yet complementary network properties using a multikernel

SVM.

1) Image Processing and Network Construction—The preprocessing step of the

fMRI images, which includes slice timing correction and head-motion correction, was

performed using the Statistical Parametric Mapping software package (SPM8, available at

http://www.fil.ion.ucl.ac.uk.spm). Specifically, the first 10 acquired fMRI images of each

subject were discarded to ensure magnetization equilibrium. The remaining 140 images

were first corrected for the acquisition time delay among different slices before they were

realigned to the first volume of the remaining images for head motion correction. Since the

regions of ventricles and white matter (WM) contain a relatively high proportion of noise

caused by the cardiac and respiratory cycles [25], we utilized only the blood oxygenation

level dependent (BOLD) signals extracted from gray matter (GM) tissue to construct the

functional connectivity network. Accordingly, we first segmented the T1-weighted MR

image of each subject into GM, WM, and cerebrospinal fluid (CSF). GM tissue of each

subject was then used to mask the corresponding fMRI images to eliminate the possible

effects from CSF and WM.
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The first scan of the remaining fMRI scans was co-registered to the T1-weighted MR image

of the same subject. The estimated transformation was then applied to all other fMRI scans

of the same subject. The aligned fMRI scans were further parcellated into 90 ROIs by

warping the Automated Anatomical Labeling (AAL) [26] template to the subject space

using a deformable registration method [27]. Finally, for each subject, the mean time series

of each ROI was computed by averaging the fMRI time series over all voxels in that

particular ROI.

In the current study, the mean time series of each ROI was band-pass filtered within in

frequency interval [0.025 ≤ f ≤ 0.100 Hz], since the fMRI dynamics of neuronal activities

are most salient within this frequency interval. It has been reported in [28] that the frequency

band of (0.027–0.073 Hz) demonstrated significantly higher test-retest reliability than other

frequency bands. Also, it provides a reasonable tradeoff between avoiding the physiological

noise associated with higher frequency oscillations [29] and the measurement error

associated with estimation of very low frequency correlations from the limited time series

[30].

Finally, by using pairwise Pearson correlation coefficient, a functional connectivity network

was constructed with the nodes of network corresponding to the ROIs and the weights of

edges corresponding to the Pearson correlation coefficients between a pair of ROIs. Fisher’s

r-to-z transformation was applied on the elements of the functional connectivity network

(matrix) to improve the normality of the correlation coefficients. Moreover, we removed all

negative correlations from the obtained connectivity networks to extract the meaningful

network measures.

2) Kernel-Based Method—Kernel-based method offers a very general framework for

performing pattern analysis (e.g., classification and clustering) on different types of data.

The main idea of kernel-based method is to implicitly perform a mapping from the input

space to a high dimensional feature space, where the input data are more likely to be linearly

separable than in the original lower dimensional space. Informally, a kernel is defined as a

function of two subjects that quantifies their similarity. Specifically, given two subjects x

and x′, the kernel can be defined as

(1)

where Φ is a mapping function that maps data from the input space to the feature space.

Once given a kernel function, many kernel-based learning algorithms, such as SVM, can be

used to perform pattern analysis.

The definition/selection of the kernel depends on specific data type and the domain

knowledge concerning the patterns (i.e., training subjects). There are several kernel

functions which have been successfully used in the literature, such as the linear kernel and

Gaussian radial basis function (RBF) kernel. In the following, we will introduce the

topology-based graph kernel, which will be used in our proposed method.
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a) Topology-Based Graph Kernel: Kernel can also be defined on complex data types, e.g.,

graph in the connectivity network. The respective kernel is called graph kernel, which maps

the graph data from the original graph space to the feature space and further measures the

similarity between two graphs by comparing their topological structures [31]. Thus, graph

kernel bridges the gap between graph-structured data and many kernel-based learning

algorithms, with successful applications in computer vision [32] and bioinformatics [33].

Many methods have been proposed to construct the graph kernel. In this study, the graph

kernel proposed in [31], called Weisfeiler–Lehman subtree kernel, is used to measure the

topological similarity between paired connectivity networks. It has been shown that this type

of graph kernel can effectively capture the topological information from graphs and achieve

better performance than the state-of-the-art graph kernels [31].

Before giving the definition of graph kernel, some basic terms are first introduced. Here, a

graph is composed of a finite set of nodes and edges. The graph which has a label associated

with each node is called the labeled graph. A subtree is a restricted form of a graph, where

one node is called the root and each node has a path to the root (i.e., any two nodes are

connected by exactly one simple path with no recurring nodes). Subtree pattern extends the

notion of subtree by allowing repetitions of nodes. However, these same nodes are treated as

distinct nodes.

Shervashidze et al. proposed a subtree-pattern-based method to construct the graph kernel

[31]. The core concept of their graph kernel comes from the Weisfeiler–Lehman test of

isomorphism. For a pair of graphs G and G′, the basic process of the 1-dimensional

Weisfeiler–Lehman test is as follows: if these two graphs are unlabeled, i.e., vertices of the

graph have not been assigned with labels, every vertex in each graph is first labeled with the

number of edges that are connected to that vertex. Then, at each subsequent step (or

iteration), the label of each node is simultaneously updated based on its previous label and

the labels of its neighbors. For example, for each node, we augment its label by the sorted

set of node labels of its neighboring nodes, and compress these augmented labels into a new

shorter label. This process is iterated until the node label sets ofG and G′ differ, or the

number of iteration reaches a predefined maximum value h.

Given two graphs G and G′, let Li = {li1, li2,…, li|li|} (i = 0, 1,…, h) be the set of letters that

occur as node labels in G or G′ at the end of the ith iteration of the Weisfeiler–Lehman test

of isomorphism. Here, L0 denotes the set of the initial labels of graph G or G′. Assume all Li

are pairwise disjointed. Without loss of generality, assume every Li is ordered, and then the

Weisfeiler–Lehman subtree kernel on two graphs G and G′ with h iterations is defined as

[31]:

(2)

where
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and

with ρi (G, lij) and ρi (G′, lij) are the numbers of occurrences of the letter lij in G and G′,

respectively. It has been proven that this kernel is positive definite [31]. It is worth noting

that each compressed label denotes a subtree pattern. According to this definition, the graph

kernel embeds the local and global graph topological information into kernel.

b) Multikernel Support Vector Machine: Recent studies on multikernel learning (MKL)

have shown that the integration of multiple kernels not only increases the classification

accuracy but also enhances the interpretability of the results [34]. Several recent studies in

neuroimaging have also shown that multikernel combination provides a powerful tool for

systematically aggregating different imaging modalities into a single learned model [6]–[8].

Generally, kernel integration is achieved through a linear combination of multiple kernels

(3)

where km (x, x′) is a basic kernel built for subjects x and x′, and βm is a nonnegative

weighting parameter with Σm βm = 1.

In the current study, we adopt our previously developed multikernel SVM method [7], [8],

[35] to combine multiple kernels. Different from the existing MKL methods [34] that jointly

optimize the weighting parameters βm together with other SVM parameters, in our

multikernel SVM, the optimal weighting parameters βm are determined via grid search on

the training data. Once the optimal weighting parameters βm are obtained, the multikernel

SVM can be naturally embedded into the conventional single-kernel SVM framework to

classify the MCI patients from HCs. On the other hand, since the vector-based kernel and

the graph kernel are two different types of kernels, a normalization step must be performed

individually as in (4), before combining them using the multikernel SVM.

