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Integration of paired spiking cerebellar models for voluntary movement

adaptation in a closed-loop neuro-robotic experiment. A simulation

study

Carlos Corchado1, Alberto Antonietti2, Marie Claire Capolei3, Claudia Casellato4, Silvia Tolu∗5

Abstract— Motor control is a very important feature in the
human brain to achieve optimal performance in motor tasks.
The biological basis of this feature can be better understood
by emulating the cerebellar mechanisms of learning. The
cerebellum plays a key role in implementing fine motor control,
since it extracts the information about movements from sensory-
motor signals, stores it by means of internal models and
uses them to adapt to the environment. The hypothesis is
that different internal models could work both independently
and dependently. So far, there have been a few studies that
aimed to prove their dependency; however, this hypothesis
has not been widely used in robot control. The purpose of
this work is to build paired spiking cerebellar models and to
incorporate them into a biologically plausible composite robotic
control architecture for movement adaptation. This is achieved
by combining feedback error learning and cerebellar internal
models theories. Thus the control architecture is composed of
cerebellar feed-forward and recurrent loops for torque-based
control of a robot. The spiking cerebellar models are able to
correct and improve the performance of the two-degrees of
freedom robot module Fable by providing both adaptive torque
corrections and sensory corrections to the reference generated
by the trajectory planner. Simulations are carried out in the
Neurorobotics platform of the Human Brain Project. Results
show that the contribution provided by cerebellar learning
leads to an optimization of the performance with errors being
reduced by 30% compared with the case where the cerebellar
contribution is not applied.

I. INTRODUCTION

Neuroscience and robotics play a conjoint role in building

intelligent robotic systems (neurorobots) that mimic human

behavior in performing complex, coordinated and precise

movements [1]. The biological basis of this ability is still

not completely understood [2], however, by emulating the

cerebellar mechanisms of learning, new insights can be

revealed. As a matter of fact, the cerebellum plays a key role

in implementing fine motor control [3], allowing actions to

be performed rapidly and precisely by reason of its predictive
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control. Neurorobots are built by combining robotic agents

and biologically plausible neural systems and can be used to

investigate how neural representations and control systems

adapt to a dynamic environment.

It has been widely accepted that the cerebellum stores

internal models to represent input-output properties of a body

part [4], [5]: forward and inverse models. The existence of

an internal model dependency has been suggested by [6], [7].

Considering the structure of the control system for voluntary

movements, [8] depicted two different plausible control paths

of the connections between the cerebral cortex and the cere-

bellum that have both anatomical and physiological bases:

the feed-forward [9], [10], [11], and the recurrent control

loops [12], [13], [14]; comparisons among the two schemes

are also available in literature [15].

[16] proposed an architecture based on coupled inverse

and forward models. Nevertheless, the pairing of internal

models remains only partially investigated [13], [17] and

they have not been used widely in robot control. In this

work a novel composite bio-mimetic control architecture in

which a feedback controller and paired spiking cerebellar

inverse and forward models are implemented and combined

together. The spiking cerebellar models provide adaptive

torque corrections (inverse model/feed-forward loop) to the

ones provided by the feedback controller, and sensory cor-

rections to the reference generated by the trajectory planner

(forward model/recurrent loop). The spiking cerebellar model

was built and integrated in the Neurorobotics Platform (NRP)

of the Human Brain Project (HBP) [18] to evaluate the

sensory-motor cerebellar adaptation, mediated by a plasticity

mechanism located at the cerebellar molecular layer, for

voluntary control of hand movements. This simulation study

adopts an experimental setup (eight-shape trajectory) widely

used by computational neuroscientists to better understand

the contribution of certain specific cerebellar properties (i.e.,

distributed plasticity, neural properties and coding, cerebellar

topology, etc.) to fast adaptation. Finally, this work shows

the proof of principle of an embodiment of paired spiking

cerebellar models in the NRP for robot control.

II. METHODS

A. Voluntary Movement Adaptation

There is clear evidence that motor systems are organized in

functional hierarchies where each level focuses on a different

task level as presented in [19] and in Fig. 6.1 of [3].



This research includes a few of the known pathways,

seeking to establish a minimal setup for a closed-loop system

with adaptive behavior:

• Premotor and Sensory Cortex: is where the motor

plan is being generated by converting an abstract inten-

tion into a representation for how to achieve this through

movement. This motor plan is passed on to both the

Motor Cortex and the Inferior Olive.

