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Abstract The role of nucleotides in intracellular energy

provision and nucleic acid synthesis has been known for

a long time. In the past decade, evidence has been

presented that, in addition to these functions, nucleo-

tides are also autocrine and paracrine messenger

molecules that initiate and regulate a large number of

biological processes. The actions of extracellular nucle-

otides are mediated by ionotropic P2X and metabo-

tropic P2Y receptors, while hydrolysis by ecto-enzymes

modulates the initial signal. An increasing number of

studies have been performed to obtain information on

the signal transduction pathways activated by nucleo-

tide receptors. The development of specific and stable

purinergic receptor agonists and antagonists with ther-

apeutical potential largely contributed to the identifi-

cation of receptors responsible for nucleotide-activated

pathways. This article reviews the signal transduction

pathways activated by P2Y receptors, the involved

second messenger systems, GTPases and protein

kinases, as well as recent findings concerning P2Y

receptor signalling in C6 glioma cells. Besides vertical

signal transduction, lateral cross-talks with pathways

activated by other G protein-coupled receptors and

growth factor receptors are discussed.
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Abbreviations
AC adenylate cyclase

Ap3A P1,P3-di(adenosine-50)triphosphate

Ap4A P1,P4-di(adenosine-50)tetraphosphate

AR adrenergic receptor

COX cyclooxygenase

DAG diacylglycerol

ERK extracellular signal-regulated kinase

GFAP glial fibrillary acidic protein

GPCR G protein-coupled receptor

HT hydroxytryptamine

IP3 inositol (1,4,5)-triphosphate

PAP adenosine-30,50-biphosphate

PI phosphatidylinositol

PL phospholipase

PI 3-K phosphatidylinositol 3-kinase

PPADS pyridoxalphosphate-6-azophenyl-20,
40-disulphonate

Pyk2 proline-rich tyrosine kinase 2

RKIP Raf kinase inhibitory protein

RTK receptor tyrosine kinase

Introduction

Pharmacological properties of P2Y receptors

Extracellular actions of adenine nucleotides were ini-

tially characterised in the cardiovascular system by

Drury and Szent-Gyorgyi [1]. It took more than four

decades before the concept of purinergic signalling was

accepted, but now it is well established that nucleo-

tides initiate and regulate a variety of biological

processes, including neurotransmission, inflammation,

regulation of blood pressure, platelet aggregation, cell

growth and differentiation (Abbracchio et al. [2];

Burnstock and Williams [3]; Burnstock [4]; Ralevic

and Burnstock [5]).

Purinergic Signalling (2006) 2:451–469

DOI 10.1007/s11302-006-9008-0

K. Van Kolen :H. Slegers (*)
Department of Biomedical Sciences, Cellular Biochemistry,
University of Antwerp,
Universiteitsplein 1,
2610 Wilrijk-Antwerpen, Belgium
e-mail: herman.slegers@ua.ac.be

K. Van Kolen
CNS research, Johnson & Johnson, PRD,
Janssen Pharmaceutica,
Beerse, Belgium



Nucleotides are released in the extracellular fluid by

cell lysis, exocytosis, secretion of granules, efflux and

upon cellular stress such as changes in osmolarity and

mechanical perturbations. Once released, they mediate

their effect by stimulation of nucleotide receptors.

Based on pharmacological properties, the first sug-

gestion for the existence of ionotropic P2X receptors

and metabotropic P2Y receptors was made by

Burnstock and Kennedy [6]. After cloning, multiple

subtypes of P2X and P2Y receptors were characterised

unambiguously (Abbracchio and Burnstock [7]

Burnstock and Williams [3]; Fredholm et al. [8]).

Up to now, the P2Y receptor family comprises at least

eight subtypes, P2Y1, P2Y2, P2Y4, P2Y6, P2Y11, P2Y12,

P2Y13 and the recently identified P2Y14 receptor

(Ralevic and Burnstock, [5] Abbracchio et al. [9];

Communi et al. [10]; Hollopeter et al. [11]; Zhang

et al. [12]). According to the agonist profile, P2Y

receptors can be subdivided into receptors responding

to adenine mono- and dinucleotides (P2Y1, P2Y11,

P2Y12, P2Y13), and to uridine nucleotides (P2Y4,

P2Y6), and receptors for adenine and uridine nucleo-

tides (P2Y2). The pharmacological profile of the

recently cloned P2Y14 receptor is distinct from the

other P2Y receptors since UDP-glucose, UDP-galac-

tose, UDP-glucuronic acid and UDP-N-acetylglucos-

amine are specific ligands of this receptor (Chambers

et al. [13]). Natural P2Y receptor ligands do not

exclusively bind to one receptor subtype. ADP is an

agonist of P2Y1, P2Y12 and P2Y13 receptors, whereas

ATP is a full agonist of P2Y2 and P2Y11, but a partial

agonist or antagonist of P2Y1, P2Y12 and P2Y13

receptors. Although the pharmacological properties of

P2Y receptors (Table 1) are well conserved between

species, some remarkable differences have been ob-

served. While UTP acts as an agonist of both human and

rat P2Y4 receptors, ATP is a potent agonist of the rat

P2Y4, but an antagonist of the human orthologue.

Mutational analysis revealed that the second extracel-

lular loop of the P2Y4 receptor is responsible for the

opposing effect of ATP in both species (Herold et al.

[14]). A similar phenomenon is observed when human

and canine P2Y11 receptors were stably expressed in

CHO-K1 and 1321N1 astrocytoma cells. Whereas the

Table 1 Pharmacological profile of P2Y receptors and second messenger systems.

Agonists Antagonists Effector G protein

P2Y1 2MeSADP, ADP, ADP"S,

Ap3A, MRS2365

Suramin, PPADS, PAP, MRS2179, MRS2216,

MRS2279, MRS2500, MRS 2603

PLC, IK, Ca Gq/G11/12

P2Y2 UTP+S, ATP+S, UTP, ATP,

INS37217, Ap4A

Suramin PLC, IK, Ca Gi/Gq

P2Y4 UTP+S, UTP, ATP a ATP a, PPADS PLC, IK Gq/G11/12

P2Y6 UDP"S, UDP, UTP, INS48823 PPADS, suramin, MRS2567 PLC, IK Gq/G11/12

P2Y11 ATP!S, ATP+S, ATP Suramin AC, PLC Gq/Gs

P2Y12 2MeSADP, ADP, Ap3A, ATP,

Ap4A

AR-C69931MX, AR-C67085, AR-C78511KF,

clopidogrel, 2MeSAMP, DIDS, suramin, MRS2395

AC, IK, Ca Gi/o

P2Y13 2MeSADP, ADP, Ap3A, ATP AR-C69931MX, Ap4A, PPADS, suramin, MRS2211,

MRS2603

AC, PLC, ICa Gi/Gq

P2Y14 UDP-glucose, UDP-galactose,

UDP-glucuronic acid,

UDP-N-acetylglucosamine

AC, ICa Gi

a ATP acts as an agonist of the rat P2Y4 but as an antagonist of
the human P2Y4 receptor (Herold et al [14]). Reactive blue 2 is not
included in the list since it displays lack of specificity towards the
different P2Y subtypes. References: Abbracchio et al. [9]; Com-
muni et al. [10, 191]; Chambers et al. [13]; Claes and Slegers [17];
Kim et al. [26]; Xu et al. [27]; Boyer et al. [38, 189, 190]; Grobben
et al. [40]; Marteau et al. [47]; Filippov et al. [57– 60, 63]; Simon
et al. [61]; Wirkner et al. [62]; Korcok et al. [192]; Muller [193];
Skelton et al. [194]; Yerxa et al. [195]; Jacobson et al. [196]; von
Kügelgen [197]. Abbreviations: Ap3A, P1,P3-di(adenosine-50)
triphosphate; Ap4A, P1,P4-di(adenosine-50)tetraphosphate; AR-
C69931MX, N6-(2-methylthioethyl)-2-(3,3,3-trifluoropropylthio)
-",+-dichloromethylene ATP; AR-C67085, 2-propylthio-D-"+-
dichloromethylene adenosine 50-triphosphate; AR-C78511KF,
(E)-N-[1-[7-(hexylamino)-5-(propylthio)-3H-1,2,3-triazolo-[4,5-d]-pyri-
midin-3-yl]-1,5,6-trideoxy-"-D-ribo-hept-5-enofuranuronoyl]-L-aspartic