(4)

3) Multiple Properties of Connectivity Network—In functional connectivity

networks, the connectivity describes frequency-dependent correlation between spatially

distinct brain regions. Some weak and potentially insignificant connections for identifying

patients from controls could obscure the network topology, when considered together with

strong and important connections. Thus, it may be important to discard these connections by

using a thresholding approach. Moreover, the thresholded networks are often simpler to

characterize and thus have more easily defined models for statistical comparison [36].

However, the thresholds are often arbitrarily determined [13], [15], [37], and the optimal

threshold can only be determined after exploring the network properties over a broad range

of plausible thresholds. On the other hand, the network with different thresholds may

represent different level of topological properties, and these properties may be
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complementary to each other in improving the classification performance. Therefore, in the

current study, a multiple-threshold method is adopted to reflect the multiple levels of

network properties. Specifically, given a threshold Tm (m = 1,…, M), the connectivity

network (matrix) G = [τijn×n is thresholded as

(5)

where τij denotes the connection weight between the ith and jth network-nodes/ROIs. Fig. 2

gives an example of our multiple-threshold method. Here, the original connectivity networks

in Fig. 2(a) are fully connected, with no differences between MCI and HC in the topological

structures. However, when these networks are thresholded with the value T = 0.3 and T = 0.5

respectively, significant differences can be observed between MCI and HC, where the weak

connections (e.g., the connection between nodes B and E) and the nonsignificant

connections (e.g., the connection between nodes B and D) have been removed, as shown in

Fig. 2(b) or (c). Moreover, the topological structures with different thresholds are obviously

different for each healthy subject (or MCI subject).

As a local network property, local clustering reflects the prevalence of clustered connectivity

around individual network nodes (or brain regions). Numerous studies have shown that the

local clustering of functional connectivity network has been disrupted in the AD and MCI

patients at a group comparison level [13], [38]. In this study, the local weighted clustering

coefficients are extracted from each thresholded connectivity network as [11], [39]

(6)

where  is the number of neighboring nodes around the node p. The coefficients of n nodes

 compose a feature vector representing the local clustering property of the

thresholded connectivity network Gm. We then concatenate the feature vectors of all the

thresholed connectivity networks to form a single large vector x = [(x1)T…(xm)T…(xM)T]T.

Features extracted from all thresholded connectivity networks potentially include many

irrelevant and redundant features for classification. Therefore, LASSO-based feature

selection (see next section) is performed in our method to filter out those features. Finally,

vector-based kernel is computed, based on the selected features, to measure the similarity of

two connectivity networks using local clustering property.

Another important network property is the topological structure of the whole connectivity

network, which characterizes the entire network. It has been widely reported that the

topological properties of the whole brain network have been changed for AD and MCI [15],

[40]. Since the connectivity network is a form of graph, where the ROIs and the

connectivities between ROIs correspond, respectively, to the nodes and edges, it is natural to

apply graph kernel to our data. In this study, the Weisfeiler–Lehman subtree kernel [31]

discussed in the previous subsection will be constructed on each thresholded connectivity

network across different subjects to measure the similarity of topological structures, as
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shown in Fig. 1. It is noteworthy that graph kernel only preserves the local and global

structural information of connectivity networks, while it does not consider the weight

information (i.e., connectivity strength) of edges, which can be captured by vector-based

kernel through extraction of features based on the local clustering property of connectivity

networks.

4) LASSO-Based Feature Selection—Feature selection, which can be considered as

the biomarker identification for AD and MCI, attempts to remove as many irrelevant and/or

redundant features as possible and at the same time to select a feature subset for effective

classification. Different from the other feature selection methods, LASSO [41] can achieve

feature selection by minimizing a penalized objective function, which trends to assign zero

weight to most irrelevant and redundant features. It has been shown that LASSO is

particularly effective for the cases where there are many irrelevant features while only a few

training samples [42].

The loss function of LASSO is defined as

(7)

where xi represents a feature vector extracted from all thresholded connectivity networks on

the i-th subject, yi is the corresponding class label, w denotes the regression coefficients for

the feature vector, b is the intercept, and N is the number of training subjects. The L1-norm

regularizer ‖w‖1 typically leads to a sparse solution in the feature space, i.e., the regression

coefficients for most irrelevant or redundant features are shrunk to zero. The features with

nonzero coefficients will be selected and used for constructing the vector-based kernel. λ > 0

is a regularization parameter, which balances between the complexity of the model and the

goodness-of-fit. The optimal λ value is determined using cross-validation on the training

data.

5) Implementation Details—To evaluate the performance of different methods, a leave-

one-out (LOO) cross-validation strategy is adopted to enhance the generalization power of

the classifier and to avoid the over-fitting on small sample dataset. Specifically, for all

subjects, one is left out for testing, and the remaining are used for training. This entire

process is repeated for each subject. The classifier training of standard SVM is implemented

using LIBSVM library [43] with default parameter values (i.e., C = 1). In our experiment,

five thresholded connectivity networks are obtained using five different values, i.e., T = [0.2

0.3 0.38 0.4 0.45] with 0.38 as the average value of connectivity strength between all nodes/

ROIs across all training subjects. The corresponding connection densities (i.e., the fraction

of present connections to the possible connections) of these thresholds are located in the

interval of [40% 75%]. It is reported in [44] that the connection density interval of [25%

75%] provides significantly better classification performance. A total of 450 (5*90) features

(i.e., local clustering coefficients) are extracted from all thresholded connectivity networks

for each subject. Moreover, we adopt the method used in [7] to normalize each extracted

feature. At the feature selection step, the SLEP package [45] is used to solve the LASSO

regression, with the regularization parameter λ (λ ∈ [0 1]) learned from the training subjects
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by using another LOO cross-validation. In addition, the linear kernel is adopted in our

experiment as the vector-based kernel. Also, the optimal weighting parameter βm for each

kernel is learned similarly based on the training subjects via another LOO cross-validation

through a grid search using the range from 0 to 1 at a step size of 0.1.

III. RESULTS

A. Classification Performance

The classification performance is evaluated based on classification accuracy and the area

under receiver operating characteristic (ROC) curve (AUC), respectively. Besides, to avoid

the inflated performance estimates on imbalanced datasets, we also compute the balanced

accuracy of classification, which can be defined as average accuracy obtained on either class

(i.e., the arithmetic mean of sensitivity and specificity). In our experiments, we compare our

proposed method based on multinetwork properties with those using only single network

property. Specifically, in the linear-kernel-based method (denoted as LK), we first perform

LASSO for feature selection on the obtained 450 (5*90) features (i.e., local clustering

coefficients extracted from five thresholded connectivity networks) and then compute the

linear kernel based on those selected features. On the other hand, for the graph kernel based

methods, five graph kernels are constructed on the five thresholded connectivity networks,

denoted as GK1, GK2, GK3, GK4, and GK5, respectively. These five graph kernels, which

correspond to five different levels of topological properties of connectivity network, are

combined and denoted as GK-C. All experiments are performed using LOO cross-

validation. The classification performances for different methods are summarized in Table

II. Fig. 3 plots the ROC curves for these methods.

As can be seen from Table II and Fig. 3, our proposed method achieves the best

performance (w.r.t. both classification accuracy and AUC), by combining both the vector-

based kernel and the graph kernels from multinetwork properties of connectivity network.