• Motor Cortex: receives the abstract motor plan and

transforms it into motor commands, sending these motor

commands directly to the spinal cord (motor) as well

as a to the cerebellum (efference copy).

• Inferior Olive: receives the motor plan from the Pre-

motor and Sensory Cortex as well as the sensory in-

formation relating limb movement and positions. These

signals are compared and converted into a teaching or

error signal, which is sent to the cerebellum.

• Cerebellum: receives both the teaching signal from the

Inferior Olive, sensory information about limb move-

ment and positions, as well as the efference copy of

motor commands. These inputs are then used to ”emit

corrective signals that can affect movement directly

(through the spinal cord/brainstem - feed-forward loop)

or change the motor plan itself (through the motor

cortex - recurrent loop)” [3].

• Spinal Cord (Motor): is where the initial motor com-

mands from the Motor Cortex and the corrective signal

from the cerebellum are combined into the final motor

command. This stimulation is passed on to the body.

Once the task is being performed, the internal sensory

information is updated and used to adapt the movement.

In this paper, most of these elements are modeled in

a simplified way in order to resemble their main function

but yet having a comprehensive overview of the biological

architecture.

B. Composite Control System Architecture

The role of the cerebellum has been widely mimicked

in feed-forward control architectures by spiking neural net-

works. By means of the feedback error learning, the original

commands from the motor cortex can be adjusted by feed-

forward corrections [20]. This contribution corresponds to

the red line in Fig. 1 that directly corrects torque values.

Since the need of complex neural structures to estimate

the motor error may be required [21], Porrill and Dean

suggest the use of the recurrent control architecture. This

is represented with the blue line in Fig. 1, where the cere-

bellar contribution provides sensory corrections. By having

a certain knowledge of the signals used for the learning

process this configuration avoids the distal error problem

[21], [14]. In this paper we propose the combination of the

feed-forward and recurrent approaches in a whole control

system, the composite control architecture as shown in Fig.

1.

The trajectory planner, emulating the premotor and sen-

sory cortex, provides the desired trajectory involving the

desired state (position, velocity and torque values) to the

output R 
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Fig. 1. The composite control system architecture. The spiking cerebellar
model provides effective corrective position, and torque add-on terms from
the error signal related to sensory-motor input to improve the performance
of the desired robotic task. The output signals of the cerebellum are provided
by the Deep cerebellar Nuclei (DCN) and are the result of the feed-forward
model learning (F, red line) and the recurrent model learning (R, blue line).
The desired values of the trajectory are transmitted through the mossy fibers
(MF) and the teaching signal (error) is carried by the inferior olive (IO)
through the cerebellar models.

cerebellum and to the motor cortex, which is represented

as Learning Feedback (LF) controller (see details in [14])

in Fig. 1. The position information is shared by the feed-

forward and recurrent models whereas the velocity is only

used in the feed-forward and the desired torque in the

recurrent.

The LF controller [14] is used to ensure the initial stability

of the system before the cerebellar contribution is giving

corrections. The LF controller produces the necessary joint

torque values to obtain the robust, but not precise execution

of the planned trajectory. The tuning of this controller was

done in a non-optimal way in order to see the effects of the

cerebellar contribution over time. The values used are K1 =

[0.44, 1.0], K2 = [0.056, 0.04], K3 = [0.074, 0.5], where

each gain is a vector containing the value of the gain for

each joint (see description of the robot in Section II-E).

The error block in Fig. 1 compares the motor plan and the

sensory information in order to calculate the joint error that

will be used as the error signal. This block partially embodies

the task of the inferior olive since the cerebellum uses it as

the teaching signal that is going to guide it to correct wrongly

performed movements. Additionally, the error value is used

by the LF controller in order to produce the torque signal

that is going to be sent to the Fable robot. In the case where

the cerebellar contribution is not active, this error signal goes

directly into the LF controller. However, when the cerebellum

is active, there are two different outputs corresponding to the

feed-forward and the recurrent contributions. The recurrent

part provides a correction to the error in the input to the

LF controller. On the other hand, the torque command

computed by the LF controller is adapted by the feed-

forward contribution. The combination of both will improve

the performance of the controller as shown in results section.