acid monoammonium salt; DIDS, 4,40-diisothiocyanatostilbene-2,
20-disulphonic acid; INS37217 [P(1)-(uridine 50)-P (4)-(20-deoxy-
cytidine 50)tetraphosphate tetrasodium salt; INS48823 P1-((2-benzyl-1,
3-dioxolo-4-yl)uridine 50)P3-(uridine 50) triphosphate; MRS2179, N6-
methyl-20-deoxyadenosine-30,50-bisphosphate; MRS2211, pyridoxal- 50-
phosphate-6-azo-(2-chloro-5-nitrophenyl)-2,4-disulphonate; MRS2216,
20-deoxy-2-chloro-N6-methyladenosine-30,50-bisphosphate; MRS2279,
2-chloro-N6-methyl-(N)-methanocarba-20-deoxyadenosine 30,50-bis-
phosphate; MRS2365, [(10S,20R,30S,40R,50S)-4-[(6-amino-2-methylthio-
9H-purin-9-yl)-1-diphosphoryloxymethyl]bicyclo[3.1.0]hexane-2, 3-diol];
MRS2395, 2-dimethyl-propionic acid-3-(2-chloro-6-methylaminopurin-
9-yl)-2-(2,2-dimethylpropionyloxy-methyl)-propylester; MRS2500, 2-io-
do-N6-methyl-(N)-methanocarba-20-deoxyadenosine 30,50-bisphosphate;
MRS2567, 1,2-di-(4-isothiocyanatophenyl)ethane; MRS2603, pyridox-
al-50-phosphate-6-azo-(4-chloro-3-nitrophenyl)-2,4-disulphonate;
PPADS, pyridoxalphosphate-6-azophenyl-20,40-disulfonic acid.

452 Purinergic Signalling (2006) 2:451–469



human P2Y11 is potently activated by adenosine tri-

phosphate nucleotides, the canine orthologue displayed

more selectivity towards the corresponding diphos-

phates. In this case, the nucleotide selectivity is due to

differences in the amino acid sequence at the juxtapo-

sition of TM6 and the third extracellular loop also

reported to play an important role in agonist selectivity

and signalling of other G protein-coupled receptors

(GPCR) (Qi et al. [15]; Lawson and Wheatley [16]).

Despite their chemical stability, extracellular nu-

cleotides are metabolised by several ecto-enzymes

(Claes and Slegers [17]; Czajkowski and Baranska

[18]; Goding et al. [19]; Zimmerman [20]). Extracellu-

lar hydrolysis complicates the evaluation of nucleo-

tide-mediated effects on different cell types and can be

overcome by the use of specific non-hydrolysable

receptor agonists or ecto-enzyme inhibitors. Some

P2Y receptor antagonists, such as pyridoxalphosphate-

6-azophenyl-20,40-disulfonic acid (PPADS), suramin,

reactive blue 2 and 4,40-diisothiocyanatostilbene-2,20-
disulphonic acid (DIDS), are inhibitors of nucleotide

hydrolyzing enzymes and are often used in studies of

nucleotide-mediated signalling (Grobben et al. [21]).

Nevertheless, care must be taken for the interpretation

of experimental data since it is also shown that cells can

internalise some of these molecules (Claes et al., [22]).

Therefore specific P2Y receptor antagonists, devel-

oped for therapeutical purposes, have to be used to

overcome the lack of specificity (Boeynaems et al.

[23]; Lambrecht et al. [24]; Kam and Nethery [25]; Kim

et al. [26]; Xu et al. [27]).

P2Y receptor expression on rat C6 glioma cells

Rat C6 glioma is a tumoral cell line of glial origin with

oligodendrocytic, astrocytic and neuronal progenitor

properties. Due to a point mutation in Fphosphatase

and tensin homologue deleted on chromosome ten_

(PTEN), the phosphatidylinositol 3-kinase (PI 3-K)/

PKB signalling pathway is constitutively active and

contributes to the proliferative and invasive properties

of these cells (Kubiatowski et al. [28]; Roymans and

Slegers [29]; Grobben et al. [30]). In addition, cell

proliferation is sustained by secreted growth factors

that stimulate growth factor receptors present on these

cells. Such autocrine mechanisms are reported for

IGFR, bFGFR and PDGFR (Okumura et al. [31];

Resnicoff et al. [32]; Strawn et al. [33]).

In C6 cells, an increase in cAMP by stimulation of

the "-adrenergic receptor ("-AR) or by addition of

membrane permeable cAMP analogues, e.g., dibutyryl

cAMP (dBcAMP) or 8-chloro-cAMP, induces differ-

entiation into an astrocyte type II (Roymans et al.

[34]). During this process, cessation of cell growth is

accompanied by a shift in intermediate filament

synthesis from vimentin to glial fibrillary acidic protein

(GFAP) (Backhovens et al. [35]). The latter protein is

an astrocytic differentiation marker whose expression

is regulated by cAMP at the transcriptional and

translational level (Messens and Slegers [36]).

In our laboratory, the signalling pathways activated by

extracellular nucleotides, and in particular those affecting

cell proliferation and differentiation of C6 cells, were

studied in detail. The presence of a P2Y receptor on these

cells that negatively affects adenylate cyclase (AC) was

postulated for more than a decade (Pianet et al. [37]; Boyer

et al. [38]). This receptor is coupled to a Gi protein and

has been denominated P2YAC- (Claes et al. [39]; Grobben

et al. [40]) before its identification as the P2Y12 receptor

initially cloned from blood platelets (Czajkowski et al.

[41]; Hollopeter et al. [11]; Jin et al. [42]). C6 cells also

express the phospholipase (PL)C"-coupled P2Y1, P2Y2,

P2Y4 and P2Y6 receptors (Czajkowski et al. [41]; Nicholas

et al. [43]; Tu et al. [44]; Claes and Slegers [17]). Recently,

we also demonstrated the presence of P2Y13 mRNA (Van

Kolen and Slegers [45]) implicating the expression of

three ADP-activated receptors in these cells, i.e., P2Y1,

P2Y12 and P2Y13. Although 2MeSADP is reported as a

potent P2Y1, P2Y12 and P2Y13 agonist, stimulation with

this compound inhibits AC, but induces no significant

activation of PLC, indicating that the P2Y1 receptor is not

activated by ADP in cells grown in chemically defined

medium (Grobben et al. [40]). This is confirmed by

Czajkowski et al. [46], who showed that, in cells cultivated

in the presence of fetal calf serum, ADP signalling is

predominantly determined by the P2Y1 receptor. Howev-

er, upon serum deprivation, expression of the P2Y1

receptor is decreased and the P2Y12 receptor becomes

the main activated receptor. Characterization of P2Y13

receptor function is complicated by the fact that P2Y12

and P2Y13 receptors have almost the same agonist profile

(Table 1). The receptor antagonist N6-(2-methyl-

thioethyl)-2-(3,3,3-trifluoropropylthio)-",+-dichloromethy-

lene ATP (AR-C69931MX), often used as a specific

P2Y12 antagonist, also blocks the P2Y13 receptor (Marteau

et al. [47]). While the human and mouse P2Y13 receptor,

like the P2Y12, is more potently activated by 2MeSADP

than ADP, the rat P2Y13 receptor shows a higher

selectivity for ADP (Fumagalli et al. [48]). In C6 cells,

further distinction between the signalling of P2Y12 and

P2Y13 receptors can be made by the use of PPADS, a

P2Y13 antagonist without effect on P2Y12, and P1, P4-

di(adenosine-50) tetraphosphate (Ap4A), a P2Y13 antago-

nist that stimulates the P2Y12 receptor (Claes et al. [39];
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Grobben et al. [40]; Marteau et al. [47]). In addition,

recently synthesised PPADS derivatives pyridoxal-50-
phosphate-6-azo-(2-chloro-5-nitrophenyl)-2,4-disulphonate

(MRS2211) and pyridoxal-50-phosphate-6-azo-(4-chloro-3-

nitrophenyl)-2,4-disulphonate (MRS2603) have no effect

on the P2Y12 receptor but antagonise the P2Y13 receptor

(Kim et al. [26]).

Although P2Y receptor expression in C6 cells de-

pends on the cultivation conditions (Czajkowski et al.

[46]), unpublished data of our laboratory revealed that

induction of differentiation into astrocytes type II by

dbcAMP (1 mM)- or (-)-isoproterenol (5 2M) does not

significantly alter the expression of P2Y receptors.