Specifically, our method yields a classification accuracy of 91.9% and a balanced accuracy

of 89.7%, which are at least 10.8% and 10.2% improvements, respectively, over other

compared methods. Also, our method achieves an AUC of 0.87, indicating excellent

diagnostic power. These results indicate that different properties of connectivity network

(i.e., local clustering features and global topological properties) contain complementary

information and thus can be integrated for further improving the classification performance.

Table III gives the combination weights of six kernels at each LOO cross-validation. On the

other hand, both Table II and Fig. 3 show that: 1) GK-C significantly outperforms other

single-graph-kernel based methods (i.e., GK1, GK2, GK3, GK4, and GK5), which implies

that the topological information conveyed by multiple thresholded networks is

complementary to each other and thus can lead to performance improvement if integrated

together; 2) LK outperforms other single-graph-kernel based methods, and in most cases the

weight value of β0 in Table III is larger than other weights, indicating that the local network

property (i.e., local clustering) is more important than the topological property of the whole

connectivity network for classification.

Furthermore, we performed an additional experiment by comparing our MKL-based method

with a baseline scheme, i.e., assigning a uniform weight to all kernels, including vector-
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kernel and graph-kernels. This method achieves a classification accuracy of 86.5%, which is

inferior to our proposed MKL-based method as shown in Table II. This result implies that

different types of kernels contribute differently and thus should be integrated adaptively for

achieving better classification performance.

Finally, instead of using LASSO-based feature selection method, we also employed other

feature selection method, i.e., statistical t-test, to evaluate the classification performance of

our proposed framework. Specifically, those features with their p-values lower than a given

threshold are selected for subsequent kernel construction and classification. The

classification results are summarized in Table IV, where our proposed method also achieves

much better performance.

B. Effect of Regularization Parameter λ

Regularization parameter λ of LASSO balances between the complexity of the model and

the goodness-of-fit. Larger λ value means fewer features are preserved for classification and

vice versa. Specially, classification performance of the vector-kernel-based method often

deteriorates when too large or too small λ values are used. However, our proposed method

takes into account multiple network properties by combining vector-based kernel and graph

kernel, and thus improves the final classification performance. In this experiment, we

investigate the influences of λ value on the classification accuracy of our proposed method.

The classification accuracies with different λ values are plotted in Fig. 4. Here, the λ values

used are [0.0, 0.1, 0.2, 0.3, 0.4, 0.5]. It is worth noting that, when λ = 0, no feature selection

step is performed, i.e., all features extracted from the thresholded connectivity networks are

used for the linear kernel construction and classification.

As can be seen from Fig. 4, our proposed method consistently performs better than LK

method for all λ values. Specifically, our method yields relatively high classification

accuracies (i.e., more than 80%) for all λ values, showing its robustness to the regularization

parameter. Particularly, with no feature selection step (i.e., λ = 0), our method achieves a

classification accuracy of 83.8%, which is still higher than the LK method. This again

validates the advantage of our multinetwork properties based method (i.e., using both the

local clustering features and global topological properties) over the conventional single-

network-property based methods (i.e., using only the local clustering features).

C. Most Discriminant Brain Regions

Besides reporting the classification performance measured with classification accuracy and

AUC, another important issue is to investigate which features (i.e., brain regions or ROIs)

are selected for brain disease classification and interpretation. To this end, for each (local

clustering) feature, we count its selection frequency by LASSO method in all LOO cross-

validations, and then select those features with top selection frequency as the most important

features. For each selected important feature, t-test is performed on all subjects to evaluate

its discriminative power for identifying patients from normal controls. Table V lists the top

12 brain regions that are selected based on the local clustering property. These regions

include temporal pole, orbitofrontal cortex, heschl gyrus, hippocampus, middle, and

posterior cingulate gyri. These identified regions are consistent with previous findings.
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As can be seen from Table V, most features have relatively small p-values, showing good

discriminative power between patients and controls. Table V also shows that the selected

features are from multiple thresholded connectivity networks, validating our assumption that

different thresholded connectivity networks contain complementary information which is

useful for improving classification performance. Finally, for visual inspection, in Fig. 5, we

show those selected ROIs listed in Table V.

On the other hand, to further evaluate the discriminative power of different ROIs, we also

characterize the top brain regions (i.e., ROIs) based on their global topological property. Let

R = {R1, R2,…, Rn} be the set of ROIs. For each ROI Rp a sub-network can be built

according to the connectivity between Rp and the remaining ROIs Rq (q = 1 2,…, n, q ≠ p)

on the m-th thresholded connectivity network, and the graph kernel  between

the samples Gi and Gj on the corresponding sub-network is computed using the method

introduced in the previous section. Then, the group difference of ROI Rp on the m-th

thresholded connectivity network can be defined as follows:

(8)

where L+ is the index set of patients, and L− is the index set of normal controls, with number

of subjects of n1 and n2 respectively. According to the definition in Eq. (8), the group

difference dm (p) represents the discriminative power of ROI Rp between patients and

normal controls on them-th thresholded connectivity network. Then, for each thresholded

connectivity network, we rank the ROIs according to their group differences and select also

the top 12 ROIs with the highest group difference. Table VI gives the top selected ROIs

based on the global topological property, which include orbitofrontal cortex, rectus gyrus,

posterior cingulate gyrus, parahippocampal gyrus, amygdale, and temporal pole. These

finding are consistent to previous AD/MCI studies. For instance, it has been reported that

the functional connectivity between posterior cingulate cortex and other regions is

significantly reduced in MCI patients [46]–[48]. Also, it is worth noting that most of ROIs

selected based on the global topological property are identical to those selected based on the

local clustering.

D. Results on Infant Gender Classification

To further investigate the efficacy of our proposed method, we evaluate it on a larger dataset

for gender classification of 133 infants with ages ranged from 0 to 2. The participants

include 51 neonates (26 males, 25 females), 50 one-year-old (26 males, 24 females) infants,

and 32 two-year-old (17 males, 15 females) infants.

1) Data Acquisition, Postprocessing, and Connectivity Network Construction

—The detailed descriptions of data acquisition and postprocessing can be found in [49]. In

short, all images were acquired using a 3 T head-only MR scanner. A 3D magnetization

prepared rapid gradient echo (MP-RAGE) sequence was used for providing anatomical

images to co-register among subjects, and the time series images were acquired by using a

T2-weighted echo planar imaging (EPI) sequence. The preprocessing step of the fMRI
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images included the exclusion of voxels outside of the brain, time shifting, motion

correction, spatial smoothing (6-mm full width at half maximum Gaussian kernel), linear

trend removal, and low pass filtering (< 0.08 Hz). For within-group registration, longitudinal

T1 MR images from one subject scanned at 3 weeks, 1 year, and 2 years were selected as

templates for the corresponding age groups, and then an intensity-based HAMMER

nonlinear registration [27] was performed to warp each individual subject onto its age-

matched template space. Registration between each age group template (from the

longitudinal data set) and the MNI space was then done using 4D HAMMER registration.