C. Neurorobotics Platform

The Neurorobotics Platform (NRP) [18] was created and

evolved in the framework of the HBP, a multidisciplinary



project integrating neuroscience scientists, computational

neuroscientists, robotic engineers as well as software de-

velopers amongst others. One of the major goals of NRP

lies in facilitating the implementation of simulated brain-

body-environment experiments. Beyond providing access to

robotic platforms to non-experts (such as the neuroscientific

community), it also facilitates the reproducibility of the re-

sults by other research groups, since not only the experiment

description but also the specific experimental setup can be

shared and reproduced. The NRP integrates all the tools

necessary for embedding artificial brain models to robotic

systems. In particular, it facilitates the coordination between

spiking neural networks and continuous time system. The

implementation of the neural systems is done in NEST [22],

which is connected to the virtual robot and its environment,

that are implemented in Gazebo.

D. Cerebellar Model

The cerebellar brain region is widely regarded as an

integral part of motor control [3]. Multiple hypotheses for its

role have been proposed, though, at the current stage, this is

not possible to have a unique answer [23]. The cerebellum

contains more than half of the brain neurons condensed in

1/10th of the brain volume and has projections to several

different places in the brain. The cellular structure of the

cerebellum is highly uniform and organized in a repetitive

structure of microcircuits, which suggests that it performs

the same type of general computation on various different

inputs [23].

This research employs a simplified version of the cerebel-

lar microcircuit, also known as the computing unit of the

cerebellum. This simplified circuit is an extension of the

seminal theory by Marr, Albus and Ito [24], [25] and consists

of two types of cells: Granule Cells (GR) and Purkinje cells

(PC) with approximately 10-100 Billion GRs and 1.5 Million

PCs in the human cerebellum. Further cerebellar elements

included in this model are the Inferior Olive (IO) and Deep

cerebellar Nuclei (DCN). These are connected by three types

of fibers (neuronal axons). These fibers are mossy fiber

(MFs), parallel fibers (PFs) and climbing fibers (CFs). A

visual representation of the complete cerebellar microcircuit

can be found in Fig. 6.3 of [3].

Overview of the cellular connections (based on [19]):

MFs serve as the prime input to the cerebellar microcircuit.

They are excitatory axons which branch several times and

synapse with two types of cells: DCN and GR. Their

connection to the DCN passes their signal directly from the

input to the output. This signal can then be modulated by the

GR-PC pathway. This happens through the MF-GR synapses.

The GR then projects into the Molecular layer, referred to

as PF. These PFs form excitatory synapses on about 100

PCs along the way. Each PC receives excitatory input from

around 200.000 PF synapses. When a PCs spikes due to

PF input it is called a Simple Spike (SS) [23]. SSs have

been found to predicts kinematics [26], [19], the frequency

of which has been found to encode amplitude [23]. Each

PC furthermore receives excitatory input from a single CF,

which wraps around the PC, synapsing at multiple sites.

When excited by a CF, a PC will exhibit a so-called Complex

Spike (CS) which is found to be a key driver for plasticity of

the GR-PC synapses. Each CF branches to about 10 different

PCs and forming about excitatory 300 synapses on each. The

PCs’ axons project down into the white matter where they

form inhibitory synapses on the DCNs. This closes the loop,

allowing the PCs to modulate the DCN output [23].

Adaptive learning: The scientific literature is currently

aware of 15 different types of plasticity in the cerebellum

[27]. While studies have shown that the interaction be-

tween multiple plasticities can increase performance [28], the

present study focuses only on the most well-known plasticity,

the GR-PC Spike-timing-dependent plasticity (STDP).

The GR-PC STDP is classified in two types: Long Term

Depression (LTD) and Long Term Potentiation (LTP). At the

event of a CS, the CF synapses on the spiking PC that were

active at a certain interval prior to the spike will experience

depression (LTD) [26], [29].

One of the most important aspects to understand is the

CF-PC adaptation. While it is not known what signals travel

up the CFs from the IO, it is widely believed to form some

kind of error or teaching signal. CFs fire at very low rates

of about 1 Hz in their baseline, seemingly at random times

[23]. Their spike rate can increase to a maximum of 5-10 Hz

and each CF spike reliably induces a CS in the PC, causing

adaptation [26], [23].

Composite topology and learning capabilities: A mod-

ified version of the cerebellar model introduced in [30] is

presented in order to comply with the proposed composite

architecture. In Fig. 2 a full description of the model is

presented. It can be inspected that the circuit shown in Fig.

2.a of [30] has been duplicated. One of the loops is used to

calculate the feed-forward contribution and the other one the

recurrent. Even though they are independent, they share the

error information coming from the IOs.