These observations are in accordance with previous

studies on the expression of P2Y1, P2Y2, P2Y4, P2Y6,

P2Y12, P2Y13 and P2Y14 receptors in glial cells and

primary astrocytes (Bianco et al. [49]; Fumagalli et al.

[48, 50]; Sasaki et al. [51]). The function of P2Y receptor

expression in glial cells is still under investigation, but a

number of studies point to an important role in the

intercellular communication between astrocytes and

neurons (Bezzi and Volterra, [52]). Another well

documented effect of extracellular ATP is induction

of reactive astrogliosis upon activation of ERK and

cyclooxygenase (COX)-2 (Brambilla et al. [53]).

Similar to the observations made in C6 cells,

functional responses of P2Y receptor subtypes in

microglial cells depend on cultivation conditions. In

N9 mouse brain microglia stimulation of expressed P2Y

receptors induces Ca2+ mobilization but only P2Y6 and

P2Y14 receptor-mediated responses are increased upon

activation of microglia with lipopolysaccharide. The

enhanced P2Y6 response is correlated with mRNA

increase which was not the case for the P2Y14

receptor-mediated Ca2+ mobilization (Bianco et al.

[49]). Furthermore, stimulation of microglial P2Y12/13

receptors induces membrane ruffling and chemotaxis

towards injured neurons through Gi/o protein-medi-

ated activation of Rac (Honda et al. [54]). The

observations made in astrocytes and microglial cells

emphasise the importance of P2Y receptors in brain

signalling and identify these receptors as putative

targets in defective neurotransmission, neuroimmune

functioning, cell survival and cell proliferation in

response to oxidative stress and brain injury.

P2Y receptor-activated signalling cascades

Second messengers

P2Y receptors are generally linked to PLC activation

that catalyses the rapid hydrolysis of phosphatidylino-

sitol 4,5-bisphosphate into the intracellular messenger

inositol 1,4,5-triphosphate (IP3) and diacylglycerol

(DAG). Activation of PLC occurs by Gi!- and/or

Gq!-dependent mechanisms (Communi et al. [55]).

Besides signalling through G! subunits, intracellular

Ca2+ concentration is also affected by G"+ subunit-

dependent interaction with voltage-gated Ca2+ chan-

nels. Several reports indicated modulation of K+

currents and PLC" activation induced by distinct

domains of G"+ (Mirshahi et al. [56]). Co-expression

studies performed in rat sympathetic neurons demon-

strated that P2Y1, P2Y2 and P2Y6 receptors trigger the

closing of N-type Ca2+ and M-type K+ channels,

whereas P2Y4 receptor stimulation also displayed

coupling to M-type K+ channels producing a less

efficient inhibition of Ca2+ currents. In rat brain cap-

illary endothelial cells, it was shown that the P2Y12

receptor inhibits ICa(N) and activates a G protein-

coupled inward rectifier K+ (GIRK) channel. Interest-

ingly, stimulation of the P2Y1 receptor also induces a

K+ current that is rapidly followed by inactivation.

Inhibition of ICa(N) by P2Y12 receptor stimulation is

also reported in PC12 cells while in HEK 293 this

inhibition is mediated by the P2Y13 receptor (Filippov

et al. [57–60]; Simon et al. [61]; Wirkner et al. [62]).

From co-expression studies of P2Y receptors with

GIRK1 or GIRK2 in rat sympathetic neurons, it was

concluded that P2Y receptors activate GIRK channels

by the "+ subunits of Gi/o and inhibit these channels by

the ! subunits of Gq (Filippov et al. [63]).

P2Y-induced calcium release is followed by opening

of voltage-independent Ca2+ channels. Although this

response is observed in a variety of cell types, the

physiological implications are miscellaneous. In this

context, it has been reported that extracellular ATP

induces a Ca2+ wave that propagates through neigh-

bouring astrocytes by GAP junctions (Suadicani et al.

[64]). In situations of increased neuronal activity or cell

damage, ATP stimulates a Ca2+-dependent proton-

efflux from astrocytes. Acidification of the extracellular

environment serves as a negative feedback mechanism

for neurotransmitter release, but also increases blood

flow by vasodilatation in cerebral arterioles (Dienel and

Hertz [65]; Dixon et al. [66]). Although Ca2+ signalling

is observed in a variety of cell types, the time

dependence of the response is cell type specific. This

is especially the case for the P2Y1 receptor which

triggers persistent or transient Ca2+ responses when it is

expressed in human 1321N1 astrocytoma or C6 glioma

cells, respectively (Czajkowski et al. [41]; Sellers et al.

[67]). A recent study also revealed that, in glial cells,

prolongation of the P2Y1 receptor-induced Ca2+ re-

sponse is regulated by interaction with the Na+/H+
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exchanger regulatory factor type-2 which determines

the signalling pathways that are ultimately activated in

different cell types (Fam et al. [68]). Indeed, while

transient P2Y1 receptor signalling increases prolifera-

tion in C6 cells, sustained signalling triggers apoptotic

cascades in 1321N1 astrocytoma cells (Czajkowski et al.

[46]; Sellers et al. [67]).

A well-known response to PLC-generated DAG and

IP3/Ca2+ is the activation of classical PKCs that are

involved in rapid internalisation and desensitisation of

GPCRs through phosphorylation of residues localised

in their cytoplasmic tail. In this regard, PKC"I is

reported to attenuate phosphatidylinositol (PI)-hydro-

lysis induced by P2Y1 and P2Y2 receptors in endothelial

cells (Chen and Lin [69]). In astrocytes, high frequency

stimulation of the P2Y1 receptor by repeated addition

of ATP causes rapid suppression of the P2Y1 receptor-

induced Ca2+ response. This phenomenon, observed as

Ca2+ oscillations, is mediated by protein kinase C-

dependent phosphorylation of Thr339 in the carboxy-

terminus of the P2Y1 receptor (Fam et al. [70]). Besides

modulation of receptor responsiveness, PKC signalling

also affects long term effects. In the human osteoblastic

HOBIT cell line, ATP increases expression of the early

growth response protein-1 by a mechanism that requires

a Ca2+-independent PKC isoform (Pines et al. [71]). In

vascular smooth muscle cells, UDP stimulates cell cycle

progression by a PLC- and PKC%-dependent cascade

(Hou et al. [72]). The same isoform is involved in ATP-

mediated mitogenic signalling in astrocytes, but in these

cells PKC% activation does not involve PLC but

requires PLD-dependent choline formation (Neary

et al. [73]).

In addition to PLC-coupled receptors, a growing

number of P2Y receptors have been shown to affect the

activity of AC. Besides the existence of indirect

mechanisms linked to an increase in cAMP (discussed

in Communi et al. [55]), only the P2Y11 receptor is

directly coupled to activation of AC and PLC while

P2Y12, P2Y13 and P2Y14 receptors negatively affect

cAMP synthesis (Chambers et al. [13]; Communi et al.

[10]; Hollopeter et al. [11]; Zhang et al. [12]).

Adenylate cyclase-dependent signalling is often me-

diated by the cAMP-regulated kinase PKA. Stimula-

tion of the P2Y11 receptor with ATP is shown to

activate human monocyte-derived dendritic cells by

increased cAMP/PKA signalling (Wilkin et al. [74]). In

bovine adrenocortical fasciculate cells, ADP and ATP

increase cortisol production through PKA activation

by an as yet unidentified Gs protein-coupled P2Y

receptor (Nishi et al. [75]). Although in unstimulated

cells the cytosolic cAMP concentration is already

low, its further decrease by Gi protein-coupled re-

ceptors is sometimes sufficient to exert a significant

inhibitory action towards PKA. Such a response is

reported in microglial cells where ATP and ADP

binding to P2Y12/13 receptors mediate chemotaxis by

PKA-dependent translocation of "1 integrins to ruf-

fling regions of the cell (Nasu-Tada et al. [76]).