The rationale for using a longitudinal dataset as templates was to achieve higher registration

accuracy through the use of 4D HAMMER registration, which takes into account the

longitudinal correlation information. Subsequently, the transformation fields from the 4D

HAMMER registration were employed to warp the automatic labeling template (AAL)

template (90 ROIs) covering the cerebral cortex, defined in [26] based on adult sulcal

pattern, to each individual age group template space, achieving an age-specific ROI map.

The corresponding connectivity networks (i.e., correlation matrices) were derived based on

this age-specific map for all three age groups. The mean time course of each ROI was

separately extracted from each individual subject and used to construct a connectivity

network using the Pearson correlation coefficients between a pair of ROIs. Fisher’s r-to-z

transformed was used to improve the normality of the correlation coefficients.

2) Experimental Results—In this experiment, we adopt the same setting as the

experiments on MCI dataset, except using different sets of thresholds T = [0.0 0.1 0.2 0.3

0.4]. Note that, for each age group, the average value of connectivity strength between all

ROIs across all training subjects is located in the interval of [0.25 0.35], with the

corresponding connection densities of these thresholds located in the interval of [25% 75%].

Table VII gives the classification performances, and Fig. 6 plots the ROC curves of different

methods. As we can see from Table VII and Fig. 6, our proposed method consistently

achieves better classification performance compared with other methods for all age groups.

The classification performance for the neonate group is relatively poor due to the possible

incomplete connectivity network and/or larger imaging noise [49]. Table VIII lists the top

12 selected brain regions, which includes amygdala, parietal gyrus, temporal pole, superior

frontal region, and lingual gyrus, in line with previous studies [50]–[55]. Moreover, some

ROIs, i.e., amygdala, posterior cingulate gyrus, and inferior temporal gyrus, have been

selected for all age groups.

IV. DISCUSSION

This paper presents a new connectivity-network-based classification framework that

integrates multiple network properties (i.e., the local clustering and global topology) through

MKL method for automatic brain disease classification. We evaluated our proposed method

on two applications, i.e., identifying MCI subjects from normal controls, and classifying the

infant gender. The experimental results show that our proposed method can significantly

improve the classification performance over state-of-the-art methods on the connectivity-

network-based classification.
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Integration of multiple modalities of data (e.g., MRI, PET imaging biomarkers, and

nonimaging biological biomarkers) has been recently studied for AD/MCI classification. On

the other hand, multiple types of properties can also be extracted from a single modality of

data for improving the classification performance. For example, for a single connectivity

network, both local clustering property and the global topological property, which are

complementary to each other, can be extracted and integrated to improve the disease

classification accuracy, even without using information from other modalities. This has been

validated in our study of identifying MCI patients from normal controls.

Many studies have suggested that the diseased brains (such as with AD/MCI) differ from the

normal brains in connectivity patterns, reflected in various network properties such as local

clustering [37], [38] and the topological properties of whole network [13], [15], [40]. In our

method, two different types of kernels were used to quantify these two different network

properties. Specifically, a vector-based kernel was calculated on the feature vectors (i.e.,

with local weighted clustering coefficients) to measure the similarity of local clustering of

the connectivity networks. Here, feature selection (i.e., with LASSO) is first used to remove

the irrelevant features for classification. The selected brain regions during feature selection

were found to be consistent with the conventional group comparison studies, which include

temporal pole [56], orbitofrontal cortex [57], [58], heschl gyrus [37], hippocampus [38],

[47], [59], and posterior cingulate gyrus [46], [47], [60], etc.

On the other hand, graph kernel was used to capture and characterize the topological

property of the whole connectivity networks [31]. Here, graph-kernel-based group analysis

was performed to rank the discrimination power of each ROI, and the result shows that the

most discriminative ROIs were in line with previous studies, which include orbitofrontal

cortex [57], [58], rectus gyrus [16], posterior cingulate gyrus [46]–[48], [60],

parahippocampal gyrus [61], [62], amygdala [60], and temporal pole [56], etc. Finally, it is

worth noting that most of the selected ROIs based on these two properties (i.e., local

clustering and global topology) are consistent due to the same underlying pathology in AD/

MCI.

In AD/MCI studies, threshold-based method has been used for exploring topological

properties of functional connectivity network [13], [15], [37], [44]. However, there is no

golden standard to select a single threshold, and thus network properties are often explored

over a range of plausible threshold. For example, Zanin et al. in [44] proposed to determine

the best threshold by exploring the classification performance on the whole range of

applicable threshold. Supekar et al. [13] adopted thresholds ranged from 0.01 to 0.99 with

an increment of 0.01 to explore the “small-world” properties of functional connectivity

networks in AD. In our method, multiple thresholds were adopted to reflect multiple levels

of topological properties of network. Compared with the single threshold based methods,

our method has the following advantages: 1) avoiding testing over a range of thresholds to

find the optimal one; 2) taking advantage of the complementary topological properties of

different thresholded networks. Moreover, it is worth noting that, by using the multiple-

kernel learning technique, our method can automatically determine the optimal network

property or combination of network properties of multiple thresholded networks for

classification.
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To investigate the effect of the number of thresholds on final classification performance, we

performed an additional experiment on MCI dataset with six different groups of thresholds,

i.e., T1 = [0.38], T2 = [0.38 0.4], T3 = [0.3 0.38 0.4], T4 = [0.3, 0.38 0.4 0.45], T5 = [0.2 0.3

0.38 0.4 0.45], and T6 = [0.2 0.3 0.38 0.4 0.45 0.6]. The classification accuracies using

different numbers of thresholds are plotted in Fig. 7. As can be seen in Fig. 7, our proposed

method consistently outperforms other comparison methods for all groups of thresholds. On

the other hand, our method achieves the best performance when using five thresholds, and

the use of more than five thresholds does not further improve its classification performance.

This may be because the use of more thresholds leads to more features and thus more

challenging to select the discriminative features for the LK method; this may cause the LK

method (i.e., vector-kernel based) to perform poorly and finally affect the performance of

our proposed method which combines both vector-kernel and graph-kernels.

A. Limitations

The current study is limited by the following factors. First, in our study, we use only the

topological information of the whole connectivity network for classification, while

intuitively selecting the disease-related sub-networks from the whole network may further

improve the classification performance. Full investigation on this issue will be our future

work. Second, the network construction is a very important step and different network

construction methods may exhibit different properties. Our current study does not analyze

the impact of these differences on classification performance. Third, there are many imaging

modalities that have been used for AD or MCI classification, and simultaneous integration

of different imaging modalities and different network properties of each modality may

further improve the classification performance, which will be explored in the future. Finally,

our current study is limited by the small number of MCI subjects, which may reduce its

generalization ability on MCI classification. Thus, in the future work, we plan to apply the

proposed method on larger MCI dataset.

V. CONCLUSION

In summary, we have presented a new connectivity network based classification framework

to fuse multiple properties of connectivity networks for classification. In the proposed

framework, multiple thresholds were first applied on functional connectivity network to

reflect multiple levels of network properties. Then, two different types of kernels (i.e.,

vector-based kernel and graph kernel) were used to quantify two different yet

complementary network properties, and an MKL technique was further adopted to fuse these

heterogeneous kernels. Experimental results show that our proposed method not only can

significantly improve the performance of classification, but also can potentially detect the

ROIs that are sensitive to disease pathology. In the future work, we will investigate how to

select the disease-related sub-networks from whole network for further improving the

classification performance and also for better interpretation of the pathology of disease.