The sensory information is carried by the MFs. The feed-

forward loop uses desired position and velocity values as well

as the current state of the body. On the other hand, the re-

current MFs inputs consist of the desired position and torque

value, and the current state. This sensory-motor information

is going to be decorrelated by GRs [31], to then reach the CF-

PC-DCN branch. This part of the circuit is where the learning

is achieved. The approach implemented is the following for

both feed-forward and recurrent learning: the CF-PC-DCN

sub-neural populations are equally divided in positive and

negative parts. Each of them is active depending on the sign

of the error provided by the teaching signal. Finally there

is a positive and a negative cerebellar contribution based

on the deviation of the error. Before applying this value

to the body, the average of the output is calculated to give

the absolute contribution necessary to correct the ongoing

performance (i.e., the motor torque, for the feed-forward loop

or the sensory prediction, for the recurrent loop).

This new structure consists of a combination between the

cerebellar microcircuit for the feed-forward case and the

recurrent one. Each of them has its own close-loop with
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Fig. 2. Simplified composite cerebellar topology (adapted from [28]). The blue blocks form the feed-forward cerebellar loop and the green blocks form
the recurrent cerebellar loop. The two loops share the IO block. However this teaching signal is going to guide two different learning processes, the torque
command adaptation and the sensory information correction. In addition, the teaching signal is specialized in a positive and a negative part depending on
the deviation of the error signal from the desired value. All the block are divided into N sub-blocks (N is the number of robot joints) with identical internal
neural representation.

a common teaching signal that is based on the difference

between the desired position values and the current ones.

Finally, following the different pathways of the composite

control architecture, it can be seen that the combination of

both feed-forward and recurrent DCN contributions allows

to have an ongoing adaptation of the movement.

It can be noticed that the number of joints of the robotic

system does not imply a modification of the topology. This

is due to the fact that the structure is modular, which allows

a scalable system to be implemented in a straight forward

way.

This cerebellar model was developed in NEST within

the NRP where all neurons are implemented as Leaky

Integrate and Fire models and all synapses are modeled as

conductances.

E. Fable Robot

Fable is a modular robot system consisting of detachable

modules [32]. This project uses its joint module SDF model

to run the robot simulations in NRP. The module has 3 links

and 2 actuated revolute joints. The two joints are rotating

around different axes, with an offset of 90 degrees between

the two. The robot model is configured with mass distribution

and inertia equal to its physical counterpart. In this work,

the torque is applied directly to the joints, whereas in a real

robot, torque would be provided by an actuator with its own

dynamics. Tests on a single active module with 2 degrees

of freedom (DOFs) were conducted where the robot arm

is attached to the ground by its base link, and is standing

upright, able to move 90 degrees in both directions of both

joints as seen in Fig. 3. The task performed in the different

tests is an eight-shaped trajectory described in (1), where y0
and y1 are the angular positions of joint 0 and joint 1, which

depend on the time step t, the phase θ and the amplitude of

the eight figure defined by A.

y0 = Asin(πt), y1 = Asin(πt+ θ) (1)

Fig. 3. Experimental set up. One module of the Fable robot arm is fixed
to a table in order to avoid undesired dynamics.

F. Coding/Decoding integration

The Fable robot arm and the spiking cerebellar module

work with different types of information. The robotics system

simulated in Gazebo, provides sensory-motor data (inputs of

the cerebellar model) such as current position, velocities, and

torques of the joints. Furthermore, its motors are actuated

by a torque command. The cerebellum simulated in NEST

provides spiking activity (output of the cerebellar model). In

order to be able to coordinate and translate analog signals

coming from the robot to the cerebellum, and spiking activity

coming from the cerebellum towards the robot, there is a

need of some sort of transfer functions or interfaces. [30]

proposes the use of three different interfaces.

The first one computes the input current for MFs with

a radial basis function (RBF) method. RBF centers are

uniformly spread along the dimensions of the sensory input,

with their widths tuned to avoid the overlapping in the

response of consecutive MF.



The second interface is needed to have the correct mapping

from joint errors into the teaching signal computed by the IO

activity. As previously mentioned in Section II-D, the CFs

base firing rate is very low and it happens at random times.

This irregular behavior could be approached in a statistical

way by sampling the error signal over multiple steps [30].

The firing rate is modeled by a Poisson generator function

provided by the NRP. As proved in [33], [34], the probability

of having spikes in the IO can be seen as a proportional value

to the error signal.