Despite the fact that cells express a myriad of

different GPCRs and downstream acting regulators,

receptor stimulation promotes rapid and specific

responses. In addition, multiple GPCRs, sharing the

same second messenger cascade, can induce different

cellular events in one cell type indicating that GPCR

signal propagation requires physical interactions in a

defined cellular compartment. An example of spatial

organised signalling is the "-arrestin-dependent target-

ing of an activated receptor into clathrin-coated vesicles

or enrichment in membrane microdomains (lipid rafts)

formed by cholesterol and sphingolipids (Anderson

[77]; DeFea et al. [78]). Modulation of receptor

function by rafts is confirmed for an increasing number

of GPCRs including P2Y receptors (Anderson [77];

Ostrom and Insel [79]). In endothelial cells, it is

reported that P2Y receptor-induced vasodilatation is

abolished by disruption of caveolae with methyl-"-

cyclodextrin (Kaiser et al. [80]). In C6 glioma cells,

signalling by P2Y2 and 5-hydroxytryptamine (HT)2A

receptors is attenuated after knock-down of caveolin-1

by si-RNA. Moreover, interaction between the 5-HT2A

receptor and caveolin-1 facilitates its interaction with

G!q. Since P2Y2 receptor mRNA is downregulated by

caveolin-1 knock-down, further studies are required to

demonstrate localisation of P2Y2 receptors in caveolae

of C6 cells (Bhatnagar et al. [81]).

Small GTPases as molecular switches

The processing of extracellular stimuli by GPCRs

often involves signalling by second messengers

(cAMP, DAG, Ca2+) towards small GTPases and/or

cross-talk with tyrosine kinases. Gq protein-coupled

receptor signalling via PLC" induces formation of

DAG and IP3, Ca2+ mobilisation and activation of

PKC ultimately leading to activation of proline-rich

tyrosine kinase 2 (Pyk2). Pyk2 cooperates with Src to

recruite Grb2 and SOS, a guanine nucleotide exchange

factor (GEF) that activates Ras (Lev et al. [82]). Such a

mechanism is reported for Ras-dependent ERK acti-

vation induced by the protease-activated receptor-1 in

astrocytes (Wang and Reiser [83]). In PC12 cells,

stimulation of the P2Y2 receptor also triggers tyrosine

phosphorylation of Pyk2, but further signalling to Ras

involves EGFR transactivation by Src (Soltoff et al.
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[84]). Tyrosine kinase-dependent Ras signalling is also

reported for Gi protein-coupled receptors, but this

proceeds through G"+ subunit-mediated activation of

PI 3-K+ and Shc (Ellis et al. [85]; Lopez-Ilasaca et al.

[86]).

GEFs can also be regulated in a tyrosine kinase-

independent manner that proceeds through direct

activation by cAMP, DAG and Ca2+ or by interaction

with G! subunits as observed for the Gq/11 protein-

mediated activation of RhoA (Bhattacharya et al. [87];

Bos [88]; Lutz et al. [89]; Walker et al. [90]).

P2Y receptor signalling towards GTPases is involved

in short term responses, such as stress fibre formation or

modulation of cell adhesion, but also in long term

responses like cell proliferation. Mitogenic Ras-depen-

dent P2Y responses are reported for C6 and HEK293

cells where Ras is implicated in P2Y2 receptor-depen-

dent signalling to the ERK pathway (Gao et al. [91];

Tu et al. [44]). On the other hand, increased prolifer-

ation of C6 cells by the P2Y12 receptor proceeds

independently of Ras, but requires RhoA-dependent

activation of ERK and Rho-associated coiled-coil-

containing protein kinase (ROCK) (Grobben et al.

[40]; Van Kolen and Slegers, unpublished data).

Interestingly, when the P2Y12 receptor is expressed

in CHO cells it activates ERK and RhoA/ROCK

by independent mechanisms (Soulet et al. [92]).

Another example of cross-talk between P2Y recep-

tors and GTPases is observed in blood platelets. As

mentioned above, release of ADP and subsequent P2Y1

and P2Y12 receptor binding is essential for collagen-

induced platelet aggregation. A crucial step for imme-

diate and sustained aggregation of platelets is the

activation of Rap1 that increases the affinity between

integrin !IIb"3 and fibrinogen. Knock-out studies

revealed that ADP-induced GTP loading of Rap1

proceeds through both Gi and Gq signalling by P2Y12

and P2Y1 receptors, respectively. The mechanism

initiated by the P2Y12 receptor is shown to be PI 3-

K-dependent while P2Y1-mediated activation of Rap1

requires Ca2+ mobilisation (Woulfe et al. [93]; Greco

et al. [94]; Larson et al. [95]; Lova et al. [96, 97]).

Stimulation of the P2Y1 receptor also contributes to

platelet shape changes by a Ca2+-independent path-

way. RhoA and its effector ROCK are activated by

ADP through G12/13 protein-dependent signalling of

the P2Y1 receptor and contribute to rapid actin

polymerization and shape changes (Paul et al. [98]).

Signalling towards Rho GTPases is also important in

other systems. In brain, ATP and ADP induce

membrane ruffling and chemotaxis of microglial cells

through Gi protein-dependent activation of Rac upon

stimulation of P2Y12/13 receptors (Sasaki et al. [51];

Honda et al. [54]). Stress fibre formation in vascular

smooth muscle cells is reported to be mediated by

RhoA/ROCK signalling that becomes activated upon

stimulation of P2Y1, P2Y2, P2Y4 and P2Y6 receptors

(Sauzeau et al. [99]). In the latter study, information

concerning the signalling towards RhoA is lacking. In

a more recent study on endothelial cells, transactiva-

tion of VEGFR upon P2Y2 receptor stimulation and

recruitment of the RhoGEF Vav is shown to be a

possible mechanism to initiate RhoA-mediated cell

adhesion (Seye et al. [100]).

Although several P2Y receptors activate RhoA,

downstream signalling and physiological consequences

are determined by celltype specific mechanisms lead-

ing to diverse responses.

ERK signalling

Several GPCRs are coupled to enhanced proliferation

by multiple signal transduction pathways that phos-

phorylate ERK. Activation of this kinase requires Ras

or GTPases of the RhoA family and is often modulated

by second messenger-activated pathways, although

cross-talk with growth factor receptors also triggers

ERK signalling.

In neurons Gs protein-mediated activation of AC

increases ERK phosphorylation by a PKA/Rap1/B-

Raf cascade. In contrast, induction of cAMP synthesis

decreases ERK phosphorylation in C6 cells and

astrocytes by a negative action of PKA on the Ras/c-

Raf1 interaction, or by Rap1-mediated inhibition of c-

Raf1. These observations led to the hypothesis that an

increase in cAMP stimulates MEK/ERK signalling in

B-Raf expressing cells but inhibits this cascade in B-

Raf negative cells (Dugan et al. [101]). In both cases,

PKA activation has a central role and mediates its

effects through Src and Rap1 activation (Stork and

Schmitt [102]). Although the majority of cAMP-

dependent effects can be explained by this hypothesis,

a few exceptions are reported. In some B-Raf positive

cells, an increase in cAMP is shown to inhibit B-Raf,

suggesting that regulation of this kinase by cAMP also

depends on other cell type specific factors. One model

suggests the involvement of 14-3-3 proteins acting as

scaffolding proteins to shield B-Raf and Raf1 from

PKA phosphorylation (Qiu et al. [103]). Other studies

indicated that regulation of ERK by cAMP involves

multiple cell type specific mechanisms. In COS cells

overexpressing "-AR1 or "-AR2, stimulation of these

receptors activate AC through a Gs protein-dependent

mechanism as expected. However, PKA also phos-

phorylates these receptors and induces a switch from

Gs to Gi/o protein binding to "-AR resulting in
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activation of ERK upon receptor stimulation (Martin

et al. [104]). Modulation of the ERK cascade by cAMP

can also occur independently of PKA. In this context,

cAMP binds Epac1 or Epac2, Bexchange protein

directly activated by cAMP,’’ GEFs that activate

Rap1 and Rap2 (de Rooij et al. [105, 106]; Kawasaki

et al. [107]). Several examples of Gs protein-mediated

activation of ERK through Epac are reported

(Laroche-Joubert et al. [108]; Lin et al. [109]). Another

PKA-independent mechanism of ERK phosphoryla-

tion is the Gs"+/Src-mediated activation of Ras

(Schmitt and Stork [110]).

Gq and some Gi/o protein-coupled receptors activate

PLC" and trigger formation of IP3 and DAG, resulting

in Ca2+ release and PKC activation, respectively. Ca2+

increase can activate ERK through Pyk2 that activates

Ras as mentioned above. Otherwise, Ca2+-dependent

modulation of Ras activity is also mediated by Ras

guanine nucleotide-releasing factor (RasGRF), a GEF

that contains Ca2+- and DAG-binding domains,

(Ebinu et al. [111]) or by Ca2+/calmodulin-dependent

kinases CaMK-II and CaMK-IV (reviewed in Agell

et al. [112] and Walker et al. [90]). Increase of

intracellular calcium and DAG formation also results

in activation of cPKCs while DAG formation alone is

sufficient to activate nPKCs. Increase in PKC activity

modulates the ERK cascade through Ras by inhibition

of RasGAPs and/or stimulation of RasGEFs. In

addition, PKC can activate Raf independently of Ras.