Acknowledgments

This work was supported in part by Jiangsu Natural Science Foundation for Distinguished Young Scholar (No.
BK20130034), in part by the Specialized Research Fund for the Doctoral Program of Higher Education under Grant

Jie et al. Page 15

IEEE Trans Biomed Eng. Author manuscript; available in PMC 2014 July 22.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



20123218110009, in part by the Fundamental Research Funds for the Central Universities under Grant NE201315
and Grant NZ2013306, in part by the NIH under Grant EB006733, Grant EB008374, Grant EB009634, and Grant
AG041721, and in part by University Natural Science Foundation of Anhui under Grant KJ2013Z095. This work
was also supported in part by the National Research Foundation under Grant 2012-005741 funded by the Korean
Government.

REFERENCES

1. Brookmeyer R, Johnson E, Ziegler-Graham K, Arrighi HM. Forecasting the global burden of
Alzheimer’s disease. Alzheimer’s Dementia. 2007 Jul.3:186–191.

2. Pachauri D, Hinrichs C, Chung MK, Johnson SC, Singh V. Topology-based kernels with application
to inference problems in Alzheimer’s disease. IEEE Trans. Med. Imag. 2011 Oct; 30(10):1760–
1770.

3. Thompson PM, Apostolova LG. Computational anatomical methods as applied to ageing and
dementia. Brit. J. Radiol. 2007; 80:S78–S91. [PubMed: 18445748]

4. Ye JP, Wu T, Li J, Chen KW. Machine learning approaches for the neuroimaging study of
Alzheimer’s disease. Computer. 2011 Apr.44:99–101.

5. Escudero J, Ifeachor E, Zajicek JP, Green C, Shearer J, Pearson S. Machine learning-based method
for personalized and cost-effective detection of Alzheimer’s disease. IEEE Trans. Biomed. Eng.
2013 Jan; 60(1):164–168. [PubMed: 22893371]

6. Hinrichs C, Singh V, Xu GF, Johnson SC, Neuroimaging AD. Predictive markers forADin amulti-
modality framework: An analysis of MCI progression in the ADNI population. Neuroimage. 2011
Mar 15.55:574–589. [PubMed: 21146621]

7. Zhang D, Wang Y, Zhou L, Yuan H, Shen D. Multimodal classification of Alzheimer’s disease and
mild cognitive impairment. Neuroimage. 2011 Apr 1.55:856–867. [PubMed: 21236349]

8. Wee CY, Yap PT, Zhang DQ, Denny K, Browndyke JN, Potter GG, Welsh-Bohmer KA, Wang LH,
Shen DG. Identification of MCI individuals using structural and functional connectivity networks.
Neuroimage. 2012 Feb 1.59:2045–2056. [PubMed: 22019883]

9. Xie T, He Y. Mapping the Alzheimer’s brain with connectomics. Frontiers Psychiatry/Frontiers Res.
Found. 2011; 2:1–14.

10. Abuhassan K, Coyle D, Maguire LP. Investigating the neural correlates of pathological cortical
networks in Alzheimer’s disease using heterogeneous neuronal models. IEEE Trans. Biomed. Eng.
2012 Mar; 59(3):890–896. [PubMed: 22207633]

11. Rubinov M, Sporns O. Complex network measures of brain connectivity: Uses and interpretations.
Neuroimage. 2010 Sep.52:1059–1069. [PubMed: 19819337]

12. Petrella JR, Sheldon FC, Prince SE, Calhoun VD, Doraiswamy PM. Default mode network
connectivity in stable vs. progressive mild cognitive impairment. Neurology. 2011 Feb 8.76:511–
517. [PubMed: 21228297]

13. Supekar K, Menon V, Rubin D, Musen M, Greicius MD. Network analysis of intrinsic functional
brain connectivity in Alzheimer’s disease. Plos Comput. Biol. 2008 Jun.4:e1000100, 1–11.
[PubMed: 18584043]

14. Liu Z, Zhang Y, Bai L, Yan H, Dai R, Zhong C, Wang H, Wei W, Xue T, Feng Y, You Y, Tian J.
Investigation of the effective connectivity of resting state networks in Alzheimer’s disease: A
functional MRI study combining independent components analysis and multivariate Granger
causality analysis. NMR Biomed. 2012 Dec.25:1311–1320. [PubMed: 22505275]

15. Sanz-Arigita EJ, Schoonheim MM, Damoiseaux JS, Rombouts SA, Maris E, Barkhof F, Scheltens
P, Stam CJ. Loss of ‘small-world’ networks in Alzheimer’s disease: Graph analysis of FMRI
resting-state functional connectivity. PLoS ONE. 2010; 5:e13788, 1–14. [PubMed: 21072180]

16. Wee CY, Yap PT, Denny K, Browndyke JN, Potter GG, Welsh-Bohmer KA, Wang LH, Shen DG.
Resting-state multispectrum functional connectivity networks for identification of MCI patients.
PLoS ONE. 2012; 7(5):e37828, 1–11. [PubMed: 22666397]

17. Li Y, Wang Y, Wu G, Shi F, Zhou L, Lin W, Shen D. Discriminant analysis of longitudinal
cortical thickness changes in Alzheimer’s disease using dynamic and network features. Neurobiol.
Aging. 2012 Feb.33:427 e15–427 e30. [PubMed: 21272960]

Jie et al. Page 16

IEEE Trans Biomed Eng. Author manuscript; available in PMC 2014 July 22.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



18. Chen, G.; Ward, BD.; Xie, CM.; Li, WJ.; Chen, GY.; Goveas, JS.; Antuono, PG.; Li, SJ.
Neuroimage. Vol. 61. Springer; Berlin/Heidelberg: 2012 May 15. A clustering-based method to
detect functional connectivity differences; p. 56-61.

19. Jie, B.; Zhang, DQ.; Wee, CY.; Shen, DG. Structural feature selection for connectivity network-
based MCI diagnosis. In: Yap, P-T., et al., editors. Multimodal Brain Image Analysis of Lecture
Notes in Computer Science. Vol. 7509. 2012. p. 175-184.

20. Jie B, Zhang DQ, Wee CY, Shen DG. Topological graph kernel on multiple thresholded functional
connectivity networks for MCI classification. Human Brain Mapping. 2013 Sep.