The last interface needed to translate the different data and

to be able to close the control loop is the one that decodes

the output of the cerebellum (DCN) from neural activity to

an analog signal. The feed-forward and recurrent parts of

the cerebellum are going to have their own contributions.

Each of them is going to be specialized depending on the

sign of the teaching signal. This will result in a cerebellar

output with a positive and negative part. By computing the

moving average of the firing rate of the positive and negative

contribution, it is possible to calculate the mean DCN value

that is going to be proportional to the desired analog signal

[35].

III. RESULTS

The system performance, position error of the joints and

the neural activity, is recorded and saved through the tools

offered by the NRP. To measure the performance of the

composite control architecture, the robot is given the desired

trajectory, described in (1), that has to be repeated for 100

seconds. Once the task is finished, the moving average of the

angular position error, which is one of the possible values

used to verify the adaptive contribution of the cerebellum,

is calculated. Results presented in Fig. 4 show that the

composite control architecture allows the reduction of the

position error in both joints when compared with the LF

controller. At the beginning of the experiment the variance

between the two joints with the cerebellar controller is bigger

than the LF controller because of the initial online learning

phase of the cerebellum. The first joint has to compensate

the dynamics of the joint two due to the configuration of

the robot. After less than 20 seconds of execution, the

performance improves significantly reaching a stable overall

decrease of over 30% after 60-65 seconds of simulation.

When analyzing the learning process of the cerebellum,

Fig. 5 shows the evolution of the activity of the PC pop-

ulation (positive and negative part) for the feed-forward

contribution on the first joint. Starting with a baseline of

around 100 Hz [28] that inhibits the activity in the DCN,

the frequency evolves to values between 80-90 Hz. This is

due to the adaptation provided by the PF-PC plasticity that is

modulated by the IO teaching signal. When the error signal

increases, this is going to be translated in a reduction of

the PC spiking frequency that will allow the increase of the

DCN activity, which means an increment of the cerebellar

contribution. Notice that the evolution of the PC is going

to oscillate along with the execution of the task; when the

robot needs to correct its position, the DCN is going to be

active due to a reduction of the PC activity. On the other

hand, when the error has been reduced, the PC activity will

increase again, and the DCN will stop giving corrections.

This process is repeated during the moving task. Similar

behavior can be observed for the other PCs, of both the feed-

forward and the recurrent loops, and for the second joint. Of

course, each PC population evolves differently, according to

the correction (motor or sensory) that it has to generate.

The results prove that the composite control architecture

implemented in the NRP helps in adapting the motor control

of the Fable robot. The feed-forward and recurrent part of the

extended cerebellum proposed in this paper receive different

information in their respective input layers (MF), including

an efference copy of the desired motor command [19]. This

will help in having two different learning processes that

are going to be specialized in a positive and negative part

depending on the value of the teaching signal, resulting in

two different cerebellar outputs (DCN).

Furthermore, the way the cerebellar module has been

developed provides a scalability property that is needed in

modular robotics and also in any other robotic systems with

multiple DOFs, where a different number of joints can be

simultaneously active.
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IV. CONCLUSIONS

In this work, we present a case-of-study of cerebellar em-

bodiment in a composite control system architecture for vol-

untary movement adaptation. Two spiking cerebellar internal

models were paired to learn how to improve the performance

of a desired task thanks to their STDP adaptive mechanisms

that generate the activity in terms of both sensory and motor



output corrections. The STDP mechanisms adapt the synaptic

weights of PFs-PCs according to the teaching signal coming

from the CFs and the sensory information sensed by the

vestibular system through MFs.

Results show that the cerebellar control learning leads

to an optimization of the performance with errors being

reduced by 30% compared with the case where the cerebellar

contribution is not applied (black and grey lines in Fig.

4). We argue that the performance obtained within the

composite control loop could be improved by implementing

both an optimization method of internal parameters [30] and

a learning mechanism of coupling [16] between cerebellar

forward and inverse models. Besides, the coupling emulation

could be beneficial for the control of robots in presence of

singularities or under altered dynamics conditions [6]. Future

work will address the extension of the current cerebellar

model to provide more accurate details of neural units,

connectivity properties, and plasticity mechanisms, and to

better understand how the cerebellum processes the informa-

tion. Finally, the performance of the control system may be

increased by optimizing the adaptation speed and accuracy

in the NRP.
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