Indeed, it is shown that PKC! phosphorylates Raf at

Ser499 (Kolch et al. [113]). However, mutation of this

serine residue into alanine does not affect Raf activity

in response to phorbol esters (Yip-Schneider et al.

[114]). More convincing data were obtained when

constitutively active PKC was expressed in rat 6

fibroblasts. These cells display Ras-independent sig-

nalling towards ERK by direct phosphorylation of Raf

by PKC(. Since activation of Ras is required in several

systems this interaction is cell type-dependent (Cacace

et al. [115]; Ueffing et al. [116]). Direct phosphoryla-

tion of Raf by PKC is also involved in ERK activation

by the Gi protein-coupled leukotriene (LT)D4 receptor

in intestinal epithelial cells. Although stimulation of

this receptor also triggers a parallel PKC-independent

activation of Ras, transfection experiments confirmed

that Ras is dispensable for LTD4 receptor-mediated

ERK activation (Paruchuri et al. [117]). When consti-

tutive active point mutants of PKC!, PKC% and PKC(

were introduced in COS cells, only PKC% activated the

ERK cascade (Ueda et al. [118]), indicating that

involvement of PKC isoforms in ERK signalling vary

among different cell types. This is also confirmed by the

observation that, in platelets, cPKCs are involved in

thrombin-induced MEK and ERK activation indepen-

dently of Ras or Raf (Nadal-Wollbold et al. [119]).

Gi/o protein-coupled receptors that are not linked to

PLC activation can also modulate mitogenic signalling

through G"+-dependent activation of PI 3-K+. Signal-

ling from PI 3-K+ to ERK proceeds through Shc/Grb2/

SOS/Ras (Lopez-Ilasaca et al. [86]). An increasing

number of reports point to the involvement of PKCK in

Gi protein-dependent phosphorylation of ERK. The

first observation was made in CHO cells where

stimulation of the LPA receptor triggers MEK/ERK

signalling via a PI 3-K+-dependent activation of PKCK

not abrogated by transfection with dominant negative

Ras (Takeda et al. [120]). In addition, a recent report

indicated that angiotensin II-induced ERK activation

in rat vascular smooth muscle cells requires interaction

between Ras and PKCK (Zhao et al. [121]). PKCK-

dependent activation of ERK is mediated by inter-

action with MEK, a property shared by other PKC

isoforms (Schönwasser et al. [122]), or by regulation of

Raf1. Studies performed in rat embryonic hippocampal

cells indicated that PKCK can phosphorylate the Raf

kinase inhibitory protein (RKIP) resulting in dissocia-

tion of the Raf1/RKIP complex (Corbit et al. [123]). In

addition, co-immunoprecipitation experiments in COS

cells showed that modulation of c-Raf1 by PKCK is

also regulated by 14-3-3 scaffolding proteins (Van Der

Hoeven et al. [124]).

Initial studies concerning P2Y receptor-mediated

activation of ERK were made in astrocytes where this

cascade was shown to be involved in cell proliferation

and process elongation (Neary and Zhu [125]; King

et al. [126]).

Although ATP triggers pertussis toxin insensitive

IP3 and Ca2+ responses in astrocytes, these are not

required for the signalling towards ERK which

depends on rapid membrane translocation of PKC%

upon phosphatidylcholine hydrolysis by PLD (Neary

et al. [73]). In PC12 cells, stimulation of the P2Y2 re-

ceptor also induces PKC%-dependent ERK phosphor-

ylation, although this mechanism requires Ca2+ and

Pyk2 for the association of Shc and Grb2 to the

receptor and for subsequent activation of SOS/Ras/

Raf/MEK/ERK (Soltoff et al. [84]). Many reports

showed that P2Y receptor-mediated ERK signalling

requires PKC activation (Graham et al. [127]; Huwiler

and Pfeilschifter [128]; Erlinge [129]), but a PKC-

independent mechanism is reported in thyroid FRTL-

5 cells (Tornquist et al. [130]). In 1321N1 astrocytoma

cells, stimulation of the P2Y6 receptor with UDP acti-

vates PKC!, ( and K which are correlated with ERK

phosphorylation (Kim et al. [131]). Although the use of

general PKC inhibitors 3-[1-(dimethylaminopropyl)
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indol-3-yl]-4-(indol-3-yl)maleimide hydrochloride

(GF109203X) and 12-(2-cyanoethyl)-6,7,12,13-tetrahy-

dro-13-methyl-5-oxo-5H-indolo(2,3-a)pyrrolo(3,4-c)-

carbazole (Gö 6976) diminished ERK signalling, the

lack of specificity of these compounds makes it dif-

ficult to determine the contribution of each of these

PKC isoforms in the mechanism of ERK activation

(Way et al. [132]).

Enhanced proliferation by a P2Y receptor-mediated

stimulation of the ERK pathway has been reported in

a large number of cell types such as human mesangial

cells, vascular smooth muscle cells and primary astro-

cytes (Huwiler and Pfeilschifter [128]; Harper et al.

[133]). Transient ERK activation by P2Y1, P2Y2 or

P2Y12 receptor stimulation also increases cell prolifer-

ation in C6 cells indicating that activation of several

P2Y receptor subtypes can converge into the same

physiological response (Table 2) (Tu et al. [44]; Claes

et al. [39]; Czajkowski et al. [46]).

In addition to mitogenesis, P2Y receptor signalling

towards ERK elicits other physiological processes

including cell survival, inflammation and reactive

gliosis. In human lung microvascular endothelial cells,

hyperoxia-induced release of ATP results in cell

survival through ERK and PI 3-K signalling cascades

activated by P2Y2 and/or P2Y6 receptors, while

stimulation of the ERK cascade by the P2Y6 receptor

protects 1321N1 astrocytoma cells from TNF!-induced

apoptosis (Ahmad et al. [134]; Kim et al. [131]). Rapid

ERK1/2 and p38 MAPK activation plays an important

role in P2Y2 receptor-dependent primary granule

release from human neutrophils (Meshki et al. [135]).

A similar phenomenon is observed in articular chon-

drocytes where ATP acts as a pro-inflammatory medi-

ator by increasing arachidonic acid production and

release of prostaglandin E2 through a P2Y2 receptor-

dependent activation of p38 and ERK1/2 (Berenbaum

et al. [136]). In primary astrocytes, P2Y receptor-

mediated ERK activation by ATP is shown to induce

reactive astrogliosis, a phenomenon that occurs upon

brain injury and is characterised by astroglial prolifer-

ation, cellular hypertrophy and up regulation of GFAP.

This effect is mediated by an ERK-dependent increase

in the expression of COX-2 (Brambilla et al. [53]). In

C6 cells, P2Y12 and P2Y2 receptor-induced activation

of ERK is coupled to an enhanced cell proliferation,

while a negative modulation of GFAP synthesis by the

P2Y12 receptor is reported (Claes et al. [39]; Tu et al.

[44]; Van Kolen and Slegers [45]). These differences

are probably due to the fact that in C6 cells induction

of GFAP expression is not correlated with an en-

hanced proliferation but requires growth arrest.

In summary, most P2Y receptors are coupled to

ERK phosphorylation, but the signalling mechanism

and the physiological effect of this pathway are cell type

specific and are determined by the cellular context.

PI 3-K/PKB signalling

PKB/Akt is involved in a large variety of cellular

processes including glucose metabolism, mitogenesis,

differentiation, survival and motility (Brazil et al.

[137]). This member of the AGC protein kinase

superfamily is recruited to the plasmamembrane upon

PI 3-K-mediated PIP3 formation, but is also controlled

in a PI 3-K-independent, but calmodulin-dependent,

fashion upon intracellular Ca2+ mobilisation by stimu-

lation of neuronal NMDA receptors (Cantley [138];

Leevers et al. [139]; Woodgett [140]; Yano et al. [141]).

Modulation of PKB activity is reported for a variety

of GPCR ligands including adrenergics, cannabinoids,

Table 2 G protein-dependent modulation of ERK and PKB signalling cascades in C6 cells.