21. Wee CY, Yap PT, Zhang D, Wang L, Shen D. Constrained sparse functional connectivity networks
for MCI classification. Med. Image Comput. Comput. Assist. Interv. 2012; 15:212–219. [PubMed:
23286051]

22. Shao JM, Myers N, Yang QL, Feng J, Plant C, Bohm C, Forstl H, Kurz A, Zimmer C, Meng C,
Riedl V, Wohlschlager A, Sorg C. Prediction ofAlzheimer’s disease using individual structural
connectivity networks. Neurobiol. Aging. 2012 Dec.33:2756–2765. [PubMed: 22405045]

23. Chen G, Ward BD, Xie C, Li W, Wu Z, Jones JL, Franczak M, Antuono P, Li SJ. Classification of
Alzheimer disease, mild cognitive impairment, and normal cognitive status with large-scale
network analysis based on resting-state functional MR imaging. Radiology. 2011 Apr.259:213–
221. [PubMed: 21248238]

24. Wang J, Zuo X, Dai Z, Xia M, Zhao Z, Zhao X, Jia J, Han Y, He Y. Disrupted functional brain
connectome in individuals at risk for Alzheimer’s disease. Biological Psychiatry. 2013 Mar.
73:472–481. [PubMed: 22537793]

25. VanDijk KRA, Hedden T, Venkataraman A, Evans KC, Lazar SW, Buckner RL. Intrinsic
functional connectivity as a tool for human connectomics: Theory, properties, and optimization. J.
Neurophysiol. 2010 Jan.103:297–321. [PubMed: 19889849]

26. Tzourio-Mazoyer N, Landeau B, Papathanassiou D, Crivello F, Etard O, Delcroix N, Mazoyer B,
Joliot M. Automated anatomical labeling of activations in SPM using a macroscopic anatomical
parcellation of the MNI MRI single-subject brain. Neuroimage. 2002 Jan.15:273–289. [PubMed:
11771995]

27. Shen D, Davatzikos C. HAMMER: Hierarchical attribute matching mechanism for elastic
registration. IEEE Trans. Med. Imag. 2002 Nov; 21(11):1421–1439.

28. Zuo XN, Di Martino A, Kelly C, Shehzad ZE, Gee DG, Klein DF, Castellanos FX, Biswal BB,
Milham MP. The oscillating brain: Complex and reliable. Neuroimage. 2010 Jan 15.49:1432–
1445. [PubMed: 19782143]

29. Cordes D, Haughton VM, Arfanakis K, Carew JD, Turski PA, Moritz CH, Quigley MA, Meyerand
ME. Frequencies contributing to functional connectivity in the cerebral cortex in ‘resting-state’
data. Amer. J. Neuroradiol. 2001 Aug.22:1326–1333. [PubMed: 11498421]

30. Achard S, Bassett DS, Meyer-Lindenberg A, Bullmore E. Fractal connectivity of long-memory
networks. Phys. Rev.. E, Statistical, Nonlinear, Soft Matter Phys. 2008 Mar.77:036104, 1–12.

31. Shervashidze N, Schweitzer P, van Leeuwen EJ, Mehlhorn K, Borgwardt KM. Weisfeiler–Lehman
graph kernels. J. Mach. Learning Res. 2011 Sep.12:2539–2561.

32. Camps-Valls G, Shervashidze N, Borgwardt KM. Spatio-spectral remote sensing image
classification with graph kernels. IEEE Geosci. Remote Sens. Lett. 2010 Oct; 7(4):741–745.

33. Zhang Y, Lin H, Yang Z, Li Y. Neighborhood hash graph kernel for protein-protein interaction
extraction. J. Biomed. Informat. 2011 Dec.44:1086–1092.

34. Lanckriet GRG, Cristianini N, Bartlett P, El Ghaoui L, Jordan MI. Learning the kernel matrix with
semidefinite programming. J. Mach. Learning Res. 2004 Jan.5:27–72.

35. Zhang D, Shen D. Multi-modal multi-task learning for joint prediction of multiple regression and
classification variables in Alzheimer’s disease. Neuroimage. 2012 Jan 16.59:895–907. [PubMed:
21992749]

36. Bullmore E, Sporns O. Complex brain networks: Graph theoretical analysis of structural and
functional systems. Nature Rev. Neuroscience. 2009 Mar.10:186–198.

37. Liu Z, Zhang Y, Yan H, Bai L, Dai R, Wei W, Zhong C, Xue T, Wang H, Feng Y, You Y, Zhang
X, Tian J. Altered topological patterns of brain networks in mild cognitive impairment and
Alzheimer’s disease: A resting-state fMRI study. Psychiatry Res. 2012 Jun 11.

Jie et al. Page 17

IEEE Trans Biomed Eng. Author manuscript; available in PMC 2014 July 22.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



38. Bai F, Zhang Z, Watson DR, Yu H, Shi Y, Yuan Y, Zang Y, Zhu C, Qian Y. Abnormal functional
connectivity of hippocampus during episodic memory retrieval processing network in amnestic
mild cognitive impairment. Biol. Psychiatry. 2009 Jun 1.65:951–958. [PubMed: 19028382]

39. Onnela JP, Saramaki J, Kertesz J, Kaski K. Intensity and coherence of motifs in weighted complex
networks. Phys. Rev. E. 2005 Jun.71:065103, 1–4.

40. Stam CJ, Jones BF, Nolte G, Breakspear M, Scheltens P. Small-world networks and functional
connectivity in Alzheimer’s disease. Cerebral Cortex. 2007 Jan.17:92–99. [PubMed: 16452642]

41. Tibshirani R. Regression shrinkage and selection via the Lasso. J. Royal Statistical Soc. Series B
Methodol. 1996; 58:267–288.

42. Ng AY. Feature selection, L1 vs L2 regularization, and rotational in variance. Proc. Int’l Conf.
Mach. Learning. 2004

43. Chang, CC.; Lin, CJ. LIBSVM: A library for support vector machines. 2011. [Online]. Available:
http://www.CSTe.ntu.edu.tw/∼cjlin/libsvm

44. Zanin M, Sousa P, Papo D, Bajo R, Garcia-Prieto J, del Pozo F, Menasalvas E, Boccaletti S.
Optimizing functional network representation of multivariate time series. Sci. Rep. 2012; 2:630,
1–6. [PubMed: 22953051]

45. Liu, J.; Ji, S.; Ye, J. SLEP: Sparse Learning with Efficient Projections. Phoenix, AZ: Arizona State
Univ.; 2009.

46. Han SD, Arfanakis K, Fleischman DA, Leurgans SE, Tuminello ER, Edmonds EC, Bennett DA.
Functional connectivity variations in mild cognitive impairment: Associations with cognitive
function. J. Int. Neuropsychol. Soc. 2012 Jan.18:39–48. [PubMed: 22005016]

47. Zhou YX, Dougherty JH, Hubner KF, Bai B, Cannon RL, Hutson RK. Abnormal connectivity in
the posterior cingulate and hippocampus in early Alzheimer’s disease and mild cognitive
impairment. Alzheimers Dementia. 2008 Jul.4:265–270.

48. Wang K, Liang M, Wang L, Tian L, Zhang X, Li K, Jiang T. Altered functional connectivity in
early Alzheimer’s disease: A restingstate fMRI study. Human Brain Mapping. 2007 Oct.28:967–
978. [PubMed: 17133390]

49. Gao W, Gilmore JH, Giovanello KS, Smith JK, Shen D, Zhu H, Lin W. Temporal and spatial
evolution of brain network topology during the first two years of life. PLoS ONE. 2011; 6:e25278,
1–13. [PubMed: 21966479]

50. Kim HJ, Kim N, Kim S, Hong S, Park K, Lim S, Park JM, Na B, Chae Y, Lee J, Yeo S, Choe IH,
Cho SY, Cho G. Sex differences in amygdala subregions: Evidence from subregional shape
analysis. Neuroimage. 2012 May 1.60:2054–2061. [PubMed: 22374477]

51. Kilpatrick LA, Zald DH, Pardo JV, Cahill LF. Sex-related differences in amygdala functional
connectivity during resting conditions. Neuroimage. 2006 Apr 1.30:452–461. [PubMed:
16326115]

52. Duarte-Carvajalino JM, Jahanshad N, Lenglet C, McMahon KL, de Zubicaray GI, Martin NG,
Wright MJ, Thompson PM, Sapiro G. Hierarchical topological network analysis of anatomical
human brain connectivity and differences related to sex and kinship. Neuroimage. 2012 Feb
15.59:3784–3804. [PubMed: 22108644]

53. Sowell ER, Peterson BS, Kan E, Woods RP, Yoshii J, Bansal R, Xu DR, Zhu HT, Thompson PM,
Toga AW. Sex differences in cortical thickness mapped in 176 healthy individuals between 7 and
87 years of age. Cerebral Cortex. 2007 Jul.17:1550–1560. [PubMed: 16945978]

54. Mutlu AK, Schneider M, Debbane M, Badoud D, Eliez S, Schaer M. Sex differences in thickness,
and folding developments throughout the cortex. Neuroimage. 2013 May 28.

55. Goldstein JM, Seidman LJ, Horton NJ, Makris N, Kennedy DN, Caviness VS Jr, Faraone SV,
Tsuang MT. Normal sexual dimorphism of the adult human brain assessed by in vivomagnetic
resonance imaging. Cereb Cortex. 2001 Jun.11:490–497. [PubMed: 11375910]

56. Nobili F, Salmaso D, Morbelli S, Girtler N, Piccardo A, Brugnolo A, Dessi B, Larsson SA,
Rodriguez G, Pagani M. Principal component analysis of FDG PET in amnestic MCI. Eur. J. Nucl.
Med. Molecular Imag. 2008 Dec.35:2191–202.

57. Grady CL, McIntosh AR, Beig S, Keightley ML, Burian H, Black SE. Evidence from functional
neuroimaging of a compensatory prefrontal network in Alzheimer’s disease. J. Neurosci. Official
J. Soc. Neurosci. 2003 Feb 1.23:986–993.

Jie et al. Page 18

IEEE Trans Biomed Eng. Author manuscript; available in PMC 2014 July 22.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

http://www.CSTe.ntu.edu.tw/~cjlin/libsvm


58. Han Y, Wang J, Zhao Z, Min B, Lu J, Li K, He Y, Jia J. Frequency-dependent changes in the
amplitude of low-frequency fluctuations in amnestic mild cognitive impairment: A resting-state
fMRI study. Neuroimage. 2011 Mar 1.55:287–295. [PubMed: 21118724]

59. Feng Y, Bai L, Ren Y, Chen S, Wang H, Zhang W, Tian J. FMRI connectivity analysis of
acupuncture effects on the whole brain network in mild cognitive impairment patients. Magn.
Resonance Imag. 2012 Jun.30:672–682.

60. Davatzikos C, Bhatt P, Shaw LM, Batmanghelich KN, Trojanowski JQ. Prediction of MCI to AD
conversion, via MRI, CSF biomarkers, and pattern classification. Neurobiol. Aging. 2011 Dec.
32:2322e19–2322e27. [PubMed: 20594615]

61. Machulda MM, Senjem ML, Smith GE, Ivnik RJ, Boeve BF, Knopman DS, Petersen RC, Jack CR.
FunctionalMRI changes in amnestic vs. nonamnestic MCI during a recognition memory task.
Neurology. 2008 Mar 11.70:A445–A445.

62. Celone KA, Calhoun VD, Dickerson BC, Atri A, Chua EF, Miller SL, DePeau K, Rentz DM,
Selkoe DJ, Blacker D, Albert MS, Sperling RA. Alterations in memory networks in mild cognitive
impairment and Alzheimer’s disease: An independent component analysis. J. Neurosci. Official J.
Soc. Neurosci. 2006 Oct 4.26:10222–10231.

Biographies

Biao Jie received the B.S. degree in computer science from Fuyang Normal College,

Fuyang, China, in 2001, and the M.S. degree in computer science from the Yunnan Normal

University, Yunnan, China, in 2006. He is currently working toward the Ph.D. degree in the

Department of Computer Science, Nanjing University of Aeronautics and Astronautics,

Nanjing, China.

His current research interests include machine learning and medical image analysis.

Daoqiang Zhang received the B.Sc. and Ph.D. degrees in computer science from Nanjing

University of Aeronautics and Astronautics, Nanjing, China, in 1999 and 2004, respectively.

He is currently a Professor in the Department of Computer Science and Engineering,

Nanjing University of Aeronautics and Astronautics. His current research interests include

machine learning, pattern recognition, and biomedical image analysis. In these areas, he has

authored or coauthored more than 100 technical papers in the refereed international journals

and conference proceedings.

Dr. Zhang was nominated for the National Excellent Doctoral Dissertation Award of China

in 2006, won the best paper award at the 9th Pacific Rim International Conference on

Artificial Intelligence (PRICAI’06), and was the winner of the best paper award honorable

Jie et al. Page 19

IEEE Trans Biomed Eng. Author manuscript; available in PMC 2014 July 22.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



mention of Pattern Recognition Journal 2007. He is currently an Editorial Board Member for

the Computational Intelligence and Neuroscience Journal and a Program Committee

Member for several international conferences. He is a member of the Machine Learning

Society of the Chinese Association of Artificial Intelligence (CAAI) and the Artificial

Intelligence and Pattern Recognition Society of the China Computer Federation (CCF).

Wei Gao received the B.S. and M.S. degrees from Tianjin University, Tianjin, China, in

2004 and 2006, and the Ph.D. degree from the University of North Carolina at Chapel Hill in

2010.

He is currently an Assistant Professor in the Department of Radiology and Biomedical

Research Imaging Center, University of North Carolina at Chapel Hill. His current research

interests include MRI studies of early brain development and normal/abnormal adult brain

functioning with a focus on connectivity-based network-level analysis.

Qian Wang received the B.S. and M.S. degrees from Shanghai Jiao Tong University,

Shanghai, China, in 2006 and 2009, respectively. He is currently working toward the Ph.D.

degree in the Department of Computer Science, the University of North Carolina at Chapel

Hill.

He is with the Image Display, Enhancement, and Analysis Research Laboratory, Department

of Radiology and BRIC, the University of North Carolina at Chapel Hill. His current

research interests include medical image registration, segmentation, machine learning, and

fMRI analysis.

Chong-Yaw Wee received the Ph.D. degree in electrical engineering from the University of

Malaya, Malaysia, in 2007.

Since 2010, he has been a Postdoctoral Research Associate at the Biomedical Research

Imaging Center, University of North Carolina at Chapel Hill. His current research interests

Jie et al. Page 20

IEEE Trans Biomed Eng. Author manuscript; available in PMC 2014 July 22.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



include machine learning, neurodegenerative and neurodevelopment disorders, and

multimodal multivariate neuroimaging classification.

Dinggang Shen (M’00–SM’07) received the Ph.D. degree in electronic communication

from Shanghai Jiao Tong University, China, in 1995.