G protein ERK PI 3-K/PKB Effect

P2Y1 Gq j PLC-PKC-Ca2+-Ras. , Attenuation of PI 3-K

activated by growth

factors

Proliferation

P2Y2 Gq j PLC-PKC-Ca2+-Ras. – Proliferation

P2Y12 Gi j RhoA-PKC-Raf-MEK j PI 3-K/PKB Proliferation/inhibition of

astrocytic differentiation

2OR Gi j FGF transactivation – Proliferation

"-AR Gs , Transient inhibition

dependent on cAMP

, Transient inhibition

by cAMP

Growth arrest/astrocytic

differentiation

CB Gs , Sustained inhibition , Sustained inhibition Growth arrest/apoptosis

Transient ERK activation by P2Y1 (Czajkowski et al. [46]), P2Y2

(Tu et al. [44]), P2Y12 (Grobben et al. [40]) and 2 opioid receptors
(2OR) (Belcheva et al. [198]) enhances cell proliferation while
stimulation of the "-adrenergic receptor ("-AR) transiently

inhibits ERK and PKB concomitant with induction of differenti-
ation (Wang et al. [149]; Van Kolen and Slegers [45]). Inhibition of
these pathways by cannabinoids (CB) is sustained and induces
apoptosis (Ellert- Miklaszewska et al. [184]).
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carbachol, glutamate, histamine, nucleotides and

thrombin (Dickenson [142]; Franke et al. [143],

Iacovelli et al. [144] Murga et al. [145]; Sanchez et al.

[146]). Due to the existence of multiple phosphoinosi-

tide-dependent cascades, regulation of PKB signalling

by GPCRs varies among the studied systems.

In HEK293 cells, stimulation of "-AR with

(-)-isoproterenol activates PKB via Gs"+, Src, Ras and

PI 3-K (Schmitt and Stork [110]; Bommakanti et al.

[147]) while activation of AC by G!s exerts differential

effects on PKB activity. In cells expressing Epac, cAMP

activates PI 3-K/PKB via Rap1 while, in other cells,

cAMP activates PKA that exerts a negative action on PI

3-K and PKB (Mei et al. [148]; Wang et al. [149]).

Gi protein-mediated activation of PKB can occur

through the coupling of the G"+ subunit to the catalytic

subunit of PI 3-K or via growth factor receptor trans-

activation. Although only p110+ was initially reported

to be activated by G"+ subunits, this feature is also

observed for the p110" isoform (Kurosu et al. [150];

Stoyanov et al. [151]). This mechanism is reported in

Vero cells where stimulation with LPA activates Ras

upon increase in p110" lipid kinase activity (Yart

et al. [152]). Gi protein-mediated transactivation of

growth factor receptors is reported in HaCaT, A-431,

and HEK293 cells where stimulation of the angioten-

sin type I receptor by mechanical stress induces

transactivation of EGFR leading to activation of the

PI 3-K/PKB cascade and protection of these cells from

apoptosis (Kippenberger et al. [153]).

In 1321N1 astrocytoma cells, PLC" activation by the

Gq protein-coupled muscarinic M3 receptor also trig-

gers PI 3-K activation through ErbB3 transactivation,

but this mechanism requires Ca2+ mobilisation (Tang

et al. [154]). In contrast, some reports showed an

inhibitory pathway from Gq protein-coupled receptors

towards PI 3-K by direct interaction between G!-

subunits released from heterotrimeric G proteins and

p110!, as reported for the !1A-AR in rat-1 fibroblasts

(Ballou et al. [155, 156]), or by inhibition of insulin

receptor substrate-1-associated PI 3-K activity in

1321N1 astrocytoma cells by carbachol, histamine or

thrombin. These observations reveal opposing effects

of muscarinic receptor stimulation on PI 3-K activity

mediated by insulin and ErbB3 receptors in these cells

(Batty et al. [157]).

Modulation of PI 3-K/PKB signalling is also reported

for a few P2Y receptors. In bovine adventitial fibro-

blasts, ATP is shown to induce proliferation through

parallel but independent ERK and PI 3-K signalling

cascades that contribute to mTOR and p70S6K phos-

phorylation (Gerasimovskaya et al. [158]). In rat

mesangial cells, stimulation of the P2Y2 receptor with

ATP or UTP activates PKB by a PDK-1-dependent

mechanism while, in C6 cells, ADP activates PI 3-K/

PKB by the Gi protein-coupled P2Y12 receptor but

inhibits PI 3-K by stimulation of the Gq/G11/12 protein-

coupled P2Y1 receptor (Table 2) (Van Kolen and

Slegers [45]; Czajkowski et al. [46]; Huwiler et al.

[159]). Although most effects of P2Y-mediated activa-

tion of PI 3-K signalling are known to be related to cell

proliferation, differentiation and survival, this signal-

ling cascade is also involved in other processes. In this

regard, it can be mentioned that P2Y12 receptor-

mediated PI 3-K/PKB activation modulates prolifera-

tion and differentiation of C6 cells, but also plays an

important role in ADP-induced platelet aggregation

(Van Kolen and Slegers [45]; Czajkowski et al. [46];

Chen et al. [160]; Kim et al. [161]).

P2Y receptor-integrated G protein-coupled receptor
and receptor tyrosine kinase signalling cascades

G protein-coupled receptor cross-talk

Complementary to vertical downstream signalling upon

GPCR stimulation, these receptors also mediate lateral

signalling by cross-talk with other receptors (reviewed in

Cordeaux and Hill [162]). In human platelets, it was

reported that P2Y12 receptor activation potentiates

P2Y1 receptor-mediated Ca2+ signalling, while the

P2Y1 receptor negatively regulates this action (Hardy

et al. [163]). In renal mesangial cells, P2Y receptors

activated by ATP and UTP induce a rapid desensitisa-

tion of the sphingosine-1-phosphate (S1P) receptor by

PKC-dependent phosphorylation (Xin et al. [164]). A

more complex interplay is observed between P2Y

receptors and 5-HT receptor subtypes. Studies per-

formed in CHO cells stably expressing 5-HT1A recep-

tors revealed that the responsiveness of this receptor is

reduced by a PLD/PKC-dependent phosphorylation

upon short (<5 min) pre-treatment with ATP, while

the agonist efficacy of the overexpressed 5-HT1B

receptor is not altered. Alternatively, longer treatment

with ATP alone attenuates 5-HT1B signalling by a

mechanism that requires activation of phospholipase

A2 (PLA2) (Berg et al. [165]). Furthermore, stimulation

of P2Y receptors can also modulate the release of

transmitter molecules, including dopamine, glutamate

and serotonin (Bezzi and Voltera [52]; Krugel et al.

[166]; Nedergaard et al. [167]). A recently discovered

mechanism of GPCR cross-talk is the assembly of a

heteromeric receptor complex displaying the pharmaco-

logical profile of one receptor and the signalling proper-

ties of the other. Such an interaction is reported in
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HEK293 cells overexpressing A1 and P2Y1 receptors.

The heteromeric A1-P2Y1 receptor complex inhibits

AC through Gi/o protein, but displays P2Y1 receptor-

like pharmacological properties (Yoshioka et al. [168]).

P2Y receptor-mediated transactivation

Many studies reveal that GPCRs and growth factor

receptors share a number of signalling modules

(e.g., Raf/MEK/ERK, PI 3-K/PDK/PKB) to transduce

their effects. In the past decade, it has become clear

that the signalling pathways of both receptor systems

are interconnected. Stimulation of a GPCR can induce

a rapid tyrosine phosphorylation of RTKs. This trans-

activation mechanism is reported for many GPCRs

and proceeds through the G"+ subunit-dependent

activation of Src. Src in turn activates RTKs by

phosphorylation of specific tyrosines located in their

intracellular domains or induction of matrix metal-

loproteases-dependent release of growth factor recep-

tor ligands, e.g., release of heparin-bound EGF

(Luttrell and Luttrell [169]).

Another target for signal integration of GPCRs and

RTKs are docking proteins. Although these proteins

contain phospho-tyrosine binding domains that inter-

act with phosphorylated tyrosine residues of RTKs,

stimulation of GPCRs can induce growth factor

receptor-independent phosphorylation of docking pro-

teins by Src (Bisotto and Fixman [170]).