He is a Professor of Radiology, Biomedical Research Imaging Center (BRIC), Computer

Science, and Biomedical Engineering in the University of North Carolina at Chapel Hill

(UNC-CH). He is currently directing the Center for Image Informatics, the Image Display,

Enhancement, and Analysis (IDEA) Lab, Department of Radiology, and also the Medical

Image Analysis Core in the BRIC. He was a tenure-track Assistant Professor in the

University of Pennsylvanian (UPenn) and a Faculty Member in the Johns Hopkins

University. His current research interests include medical image analysis, computer vision,

and pattern recognition. He has authored or coauthored more than 450 papers in the

international journals and conference proceedings. He is as an Editorial Board Member for

four international journals.

Dr. Shen is with the Board of Directors, the Medical Image Computing and Computer

Assisted Intervention (MICCAI) Society.

Jie et al. Page 21

IEEE Trans Biomed Eng. Author manuscript; available in PMC 2014 July 22.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Fig. 1.
Proposed classification framework.
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Fig. 2.
Examples of multiple-thresholded connectivity networks. (a) Original functional

connectivity networks, (b) thresholded connectivity networks with T = 0.3, and (c)

thresholded connectivity networks with T = 0.5. Here, A, B, C, D, and E represent five

different nodes/ROIs; value on each edge denotes the connection weight between a pair of

ROIs. The connectivity between nodes A and D on a patient with MCI (right) has been

changed, compared to a HC (left).
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Fig. 3.
ROC curves of different methods on MCI classification. Left: using single graph kernel and

mixed kernel of all graph kernels; right: using single linear kernel, mixed kernel of all graph

kernels, and combination of both linear kernel and graph kernels.
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Fig. 4.
Performance w.r.t. the selection of λ value.
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Fig. 5.
Top 12 selected ROIs based on LASSO feature selection.
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Fig. 6.
ROC curves of different methods on infant gender classification. Left: using single graph

kernel and mixed kernel of all graph kernels; right: using single linear kernel, mixed kernel

of all graph kernels and the combination of both linear kernel and graph kernels. (a) age 0,

(b) age 1, and (c) age 2.
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Fig. 7.
Performance w.r.t. the number of selecting thresholds.
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TABLE I

Characters of the Participants in the Current Study

Group MCI HC

No. of subjects (male/female) 6/6 9/16

Age (mean ± SD) 75.0 ± 8.0 72.9 ± 7.9

Years of education (mean ± SD) 18.0 ± 4.1 15.8 ± 2.4

MMSE (mean ± SD) 28.5 ± 1.5 29.3 ± 1.1

Note: MMSE = Mini-Mental State Examination.
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Jie et al. Page 30

TABLE II

Classification Performance of Different Methods

method Accuracy (%) Balanced accuracy (%) AUC

LK 81.1 79.5 0.84

GK1 73.0 60.5 0.51

GK2 73.0 64.8 0.79

GK3 70.3 58.5 0.63

GK4 73.0 60.5 0.83

GK5 75.7 64.7 0.71

GK-C 81.1 75.2 0.87

Proposed 91.9 89.7 0.87
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TABLE IV

Classification Performance of Two Different Methods, in the Case of Using the t-Test-Based Feature

Selection, Instead of Using Lasso-Based Feature Selection

Method Accuracy (%) Balanced accuracy (%) AUC

LK 78.4 77.5 0.76

Proposed 86.5 83.5 0.81
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TABLE V

Top 12 ROIs that are Selected Based on the Local Clustering Property

Selected ROIs (features) Thresholded
connectivity

network

Number of
occurrence

p-value

Left temporal pole (middle) T2 37 0.035

Right caudate T1 37 0.0154

Right temporal pole (superior) T3,T5 37,17 0.0329, 0.3246

Right orbitofrontal cortex (superior) T2 36 0.0068

Right orbitofrontal cortex (medial) T1,T4 36,36 0.0044, 0.0243

Left heschl gyrus T2 36 0.0111

Right orbitofrontal cortex (middle) T2 34 0.4219

Left posterior cingulate gyrus T2 33 0.0462

Left hippocampus T1 32 0.0338

Left lingual gyrus T2 32 0.7901

Right middle cingulate gyrus T2 15 0.4484

Left inferior temporal T2 15 0.0465
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TABLE VI

Top Selected ROIS Based on the Global Topological Property

T1 T2 T3

Left rectus gyrus Right temporal pole (superior) Right temporal pole (superior)

Left temporal pole (middle) Left rectus gyrus Left temporal pole (middle)

Left paraHippocampal gyrus Left paraHippocampal gyrus Left rectus gyrus

Right temporal pole (superior) Left temporal pole (middle) Left paraHippocampal gyrus

Right temporal pole (middle) Right temporal pole (middle) Left temporal pole (superior)

Left amygdala Left amygdala Right temporal pole (middle)

Left pallidum Left pallidum Left amygdala

Right amygdala Right paraHippocampal gyrus Left pallidum

Right paraHippocampal gyrus Left temporal pole (superior) Right paraHippocampal gyrus

Right rectus gyrus Right amygdala Right rectus gyrus

Left temporal pole (superior) Right rectus gyrus Right amygdala

Right posterior cingulate gyrus Right posterior cingulate gyrus Left olfactory

T4 T5 All

Right temporal pole (superior) Right temporal pole (superior) Left olfactory

Left paraHippocampal gyrus Left paraHippocampal gyrus Left orbitofrontal cortex (medial)

Left temporal pole (middle) Left temporal pole (middle) Right orbitofrontal cortex (medial)

Left rectus gyrus Left temporal pole (superior) Left rectus gyrus

Right temporal pole (middle) Left rectus gyrus Right rectus gyrus

Left temporal pole (superior) Left pallidum Right posterior cingulate gyrus

Left pallidum Right temporal pole (middle) Left paraHippocampal gyrus

Left amygdala Left amygdala Right paraHippocampal gyrus

Right paraHippocampal gyrus Right paraHippocampal gyrus Left amygdala

Right rectus gyrus Right rectus gyrus Right amygdala

Right amygdala Right amygdala Left pallidum

Right orbitofrontal cortex (medial) Left orbitofrontal cortex (medial) Left temporal pole (superior)

Right temporal pole (superior)

Left temporal pole (middle)

Right temporal pole (middle)
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TABLE VIII

Top 12 Selected ROIS for Infant Gender Classification

age 0 age 1 age 2

Left, Middle frontal gyrus Right, Inferior frontal gyrus (triangular) Right, Precentral gyrus

Left, Inferior frontal gyrus (opercular) Right, Olfactory Left, Middle cingulate gyrus

Right, Rolandic operculum Right, Superior frontal gyrus (media) Right, Posterior cingulate gyrus

Right, Posterior cingulate gyrus Right, Posterior cingulate gyrus Left, Amygdala

Left, Hippocampus Right, Amygdala Right, Amygdala

Right, Amygdala Right, Superior occipital gyrus Right, Lingual gyrus

Left, Lingual gyrus Right, Middle occipital gyrus Right, Superior occipital gyrus

Right, Inferior occipital gyrus Right, Paracentral lobule Left, Inferior occipital gyrus

Right, Superior parietal gyrus Left, Thalamus Left, Fusiform gyrus

Left, Paracentral lobule Right, Thalamus Right, Superior parietal gyrus

Left, Thalamus Left, Inferior temporal Left, Caudate

Left, Inferior temporal Right, Inferior temporal Left, Inferior temporal
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