In addition to GPCR-dependent phosphorylation of

RTKs, the opposite activation mechanism is also

reported. Binding of PDGF to its cognate receptor

induces association of PDGFR with the Gi protein-

coupled S1P receptor. Subsequently, Src is recruited to

this complex by G"+ subunits and phosphorylates

Grb-2 associated binder-1 resulting in dynamin

II-induced Bpinching off’’ of vesicles involved in

endocytosis of PDGF-S1P signalling complexes and

subsequent activation of ERK1/2 (Waters et al. [171]).

Cross-talk between RTKs and P2Y receptors is

reported in Müller glial cells where ATP exerts its

mitogenic effect through transactivation of EGF and

PDGF receptors resulting in ERK-dependent en-

hanced proliferation. In these cells, ATP-induced

activation of ERK was abolished by treatment with

the RTK autophosphorylation inhibitor tyrphostin

(AG1478) (Milenkovic et al. [172]). In rat striatal

astrocytes, ATP and bFGF activate ERK and induce

astrogliosis by a mechanism that is insensitive to

RTK inhibition (Abbracchio et al. [173]; Bolego et al.

[174]; Neary et al. [175]). More recently, mechanistic

studies performed in 1321N1 astrocytoma cells reveal

that the human P2Y2 receptor interacts with Src and

Pyk2, probably by its proline-rich putative SH3

binding sites (PXXP). This interaction is implicated

in P2Y2 receptor-induced transactivation of EGF,

PDGF and VEGF receptors (Liu et al. [176]; Seye

et al. [100]). Src inhibition abolishes growth factor

receptor transactivation and ERK phosphorylation.

Although the rat P2Y2 receptor lacks PXXP motives,

tyrosine kinase-dependent activation of ERK upon

P2Y2 receptor stimulation is reported in a few rat cell

lines, including C6 and PC12 cells (Soltoff et al. [84];

Tu et al. [44]). In the latter cases, P2Y2 receptor-

dependent activation of Pyk2 is mediated by PKC and

Ca2+ suggesting that the PXXP sequence is dispens-

able for P2Y2 receptor-induced tyrosine phosphoryla-

tion of Pyk2 and downstream signalling towards ERK.

Moreover, P2Y2 mutants lacking PXXP-motives are

still able to activate ERK demonstrating the existence

of other pathways towards phosphorylation of ERK

(Liu et al. [176]). Observations made in human

endothelial cells, where UTP-induced signalling to

ERK was shown to depend on Ca2+, PKC and

integrin-mediated cell anchorage, already pointed to

a pathway distinct from the classical Ras/Raf/MEK/

ERK cascade (Short et al. [177]). Human and mouse

P2Y2 receptors contain a RGD sequence which allows

activation of ERK by interaction with !V"3/"5 integrins

followed by Go protein coupling. Since these proteins

also mediate cell adhesion and chemotaxis, the ob-

served P2Y2/!V"3/"5-interaction also points to a possi-

ble function of P2Y2 receptors in inflammatory

responses (Erb et al. [178]).

It is clear that, in analogy with other GPCRs, cross-

talk between P2Y and growth factor receptors may

occur at different levels of the signal transduction

pathway depending on receptor subtypes and on the

studied system. For the P2Y2 receptor, additional

transactivation mechanisms are facilitated by the

presence of signalling motives (e.g., PXXP or RGD)

that allow direct interaction with other signalling

components (Src, integrins).

P2Y receptor-activated signal transduction pathways

in C6 glioma cells

As mentioned above, the final outcome of nucleotide-

mediated signalling is influenced by ecto-enzymes

(Claes and Slegers [17]; Czajkowski and Baranska

[18]; Grobben et al. [21, 179]). ATP and ADP hy-

drolysis to adenosine results in growth inhibition by a

mechanism that is not yet fully understood. When

nucleotide hydrolysis is prevented, ATP, ADP and

ApnA (in particular Ap3A and Ap4A) increase cell
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proliferation more than two-fold. Stimulation with

2MeSADP, a P2Y agonist not hydrolysed by the

ecto-enzymes present on the plasma membrane of C6

cells, also results in growth enhancement and inhibi-

tion of "-AR-induced differentiation into astrocyte

type II (Claes et al. [39]; Van Kolen and Slegers [45]).

The pathways involved in the P2Y receptor-dependent

effects on growth and differentiation of these cells are

presented in Figure 1.

Nucleotides stimulate several purinergic receptors

that activate the ERK cascade by at least two distinct

mechanisms. The P2Y2 receptor, stimulated by UTP

and ATP, enhances ERK phosphorylation through a

PLC"/PKC/Ras/Raf/MEK cascade that is attenuated

by inhibition of tyrosine kinases and Ca2+ chelation by

BAPTA-AM (Tu et al. [44]). The Ca2+-dependence of

the P2Y2 receptor-mediated activation of ERK sug-

gests the involvement of a cPKC (!, "I, "II or +). It is

also shown that ADP stimulates the P2Y1 receptor and

activates ERK through a Ca2+-dependent mechanism

(Czajkowski et al. [46]), likely by a similar mechanism

as reported for the P2Y2 receptor (Tu et al. [44]). In

addition, it has been shown that ADP can activate

ERK by stimulation of the P2Y12 receptor through a

RhoA- and PKC-dependent pathway that does not

require Ca2+, Ras or tyrosine kinase activation

(Grobben et al. [40]). The fact that Ca2+ removal does

not affect P2Y12 receptor-mediated ERK activation

excludes the involvement of cPKCs. Stimulation of the

P2Y12 receptor does not induce PI-turnover, but

nPKCs might be involved since alternative activation

mechanisms, based on Ser/Thr and Tyr phosphoryla-

tion, have been reported (Steinberg [180]; Parekh et al.

[181]). Data from our laboratory suggest an important

role for PKCK in P2Y12 receptor-dependent activation

of ERK. The fact that no cross-talk between ERK and

PI 3-K is observed in C6 cells indicates that PKCK

exerts its actions independently of PI 3-K via a RhoA-

Figure 1 Overview of P2Y receptor-mediated signalling cascades in C6 cells. Green and red lines represent stimulatory (green arrows)
and inhibitory (red squares) actions respectively. Dashed lines are incomplete characterised pathways. P2Y2 receptor stimulation
enhances ERK-dependent proliferation through a PLC-dependent pathway while P2Y12 receptor stimulation enhances cell
proliferation by RhoA- and PKCK-dependent activation of ERK (Claes et al. [39]; Grobben et al. [40]; Tu et al. [44]; Van Kolen
and Slegers, unpublished data). P2Y12 receptor stimulation also inhibits cAMP-dependent induction of differentiation by reactivation
of PKB which requires Src/Pyk2 complex formation and Rap1 activation. Formation of the Src/Pyk2 complex requires Ca2+ and PLD2
which is constitutively active (Claes et al. [22]; Van Kolen and Slegers [45]; Van Kolen et al. [185]). Cyclic AMP-dependent inhibition
of PKB and ERK is suggested to depend on inhibition of Rap1 (Wang et al. [149]). The negative modulation of PI 3-K by the P2Y1

Figure 1 Overview of P2Y receptor-mediated signalling cascades
in C6 cells. Green and red lines represent stimulatory (green
arrows) and inhibitory (red squares) actions respectively. Dashed
lines are incomplete characterised pathways. P2Y2 receptor
stimulation enhances ERK-dependent proliferation through a
PLC-dependent pathway while P2Y12 receptor stimulation
enhances cell proliferation by RhoA- and PKCK-dependent
activation of ERK (Claes et al. [39]; Grobben et al. [40]; Tu
et al. [44]; Van Kolen and Slegers, [199]). P2Y12 receptor stimu-

lation also inhibits cAMP-dependent induction of differentia-
tion by reactivation of PKB which requires Src/Pyk2 complex
formation and Rap1 activation. Formation of the Src/Pyk2
complex requires Ca2+ and PLD2 which is constitutively active
(Claes et al. [22]; Van Kolen and Slegers [45]; Van Kolen et al.
[185]). Cyclic AMP-dependent inhibition of PKB and ERK is
suggested to depend on inhibition of Rap1 (Wang et al. [149]).
The negative modulation of PI 3-K by the P2Y1 receptor is only
displayed in the presence of serum (Czajkowski et al. [46])
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dependent mechanism (Grobben et al. [40]; Van Kolen

and Slegers, [199]). Although P2Y receptors use

different mechanisms to activate ERK, they all con-

verge to increased cell proliferation by enhanced

synthesis of c-Myc, c-Jun and c-Fos (Zhang et al.

[182]). Progression through the G1/S phase of the cell

cycle is due to a decreased expression of p27Kip and

increased expression of cyclinD.

While stimulation of ERK signalling by P2Y recep-

tors has been known for several years, the coupling with

PI 3-K activation was discovered more recently. When

C6 cells are grown in the presence of serum, P2Y1

receptor signalling predominates and is shown to

inhibit PI 3-K (Czajkowski et al. [46]). Upon serum

deprivation, P2Y1 receptor expression decreases while

P2Y12 becomes the main ADP-stimulated receptor

that enhances the activity of PI 3-K by a Gi protein-

dependent mechanism. These observations demon-

strate that, in addition to autocrine growth factor

receptor signalling, the constitutive PI 3-K activity in

C6 cells is modulated by P2Y1 and P2Y12 receptor

expression. Another cross-talk at the level of PI 3-K/

PKB is observed for P2Y12 and "-AR. Increase in

cAMP upon stimulation of the latter receptor tran-

siently inhibits PKB phosphorylation. Stimulation of

the P2Y12 receptor, which negatively affects AC, does

not only counteract this inhibition but even enhances

PKB activity in comparison to unstimulated cells,

suggesting that P2Y12 receptor-mediated PI 3-K/PKB

activation is not only due to its inhibitory effect on AC

(Van Kolen and Slegers [45]; Czajkowski et al. [46];

Baranska et al. [183]). In addition to their opposing

effects on PI 3-K/PKB signalling, unpublished data of

our laboratory revealed similar modulation of ERK

signalling by P2Y12 and "-AR. Whether the P2Y12

receptor-mediated reversal of ERK inhibition is in-

volved in the inhibition of "-AR-induced GFAP

synthesis remains to be determined. The observation

that stimulation of the cells with UTP activates ERK,

but fails to inhibit the "-AR-induced growth arrest and

GFAP synthesis, suggests that ERK activation alone is

not sufficient to counteract differentiation (Claes et al.

[39]; Tu et al. [44]). Conversely, transfection of C6 cells

with constutively active PKB prevented (-)-isoproter-

enol-induced differentiation indicating that inhibition

of PKB signalling is required for cAMP-dependent

induction of differentiation. Apparently this observa-

tion is in contrast with data showing that cAMP-

dependent induction of differentiation requires PI 3-K

activity which is not inhibited upon a 48-h treatment

with dbcAMP (Roymans et al. [34]). This might be

explained by the fact that induction of differentiation

by stimulation of "-AR proceeds through transient

inhibition of PKB while recovery of this activity is

required to prohibit cell death. This hypothesis is

confirmed by a recent study where sustained inhibition

of PI 3-K/PKB by cannabinoids is shown to induce

apoptosis in C6 cells (Table 2) (Ellert-Miklaszewska

et al. [184]). Taken together, P2Y12 receptor stimula-

tion inhibits cAMP-dependent induction of differenti-

ation by a transient increase in PI 3-K/PKB activity.

Ca2+ chelation inhibits the basal PKB activity and

P2Y12 receptor-mediated increase in PKB phosphoryla-

tion. Although C6 cells also express the P2Y2 receptor,

stimulation with UTP does not enhance the activity of

PI 3-K/PKB, which may be explained by a differential

coupling to G protein subtypes. P2Y2 receptor-mediat-

ed signalling proceeds through Gq proteins while the

activation of PDK is Gi protein-dependent (Table 2)

(Tu et al. [44]; Huwiler et al. [159]). The lack of Gi

protein coupling of the P2Y2 receptor in C6 cells might

be a consequence of compartimentalisation into cav-

eolae as reported for some Gq protein-coupled recep-

tors (Bhatnagar et al. [81]).

Although experiments in CHO cells reveal that P2Y12

receptor-induced ERK activation requires PI 3-K+

(Soulet et al. [92]), experiments performed with

LY294002 or Wortmannin excluded cross-talk between

both cascades in C6 cells (Grobben et al. [40]). These

differences in signalling mechanisms can be explained

by the fact that the latter PI 3-K-isoform is only

moderately expressed in C6 cells (Van Kolen and

Slegers [45]). The exact mechanism of P2Y12 receptor-

induced PI 3-K/PKB activation is not fully understood,

but recent data revealed that Src and Pyk2 are involved

in P2Y12 receptor signalling to PI 3-K (Van Kolen et al.,

[185]). A similar pathway is observed in PC12 cells

where Src, in complex with Pyk2 and PLD2, activates

PI 3-K in response to H2O2 (Banno et al., [186]). Since

PLD2 is constitutively active in C6 cells (Bobeszko

et al. [187]), a significant role for this enzyme in PI 3-K/

Akt signalling is suggested. Although Soulet et al. [92]

reported that transactivation of PDGFR is involved in

PI 3-K activation by the P2Y12 receptor in CHO cells,

the use of receptor kinase inhibitors indicated that

PDGFR and EGFR are not transactivated by the P2Y12

receptor in C6 cells. Alternatively, a Rap1-mediated

activation of PI 3-K by the P2Y12 receptor cannot be

excluded. Indeed, PI 3-K is postulated as a downstream

effector of Rap1 that is inhibited by an increase in

cAMP concentration (Wang et al. [149]). Data from our

laboratory indicated a rapid P2Y12 receptor-induced

activation of Rap1 that was abolished by Ca2+ chelation

and inhibition of Src/Pyk2 complex formation but not

by PI 3-K inhibition (Van Kolen et al. [185]). These

results positioned Rap1 downstream of Src/Pyk2 but
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upstream of PI 3-K. In addition, this mechanism

involves G"+ protein subunits and Ca2+-dependent

activation of Pyk2 that requires association to IGF-IR

and PLD2 to interact with Src. Although Src and Pyk2

are shown to activate Ras/Raf/MEK/ERK in primary

astrocytes (Wang and Reiser [83]), this mechanism did

not contribute to P2Y12 receptor-mediated ERK acti-

vation in C6 cells pointing to a physical separation of

both cascades (Grobben et al. [40]; Van Kolen and

Slegers, [199]). Indeed, the formation of a Pyk2/Src/

PLD2/IGFI-R complex may contribute to compartmen-

talisation of this signalling pathway that requires intact

lipid rafts to be active (Van Kolen et al. [185]). In

contrast, in blood platelets Rap1, but also Pyk2

activation by the P2Y12 receptor, depends on PI 3-K

activity but is insensitive to Ca2+ chelation (Lova et

al. [96, 97]; Koziak et al. [188]). These findings indicate

that different cell specific pathways are involved in

P2Y12 receptor-mediated activation of PI 3-K/PKB and

additional research is required to allow full character-

isation of these signalling cascades.

Conclusions

At present, nucleotides are known to regulate a variety

of biological processes related to vascular-, immuno-

logical- and intestinal functioning. In vitro studies on

glial and neuronal cells implicated the P2Y receptor-

activated signalling pathways in regulation of cell

motility, proliferation, chemotaxis and protection

against oxidative stress. Furthermore, investigations

on tumoral cells demonstrated that stimulation of P2Y

receptors contribute to tumorigenesis by increasing

cell proliferation through ERK and PKB signalling

pathways activated by independent mechanisms. From

these observations, a role of these receptors as

potential targets in clinical applications emerges.

P2Y receptors modulate these physiological func-

tions by activation of GTPases and direct or indirect

activation of protein kinases. Characterisation of the

involved receptor(s) and elucidation of P2Y receptor-

induced activation of defined pathways needs to be

improved by synthesis of specific P2Y agonists and

antagonists.

Studies on P2Y receptor-mediated signalling, dis-

cussed in this review, demonstrate that besides vertical

signal transduction, lateral cross-talk between growth

factor receptors and GPCRs extends the signalling

properties of a defined receptor subset. It also becomes

clear that signal transduction pathways activated by

P2Y receptors largely depend on the cell type and their

environment. On the one hand, cellular specificity is

determined by differential expression of signalling

proteins, but on the other hand also depends on the

assembly of signalling modules. Besides specific pro-

tein-protein interactions, intracellular compartmentali-

sation (e.g., lipid rafts, clathrin-coated vesicles) also

contributes to the specificity of receptor signalling.

Identification of the signalling modules and cellular

compartmentalisation will provide more insight into the

P2Y receptor-activated signalling cascades.
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